xref: /freebsd/sys/kern/vfs_subr.c (revision cc2b586d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/capsicum.h>
54 #include <sys/condvar.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/dirent.h>
58 #include <sys/event.h>
59 #include <sys/eventhandler.h>
60 #include <sys/extattr.h>
61 #include <sys/file.h>
62 #include <sys/fcntl.h>
63 #include <sys/jail.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/ktr.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/stat.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vnode.h>
85 #include <sys/watchdog.h>
86 
87 #include <machine/stdarg.h>
88 
89 #include <security/mac/mac_framework.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_extern.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_kern.h>
98 #include <vm/uma.h>
99 
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103 
104 static void	delmntque(struct vnode *vp);
105 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 		    int slpflag, int slptimeo);
107 static void	syncer_shutdown(void *arg, int howto);
108 static int	vtryrecycle(struct vnode *vp);
109 static void	v_init_counters(struct vnode *);
110 static void	v_incr_devcount(struct vnode *);
111 static void	v_decr_devcount(struct vnode *);
112 static void	vgonel(struct vnode *);
113 static void	vfs_knllock(void *arg);
114 static void	vfs_knlunlock(void *arg);
115 static void	vfs_knl_assert_locked(void *arg);
116 static void	vfs_knl_assert_unlocked(void *arg);
117 static void	vnlru_return_batches(struct vfsops *mnt_op);
118 static void	destroy_vpollinfo(struct vpollinfo *vi);
119 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
120 		    daddr_t startlbn, daddr_t endlbn);
121 
122 /*
123  * These fences are intended for cases where some synchronization is
124  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
125  * and v_usecount) updates.  Access to v_iflags is generally synchronized
126  * by the interlock, but we have some internal assertions that check vnode
127  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
128  * for now.
129  */
130 #ifdef INVARIANTS
131 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
132 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
133 #else
134 #define	VNODE_REFCOUNT_FENCE_ACQ()
135 #define	VNODE_REFCOUNT_FENCE_REL()
136 #endif
137 
138 /*
139  * Number of vnodes in existence.  Increased whenever getnewvnode()
140  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
141  */
142 static u_long __exclusive_cache_line numvnodes;
143 
144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence");
146 
147 static counter_u64_t vnodes_created;
148 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
149     "Number of vnodes created by getnewvnode");
150 
151 static u_long mnt_free_list_batch = 128;
152 SYSCTL_ULONG(_vfs, OID_AUTO, mnt_free_list_batch, CTLFLAG_RW,
153     &mnt_free_list_batch, 0, "Limit of vnodes held on mnt's free list");
154 
155 /*
156  * Conversion tables for conversion from vnode types to inode formats
157  * and back.
158  */
159 enum vtype iftovt_tab[16] = {
160 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
161 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
162 };
163 int vttoif_tab[10] = {
164 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
165 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
166 };
167 
168 /*
169  * List of vnodes that are ready for recycling.
170  */
171 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
172 
173 /*
174  * "Free" vnode target.  Free vnodes are rarely completely free, but are
175  * just ones that are cheap to recycle.  Usually they are for files which
176  * have been stat'd but not read; these usually have inode and namecache
177  * data attached to them.  This target is the preferred minimum size of a
178  * sub-cache consisting mostly of such files. The system balances the size
179  * of this sub-cache with its complement to try to prevent either from
180  * thrashing while the other is relatively inactive.  The targets express
181  * a preference for the best balance.
182  *
183  * "Above" this target there are 2 further targets (watermarks) related
184  * to recyling of free vnodes.  In the best-operating case, the cache is
185  * exactly full, the free list has size between vlowat and vhiwat above the
186  * free target, and recycling from it and normal use maintains this state.
187  * Sometimes the free list is below vlowat or even empty, but this state
188  * is even better for immediate use provided the cache is not full.
189  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
190  * ones) to reach one of these states.  The watermarks are currently hard-
191  * coded as 4% and 9% of the available space higher.  These and the default
192  * of 25% for wantfreevnodes are too large if the memory size is large.
193  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
194  * whenever vnlru_proc() becomes active.
195  */
196 static u_long wantfreevnodes;
197 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
198     &wantfreevnodes, 0, "Target for minimum number of \"free\" vnodes");
199 static u_long freevnodes;
200 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
201     &freevnodes, 0, "Number of \"free\" vnodes");
202 
203 static counter_u64_t recycles_count;
204 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
205     "Number of vnodes recycled to meet vnode cache targets");
206 
207 /*
208  * Various variables used for debugging the new implementation of
209  * reassignbuf().
210  * XXX these are probably of (very) limited utility now.
211  */
212 static int reassignbufcalls;
213 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW | CTLFLAG_STATS,
214     &reassignbufcalls, 0, "Number of calls to reassignbuf");
215 
216 static counter_u64_t free_owe_inact;
217 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact,
218     "Number of times free vnodes kept on active list due to VFS "
219     "owing inactivation");
220 
221 /* To keep more than one thread at a time from running vfs_getnewfsid */
222 static struct mtx mntid_mtx;
223 
224 /*
225  * Lock for any access to the following:
226  *	vnode_free_list
227  *	numvnodes
228  *	freevnodes
229  */
230 static struct mtx __exclusive_cache_line vnode_free_list_mtx;
231 
232 /* Publicly exported FS */
233 struct nfs_public nfs_pub;
234 
235 static uma_zone_t buf_trie_zone;
236 
237 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
238 static uma_zone_t vnode_zone;
239 static uma_zone_t vnodepoll_zone;
240 
241 /*
242  * The workitem queue.
243  *
244  * It is useful to delay writes of file data and filesystem metadata
245  * for tens of seconds so that quickly created and deleted files need
246  * not waste disk bandwidth being created and removed. To realize this,
247  * we append vnodes to a "workitem" queue. When running with a soft
248  * updates implementation, most pending metadata dependencies should
249  * not wait for more than a few seconds. Thus, mounted on block devices
250  * are delayed only about a half the time that file data is delayed.
251  * Similarly, directory updates are more critical, so are only delayed
252  * about a third the time that file data is delayed. Thus, there are
253  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
254  * one each second (driven off the filesystem syncer process). The
255  * syncer_delayno variable indicates the next queue that is to be processed.
256  * Items that need to be processed soon are placed in this queue:
257  *
258  *	syncer_workitem_pending[syncer_delayno]
259  *
260  * A delay of fifteen seconds is done by placing the request fifteen
261  * entries later in the queue:
262  *
263  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
264  *
265  */
266 static int syncer_delayno;
267 static long syncer_mask;
268 LIST_HEAD(synclist, bufobj);
269 static struct synclist *syncer_workitem_pending;
270 /*
271  * The sync_mtx protects:
272  *	bo->bo_synclist
273  *	sync_vnode_count
274  *	syncer_delayno
275  *	syncer_state
276  *	syncer_workitem_pending
277  *	syncer_worklist_len
278  *	rushjob
279  */
280 static struct mtx sync_mtx;
281 static struct cv sync_wakeup;
282 
283 #define SYNCER_MAXDELAY		32
284 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
285 static int syncdelay = 30;		/* max time to delay syncing data */
286 static int filedelay = 30;		/* time to delay syncing files */
287 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
288     "Time to delay syncing files (in seconds)");
289 static int dirdelay = 29;		/* time to delay syncing directories */
290 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
291     "Time to delay syncing directories (in seconds)");
292 static int metadelay = 28;		/* time to delay syncing metadata */
293 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
294     "Time to delay syncing metadata (in seconds)");
295 static int rushjob;		/* number of slots to run ASAP */
296 static int stat_rush_requests;	/* number of times I/O speeded up */
297 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
298     "Number of times I/O speeded up (rush requests)");
299 
300 /*
301  * When shutting down the syncer, run it at four times normal speed.
302  */
303 #define SYNCER_SHUTDOWN_SPEEDUP		4
304 static int sync_vnode_count;
305 static int syncer_worklist_len;
306 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
307     syncer_state;
308 
309 /* Target for maximum number of vnodes. */
310 int desiredvnodes;
311 static int gapvnodes;		/* gap between wanted and desired */
312 static int vhiwat;		/* enough extras after expansion */
313 static int vlowat;		/* minimal extras before expansion */
314 static int vstir;		/* nonzero to stir non-free vnodes */
315 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
316 
317 static int
318 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS)
319 {
320 	int error, old_desiredvnodes;
321 
322 	old_desiredvnodes = desiredvnodes;
323 	if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0)
324 		return (error);
325 	if (old_desiredvnodes != desiredvnodes) {
326 		wantfreevnodes = desiredvnodes / 4;
327 		/* XXX locking seems to be incomplete. */
328 		vfs_hash_changesize(desiredvnodes);
329 		cache_changesize(desiredvnodes);
330 	}
331 	return (0);
332 }
333 
334 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
335     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0,
336     sysctl_update_desiredvnodes, "I", "Target for maximum number of vnodes");
337 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
338     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
339 static int vnlru_nowhere;
340 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
341     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
342 
343 static int
344 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
345 {
346 	struct vnode *vp;
347 	struct nameidata nd;
348 	char *buf;
349 	unsigned long ndflags;
350 	int error;
351 
352 	if (req->newptr == NULL)
353 		return (EINVAL);
354 	if (req->newlen >= PATH_MAX)
355 		return (E2BIG);
356 
357 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
358 	error = SYSCTL_IN(req, buf, req->newlen);
359 	if (error != 0)
360 		goto out;
361 
362 	buf[req->newlen] = '\0';
363 
364 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | NOCACHE | SAVENAME;
365 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
366 	if ((error = namei(&nd)) != 0)
367 		goto out;
368 	vp = nd.ni_vp;
369 
370 	if (VN_IS_DOOMED(vp)) {
371 		/*
372 		 * This vnode is being recycled.  Return != 0 to let the caller
373 		 * know that the sysctl had no effect.  Return EAGAIN because a
374 		 * subsequent call will likely succeed (since namei will create
375 		 * a new vnode if necessary)
376 		 */
377 		error = EAGAIN;
378 		goto putvnode;
379 	}
380 
381 	counter_u64_add(recycles_count, 1);
382 	vgone(vp);
383 putvnode:
384 	NDFREE(&nd, 0);
385 out:
386 	free(buf, M_TEMP);
387 	return (error);
388 }
389 
390 static int
391 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
392 {
393 	struct thread *td = curthread;
394 	struct vnode *vp;
395 	struct file *fp;
396 	int error;
397 	int fd;
398 
399 	if (req->newptr == NULL)
400 		return (EBADF);
401 
402         error = sysctl_handle_int(oidp, &fd, 0, req);
403         if (error != 0)
404                 return (error);
405 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
406 	if (error != 0)
407 		return (error);
408 	vp = fp->f_vnode;
409 
410 	error = vn_lock(vp, LK_EXCLUSIVE);
411 	if (error != 0)
412 		goto drop;
413 
414 	counter_u64_add(recycles_count, 1);
415 	vgone(vp);
416 	VOP_UNLOCK(vp);
417 drop:
418 	fdrop(fp, td);
419 	return (error);
420 }
421 
422 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
423     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
424     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
425 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
426     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
427     sysctl_ftry_reclaim_vnode, "I",
428     "Try to reclaim a vnode by its file descriptor");
429 
430 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
431 static int vnsz2log;
432 
433 /*
434  * Support for the bufobj clean & dirty pctrie.
435  */
436 static void *
437 buf_trie_alloc(struct pctrie *ptree)
438 {
439 
440 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
441 }
442 
443 static void
444 buf_trie_free(struct pctrie *ptree, void *node)
445 {
446 
447 	uma_zfree(buf_trie_zone, node);
448 }
449 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
450 
451 /*
452  * Initialize the vnode management data structures.
453  *
454  * Reevaluate the following cap on the number of vnodes after the physical
455  * memory size exceeds 512GB.  In the limit, as the physical memory size
456  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
457  */
458 #ifndef	MAXVNODES_MAX
459 #define	MAXVNODES_MAX	(512 * 1024 * 1024 / 64)	/* 8M */
460 #endif
461 
462 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
463 
464 static struct vnode *
465 vn_alloc_marker(struct mount *mp)
466 {
467 	struct vnode *vp;
468 
469 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
470 	vp->v_type = VMARKER;
471 	vp->v_mount = mp;
472 
473 	return (vp);
474 }
475 
476 static void
477 vn_free_marker(struct vnode *vp)
478 {
479 
480 	MPASS(vp->v_type == VMARKER);
481 	free(vp, M_VNODE_MARKER);
482 }
483 
484 /*
485  * Initialize a vnode as it first enters the zone.
486  */
487 static int
488 vnode_init(void *mem, int size, int flags)
489 {
490 	struct vnode *vp;
491 
492 	vp = mem;
493 	bzero(vp, size);
494 	/*
495 	 * Setup locks.
496 	 */
497 	vp->v_vnlock = &vp->v_lock;
498 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
499 	/*
500 	 * By default, don't allow shared locks unless filesystems opt-in.
501 	 */
502 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
503 	    LK_NOSHARE | LK_IS_VNODE);
504 	/*
505 	 * Initialize bufobj.
506 	 */
507 	bufobj_init(&vp->v_bufobj, vp);
508 	/*
509 	 * Initialize namecache.
510 	 */
511 	LIST_INIT(&vp->v_cache_src);
512 	TAILQ_INIT(&vp->v_cache_dst);
513 	/*
514 	 * Initialize rangelocks.
515 	 */
516 	rangelock_init(&vp->v_rl);
517 	return (0);
518 }
519 
520 /*
521  * Free a vnode when it is cleared from the zone.
522  */
523 static void
524 vnode_fini(void *mem, int size)
525 {
526 	struct vnode *vp;
527 	struct bufobj *bo;
528 
529 	vp = mem;
530 	rangelock_destroy(&vp->v_rl);
531 	lockdestroy(vp->v_vnlock);
532 	mtx_destroy(&vp->v_interlock);
533 	bo = &vp->v_bufobj;
534 	rw_destroy(BO_LOCKPTR(bo));
535 }
536 
537 /*
538  * Provide the size of NFS nclnode and NFS fh for calculation of the
539  * vnode memory consumption.  The size is specified directly to
540  * eliminate dependency on NFS-private header.
541  *
542  * Other filesystems may use bigger or smaller (like UFS and ZFS)
543  * private inode data, but the NFS-based estimation is ample enough.
544  * Still, we care about differences in the size between 64- and 32-bit
545  * platforms.
546  *
547  * Namecache structure size is heuristically
548  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
549  */
550 #ifdef _LP64
551 #define	NFS_NCLNODE_SZ	(528 + 64)
552 #define	NC_SZ		148
553 #else
554 #define	NFS_NCLNODE_SZ	(360 + 32)
555 #define	NC_SZ		92
556 #endif
557 
558 static void
559 vntblinit(void *dummy __unused)
560 {
561 	u_int i;
562 	int physvnodes, virtvnodes;
563 
564 	/*
565 	 * Desiredvnodes is a function of the physical memory size and the
566 	 * kernel's heap size.  Generally speaking, it scales with the
567 	 * physical memory size.  The ratio of desiredvnodes to the physical
568 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
569 	 * Thereafter, the
570 	 * marginal ratio of desiredvnodes to the physical memory size is
571 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
572 	 * size.  The memory required by desiredvnodes vnodes and vm objects
573 	 * must not exceed 1/10th of the kernel's heap size.
574 	 */
575 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
576 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
577 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
578 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
579 	desiredvnodes = min(physvnodes, virtvnodes);
580 	if (desiredvnodes > MAXVNODES_MAX) {
581 		if (bootverbose)
582 			printf("Reducing kern.maxvnodes %d -> %d\n",
583 			    desiredvnodes, MAXVNODES_MAX);
584 		desiredvnodes = MAXVNODES_MAX;
585 	}
586 	wantfreevnodes = desiredvnodes / 4;
587 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
588 	TAILQ_INIT(&vnode_free_list);
589 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
590 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
591 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
592 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
593 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
594 	/*
595 	 * Preallocate enough nodes to support one-per buf so that
596 	 * we can not fail an insert.  reassignbuf() callers can not
597 	 * tolerate the insertion failure.
598 	 */
599 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
600 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
601 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
602 	uma_prealloc(buf_trie_zone, nbuf);
603 
604 	vnodes_created = counter_u64_alloc(M_WAITOK);
605 	recycles_count = counter_u64_alloc(M_WAITOK);
606 	free_owe_inact = counter_u64_alloc(M_WAITOK);
607 
608 	/*
609 	 * Initialize the filesystem syncer.
610 	 */
611 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
612 	    &syncer_mask);
613 	syncer_maxdelay = syncer_mask + 1;
614 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
615 	cv_init(&sync_wakeup, "syncer");
616 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
617 		vnsz2log++;
618 	vnsz2log--;
619 }
620 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
621 
622 
623 /*
624  * Mark a mount point as busy. Used to synchronize access and to delay
625  * unmounting. Eventually, mountlist_mtx is not released on failure.
626  *
627  * vfs_busy() is a custom lock, it can block the caller.
628  * vfs_busy() only sleeps if the unmount is active on the mount point.
629  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
630  * vnode belonging to mp.
631  *
632  * Lookup uses vfs_busy() to traverse mount points.
633  * root fs			var fs
634  * / vnode lock		A	/ vnode lock (/var)		D
635  * /var vnode lock	B	/log vnode lock(/var/log)	E
636  * vfs_busy lock	C	vfs_busy lock			F
637  *
638  * Within each file system, the lock order is C->A->B and F->D->E.
639  *
640  * When traversing across mounts, the system follows that lock order:
641  *
642  *        C->A->B
643  *              |
644  *              +->F->D->E
645  *
646  * The lookup() process for namei("/var") illustrates the process:
647  *  VOP_LOOKUP() obtains B while A is held
648  *  vfs_busy() obtains a shared lock on F while A and B are held
649  *  vput() releases lock on B
650  *  vput() releases lock on A
651  *  VFS_ROOT() obtains lock on D while shared lock on F is held
652  *  vfs_unbusy() releases shared lock on F
653  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
654  *    Attempt to lock A (instead of vp_crossmp) while D is held would
655  *    violate the global order, causing deadlocks.
656  *
657  * dounmount() locks B while F is drained.
658  */
659 int
660 vfs_busy(struct mount *mp, int flags)
661 {
662 
663 	MPASS((flags & ~MBF_MASK) == 0);
664 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
665 
666 	if (vfs_op_thread_enter(mp)) {
667 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
668 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
669 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
670 		vfs_mp_count_add_pcpu(mp, ref, 1);
671 		vfs_mp_count_add_pcpu(mp, lockref, 1);
672 		vfs_op_thread_exit(mp);
673 		if (flags & MBF_MNTLSTLOCK)
674 			mtx_unlock(&mountlist_mtx);
675 		return (0);
676 	}
677 
678 	MNT_ILOCK(mp);
679 	vfs_assert_mount_counters(mp);
680 	MNT_REF(mp);
681 	/*
682 	 * If mount point is currently being unmounted, sleep until the
683 	 * mount point fate is decided.  If thread doing the unmounting fails,
684 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
685 	 * that this mount point has survived the unmount attempt and vfs_busy
686 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
687 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
688 	 * about to be really destroyed.  vfs_busy needs to release its
689 	 * reference on the mount point in this case and return with ENOENT,
690 	 * telling the caller that mount mount it tried to busy is no longer
691 	 * valid.
692 	 */
693 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
694 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
695 			MNT_REL(mp);
696 			MNT_IUNLOCK(mp);
697 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
698 			    __func__);
699 			return (ENOENT);
700 		}
701 		if (flags & MBF_MNTLSTLOCK)
702 			mtx_unlock(&mountlist_mtx);
703 		mp->mnt_kern_flag |= MNTK_MWAIT;
704 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
705 		if (flags & MBF_MNTLSTLOCK)
706 			mtx_lock(&mountlist_mtx);
707 		MNT_ILOCK(mp);
708 	}
709 	if (flags & MBF_MNTLSTLOCK)
710 		mtx_unlock(&mountlist_mtx);
711 	mp->mnt_lockref++;
712 	MNT_IUNLOCK(mp);
713 	return (0);
714 }
715 
716 /*
717  * Free a busy filesystem.
718  */
719 void
720 vfs_unbusy(struct mount *mp)
721 {
722 	int c;
723 
724 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
725 
726 	if (vfs_op_thread_enter(mp)) {
727 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
728 		vfs_mp_count_sub_pcpu(mp, lockref, 1);
729 		vfs_mp_count_sub_pcpu(mp, ref, 1);
730 		vfs_op_thread_exit(mp);
731 		return;
732 	}
733 
734 	MNT_ILOCK(mp);
735 	vfs_assert_mount_counters(mp);
736 	MNT_REL(mp);
737 	c = --mp->mnt_lockref;
738 	if (mp->mnt_vfs_ops == 0) {
739 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
740 		MNT_IUNLOCK(mp);
741 		return;
742 	}
743 	if (c < 0)
744 		vfs_dump_mount_counters(mp);
745 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
746 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
747 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
748 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
749 		wakeup(&mp->mnt_lockref);
750 	}
751 	MNT_IUNLOCK(mp);
752 }
753 
754 /*
755  * Lookup a mount point by filesystem identifier.
756  */
757 struct mount *
758 vfs_getvfs(fsid_t *fsid)
759 {
760 	struct mount *mp;
761 
762 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
763 	mtx_lock(&mountlist_mtx);
764 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
765 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
766 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
767 			vfs_ref(mp);
768 			mtx_unlock(&mountlist_mtx);
769 			return (mp);
770 		}
771 	}
772 	mtx_unlock(&mountlist_mtx);
773 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
774 	return ((struct mount *) 0);
775 }
776 
777 /*
778  * Lookup a mount point by filesystem identifier, busying it before
779  * returning.
780  *
781  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
782  * cache for popular filesystem identifiers.  The cache is lockess, using
783  * the fact that struct mount's are never freed.  In worst case we may
784  * get pointer to unmounted or even different filesystem, so we have to
785  * check what we got, and go slow way if so.
786  */
787 struct mount *
788 vfs_busyfs(fsid_t *fsid)
789 {
790 #define	FSID_CACHE_SIZE	256
791 	typedef struct mount * volatile vmp_t;
792 	static vmp_t cache[FSID_CACHE_SIZE];
793 	struct mount *mp;
794 	int error;
795 	uint32_t hash;
796 
797 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
798 	hash = fsid->val[0] ^ fsid->val[1];
799 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
800 	mp = cache[hash];
801 	if (mp == NULL ||
802 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
803 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
804 		goto slow;
805 	if (vfs_busy(mp, 0) != 0) {
806 		cache[hash] = NULL;
807 		goto slow;
808 	}
809 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
810 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
811 		return (mp);
812 	else
813 	    vfs_unbusy(mp);
814 
815 slow:
816 	mtx_lock(&mountlist_mtx);
817 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
818 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
819 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
820 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
821 			if (error) {
822 				cache[hash] = NULL;
823 				mtx_unlock(&mountlist_mtx);
824 				return (NULL);
825 			}
826 			cache[hash] = mp;
827 			return (mp);
828 		}
829 	}
830 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
831 	mtx_unlock(&mountlist_mtx);
832 	return ((struct mount *) 0);
833 }
834 
835 /*
836  * Check if a user can access privileged mount options.
837  */
838 int
839 vfs_suser(struct mount *mp, struct thread *td)
840 {
841 	int error;
842 
843 	if (jailed(td->td_ucred)) {
844 		/*
845 		 * If the jail of the calling thread lacks permission for
846 		 * this type of file system, deny immediately.
847 		 */
848 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
849 			return (EPERM);
850 
851 		/*
852 		 * If the file system was mounted outside the jail of the
853 		 * calling thread, deny immediately.
854 		 */
855 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
856 			return (EPERM);
857 	}
858 
859 	/*
860 	 * If file system supports delegated administration, we don't check
861 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
862 	 * by the file system itself.
863 	 * If this is not the user that did original mount, we check for
864 	 * the PRIV_VFS_MOUNT_OWNER privilege.
865 	 */
866 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
867 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
868 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
869 			return (error);
870 	}
871 	return (0);
872 }
873 
874 /*
875  * Get a new unique fsid.  Try to make its val[0] unique, since this value
876  * will be used to create fake device numbers for stat().  Also try (but
877  * not so hard) make its val[0] unique mod 2^16, since some emulators only
878  * support 16-bit device numbers.  We end up with unique val[0]'s for the
879  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
880  *
881  * Keep in mind that several mounts may be running in parallel.  Starting
882  * the search one past where the previous search terminated is both a
883  * micro-optimization and a defense against returning the same fsid to
884  * different mounts.
885  */
886 void
887 vfs_getnewfsid(struct mount *mp)
888 {
889 	static uint16_t mntid_base;
890 	struct mount *nmp;
891 	fsid_t tfsid;
892 	int mtype;
893 
894 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
895 	mtx_lock(&mntid_mtx);
896 	mtype = mp->mnt_vfc->vfc_typenum;
897 	tfsid.val[1] = mtype;
898 	mtype = (mtype & 0xFF) << 24;
899 	for (;;) {
900 		tfsid.val[0] = makedev(255,
901 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
902 		mntid_base++;
903 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
904 			break;
905 		vfs_rel(nmp);
906 	}
907 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
908 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
909 	mtx_unlock(&mntid_mtx);
910 }
911 
912 /*
913  * Knob to control the precision of file timestamps:
914  *
915  *   0 = seconds only; nanoseconds zeroed.
916  *   1 = seconds and nanoseconds, accurate within 1/HZ.
917  *   2 = seconds and nanoseconds, truncated to microseconds.
918  * >=3 = seconds and nanoseconds, maximum precision.
919  */
920 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
921 
922 static int timestamp_precision = TSP_USEC;
923 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
924     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
925     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
926     "3+: sec + ns (max. precision))");
927 
928 /*
929  * Get a current timestamp.
930  */
931 void
932 vfs_timestamp(struct timespec *tsp)
933 {
934 	struct timeval tv;
935 
936 	switch (timestamp_precision) {
937 	case TSP_SEC:
938 		tsp->tv_sec = time_second;
939 		tsp->tv_nsec = 0;
940 		break;
941 	case TSP_HZ:
942 		getnanotime(tsp);
943 		break;
944 	case TSP_USEC:
945 		microtime(&tv);
946 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
947 		break;
948 	case TSP_NSEC:
949 	default:
950 		nanotime(tsp);
951 		break;
952 	}
953 }
954 
955 /*
956  * Set vnode attributes to VNOVAL
957  */
958 void
959 vattr_null(struct vattr *vap)
960 {
961 
962 	vap->va_type = VNON;
963 	vap->va_size = VNOVAL;
964 	vap->va_bytes = VNOVAL;
965 	vap->va_mode = VNOVAL;
966 	vap->va_nlink = VNOVAL;
967 	vap->va_uid = VNOVAL;
968 	vap->va_gid = VNOVAL;
969 	vap->va_fsid = VNOVAL;
970 	vap->va_fileid = VNOVAL;
971 	vap->va_blocksize = VNOVAL;
972 	vap->va_rdev = VNOVAL;
973 	vap->va_atime.tv_sec = VNOVAL;
974 	vap->va_atime.tv_nsec = VNOVAL;
975 	vap->va_mtime.tv_sec = VNOVAL;
976 	vap->va_mtime.tv_nsec = VNOVAL;
977 	vap->va_ctime.tv_sec = VNOVAL;
978 	vap->va_ctime.tv_nsec = VNOVAL;
979 	vap->va_birthtime.tv_sec = VNOVAL;
980 	vap->va_birthtime.tv_nsec = VNOVAL;
981 	vap->va_flags = VNOVAL;
982 	vap->va_gen = VNOVAL;
983 	vap->va_vaflags = 0;
984 }
985 
986 /*
987  * This routine is called when we have too many vnodes.  It attempts
988  * to free <count> vnodes and will potentially free vnodes that still
989  * have VM backing store (VM backing store is typically the cause
990  * of a vnode blowout so we want to do this).  Therefore, this operation
991  * is not considered cheap.
992  *
993  * A number of conditions may prevent a vnode from being reclaimed.
994  * the buffer cache may have references on the vnode, a directory
995  * vnode may still have references due to the namei cache representing
996  * underlying files, or the vnode may be in active use.   It is not
997  * desirable to reuse such vnodes.  These conditions may cause the
998  * number of vnodes to reach some minimum value regardless of what
999  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1000  *
1001  * @param mp		 Try to reclaim vnodes from this mountpoint
1002  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1003  * 			 entries if this argument is strue
1004  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1005  *			 pages.
1006  * @return		 The number of vnodes that were reclaimed.
1007  */
1008 static int
1009 vlrureclaim(struct mount *mp, bool reclaim_nc_src, int trigger)
1010 {
1011 	struct vnode *vp;
1012 	int count, done, target;
1013 
1014 	done = 0;
1015 	vn_start_write(NULL, &mp, V_WAIT);
1016 	MNT_ILOCK(mp);
1017 	count = mp->mnt_nvnodelistsize;
1018 	target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1019 	target = target / 10 + 1;
1020 	while (count != 0 && done < target) {
1021 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1022 		while (vp != NULL && vp->v_type == VMARKER)
1023 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
1024 		if (vp == NULL)
1025 			break;
1026 		/*
1027 		 * XXX LRU is completely broken for non-free vnodes.  First
1028 		 * by calling here in mountpoint order, then by moving
1029 		 * unselected vnodes to the end here, and most grossly by
1030 		 * removing the vlruvp() function that was supposed to
1031 		 * maintain the order.  (This function was born broken
1032 		 * since syncer problems prevented it doing anything.)  The
1033 		 * order is closer to LRC (C = Created).
1034 		 *
1035 		 * LRU reclaiming of vnodes seems to have last worked in
1036 		 * FreeBSD-3 where LRU wasn't mentioned under any spelling.
1037 		 * Then there was no hold count, and inactive vnodes were
1038 		 * simply put on the free list in LRU order.  The separate
1039 		 * lists also break LRU.  We prefer to reclaim from the
1040 		 * free list for technical reasons.  This tends to thrash
1041 		 * the free list to keep very unrecently used held vnodes.
1042 		 * The problem is mitigated by keeping the free list large.
1043 		 */
1044 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1045 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1046 		--count;
1047 		if (!VI_TRYLOCK(vp))
1048 			goto next_iter;
1049 		/*
1050 		 * If it's been deconstructed already, it's still
1051 		 * referenced, or it exceeds the trigger, skip it.
1052 		 * Also skip free vnodes.  We are trying to make space
1053 		 * to expand the free list, not reduce it.
1054 		 */
1055 		if (vp->v_usecount ||
1056 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1057 		    ((vp->v_iflag & VI_FREE) != 0) ||
1058 		    VN_IS_DOOMED(vp) || (vp->v_object != NULL &&
1059 		    vp->v_object->resident_page_count > trigger)) {
1060 			VI_UNLOCK(vp);
1061 			goto next_iter;
1062 		}
1063 		MNT_IUNLOCK(mp);
1064 		vholdl(vp);
1065 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
1066 			vdrop(vp);
1067 			goto next_iter_mntunlocked;
1068 		}
1069 		VI_LOCK(vp);
1070 		/*
1071 		 * v_usecount may have been bumped after VOP_LOCK() dropped
1072 		 * the vnode interlock and before it was locked again.
1073 		 *
1074 		 * It is not necessary to recheck VIRF_DOOMED because it can
1075 		 * only be set by another thread that holds both the vnode
1076 		 * lock and vnode interlock.  If another thread has the
1077 		 * vnode lock before we get to VOP_LOCK() and obtains the
1078 		 * vnode interlock after VOP_LOCK() drops the vnode
1079 		 * interlock, the other thread will be unable to drop the
1080 		 * vnode lock before our VOP_LOCK() call fails.
1081 		 */
1082 		if (vp->v_usecount ||
1083 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1084 		    (vp->v_object != NULL &&
1085 		    vp->v_object->resident_page_count > trigger)) {
1086 			VOP_UNLOCK(vp);
1087 			vdropl(vp);
1088 			goto next_iter_mntunlocked;
1089 		}
1090 		KASSERT(!VN_IS_DOOMED(vp),
1091 		    ("VIRF_DOOMED unexpectedly detected in vlrureclaim()"));
1092 		counter_u64_add(recycles_count, 1);
1093 		vgonel(vp);
1094 		VOP_UNLOCK(vp);
1095 		vdropl(vp);
1096 		done++;
1097 next_iter_mntunlocked:
1098 		if (!should_yield())
1099 			goto relock_mnt;
1100 		goto yield;
1101 next_iter:
1102 		if (!should_yield())
1103 			continue;
1104 		MNT_IUNLOCK(mp);
1105 yield:
1106 		kern_yield(PRI_USER);
1107 relock_mnt:
1108 		MNT_ILOCK(mp);
1109 	}
1110 	MNT_IUNLOCK(mp);
1111 	vn_finished_write(mp);
1112 	return done;
1113 }
1114 
1115 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1116 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1117     0,
1118     "limit on vnode free requests per call to the vnlru_free routine");
1119 
1120 /*
1121  * Attempt to reduce the free list by the requested amount.
1122  */
1123 static void
1124 vnlru_free_locked(int count, struct vfsops *mnt_op)
1125 {
1126 	struct vnode *vp;
1127 	struct mount *mp;
1128 	bool tried_batches;
1129 
1130 	tried_batches = false;
1131 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1132 	if (count > max_vnlru_free)
1133 		count = max_vnlru_free;
1134 	for (; count > 0; count--) {
1135 		vp = TAILQ_FIRST(&vnode_free_list);
1136 		/*
1137 		 * The list can be modified while the free_list_mtx
1138 		 * has been dropped and vp could be NULL here.
1139 		 */
1140 		if (vp == NULL) {
1141 			if (tried_batches)
1142 				break;
1143 			mtx_unlock(&vnode_free_list_mtx);
1144 			vnlru_return_batches(mnt_op);
1145 			tried_batches = true;
1146 			mtx_lock(&vnode_free_list_mtx);
1147 			continue;
1148 		}
1149 
1150 		VNASSERT(vp->v_op != NULL, vp,
1151 		    ("vnlru_free: vnode already reclaimed."));
1152 		KASSERT((vp->v_iflag & VI_FREE) != 0,
1153 		    ("Removing vnode not on freelist"));
1154 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1155 		    ("Mangling active vnode"));
1156 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
1157 
1158 		/*
1159 		 * Don't recycle if our vnode is from different type
1160 		 * of mount point.  Note that mp is type-safe, the
1161 		 * check does not reach unmapped address even if
1162 		 * vnode is reclaimed.
1163 		 * Don't recycle if we can't get the interlock without
1164 		 * blocking.
1165 		 */
1166 		if ((mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1167 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1168 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
1169 			continue;
1170 		}
1171 		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
1172 		    vp, ("vp inconsistent on freelist"));
1173 
1174 		/*
1175 		 * The clear of VI_FREE prevents activation of the
1176 		 * vnode.  There is no sense in putting the vnode on
1177 		 * the mount point active list, only to remove it
1178 		 * later during recycling.  Inline the relevant part
1179 		 * of vholdl(), to avoid triggering assertions or
1180 		 * activating.
1181 		 */
1182 		freevnodes--;
1183 		vp->v_iflag &= ~VI_FREE;
1184 		VNODE_REFCOUNT_FENCE_REL();
1185 		refcount_acquire(&vp->v_holdcnt);
1186 
1187 		mtx_unlock(&vnode_free_list_mtx);
1188 		VI_UNLOCK(vp);
1189 		vtryrecycle(vp);
1190 		/*
1191 		 * If the recycled succeeded this vdrop will actually free
1192 		 * the vnode.  If not it will simply place it back on
1193 		 * the free list.
1194 		 */
1195 		vdrop(vp);
1196 		mtx_lock(&vnode_free_list_mtx);
1197 	}
1198 }
1199 
1200 void
1201 vnlru_free(int count, struct vfsops *mnt_op)
1202 {
1203 
1204 	mtx_lock(&vnode_free_list_mtx);
1205 	vnlru_free_locked(count, mnt_op);
1206 	mtx_unlock(&vnode_free_list_mtx);
1207 }
1208 
1209 
1210 /* XXX some names and initialization are bad for limits and watermarks. */
1211 static int
1212 vspace(void)
1213 {
1214 	u_long rnumvnodes, rfreevnodes;
1215 	int space;
1216 
1217 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1218 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1219 	vlowat = vhiwat / 2;
1220 	rnumvnodes = atomic_load_long(&numvnodes);
1221 	rfreevnodes = atomic_load_long(&freevnodes);
1222 	if (rnumvnodes > desiredvnodes)
1223 		return (0);
1224 	space = desiredvnodes - rnumvnodes;
1225 	if (freevnodes > wantfreevnodes)
1226 		space += rfreevnodes - wantfreevnodes;
1227 	return (space);
1228 }
1229 
1230 static void
1231 vnlru_return_batch_locked(struct mount *mp)
1232 {
1233 	struct vnode *vp;
1234 
1235 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
1236 
1237 	if (mp->mnt_tmpfreevnodelistsize == 0)
1238 		return;
1239 
1240 	TAILQ_FOREACH(vp, &mp->mnt_tmpfreevnodelist, v_actfreelist) {
1241 		VNASSERT((vp->v_mflag & VMP_TMPMNTFREELIST) != 0, vp,
1242 		    ("vnode without VMP_TMPMNTFREELIST on mnt_tmpfreevnodelist"));
1243 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
1244 	}
1245 	mtx_lock(&vnode_free_list_mtx);
1246 	TAILQ_CONCAT(&vnode_free_list, &mp->mnt_tmpfreevnodelist, v_actfreelist);
1247 	freevnodes += mp->mnt_tmpfreevnodelistsize;
1248 	mtx_unlock(&vnode_free_list_mtx);
1249 	mp->mnt_tmpfreevnodelistsize = 0;
1250 }
1251 
1252 static void
1253 vnlru_return_batch(struct mount *mp)
1254 {
1255 
1256 	mtx_lock(&mp->mnt_listmtx);
1257 	vnlru_return_batch_locked(mp);
1258 	mtx_unlock(&mp->mnt_listmtx);
1259 }
1260 
1261 static void
1262 vnlru_return_batches(struct vfsops *mnt_op)
1263 {
1264 	struct mount *mp, *nmp;
1265 	bool need_unbusy;
1266 
1267 	mtx_lock(&mountlist_mtx);
1268 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1269 		need_unbusy = false;
1270 		if (mnt_op != NULL && mp->mnt_op != mnt_op)
1271 			goto next;
1272 		if (mp->mnt_tmpfreevnodelistsize == 0)
1273 			goto next;
1274 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) == 0) {
1275 			vnlru_return_batch(mp);
1276 			need_unbusy = true;
1277 			mtx_lock(&mountlist_mtx);
1278 		}
1279 next:
1280 		nmp = TAILQ_NEXT(mp, mnt_list);
1281 		if (need_unbusy)
1282 			vfs_unbusy(mp);
1283 	}
1284 	mtx_unlock(&mountlist_mtx);
1285 }
1286 
1287 /*
1288  * Attempt to recycle vnodes in a context that is always safe to block.
1289  * Calling vlrurecycle() from the bowels of filesystem code has some
1290  * interesting deadlock problems.
1291  */
1292 static struct proc *vnlruproc;
1293 static int vnlruproc_sig;
1294 
1295 static void
1296 vnlru_proc(void)
1297 {
1298 	u_long rnumvnodes, rfreevnodes;
1299 	struct mount *mp, *nmp;
1300 	unsigned long onumvnodes;
1301 	int done, force, trigger, usevnodes, vsp;
1302 	bool reclaim_nc_src;
1303 
1304 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1305 	    SHUTDOWN_PRI_FIRST);
1306 
1307 	force = 0;
1308 	for (;;) {
1309 		kproc_suspend_check(vnlruproc);
1310 		mtx_lock(&vnode_free_list_mtx);
1311 		rnumvnodes = atomic_load_long(&numvnodes);
1312 		/*
1313 		 * If numvnodes is too large (due to desiredvnodes being
1314 		 * adjusted using its sysctl, or emergency growth), first
1315 		 * try to reduce it by discarding from the free list.
1316 		 */
1317 		if (rnumvnodes > desiredvnodes)
1318 			vnlru_free_locked(rnumvnodes - desiredvnodes, NULL);
1319 		/*
1320 		 * Sleep if the vnode cache is in a good state.  This is
1321 		 * when it is not over-full and has space for about a 4%
1322 		 * or 9% expansion (by growing its size or inexcessively
1323 		 * reducing its free list).  Otherwise, try to reclaim
1324 		 * space for a 10% expansion.
1325 		 */
1326 		if (vstir && force == 0) {
1327 			force = 1;
1328 			vstir = 0;
1329 		}
1330 		vsp = vspace();
1331 		if (vsp >= vlowat && force == 0) {
1332 			vnlruproc_sig = 0;
1333 			wakeup(&vnlruproc_sig);
1334 			msleep(vnlruproc, &vnode_free_list_mtx,
1335 			    PVFS|PDROP, "vlruwt", hz);
1336 			continue;
1337 		}
1338 		mtx_unlock(&vnode_free_list_mtx);
1339 		done = 0;
1340 		rnumvnodes = atomic_load_long(&numvnodes);
1341 		rfreevnodes = atomic_load_long(&freevnodes);
1342 
1343 		onumvnodes = rnumvnodes;
1344 		/*
1345 		 * Calculate parameters for recycling.  These are the same
1346 		 * throughout the loop to give some semblance of fairness.
1347 		 * The trigger point is to avoid recycling vnodes with lots
1348 		 * of resident pages.  We aren't trying to free memory; we
1349 		 * are trying to recycle or at least free vnodes.
1350 		 */
1351 		if (rnumvnodes <= desiredvnodes)
1352 			usevnodes = rnumvnodes - rfreevnodes;
1353 		else
1354 			usevnodes = rnumvnodes;
1355 		if (usevnodes <= 0)
1356 			usevnodes = 1;
1357 		/*
1358 		 * The trigger value is is chosen to give a conservatively
1359 		 * large value to ensure that it alone doesn't prevent
1360 		 * making progress.  The value can easily be so large that
1361 		 * it is effectively infinite in some congested and
1362 		 * misconfigured cases, and this is necessary.  Normally
1363 		 * it is about 8 to 100 (pages), which is quite large.
1364 		 */
1365 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1366 		if (force < 2)
1367 			trigger = vsmalltrigger;
1368 		reclaim_nc_src = force >= 3;
1369 		mtx_lock(&mountlist_mtx);
1370 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1371 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
1372 				nmp = TAILQ_NEXT(mp, mnt_list);
1373 				continue;
1374 			}
1375 			done += vlrureclaim(mp, reclaim_nc_src, trigger);
1376 			mtx_lock(&mountlist_mtx);
1377 			nmp = TAILQ_NEXT(mp, mnt_list);
1378 			vfs_unbusy(mp);
1379 		}
1380 		mtx_unlock(&mountlist_mtx);
1381 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1382 			uma_reclaim(UMA_RECLAIM_DRAIN);
1383 		if (done == 0) {
1384 			if (force == 0 || force == 1) {
1385 				force = 2;
1386 				continue;
1387 			}
1388 			if (force == 2) {
1389 				force = 3;
1390 				continue;
1391 			}
1392 			force = 0;
1393 			vnlru_nowhere++;
1394 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1395 		} else
1396 			kern_yield(PRI_USER);
1397 		/*
1398 		 * After becoming active to expand above low water, keep
1399 		 * active until above high water.
1400 		 */
1401 		vsp = vspace();
1402 		force = vsp < vhiwat;
1403 	}
1404 }
1405 
1406 static struct kproc_desc vnlru_kp = {
1407 	"vnlru",
1408 	vnlru_proc,
1409 	&vnlruproc
1410 };
1411 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1412     &vnlru_kp);
1413 
1414 /*
1415  * Routines having to do with the management of the vnode table.
1416  */
1417 
1418 /*
1419  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1420  * before we actually vgone().  This function must be called with the vnode
1421  * held to prevent the vnode from being returned to the free list midway
1422  * through vgone().
1423  */
1424 static int
1425 vtryrecycle(struct vnode *vp)
1426 {
1427 	struct mount *vnmp;
1428 
1429 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1430 	VNASSERT(vp->v_holdcnt, vp,
1431 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1432 	/*
1433 	 * This vnode may found and locked via some other list, if so we
1434 	 * can't recycle it yet.
1435 	 */
1436 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1437 		CTR2(KTR_VFS,
1438 		    "%s: impossible to recycle, vp %p lock is already held",
1439 		    __func__, vp);
1440 		return (EWOULDBLOCK);
1441 	}
1442 	/*
1443 	 * Don't recycle if its filesystem is being suspended.
1444 	 */
1445 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1446 		VOP_UNLOCK(vp);
1447 		CTR2(KTR_VFS,
1448 		    "%s: impossible to recycle, cannot start the write for %p",
1449 		    __func__, vp);
1450 		return (EBUSY);
1451 	}
1452 	/*
1453 	 * If we got this far, we need to acquire the interlock and see if
1454 	 * anyone picked up this vnode from another list.  If not, we will
1455 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1456 	 * will skip over it.
1457 	 */
1458 	VI_LOCK(vp);
1459 	if (vp->v_usecount) {
1460 		VOP_UNLOCK(vp);
1461 		VI_UNLOCK(vp);
1462 		vn_finished_write(vnmp);
1463 		CTR2(KTR_VFS,
1464 		    "%s: impossible to recycle, %p is already referenced",
1465 		    __func__, vp);
1466 		return (EBUSY);
1467 	}
1468 	if (!VN_IS_DOOMED(vp)) {
1469 		counter_u64_add(recycles_count, 1);
1470 		vgonel(vp);
1471 	}
1472 	VOP_UNLOCK(vp);
1473 	VI_UNLOCK(vp);
1474 	vn_finished_write(vnmp);
1475 	return (0);
1476 }
1477 
1478 static void
1479 vcheckspace(void)
1480 {
1481 	int vsp;
1482 
1483 	vsp = vspace();
1484 	if (vsp < vlowat && vnlruproc_sig == 0) {
1485 		vnlruproc_sig = 1;
1486 		wakeup(vnlruproc);
1487 	}
1488 }
1489 
1490 /*
1491  * Wait if necessary for space for a new vnode.
1492  */
1493 static int
1494 getnewvnode_wait(int suspended)
1495 {
1496 
1497 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1498 	if (numvnodes >= desiredvnodes) {
1499 		if (suspended) {
1500 			/*
1501 			 * The file system is being suspended.  We cannot
1502 			 * risk a deadlock here, so allow allocation of
1503 			 * another vnode even if this would give too many.
1504 			 */
1505 			return (0);
1506 		}
1507 		if (vnlruproc_sig == 0) {
1508 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1509 			wakeup(vnlruproc);
1510 		}
1511 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1512 		    "vlruwk", hz);
1513 	}
1514 	/* Post-adjust like the pre-adjust in getnewvnode(). */
1515 	if (numvnodes + 1 > desiredvnodes && freevnodes > 1)
1516 		vnlru_free_locked(1, NULL);
1517 	return (numvnodes >= desiredvnodes ? ENFILE : 0);
1518 }
1519 
1520 /*
1521  * This hack is fragile, and probably not needed any more now that the
1522  * watermark handling works.
1523  */
1524 void
1525 getnewvnode_reserve(u_int count)
1526 {
1527 	u_long rnumvnodes, rfreevnodes;
1528 	struct thread *td;
1529 
1530 	/* Pre-adjust like the pre-adjust in getnewvnode(), with any count. */
1531 	/* XXX no longer so quick, but this part is not racy. */
1532 	mtx_lock(&vnode_free_list_mtx);
1533 	rnumvnodes = atomic_load_long(&numvnodes);
1534 	rfreevnodes = atomic_load_long(&freevnodes);
1535 	if (rnumvnodes + count > desiredvnodes && rfreevnodes > wantfreevnodes)
1536 		vnlru_free_locked(ulmin(rnumvnodes + count - desiredvnodes,
1537 		    rfreevnodes - wantfreevnodes), NULL);
1538 	mtx_unlock(&vnode_free_list_mtx);
1539 
1540 	td = curthread;
1541 	/* First try to be quick and racy. */
1542 	if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) {
1543 		td->td_vp_reserv += count;
1544 		vcheckspace();	/* XXX no longer so quick, but more racy */
1545 		return;
1546 	} else
1547 		atomic_subtract_long(&numvnodes, count);
1548 
1549 	mtx_lock(&vnode_free_list_mtx);
1550 	while (count > 0) {
1551 		if (getnewvnode_wait(0) == 0) {
1552 			count--;
1553 			td->td_vp_reserv++;
1554 			atomic_add_long(&numvnodes, 1);
1555 		}
1556 	}
1557 	vcheckspace();
1558 	mtx_unlock(&vnode_free_list_mtx);
1559 }
1560 
1561 /*
1562  * This hack is fragile, especially if desiredvnodes or wantvnodes are
1563  * misconfgured or changed significantly.  Reducing desiredvnodes below
1564  * the reserved amount should cause bizarre behaviour like reducing it
1565  * below the number of active vnodes -- the system will try to reduce
1566  * numvnodes to match, but should fail, so the subtraction below should
1567  * not overflow.
1568  */
1569 void
1570 getnewvnode_drop_reserve(void)
1571 {
1572 	struct thread *td;
1573 
1574 	td = curthread;
1575 	atomic_subtract_long(&numvnodes, td->td_vp_reserv);
1576 	td->td_vp_reserv = 0;
1577 }
1578 
1579 /*
1580  * Return the next vnode from the free list.
1581  */
1582 int
1583 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1584     struct vnode **vpp)
1585 {
1586 	struct vnode *vp;
1587 	struct thread *td;
1588 	struct lock_object *lo;
1589 	static int cyclecount;
1590 	int error __unused;
1591 
1592 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1593 
1594 	KASSERT(vops->registered,
1595 	    ("%s: not registered vector op %p\n", __func__, vops));
1596 
1597 	vp = NULL;
1598 	td = curthread;
1599 	if (td->td_vp_reserv > 0) {
1600 		td->td_vp_reserv -= 1;
1601 		goto alloc;
1602 	}
1603 	mtx_lock(&vnode_free_list_mtx);
1604 	if (numvnodes < desiredvnodes)
1605 		cyclecount = 0;
1606 	else if (cyclecount++ >= freevnodes) {
1607 		cyclecount = 0;
1608 		vstir = 1;
1609 	}
1610 	/*
1611 	 * Grow the vnode cache if it will not be above its target max
1612 	 * after growing.  Otherwise, if the free list is nonempty, try
1613 	 * to reclaim 1 item from it before growing the cache (possibly
1614 	 * above its target max if the reclamation failed or is delayed).
1615 	 * Otherwise, wait for some space.  In all cases, schedule
1616 	 * vnlru_proc() if we are getting short of space.  The watermarks
1617 	 * should be chosen so that we never wait or even reclaim from
1618 	 * the free list to below its target minimum.
1619 	 */
1620 	if (numvnodes + 1 <= desiredvnodes)
1621 		;
1622 	else if (freevnodes > 0)
1623 		vnlru_free_locked(1, NULL);
1624 	else {
1625 		error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1626 		    MNTK_SUSPEND));
1627 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1628 		if (error != 0) {
1629 			mtx_unlock(&vnode_free_list_mtx);
1630 			return (error);
1631 		}
1632 #endif
1633 	}
1634 	vcheckspace();
1635 	atomic_add_long(&numvnodes, 1);
1636 	mtx_unlock(&vnode_free_list_mtx);
1637 alloc:
1638 	counter_u64_add(vnodes_created, 1);
1639 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
1640 	/*
1641 	 * Locks are given the generic name "vnode" when created.
1642 	 * Follow the historic practice of using the filesystem
1643 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1644 	 *
1645 	 * Locks live in a witness group keyed on their name. Thus,
1646 	 * when a lock is renamed, it must also move from the witness
1647 	 * group of its old name to the witness group of its new name.
1648 	 *
1649 	 * The change only needs to be made when the vnode moves
1650 	 * from one filesystem type to another. We ensure that each
1651 	 * filesystem use a single static name pointer for its tag so
1652 	 * that we can compare pointers rather than doing a strcmp().
1653 	 */
1654 	lo = &vp->v_vnlock->lock_object;
1655 	if (lo->lo_name != tag) {
1656 		lo->lo_name = tag;
1657 		WITNESS_DESTROY(lo);
1658 		WITNESS_INIT(lo, tag);
1659 	}
1660 	/*
1661 	 * By default, don't allow shared locks unless filesystems opt-in.
1662 	 */
1663 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1664 	/*
1665 	 * Finalize various vnode identity bits.
1666 	 */
1667 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1668 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1669 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1670 	vp->v_type = VNON;
1671 	vp->v_op = vops;
1672 	v_init_counters(vp);
1673 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1674 #ifdef DIAGNOSTIC
1675 	if (mp == NULL && vops != &dead_vnodeops)
1676 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1677 #endif
1678 #ifdef MAC
1679 	mac_vnode_init(vp);
1680 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1681 		mac_vnode_associate_singlelabel(mp, vp);
1682 #endif
1683 	if (mp != NULL) {
1684 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1685 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1686 			vp->v_vflag |= VV_NOKNOTE;
1687 	}
1688 
1689 	/*
1690 	 * For the filesystems which do not use vfs_hash_insert(),
1691 	 * still initialize v_hash to have vfs_hash_index() useful.
1692 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1693 	 * its own hashing.
1694 	 */
1695 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1696 
1697 	*vpp = vp;
1698 	return (0);
1699 }
1700 
1701 static void
1702 freevnode(struct vnode *vp)
1703 {
1704 	struct bufobj *bo;
1705 
1706 	/*
1707 	 * The vnode has been marked for destruction, so free it.
1708 	 *
1709 	 * The vnode will be returned to the zone where it will
1710 	 * normally remain until it is needed for another vnode. We
1711 	 * need to cleanup (or verify that the cleanup has already
1712 	 * been done) any residual data left from its current use
1713 	 * so as not to contaminate the freshly allocated vnode.
1714 	 */
1715 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1716 	atomic_subtract_long(&numvnodes, 1);
1717 	bo = &vp->v_bufobj;
1718 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
1719 	    ("cleaned vnode still on the free list."));
1720 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1721 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
1722 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1723 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1724 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1725 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1726 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1727 	    ("clean blk trie not empty"));
1728 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1729 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1730 	    ("dirty blk trie not empty"));
1731 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1732 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1733 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1734 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1735 	    ("Dangling rangelock waiters"));
1736 	VI_UNLOCK(vp);
1737 #ifdef MAC
1738 	mac_vnode_destroy(vp);
1739 #endif
1740 	if (vp->v_pollinfo != NULL) {
1741 		destroy_vpollinfo(vp->v_pollinfo);
1742 		vp->v_pollinfo = NULL;
1743 	}
1744 #ifdef INVARIANTS
1745 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
1746 	vp->v_op = NULL;
1747 #endif
1748 	vp->v_mountedhere = NULL;
1749 	vp->v_unpcb = NULL;
1750 	vp->v_rdev = NULL;
1751 	vp->v_fifoinfo = NULL;
1752 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
1753 	vp->v_irflag = 0;
1754 	vp->v_iflag = 0;
1755 	vp->v_vflag = 0;
1756 	bo->bo_flag = 0;
1757 	uma_zfree(vnode_zone, vp);
1758 }
1759 
1760 /*
1761  * Delete from old mount point vnode list, if on one.
1762  */
1763 static void
1764 delmntque(struct vnode *vp)
1765 {
1766 	struct mount *mp;
1767 
1768 	mp = vp->v_mount;
1769 	if (mp == NULL)
1770 		return;
1771 	MNT_ILOCK(mp);
1772 	VI_LOCK(vp);
1773 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1774 	    ("Active vnode list size %d > Vnode list size %d",
1775 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1776 	if (vp->v_iflag & VI_ACTIVE) {
1777 		vp->v_iflag &= ~VI_ACTIVE;
1778 		mtx_lock(&mp->mnt_listmtx);
1779 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1780 		mp->mnt_activevnodelistsize--;
1781 		mtx_unlock(&mp->mnt_listmtx);
1782 	}
1783 	vp->v_mount = NULL;
1784 	VI_UNLOCK(vp);
1785 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1786 		("bad mount point vnode list size"));
1787 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1788 	mp->mnt_nvnodelistsize--;
1789 	MNT_REL(mp);
1790 	MNT_IUNLOCK(mp);
1791 }
1792 
1793 static void
1794 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1795 {
1796 
1797 	vp->v_data = NULL;
1798 	vp->v_op = &dead_vnodeops;
1799 	vgone(vp);
1800 	vput(vp);
1801 }
1802 
1803 /*
1804  * Insert into list of vnodes for the new mount point, if available.
1805  */
1806 int
1807 insmntque1(struct vnode *vp, struct mount *mp,
1808 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1809 {
1810 
1811 	KASSERT(vp->v_mount == NULL,
1812 		("insmntque: vnode already on per mount vnode list"));
1813 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1814 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1815 
1816 	/*
1817 	 * We acquire the vnode interlock early to ensure that the
1818 	 * vnode cannot be recycled by another process releasing a
1819 	 * holdcnt on it before we get it on both the vnode list
1820 	 * and the active vnode list. The mount mutex protects only
1821 	 * manipulation of the vnode list and the vnode freelist
1822 	 * mutex protects only manipulation of the active vnode list.
1823 	 * Hence the need to hold the vnode interlock throughout.
1824 	 */
1825 	MNT_ILOCK(mp);
1826 	VI_LOCK(vp);
1827 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1828 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1829 	    mp->mnt_nvnodelistsize == 0)) &&
1830 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1831 		VI_UNLOCK(vp);
1832 		MNT_IUNLOCK(mp);
1833 		if (dtr != NULL)
1834 			dtr(vp, dtr_arg);
1835 		return (EBUSY);
1836 	}
1837 	vp->v_mount = mp;
1838 	MNT_REF(mp);
1839 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1840 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1841 		("neg mount point vnode list size"));
1842 	mp->mnt_nvnodelistsize++;
1843 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1844 	    ("Activating already active vnode"));
1845 	vp->v_iflag |= VI_ACTIVE;
1846 	mtx_lock(&mp->mnt_listmtx);
1847 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1848 	mp->mnt_activevnodelistsize++;
1849 	mtx_unlock(&mp->mnt_listmtx);
1850 	VI_UNLOCK(vp);
1851 	MNT_IUNLOCK(mp);
1852 	return (0);
1853 }
1854 
1855 int
1856 insmntque(struct vnode *vp, struct mount *mp)
1857 {
1858 
1859 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1860 }
1861 
1862 /*
1863  * Flush out and invalidate all buffers associated with a bufobj
1864  * Called with the underlying object locked.
1865  */
1866 int
1867 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1868 {
1869 	int error;
1870 
1871 	BO_LOCK(bo);
1872 	if (flags & V_SAVE) {
1873 		error = bufobj_wwait(bo, slpflag, slptimeo);
1874 		if (error) {
1875 			BO_UNLOCK(bo);
1876 			return (error);
1877 		}
1878 		if (bo->bo_dirty.bv_cnt > 0) {
1879 			BO_UNLOCK(bo);
1880 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1881 				return (error);
1882 			/*
1883 			 * XXX We could save a lock/unlock if this was only
1884 			 * enabled under INVARIANTS
1885 			 */
1886 			BO_LOCK(bo);
1887 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1888 				panic("vinvalbuf: dirty bufs");
1889 		}
1890 	}
1891 	/*
1892 	 * If you alter this loop please notice that interlock is dropped and
1893 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1894 	 * no race conditions occur from this.
1895 	 */
1896 	do {
1897 		error = flushbuflist(&bo->bo_clean,
1898 		    flags, bo, slpflag, slptimeo);
1899 		if (error == 0 && !(flags & V_CLEANONLY))
1900 			error = flushbuflist(&bo->bo_dirty,
1901 			    flags, bo, slpflag, slptimeo);
1902 		if (error != 0 && error != EAGAIN) {
1903 			BO_UNLOCK(bo);
1904 			return (error);
1905 		}
1906 	} while (error != 0);
1907 
1908 	/*
1909 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1910 	 * have write I/O in-progress but if there is a VM object then the
1911 	 * VM object can also have read-I/O in-progress.
1912 	 */
1913 	do {
1914 		bufobj_wwait(bo, 0, 0);
1915 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
1916 			BO_UNLOCK(bo);
1917 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
1918 			BO_LOCK(bo);
1919 		}
1920 	} while (bo->bo_numoutput > 0);
1921 	BO_UNLOCK(bo);
1922 
1923 	/*
1924 	 * Destroy the copy in the VM cache, too.
1925 	 */
1926 	if (bo->bo_object != NULL &&
1927 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1928 		VM_OBJECT_WLOCK(bo->bo_object);
1929 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1930 		    OBJPR_CLEANONLY : 0);
1931 		VM_OBJECT_WUNLOCK(bo->bo_object);
1932 	}
1933 
1934 #ifdef INVARIANTS
1935 	BO_LOCK(bo);
1936 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1937 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1938 	    bo->bo_clean.bv_cnt > 0))
1939 		panic("vinvalbuf: flush failed");
1940 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1941 	    bo->bo_dirty.bv_cnt > 0)
1942 		panic("vinvalbuf: flush dirty failed");
1943 	BO_UNLOCK(bo);
1944 #endif
1945 	return (0);
1946 }
1947 
1948 /*
1949  * Flush out and invalidate all buffers associated with a vnode.
1950  * Called with the underlying object locked.
1951  */
1952 int
1953 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1954 {
1955 
1956 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1957 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1958 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1959 		return (0);
1960 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1961 }
1962 
1963 /*
1964  * Flush out buffers on the specified list.
1965  *
1966  */
1967 static int
1968 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1969     int slptimeo)
1970 {
1971 	struct buf *bp, *nbp;
1972 	int retval, error;
1973 	daddr_t lblkno;
1974 	b_xflags_t xflags;
1975 
1976 	ASSERT_BO_WLOCKED(bo);
1977 
1978 	retval = 0;
1979 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1980 		/*
1981 		 * If we are flushing both V_NORMAL and V_ALT buffers then
1982 		 * do not skip any buffers. If we are flushing only V_NORMAL
1983 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
1984 		 * flushing only V_ALT buffers then skip buffers not marked
1985 		 * as BX_ALTDATA.
1986 		 */
1987 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
1988 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
1989 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
1990 			continue;
1991 		}
1992 		if (nbp != NULL) {
1993 			lblkno = nbp->b_lblkno;
1994 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1995 		}
1996 		retval = EAGAIN;
1997 		error = BUF_TIMELOCK(bp,
1998 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1999 		    "flushbuf", slpflag, slptimeo);
2000 		if (error) {
2001 			BO_LOCK(bo);
2002 			return (error != ENOLCK ? error : EAGAIN);
2003 		}
2004 		KASSERT(bp->b_bufobj == bo,
2005 		    ("bp %p wrong b_bufobj %p should be %p",
2006 		    bp, bp->b_bufobj, bo));
2007 		/*
2008 		 * XXX Since there are no node locks for NFS, I
2009 		 * believe there is a slight chance that a delayed
2010 		 * write will occur while sleeping just above, so
2011 		 * check for it.
2012 		 */
2013 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2014 		    (flags & V_SAVE)) {
2015 			bremfree(bp);
2016 			bp->b_flags |= B_ASYNC;
2017 			bwrite(bp);
2018 			BO_LOCK(bo);
2019 			return (EAGAIN);	/* XXX: why not loop ? */
2020 		}
2021 		bremfree(bp);
2022 		bp->b_flags |= (B_INVAL | B_RELBUF);
2023 		bp->b_flags &= ~B_ASYNC;
2024 		brelse(bp);
2025 		BO_LOCK(bo);
2026 		if (nbp == NULL)
2027 			break;
2028 		nbp = gbincore(bo, lblkno);
2029 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2030 		    != xflags)
2031 			break;			/* nbp invalid */
2032 	}
2033 	return (retval);
2034 }
2035 
2036 int
2037 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2038 {
2039 	struct buf *bp;
2040 	int error;
2041 	daddr_t lblkno;
2042 
2043 	ASSERT_BO_LOCKED(bo);
2044 
2045 	for (lblkno = startn;;) {
2046 again:
2047 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2048 		if (bp == NULL || bp->b_lblkno >= endn ||
2049 		    bp->b_lblkno < startn)
2050 			break;
2051 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2052 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2053 		if (error != 0) {
2054 			BO_RLOCK(bo);
2055 			if (error == ENOLCK)
2056 				goto again;
2057 			return (error);
2058 		}
2059 		KASSERT(bp->b_bufobj == bo,
2060 		    ("bp %p wrong b_bufobj %p should be %p",
2061 		    bp, bp->b_bufobj, bo));
2062 		lblkno = bp->b_lblkno + 1;
2063 		if ((bp->b_flags & B_MANAGED) == 0)
2064 			bremfree(bp);
2065 		bp->b_flags |= B_RELBUF;
2066 		/*
2067 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2068 		 * pages backing each buffer in the range are unlikely to be
2069 		 * reused.  Dirty buffers will have the hint applied once
2070 		 * they've been written.
2071 		 */
2072 		if ((bp->b_flags & B_VMIO) != 0)
2073 			bp->b_flags |= B_NOREUSE;
2074 		brelse(bp);
2075 		BO_RLOCK(bo);
2076 	}
2077 	return (0);
2078 }
2079 
2080 /*
2081  * Truncate a file's buffer and pages to a specified length.  This
2082  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2083  * sync activity.
2084  */
2085 int
2086 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2087 {
2088 	struct buf *bp, *nbp;
2089 	struct bufobj *bo;
2090 	daddr_t startlbn;
2091 
2092 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2093 	    vp, blksize, (uintmax_t)length);
2094 
2095 	/*
2096 	 * Round up to the *next* lbn.
2097 	 */
2098 	startlbn = howmany(length, blksize);
2099 
2100 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2101 
2102 	bo = &vp->v_bufobj;
2103 restart_unlocked:
2104 	BO_LOCK(bo);
2105 
2106 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2107 		;
2108 
2109 	if (length > 0) {
2110 restartsync:
2111 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2112 			if (bp->b_lblkno > 0)
2113 				continue;
2114 			/*
2115 			 * Since we hold the vnode lock this should only
2116 			 * fail if we're racing with the buf daemon.
2117 			 */
2118 			if (BUF_LOCK(bp,
2119 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2120 			    BO_LOCKPTR(bo)) == ENOLCK)
2121 				goto restart_unlocked;
2122 
2123 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2124 			    ("buf(%p) on dirty queue without DELWRI", bp));
2125 
2126 			bremfree(bp);
2127 			bawrite(bp);
2128 			BO_LOCK(bo);
2129 			goto restartsync;
2130 		}
2131 	}
2132 
2133 	bufobj_wwait(bo, 0, 0);
2134 	BO_UNLOCK(bo);
2135 	vnode_pager_setsize(vp, length);
2136 
2137 	return (0);
2138 }
2139 
2140 /*
2141  * Invalidate the cached pages of a file's buffer within the range of block
2142  * numbers [startlbn, endlbn).
2143  */
2144 void
2145 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2146     int blksize)
2147 {
2148 	struct bufobj *bo;
2149 	off_t start, end;
2150 
2151 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2152 
2153 	start = blksize * startlbn;
2154 	end = blksize * endlbn;
2155 
2156 	bo = &vp->v_bufobj;
2157 	BO_LOCK(bo);
2158 	MPASS(blksize == bo->bo_bsize);
2159 
2160 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2161 		;
2162 
2163 	BO_UNLOCK(bo);
2164 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2165 }
2166 
2167 static int
2168 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2169     daddr_t startlbn, daddr_t endlbn)
2170 {
2171 	struct buf *bp, *nbp;
2172 	bool anyfreed;
2173 
2174 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2175 	ASSERT_BO_LOCKED(bo);
2176 
2177 	do {
2178 		anyfreed = false;
2179 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2180 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2181 				continue;
2182 			if (BUF_LOCK(bp,
2183 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2184 			    BO_LOCKPTR(bo)) == ENOLCK) {
2185 				BO_LOCK(bo);
2186 				return (EAGAIN);
2187 			}
2188 
2189 			bremfree(bp);
2190 			bp->b_flags |= B_INVAL | B_RELBUF;
2191 			bp->b_flags &= ~B_ASYNC;
2192 			brelse(bp);
2193 			anyfreed = true;
2194 
2195 			BO_LOCK(bo);
2196 			if (nbp != NULL &&
2197 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2198 			    nbp->b_vp != vp ||
2199 			    (nbp->b_flags & B_DELWRI) != 0))
2200 				return (EAGAIN);
2201 		}
2202 
2203 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2204 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2205 				continue;
2206 			if (BUF_LOCK(bp,
2207 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2208 			    BO_LOCKPTR(bo)) == ENOLCK) {
2209 				BO_LOCK(bo);
2210 				return (EAGAIN);
2211 			}
2212 			bremfree(bp);
2213 			bp->b_flags |= B_INVAL | B_RELBUF;
2214 			bp->b_flags &= ~B_ASYNC;
2215 			brelse(bp);
2216 			anyfreed = true;
2217 
2218 			BO_LOCK(bo);
2219 			if (nbp != NULL &&
2220 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2221 			    (nbp->b_vp != vp) ||
2222 			    (nbp->b_flags & B_DELWRI) == 0))
2223 				return (EAGAIN);
2224 		}
2225 	} while (anyfreed);
2226 	return (0);
2227 }
2228 
2229 static void
2230 buf_vlist_remove(struct buf *bp)
2231 {
2232 	struct bufv *bv;
2233 
2234 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2235 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2236 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
2237 	    (BX_VNDIRTY|BX_VNCLEAN),
2238 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
2239 	if (bp->b_xflags & BX_VNDIRTY)
2240 		bv = &bp->b_bufobj->bo_dirty;
2241 	else
2242 		bv = &bp->b_bufobj->bo_clean;
2243 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2244 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2245 	bv->bv_cnt--;
2246 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2247 }
2248 
2249 /*
2250  * Add the buffer to the sorted clean or dirty block list.
2251  *
2252  * NOTE: xflags is passed as a constant, optimizing this inline function!
2253  */
2254 static void
2255 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2256 {
2257 	struct bufv *bv;
2258 	struct buf *n;
2259 	int error;
2260 
2261 	ASSERT_BO_WLOCKED(bo);
2262 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2263 	    ("dead bo %p", bo));
2264 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2265 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2266 	bp->b_xflags |= xflags;
2267 	if (xflags & BX_VNDIRTY)
2268 		bv = &bo->bo_dirty;
2269 	else
2270 		bv = &bo->bo_clean;
2271 
2272 	/*
2273 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2274 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2275 	 * than _ge.
2276 	 */
2277 	if (bv->bv_cnt == 0 ||
2278 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2279 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2280 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2281 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2282 	else
2283 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2284 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2285 	if (error)
2286 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2287 	bv->bv_cnt++;
2288 }
2289 
2290 /*
2291  * Look up a buffer using the buffer tries.
2292  */
2293 struct buf *
2294 gbincore(struct bufobj *bo, daddr_t lblkno)
2295 {
2296 	struct buf *bp;
2297 
2298 	ASSERT_BO_LOCKED(bo);
2299 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2300 	if (bp != NULL)
2301 		return (bp);
2302 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
2303 }
2304 
2305 /*
2306  * Associate a buffer with a vnode.
2307  */
2308 void
2309 bgetvp(struct vnode *vp, struct buf *bp)
2310 {
2311 	struct bufobj *bo;
2312 
2313 	bo = &vp->v_bufobj;
2314 	ASSERT_BO_WLOCKED(bo);
2315 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2316 
2317 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2318 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2319 	    ("bgetvp: bp already attached! %p", bp));
2320 
2321 	vhold(vp);
2322 	bp->b_vp = vp;
2323 	bp->b_bufobj = bo;
2324 	/*
2325 	 * Insert onto list for new vnode.
2326 	 */
2327 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2328 }
2329 
2330 /*
2331  * Disassociate a buffer from a vnode.
2332  */
2333 void
2334 brelvp(struct buf *bp)
2335 {
2336 	struct bufobj *bo;
2337 	struct vnode *vp;
2338 
2339 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2340 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2341 
2342 	/*
2343 	 * Delete from old vnode list, if on one.
2344 	 */
2345 	vp = bp->b_vp;		/* XXX */
2346 	bo = bp->b_bufobj;
2347 	BO_LOCK(bo);
2348 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2349 		buf_vlist_remove(bp);
2350 	else
2351 		panic("brelvp: Buffer %p not on queue.", bp);
2352 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2353 		bo->bo_flag &= ~BO_ONWORKLST;
2354 		mtx_lock(&sync_mtx);
2355 		LIST_REMOVE(bo, bo_synclist);
2356 		syncer_worklist_len--;
2357 		mtx_unlock(&sync_mtx);
2358 	}
2359 	bp->b_vp = NULL;
2360 	bp->b_bufobj = NULL;
2361 	BO_UNLOCK(bo);
2362 	vdrop(vp);
2363 }
2364 
2365 /*
2366  * Add an item to the syncer work queue.
2367  */
2368 static void
2369 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2370 {
2371 	int slot;
2372 
2373 	ASSERT_BO_WLOCKED(bo);
2374 
2375 	mtx_lock(&sync_mtx);
2376 	if (bo->bo_flag & BO_ONWORKLST)
2377 		LIST_REMOVE(bo, bo_synclist);
2378 	else {
2379 		bo->bo_flag |= BO_ONWORKLST;
2380 		syncer_worklist_len++;
2381 	}
2382 
2383 	if (delay > syncer_maxdelay - 2)
2384 		delay = syncer_maxdelay - 2;
2385 	slot = (syncer_delayno + delay) & syncer_mask;
2386 
2387 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2388 	mtx_unlock(&sync_mtx);
2389 }
2390 
2391 static int
2392 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2393 {
2394 	int error, len;
2395 
2396 	mtx_lock(&sync_mtx);
2397 	len = syncer_worklist_len - sync_vnode_count;
2398 	mtx_unlock(&sync_mtx);
2399 	error = SYSCTL_OUT(req, &len, sizeof(len));
2400 	return (error);
2401 }
2402 
2403 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
2404     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2405 
2406 static struct proc *updateproc;
2407 static void sched_sync(void);
2408 static struct kproc_desc up_kp = {
2409 	"syncer",
2410 	sched_sync,
2411 	&updateproc
2412 };
2413 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2414 
2415 static int
2416 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2417 {
2418 	struct vnode *vp;
2419 	struct mount *mp;
2420 
2421 	*bo = LIST_FIRST(slp);
2422 	if (*bo == NULL)
2423 		return (0);
2424 	vp = bo2vnode(*bo);
2425 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2426 		return (1);
2427 	/*
2428 	 * We use vhold in case the vnode does not
2429 	 * successfully sync.  vhold prevents the vnode from
2430 	 * going away when we unlock the sync_mtx so that
2431 	 * we can acquire the vnode interlock.
2432 	 */
2433 	vholdl(vp);
2434 	mtx_unlock(&sync_mtx);
2435 	VI_UNLOCK(vp);
2436 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2437 		vdrop(vp);
2438 		mtx_lock(&sync_mtx);
2439 		return (*bo == LIST_FIRST(slp));
2440 	}
2441 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2442 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2443 	VOP_UNLOCK(vp);
2444 	vn_finished_write(mp);
2445 	BO_LOCK(*bo);
2446 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2447 		/*
2448 		 * Put us back on the worklist.  The worklist
2449 		 * routine will remove us from our current
2450 		 * position and then add us back in at a later
2451 		 * position.
2452 		 */
2453 		vn_syncer_add_to_worklist(*bo, syncdelay);
2454 	}
2455 	BO_UNLOCK(*bo);
2456 	vdrop(vp);
2457 	mtx_lock(&sync_mtx);
2458 	return (0);
2459 }
2460 
2461 static int first_printf = 1;
2462 
2463 /*
2464  * System filesystem synchronizer daemon.
2465  */
2466 static void
2467 sched_sync(void)
2468 {
2469 	struct synclist *next, *slp;
2470 	struct bufobj *bo;
2471 	long starttime;
2472 	struct thread *td = curthread;
2473 	int last_work_seen;
2474 	int net_worklist_len;
2475 	int syncer_final_iter;
2476 	int error;
2477 
2478 	last_work_seen = 0;
2479 	syncer_final_iter = 0;
2480 	syncer_state = SYNCER_RUNNING;
2481 	starttime = time_uptime;
2482 	td->td_pflags |= TDP_NORUNNINGBUF;
2483 
2484 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2485 	    SHUTDOWN_PRI_LAST);
2486 
2487 	mtx_lock(&sync_mtx);
2488 	for (;;) {
2489 		if (syncer_state == SYNCER_FINAL_DELAY &&
2490 		    syncer_final_iter == 0) {
2491 			mtx_unlock(&sync_mtx);
2492 			kproc_suspend_check(td->td_proc);
2493 			mtx_lock(&sync_mtx);
2494 		}
2495 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2496 		if (syncer_state != SYNCER_RUNNING &&
2497 		    starttime != time_uptime) {
2498 			if (first_printf) {
2499 				printf("\nSyncing disks, vnodes remaining... ");
2500 				first_printf = 0;
2501 			}
2502 			printf("%d ", net_worklist_len);
2503 		}
2504 		starttime = time_uptime;
2505 
2506 		/*
2507 		 * Push files whose dirty time has expired.  Be careful
2508 		 * of interrupt race on slp queue.
2509 		 *
2510 		 * Skip over empty worklist slots when shutting down.
2511 		 */
2512 		do {
2513 			slp = &syncer_workitem_pending[syncer_delayno];
2514 			syncer_delayno += 1;
2515 			if (syncer_delayno == syncer_maxdelay)
2516 				syncer_delayno = 0;
2517 			next = &syncer_workitem_pending[syncer_delayno];
2518 			/*
2519 			 * If the worklist has wrapped since the
2520 			 * it was emptied of all but syncer vnodes,
2521 			 * switch to the FINAL_DELAY state and run
2522 			 * for one more second.
2523 			 */
2524 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2525 			    net_worklist_len == 0 &&
2526 			    last_work_seen == syncer_delayno) {
2527 				syncer_state = SYNCER_FINAL_DELAY;
2528 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2529 			}
2530 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2531 		    syncer_worklist_len > 0);
2532 
2533 		/*
2534 		 * Keep track of the last time there was anything
2535 		 * on the worklist other than syncer vnodes.
2536 		 * Return to the SHUTTING_DOWN state if any
2537 		 * new work appears.
2538 		 */
2539 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2540 			last_work_seen = syncer_delayno;
2541 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2542 			syncer_state = SYNCER_SHUTTING_DOWN;
2543 		while (!LIST_EMPTY(slp)) {
2544 			error = sync_vnode(slp, &bo, td);
2545 			if (error == 1) {
2546 				LIST_REMOVE(bo, bo_synclist);
2547 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2548 				continue;
2549 			}
2550 
2551 			if (first_printf == 0) {
2552 				/*
2553 				 * Drop the sync mutex, because some watchdog
2554 				 * drivers need to sleep while patting
2555 				 */
2556 				mtx_unlock(&sync_mtx);
2557 				wdog_kern_pat(WD_LASTVAL);
2558 				mtx_lock(&sync_mtx);
2559 			}
2560 
2561 		}
2562 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2563 			syncer_final_iter--;
2564 		/*
2565 		 * The variable rushjob allows the kernel to speed up the
2566 		 * processing of the filesystem syncer process. A rushjob
2567 		 * value of N tells the filesystem syncer to process the next
2568 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2569 		 * is used by the soft update code to speed up the filesystem
2570 		 * syncer process when the incore state is getting so far
2571 		 * ahead of the disk that the kernel memory pool is being
2572 		 * threatened with exhaustion.
2573 		 */
2574 		if (rushjob > 0) {
2575 			rushjob -= 1;
2576 			continue;
2577 		}
2578 		/*
2579 		 * Just sleep for a short period of time between
2580 		 * iterations when shutting down to allow some I/O
2581 		 * to happen.
2582 		 *
2583 		 * If it has taken us less than a second to process the
2584 		 * current work, then wait. Otherwise start right over
2585 		 * again. We can still lose time if any single round
2586 		 * takes more than two seconds, but it does not really
2587 		 * matter as we are just trying to generally pace the
2588 		 * filesystem activity.
2589 		 */
2590 		if (syncer_state != SYNCER_RUNNING ||
2591 		    time_uptime == starttime) {
2592 			thread_lock(td);
2593 			sched_prio(td, PPAUSE);
2594 			thread_unlock(td);
2595 		}
2596 		if (syncer_state != SYNCER_RUNNING)
2597 			cv_timedwait(&sync_wakeup, &sync_mtx,
2598 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2599 		else if (time_uptime == starttime)
2600 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2601 	}
2602 }
2603 
2604 /*
2605  * Request the syncer daemon to speed up its work.
2606  * We never push it to speed up more than half of its
2607  * normal turn time, otherwise it could take over the cpu.
2608  */
2609 int
2610 speedup_syncer(void)
2611 {
2612 	int ret = 0;
2613 
2614 	mtx_lock(&sync_mtx);
2615 	if (rushjob < syncdelay / 2) {
2616 		rushjob += 1;
2617 		stat_rush_requests += 1;
2618 		ret = 1;
2619 	}
2620 	mtx_unlock(&sync_mtx);
2621 	cv_broadcast(&sync_wakeup);
2622 	return (ret);
2623 }
2624 
2625 /*
2626  * Tell the syncer to speed up its work and run though its work
2627  * list several times, then tell it to shut down.
2628  */
2629 static void
2630 syncer_shutdown(void *arg, int howto)
2631 {
2632 
2633 	if (howto & RB_NOSYNC)
2634 		return;
2635 	mtx_lock(&sync_mtx);
2636 	syncer_state = SYNCER_SHUTTING_DOWN;
2637 	rushjob = 0;
2638 	mtx_unlock(&sync_mtx);
2639 	cv_broadcast(&sync_wakeup);
2640 	kproc_shutdown(arg, howto);
2641 }
2642 
2643 void
2644 syncer_suspend(void)
2645 {
2646 
2647 	syncer_shutdown(updateproc, 0);
2648 }
2649 
2650 void
2651 syncer_resume(void)
2652 {
2653 
2654 	mtx_lock(&sync_mtx);
2655 	first_printf = 1;
2656 	syncer_state = SYNCER_RUNNING;
2657 	mtx_unlock(&sync_mtx);
2658 	cv_broadcast(&sync_wakeup);
2659 	kproc_resume(updateproc);
2660 }
2661 
2662 /*
2663  * Reassign a buffer from one vnode to another.
2664  * Used to assign file specific control information
2665  * (indirect blocks) to the vnode to which they belong.
2666  */
2667 void
2668 reassignbuf(struct buf *bp)
2669 {
2670 	struct vnode *vp;
2671 	struct bufobj *bo;
2672 	int delay;
2673 #ifdef INVARIANTS
2674 	struct bufv *bv;
2675 #endif
2676 
2677 	vp = bp->b_vp;
2678 	bo = bp->b_bufobj;
2679 	++reassignbufcalls;
2680 
2681 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2682 	    bp, bp->b_vp, bp->b_flags);
2683 	/*
2684 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2685 	 * is not fully linked in.
2686 	 */
2687 	if (bp->b_flags & B_PAGING)
2688 		panic("cannot reassign paging buffer");
2689 
2690 	/*
2691 	 * Delete from old vnode list, if on one.
2692 	 */
2693 	BO_LOCK(bo);
2694 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2695 		buf_vlist_remove(bp);
2696 	else
2697 		panic("reassignbuf: Buffer %p not on queue.", bp);
2698 	/*
2699 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2700 	 * of clean buffers.
2701 	 */
2702 	if (bp->b_flags & B_DELWRI) {
2703 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2704 			switch (vp->v_type) {
2705 			case VDIR:
2706 				delay = dirdelay;
2707 				break;
2708 			case VCHR:
2709 				delay = metadelay;
2710 				break;
2711 			default:
2712 				delay = filedelay;
2713 			}
2714 			vn_syncer_add_to_worklist(bo, delay);
2715 		}
2716 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2717 	} else {
2718 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2719 
2720 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2721 			mtx_lock(&sync_mtx);
2722 			LIST_REMOVE(bo, bo_synclist);
2723 			syncer_worklist_len--;
2724 			mtx_unlock(&sync_mtx);
2725 			bo->bo_flag &= ~BO_ONWORKLST;
2726 		}
2727 	}
2728 #ifdef INVARIANTS
2729 	bv = &bo->bo_clean;
2730 	bp = TAILQ_FIRST(&bv->bv_hd);
2731 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2732 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2733 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2734 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2735 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2736 	bv = &bo->bo_dirty;
2737 	bp = TAILQ_FIRST(&bv->bv_hd);
2738 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2739 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2740 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2741 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2742 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2743 #endif
2744 	BO_UNLOCK(bo);
2745 }
2746 
2747 static void
2748 v_init_counters(struct vnode *vp)
2749 {
2750 
2751 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2752 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2753 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2754 
2755 	refcount_init(&vp->v_holdcnt, 1);
2756 	refcount_init(&vp->v_usecount, 1);
2757 }
2758 
2759 /*
2760  * Increment si_usecount of the associated device, if any.
2761  */
2762 static void
2763 v_incr_devcount(struct vnode *vp)
2764 {
2765 
2766 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2767 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2768 		dev_lock();
2769 		vp->v_rdev->si_usecount++;
2770 		dev_unlock();
2771 	}
2772 }
2773 
2774 /*
2775  * Decrement si_usecount of the associated device, if any.
2776  */
2777 static void
2778 v_decr_devcount(struct vnode *vp)
2779 {
2780 
2781 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2782 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2783 		dev_lock();
2784 		vp->v_rdev->si_usecount--;
2785 		dev_unlock();
2786 	}
2787 }
2788 
2789 /*
2790  * Grab a particular vnode from the free list, increment its
2791  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2792  * is being destroyed.  Only callers who specify LK_RETRY will
2793  * see doomed vnodes.  If inactive processing was delayed in
2794  * vput try to do it here.
2795  *
2796  * Both holdcnt and usecount can be manipulated using atomics without holding
2797  * any locks except in these cases which require the vnode interlock:
2798  * holdcnt: 1->0 and 0->1
2799  * usecount: 0->1
2800  *
2801  * usecount is permitted to transition 1->0 without the interlock because
2802  * vnode is kept live by holdcnt.
2803  */
2804 static enum vgetstate __always_inline
2805 _vget_prep(struct vnode *vp, bool interlock)
2806 {
2807 	enum vgetstate vs;
2808 
2809 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2810 		vs = VGET_USECOUNT;
2811 	} else {
2812 		if (interlock)
2813 			vholdl(vp);
2814 		else
2815 			vhold(vp);
2816 		vs = VGET_HOLDCNT;
2817 	}
2818 	return (vs);
2819 }
2820 
2821 enum vgetstate
2822 vget_prep(struct vnode *vp)
2823 {
2824 
2825 	return (_vget_prep(vp, false));
2826 }
2827 
2828 int
2829 vget(struct vnode *vp, int flags, struct thread *td)
2830 {
2831 	enum vgetstate vs;
2832 
2833 	MPASS(td == curthread);
2834 
2835 	vs = _vget_prep(vp, (flags & LK_INTERLOCK) != 0);
2836 	return (vget_finish(vp, flags, vs));
2837 }
2838 
2839 int
2840 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2841 {
2842 	int error, oweinact;
2843 
2844 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2845 	    ("%s: invalid lock operation", __func__));
2846 
2847 	if ((flags & LK_INTERLOCK) != 0)
2848 		ASSERT_VI_LOCKED(vp, __func__);
2849 	else
2850 		ASSERT_VI_UNLOCKED(vp, __func__);
2851 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
2852 	if (vs == VGET_USECOUNT) {
2853 		VNASSERT(vp->v_usecount > 0, vp,
2854 		    ("%s: vnode without usecount when VGET_USECOUNT was passed",
2855 		    __func__));
2856 	}
2857 
2858 	if ((error = vn_lock(vp, flags)) != 0) {
2859 		if (vs == VGET_USECOUNT)
2860 			vrele(vp);
2861 		else
2862 			vdrop(vp);
2863 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2864 		    vp);
2865 		return (error);
2866 	}
2867 
2868 	if (vs == VGET_USECOUNT) {
2869 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2870 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2871 		return (0);
2872 	}
2873 
2874 	/*
2875 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
2876 	 * the vnode around. Otherwise someone else lended their hold count and
2877 	 * we have to drop ours.
2878 	 */
2879 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2880 #ifdef INVARIANTS
2881 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2882 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
2883 #else
2884 		refcount_release(&vp->v_holdcnt);
2885 #endif
2886 		VNODE_REFCOUNT_FENCE_ACQ();
2887 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2888 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2889 		return (0);
2890 	}
2891 
2892 	/*
2893 	 * We don't guarantee that any particular close will
2894 	 * trigger inactive processing so just make a best effort
2895 	 * here at preventing a reference to a removed file.  If
2896 	 * we don't succeed no harm is done.
2897 	 *
2898 	 * Upgrade our holdcnt to a usecount.
2899 	 */
2900 	VI_LOCK(vp);
2901 	/*
2902 	 * See the previous section. By the time we get here we may find
2903 	 * ourselves in the same spot.
2904 	 */
2905 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2906 #ifdef INVARIANTS
2907 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2908 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
2909 #else
2910 		refcount_release(&vp->v_holdcnt);
2911 #endif
2912 		VNODE_REFCOUNT_FENCE_ACQ();
2913 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2914 		    ("%s: vnode with usecount and VI_OWEINACT set",
2915 		    __func__));
2916 		VI_UNLOCK(vp);
2917 		return (0);
2918 	}
2919 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
2920 		oweinact = 0;
2921 	} else {
2922 		oweinact = 1;
2923 		vp->v_iflag &= ~VI_OWEINACT;
2924 		VNODE_REFCOUNT_FENCE_REL();
2925 	}
2926 	v_incr_devcount(vp);
2927 	refcount_acquire(&vp->v_usecount);
2928 	if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2929 	    (flags & LK_NOWAIT) == 0)
2930 		vinactive(vp);
2931 	VI_UNLOCK(vp);
2932 	return (0);
2933 }
2934 
2935 /*
2936  * Increase the reference (use) and hold count of a vnode.
2937  * This will also remove the vnode from the free list if it is presently free.
2938  */
2939 void
2940 vref(struct vnode *vp)
2941 {
2942 
2943 	ASSERT_VI_UNLOCKED(vp, __func__);
2944 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2945 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2946 		VNODE_REFCOUNT_FENCE_ACQ();
2947 		VNASSERT(vp->v_holdcnt > 0, vp,
2948 		    ("%s: active vnode not held", __func__));
2949 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2950 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2951 		return;
2952 	}
2953 	VI_LOCK(vp);
2954 	vrefl(vp);
2955 	VI_UNLOCK(vp);
2956 }
2957 
2958 void
2959 vrefl(struct vnode *vp)
2960 {
2961 
2962 	ASSERT_VI_LOCKED(vp, __func__);
2963 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2964 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2965 		VNODE_REFCOUNT_FENCE_ACQ();
2966 		VNASSERT(vp->v_holdcnt > 0, vp,
2967 		    ("%s: active vnode not held", __func__));
2968 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2969 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2970 		return;
2971 	}
2972 	vholdl(vp);
2973 	if ((vp->v_iflag & VI_OWEINACT) != 0) {
2974 		vp->v_iflag &= ~VI_OWEINACT;
2975 		VNODE_REFCOUNT_FENCE_REL();
2976 	}
2977 	v_incr_devcount(vp);
2978 	refcount_acquire(&vp->v_usecount);
2979 }
2980 
2981 void
2982 vrefact(struct vnode *vp)
2983 {
2984 
2985 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2986 #ifdef INVARIANTS
2987 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
2988 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
2989 #else
2990 	refcount_acquire(&vp->v_usecount);
2991 #endif
2992 }
2993 
2994 /*
2995  * Return reference count of a vnode.
2996  *
2997  * The results of this call are only guaranteed when some mechanism is used to
2998  * stop other processes from gaining references to the vnode.  This may be the
2999  * case if the caller holds the only reference.  This is also useful when stale
3000  * data is acceptable as race conditions may be accounted for by some other
3001  * means.
3002  */
3003 int
3004 vrefcnt(struct vnode *vp)
3005 {
3006 
3007 	return (vp->v_usecount);
3008 }
3009 
3010 enum vputx_op { VPUTX_VRELE, VPUTX_VPUT, VPUTX_VUNREF };
3011 
3012 /*
3013  * Decrement the use and hold counts for a vnode.
3014  *
3015  * See an explanation near vget() as to why atomic operation is safe.
3016  */
3017 static void
3018 vputx(struct vnode *vp, enum vputx_op func)
3019 {
3020 	int error;
3021 
3022 	KASSERT(vp != NULL, ("vputx: null vp"));
3023 	if (func == VPUTX_VUNREF)
3024 		ASSERT_VOP_LOCKED(vp, "vunref");
3025 	ASSERT_VI_UNLOCKED(vp, __func__);
3026 	VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp,
3027 	    ("%s: wrong ref counts", __func__));
3028 
3029 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3030 
3031 	/*
3032 	 * We want to hold the vnode until the inactive finishes to
3033 	 * prevent vgone() races.  We drop the use count here and the
3034 	 * hold count below when we're done.
3035 	 *
3036 	 * If we release the last usecount we take ownership of the hold
3037 	 * count which provides liveness of the vnode, in which case we
3038 	 * have to vdrop.
3039 	 */
3040 	if (!refcount_release(&vp->v_usecount))
3041 		return;
3042 	VI_LOCK(vp);
3043 	v_decr_devcount(vp);
3044 	/*
3045 	 * By the time we got here someone else might have transitioned
3046 	 * the count back to > 0.
3047 	 */
3048 	if (vp->v_usecount > 0) {
3049 		vdropl(vp);
3050 		return;
3051 	}
3052 	if (vp->v_iflag & VI_DOINGINACT) {
3053 		vdropl(vp);
3054 		return;
3055 	}
3056 
3057 	/*
3058 	 * Check if the fs wants to perform inactive processing. Note we
3059 	 * may be only holding the interlock, in which case it is possible
3060 	 * someone else called vgone on the vnode and ->v_data is now NULL.
3061 	 * Since vgone performs inactive on its own there is nothing to do
3062 	 * here but to drop our hold count.
3063 	 */
3064 	if (__predict_false(VN_IS_DOOMED(vp)) ||
3065 	    VOP_NEED_INACTIVE(vp) == 0) {
3066 		vdropl(vp);
3067 		return;
3068 	}
3069 
3070 	/*
3071 	 * We must call VOP_INACTIVE with the node locked. Mark
3072 	 * as VI_DOINGINACT to avoid recursion.
3073 	 */
3074 	vp->v_iflag |= VI_OWEINACT;
3075 	switch (func) {
3076 	case VPUTX_VRELE:
3077 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3078 		VI_LOCK(vp);
3079 		break;
3080 	case VPUTX_VPUT:
3081 		error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT);
3082 		VI_LOCK(vp);
3083 		break;
3084 	case VPUTX_VUNREF:
3085 		error = 0;
3086 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3087 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3088 			VI_LOCK(vp);
3089 		}
3090 		break;
3091 	}
3092 	VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp,
3093 	    ("vnode with usecount and VI_OWEINACT set"));
3094 	if (error == 0) {
3095 		if (vp->v_iflag & VI_OWEINACT)
3096 			vinactive(vp);
3097 		if (func != VPUTX_VUNREF)
3098 			VOP_UNLOCK(vp);
3099 	}
3100 	vdropl(vp);
3101 }
3102 
3103 /*
3104  * Vnode put/release.
3105  * If count drops to zero, call inactive routine and return to freelist.
3106  */
3107 void
3108 vrele(struct vnode *vp)
3109 {
3110 
3111 	vputx(vp, VPUTX_VRELE);
3112 }
3113 
3114 /*
3115  * Release an already locked vnode.  This give the same effects as
3116  * unlock+vrele(), but takes less time and avoids releasing and
3117  * re-aquiring the lock (as vrele() acquires the lock internally.)
3118  *
3119  * It is an invariant that all VOP_* calls operate on a held vnode.
3120  * We may be only having an implicit hold stemming from our usecount,
3121  * which we are about to release. If we unlock the vnode afterwards we
3122  * open a time window where someone else dropped the last usecount and
3123  * proceeded to free the vnode before our unlock finished. For this
3124  * reason we unlock the vnode early. This is a little bit wasteful as
3125  * it may be the vnode is exclusively locked and inactive processing is
3126  * needed, in which case we are adding work.
3127  */
3128 void
3129 vput(struct vnode *vp)
3130 {
3131 
3132 	VOP_UNLOCK(vp);
3133 	vputx(vp, VPUTX_VPUT);
3134 }
3135 
3136 /*
3137  * Release an exclusively locked vnode. Do not unlock the vnode lock.
3138  */
3139 void
3140 vunref(struct vnode *vp)
3141 {
3142 
3143 	vputx(vp, VPUTX_VUNREF);
3144 }
3145 
3146 /*
3147  * Increase the hold count and activate if this is the first reference.
3148  */
3149 static void
3150 vhold_activate(struct vnode *vp)
3151 {
3152 	struct mount *mp;
3153 
3154 	ASSERT_VI_LOCKED(vp, __func__);
3155 	VNASSERT(vp->v_holdcnt == 0, vp,
3156 	    ("%s: wrong hold count", __func__));
3157 	VNASSERT(vp->v_op != NULL, vp,
3158 	    ("%s: vnode already reclaimed.", __func__));
3159 	/*
3160 	 * Remove a vnode from the free list, mark it as in use,
3161 	 * and put it on the active list.
3162 	 */
3163 	VNASSERT(vp->v_mount != NULL, vp,
3164 	    ("_vhold: vnode not on per mount vnode list"));
3165 	mp = vp->v_mount;
3166 	mtx_lock(&mp->mnt_listmtx);
3167 	if ((vp->v_mflag & VMP_TMPMNTFREELIST) != 0) {
3168 		TAILQ_REMOVE(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
3169 		mp->mnt_tmpfreevnodelistsize--;
3170 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
3171 	} else {
3172 		mtx_lock(&vnode_free_list_mtx);
3173 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
3174 		freevnodes--;
3175 		mtx_unlock(&vnode_free_list_mtx);
3176 	}
3177 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
3178 	    ("Activating already active vnode"));
3179 	vp->v_iflag &= ~VI_FREE;
3180 	vp->v_iflag |= VI_ACTIVE;
3181 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
3182 	mp->mnt_activevnodelistsize++;
3183 	mtx_unlock(&mp->mnt_listmtx);
3184 	refcount_acquire(&vp->v_holdcnt);
3185 }
3186 
3187 void
3188 vhold(struct vnode *vp)
3189 {
3190 
3191 	ASSERT_VI_UNLOCKED(vp, __func__);
3192 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3193 	if (refcount_acquire_if_not_zero(&vp->v_holdcnt)) {
3194 		VNODE_REFCOUNT_FENCE_ACQ();
3195 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3196 		    ("vhold: vnode with holdcnt is free"));
3197 		return;
3198 	}
3199 	VI_LOCK(vp);
3200 	vholdl(vp);
3201 	VI_UNLOCK(vp);
3202 }
3203 
3204 void
3205 vholdl(struct vnode *vp)
3206 {
3207 
3208 	ASSERT_VI_LOCKED(vp, __func__);
3209 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3210 	if ((vp->v_iflag & VI_FREE) == 0) {
3211 		refcount_acquire(&vp->v_holdcnt);
3212 		return;
3213 	}
3214 	vhold_activate(vp);
3215 }
3216 
3217 void
3218 vholdnz(struct vnode *vp)
3219 {
3220 
3221 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3222 #ifdef INVARIANTS
3223 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3224 	VNASSERT(old > 0, vp, ("%s: wrong hold count %d", __func__, old));
3225 #else
3226 	atomic_add_int(&vp->v_holdcnt, 1);
3227 #endif
3228 }
3229 
3230 /*
3231  * Drop the hold count of the vnode.  If this is the last reference to
3232  * the vnode we place it on the free list unless it has been vgone'd
3233  * (marked VIRF_DOOMED) in which case we will free it.
3234  *
3235  * Because the vnode vm object keeps a hold reference on the vnode if
3236  * there is at least one resident non-cached page, the vnode cannot
3237  * leave the active list without the page cleanup done.
3238  */
3239 static void
3240 vdrop_deactivate(struct vnode *vp)
3241 {
3242 	struct mount *mp;
3243 
3244 	ASSERT_VI_LOCKED(vp, __func__);
3245 	/*
3246 	 * Mark a vnode as free: remove it from its active list
3247 	 * and put it up for recycling on the freelist.
3248 	 */
3249 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3250 	    ("vdrop: returning doomed vnode"));
3251 	VNASSERT(vp->v_op != NULL, vp,
3252 	    ("vdrop: vnode already reclaimed."));
3253 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3254 	    ("vnode already free"));
3255 	VNASSERT(vp->v_holdcnt == 0, vp,
3256 	    ("vdrop: freeing when we shouldn't"));
3257 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3258 		mp = vp->v_mount;
3259 		mtx_lock(&mp->mnt_listmtx);
3260 		if (vp->v_iflag & VI_ACTIVE) {
3261 			vp->v_iflag &= ~VI_ACTIVE;
3262 			TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
3263 			mp->mnt_activevnodelistsize--;
3264 		}
3265 		TAILQ_INSERT_TAIL(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
3266 		mp->mnt_tmpfreevnodelistsize++;
3267 		vp->v_iflag |= VI_FREE;
3268 		vp->v_mflag |= VMP_TMPMNTFREELIST;
3269 		VI_UNLOCK(vp);
3270 		if (mp->mnt_tmpfreevnodelistsize >= mnt_free_list_batch)
3271 			vnlru_return_batch_locked(mp);
3272 		mtx_unlock(&mp->mnt_listmtx);
3273 	} else {
3274 		VI_UNLOCK(vp);
3275 		counter_u64_add(free_owe_inact, 1);
3276 	}
3277 }
3278 
3279 void
3280 vdrop(struct vnode *vp)
3281 {
3282 
3283 	ASSERT_VI_UNLOCKED(vp, __func__);
3284 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3285 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3286 		return;
3287 	VI_LOCK(vp);
3288 	vdropl(vp);
3289 }
3290 
3291 void
3292 vdropl(struct vnode *vp)
3293 {
3294 
3295 	ASSERT_VI_LOCKED(vp, __func__);
3296 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3297 	if (!refcount_release(&vp->v_holdcnt)) {
3298 		VI_UNLOCK(vp);
3299 		return;
3300 	}
3301 	if (VN_IS_DOOMED(vp)) {
3302 		freevnode(vp);
3303 		return;
3304 	}
3305 	vdrop_deactivate(vp);
3306 }
3307 
3308 /*
3309  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3310  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3311  * OWEINACT tracks whether a vnode missed a call to inactive due to a
3312  * failed lock upgrade.
3313  */
3314 void
3315 vinactive(struct vnode *vp)
3316 {
3317 	struct vm_object *obj;
3318 
3319 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3320 	ASSERT_VI_LOCKED(vp, "vinactive");
3321 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3322 	    ("vinactive: recursed on VI_DOINGINACT"));
3323 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3324 	vp->v_iflag |= VI_DOINGINACT;
3325 	vp->v_iflag &= ~VI_OWEINACT;
3326 	VI_UNLOCK(vp);
3327 	/*
3328 	 * Before moving off the active list, we must be sure that any
3329 	 * modified pages are converted into the vnode's dirty
3330 	 * buffers, since these will no longer be checked once the
3331 	 * vnode is on the inactive list.
3332 	 *
3333 	 * The write-out of the dirty pages is asynchronous.  At the
3334 	 * point that VOP_INACTIVE() is called, there could still be
3335 	 * pending I/O and dirty pages in the object.
3336 	 */
3337 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3338 	    vm_object_mightbedirty(obj)) {
3339 		VM_OBJECT_WLOCK(obj);
3340 		vm_object_page_clean(obj, 0, 0, 0);
3341 		VM_OBJECT_WUNLOCK(obj);
3342 	}
3343 	VOP_INACTIVE(vp, curthread);
3344 	VI_LOCK(vp);
3345 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3346 	    ("vinactive: lost VI_DOINGINACT"));
3347 	vp->v_iflag &= ~VI_DOINGINACT;
3348 }
3349 
3350 /*
3351  * Remove any vnodes in the vnode table belonging to mount point mp.
3352  *
3353  * If FORCECLOSE is not specified, there should not be any active ones,
3354  * return error if any are found (nb: this is a user error, not a
3355  * system error). If FORCECLOSE is specified, detach any active vnodes
3356  * that are found.
3357  *
3358  * If WRITECLOSE is set, only flush out regular file vnodes open for
3359  * writing.
3360  *
3361  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3362  *
3363  * `rootrefs' specifies the base reference count for the root vnode
3364  * of this filesystem. The root vnode is considered busy if its
3365  * v_usecount exceeds this value. On a successful return, vflush(, td)
3366  * will call vrele() on the root vnode exactly rootrefs times.
3367  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3368  * be zero.
3369  */
3370 #ifdef DIAGNOSTIC
3371 static int busyprt = 0;		/* print out busy vnodes */
3372 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3373 #endif
3374 
3375 int
3376 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3377 {
3378 	struct vnode *vp, *mvp, *rootvp = NULL;
3379 	struct vattr vattr;
3380 	int busy = 0, error;
3381 
3382 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3383 	    rootrefs, flags);
3384 	if (rootrefs > 0) {
3385 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3386 		    ("vflush: bad args"));
3387 		/*
3388 		 * Get the filesystem root vnode. We can vput() it
3389 		 * immediately, since with rootrefs > 0, it won't go away.
3390 		 */
3391 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3392 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3393 			    __func__, error);
3394 			return (error);
3395 		}
3396 		vput(rootvp);
3397 	}
3398 loop:
3399 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3400 		vholdl(vp);
3401 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3402 		if (error) {
3403 			vdrop(vp);
3404 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3405 			goto loop;
3406 		}
3407 		/*
3408 		 * Skip over a vnodes marked VV_SYSTEM.
3409 		 */
3410 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3411 			VOP_UNLOCK(vp);
3412 			vdrop(vp);
3413 			continue;
3414 		}
3415 		/*
3416 		 * If WRITECLOSE is set, flush out unlinked but still open
3417 		 * files (even if open only for reading) and regular file
3418 		 * vnodes open for writing.
3419 		 */
3420 		if (flags & WRITECLOSE) {
3421 			if (vp->v_object != NULL) {
3422 				VM_OBJECT_WLOCK(vp->v_object);
3423 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3424 				VM_OBJECT_WUNLOCK(vp->v_object);
3425 			}
3426 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3427 			if (error != 0) {
3428 				VOP_UNLOCK(vp);
3429 				vdrop(vp);
3430 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3431 				return (error);
3432 			}
3433 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3434 			VI_LOCK(vp);
3435 
3436 			if ((vp->v_type == VNON ||
3437 			    (error == 0 && vattr.va_nlink > 0)) &&
3438 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3439 				VOP_UNLOCK(vp);
3440 				vdropl(vp);
3441 				continue;
3442 			}
3443 		} else
3444 			VI_LOCK(vp);
3445 		/*
3446 		 * With v_usecount == 0, all we need to do is clear out the
3447 		 * vnode data structures and we are done.
3448 		 *
3449 		 * If FORCECLOSE is set, forcibly close the vnode.
3450 		 */
3451 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3452 			vgonel(vp);
3453 		} else {
3454 			busy++;
3455 #ifdef DIAGNOSTIC
3456 			if (busyprt)
3457 				vn_printf(vp, "vflush: busy vnode ");
3458 #endif
3459 		}
3460 		VOP_UNLOCK(vp);
3461 		vdropl(vp);
3462 	}
3463 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3464 		/*
3465 		 * If just the root vnode is busy, and if its refcount
3466 		 * is equal to `rootrefs', then go ahead and kill it.
3467 		 */
3468 		VI_LOCK(rootvp);
3469 		KASSERT(busy > 0, ("vflush: not busy"));
3470 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3471 		    ("vflush: usecount %d < rootrefs %d",
3472 		     rootvp->v_usecount, rootrefs));
3473 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3474 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3475 			vgone(rootvp);
3476 			VOP_UNLOCK(rootvp);
3477 			busy = 0;
3478 		} else
3479 			VI_UNLOCK(rootvp);
3480 	}
3481 	if (busy) {
3482 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3483 		    busy);
3484 		return (EBUSY);
3485 	}
3486 	for (; rootrefs > 0; rootrefs--)
3487 		vrele(rootvp);
3488 	return (0);
3489 }
3490 
3491 /*
3492  * Recycle an unused vnode to the front of the free list.
3493  */
3494 int
3495 vrecycle(struct vnode *vp)
3496 {
3497 	int recycled;
3498 
3499 	VI_LOCK(vp);
3500 	recycled = vrecyclel(vp);
3501 	VI_UNLOCK(vp);
3502 	return (recycled);
3503 }
3504 
3505 /*
3506  * vrecycle, with the vp interlock held.
3507  */
3508 int
3509 vrecyclel(struct vnode *vp)
3510 {
3511 	int recycled;
3512 
3513 	ASSERT_VOP_ELOCKED(vp, __func__);
3514 	ASSERT_VI_LOCKED(vp, __func__);
3515 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3516 	recycled = 0;
3517 	if (vp->v_usecount == 0) {
3518 		recycled = 1;
3519 		vgonel(vp);
3520 	}
3521 	return (recycled);
3522 }
3523 
3524 /*
3525  * Eliminate all activity associated with a vnode
3526  * in preparation for reuse.
3527  */
3528 void
3529 vgone(struct vnode *vp)
3530 {
3531 	VI_LOCK(vp);
3532 	vgonel(vp);
3533 	VI_UNLOCK(vp);
3534 }
3535 
3536 static void
3537 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3538     struct vnode *lowervp __unused)
3539 {
3540 }
3541 
3542 /*
3543  * Notify upper mounts about reclaimed or unlinked vnode.
3544  */
3545 void
3546 vfs_notify_upper(struct vnode *vp, int event)
3547 {
3548 	static struct vfsops vgonel_vfsops = {
3549 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3550 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3551 	};
3552 	struct mount *mp, *ump, *mmp;
3553 
3554 	mp = vp->v_mount;
3555 	if (mp == NULL)
3556 		return;
3557 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3558 		return;
3559 
3560 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3561 	mmp->mnt_op = &vgonel_vfsops;
3562 	mmp->mnt_kern_flag |= MNTK_MARKER;
3563 	MNT_ILOCK(mp);
3564 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3565 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3566 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3567 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3568 			continue;
3569 		}
3570 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3571 		MNT_IUNLOCK(mp);
3572 		switch (event) {
3573 		case VFS_NOTIFY_UPPER_RECLAIM:
3574 			VFS_RECLAIM_LOWERVP(ump, vp);
3575 			break;
3576 		case VFS_NOTIFY_UPPER_UNLINK:
3577 			VFS_UNLINK_LOWERVP(ump, vp);
3578 			break;
3579 		default:
3580 			KASSERT(0, ("invalid event %d", event));
3581 			break;
3582 		}
3583 		MNT_ILOCK(mp);
3584 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3585 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3586 	}
3587 	free(mmp, M_TEMP);
3588 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3589 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3590 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3591 		wakeup(&mp->mnt_uppers);
3592 	}
3593 	MNT_IUNLOCK(mp);
3594 }
3595 
3596 /*
3597  * vgone, with the vp interlock held.
3598  */
3599 static void
3600 vgonel(struct vnode *vp)
3601 {
3602 	struct thread *td;
3603 	struct mount *mp;
3604 	vm_object_t object;
3605 	bool active, oweinact;
3606 
3607 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3608 	ASSERT_VI_LOCKED(vp, "vgonel");
3609 	VNASSERT(vp->v_holdcnt, vp,
3610 	    ("vgonel: vp %p has no reference.", vp));
3611 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3612 	td = curthread;
3613 
3614 	/*
3615 	 * Don't vgonel if we're already doomed.
3616 	 */
3617 	if (vp->v_irflag & VIRF_DOOMED)
3618 		return;
3619 	vp->v_irflag |= VIRF_DOOMED;
3620 
3621 	/*
3622 	 * Check to see if the vnode is in use.  If so, we have to call
3623 	 * VOP_CLOSE() and VOP_INACTIVE().
3624 	 */
3625 	active = vp->v_usecount > 0;
3626 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3627 	VI_UNLOCK(vp);
3628 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3629 
3630 	/*
3631 	 * If purging an active vnode, it must be closed and
3632 	 * deactivated before being reclaimed.
3633 	 */
3634 	if (active)
3635 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3636 	if (oweinact || active) {
3637 		VI_LOCK(vp);
3638 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
3639 			vinactive(vp);
3640 		VI_UNLOCK(vp);
3641 	}
3642 	if (vp->v_type == VSOCK)
3643 		vfs_unp_reclaim(vp);
3644 
3645 	/*
3646 	 * Clean out any buffers associated with the vnode.
3647 	 * If the flush fails, just toss the buffers.
3648 	 */
3649 	mp = NULL;
3650 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3651 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3652 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3653 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3654 			;
3655 	}
3656 
3657 	BO_LOCK(&vp->v_bufobj);
3658 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3659 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3660 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3661 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3662 	    ("vp %p bufobj not invalidated", vp));
3663 
3664 	/*
3665 	 * For VMIO bufobj, BO_DEAD is set later, or in
3666 	 * vm_object_terminate() after the object's page queue is
3667 	 * flushed.
3668 	 */
3669 	object = vp->v_bufobj.bo_object;
3670 	if (object == NULL)
3671 		vp->v_bufobj.bo_flag |= BO_DEAD;
3672 	BO_UNLOCK(&vp->v_bufobj);
3673 
3674 	/*
3675 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
3676 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
3677 	 * should not touch the object borrowed from the lower vnode
3678 	 * (the handle check).
3679 	 */
3680 	if (object != NULL && object->type == OBJT_VNODE &&
3681 	    object->handle == vp)
3682 		vnode_destroy_vobject(vp);
3683 
3684 	/*
3685 	 * Reclaim the vnode.
3686 	 */
3687 	if (VOP_RECLAIM(vp, td))
3688 		panic("vgone: cannot reclaim");
3689 	if (mp != NULL)
3690 		vn_finished_secondary_write(mp);
3691 	VNASSERT(vp->v_object == NULL, vp,
3692 	    ("vop_reclaim left v_object vp=%p", vp));
3693 	/*
3694 	 * Clear the advisory locks and wake up waiting threads.
3695 	 */
3696 	(void)VOP_ADVLOCKPURGE(vp);
3697 	vp->v_lockf = NULL;
3698 	/*
3699 	 * Delete from old mount point vnode list.
3700 	 */
3701 	delmntque(vp);
3702 	cache_purge(vp);
3703 	/*
3704 	 * Done with purge, reset to the standard lock and invalidate
3705 	 * the vnode.
3706 	 */
3707 	VI_LOCK(vp);
3708 	vp->v_vnlock = &vp->v_lock;
3709 	vp->v_op = &dead_vnodeops;
3710 	vp->v_type = VBAD;
3711 }
3712 
3713 /*
3714  * Calculate the total number of references to a special device.
3715  */
3716 int
3717 vcount(struct vnode *vp)
3718 {
3719 	int count;
3720 
3721 	dev_lock();
3722 	count = vp->v_rdev->si_usecount;
3723 	dev_unlock();
3724 	return (count);
3725 }
3726 
3727 /*
3728  * Print out a description of a vnode.
3729  */
3730 static char *typename[] =
3731 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3732  "VMARKER"};
3733 
3734 void
3735 vn_printf(struct vnode *vp, const char *fmt, ...)
3736 {
3737 	va_list ap;
3738 	char buf[256], buf2[16];
3739 	u_long flags;
3740 
3741 	va_start(ap, fmt);
3742 	vprintf(fmt, ap);
3743 	va_end(ap);
3744 	printf("%p: ", (void *)vp);
3745 	printf("type %s\n", typename[vp->v_type]);
3746 	printf("    usecount %d, writecount %d, refcount %d",
3747 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
3748 	switch (vp->v_type) {
3749 	case VDIR:
3750 		printf(" mountedhere %p\n", vp->v_mountedhere);
3751 		break;
3752 	case VCHR:
3753 		printf(" rdev %p\n", vp->v_rdev);
3754 		break;
3755 	case VSOCK:
3756 		printf(" socket %p\n", vp->v_unpcb);
3757 		break;
3758 	case VFIFO:
3759 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
3760 		break;
3761 	default:
3762 		printf("\n");
3763 		break;
3764 	}
3765 	buf[0] = '\0';
3766 	buf[1] = '\0';
3767 	if (vp->v_irflag & VIRF_DOOMED)
3768 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
3769 	flags = vp->v_irflag & ~(VIRF_DOOMED);
3770 	if (flags != 0) {
3771 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
3772 		strlcat(buf, buf2, sizeof(buf));
3773 	}
3774 	if (vp->v_vflag & VV_ROOT)
3775 		strlcat(buf, "|VV_ROOT", sizeof(buf));
3776 	if (vp->v_vflag & VV_ISTTY)
3777 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3778 	if (vp->v_vflag & VV_NOSYNC)
3779 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3780 	if (vp->v_vflag & VV_ETERNALDEV)
3781 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3782 	if (vp->v_vflag & VV_CACHEDLABEL)
3783 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3784 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
3785 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
3786 	if (vp->v_vflag & VV_COPYONWRITE)
3787 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3788 	if (vp->v_vflag & VV_SYSTEM)
3789 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3790 	if (vp->v_vflag & VV_PROCDEP)
3791 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3792 	if (vp->v_vflag & VV_NOKNOTE)
3793 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3794 	if (vp->v_vflag & VV_DELETED)
3795 		strlcat(buf, "|VV_DELETED", sizeof(buf));
3796 	if (vp->v_vflag & VV_MD)
3797 		strlcat(buf, "|VV_MD", sizeof(buf));
3798 	if (vp->v_vflag & VV_FORCEINSMQ)
3799 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3800 	if (vp->v_vflag & VV_READLINK)
3801 		strlcat(buf, "|VV_READLINK", sizeof(buf));
3802 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3803 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3804 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3805 	if (flags != 0) {
3806 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3807 		strlcat(buf, buf2, sizeof(buf));
3808 	}
3809 	if (vp->v_iflag & VI_TEXT_REF)
3810 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
3811 	if (vp->v_iflag & VI_MOUNT)
3812 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3813 	if (vp->v_iflag & VI_FREE)
3814 		strlcat(buf, "|VI_FREE", sizeof(buf));
3815 	if (vp->v_iflag & VI_ACTIVE)
3816 		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3817 	if (vp->v_iflag & VI_DOINGINACT)
3818 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3819 	if (vp->v_iflag & VI_OWEINACT)
3820 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3821 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_FREE | VI_ACTIVE |
3822 	    VI_DOINGINACT | VI_OWEINACT);
3823 	if (flags != 0) {
3824 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3825 		strlcat(buf, buf2, sizeof(buf));
3826 	}
3827 	if (vp->v_mflag & VMP_TMPMNTFREELIST)
3828 		strlcat(buf, "|VMP_TMPMNTFREELIST", sizeof(buf));
3829 	flags = vp->v_mflag & ~(VMP_TMPMNTFREELIST);
3830 	if (flags != 0) {
3831 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
3832 		strlcat(buf, buf2, sizeof(buf));
3833 	}
3834 	printf("    flags (%s)\n", buf + 1);
3835 	if (mtx_owned(VI_MTX(vp)))
3836 		printf(" VI_LOCKed");
3837 	if (vp->v_object != NULL)
3838 		printf("    v_object %p ref %d pages %d "
3839 		    "cleanbuf %d dirtybuf %d\n",
3840 		    vp->v_object, vp->v_object->ref_count,
3841 		    vp->v_object->resident_page_count,
3842 		    vp->v_bufobj.bo_clean.bv_cnt,
3843 		    vp->v_bufobj.bo_dirty.bv_cnt);
3844 	printf("    ");
3845 	lockmgr_printinfo(vp->v_vnlock);
3846 	if (vp->v_data != NULL)
3847 		VOP_PRINT(vp);
3848 }
3849 
3850 #ifdef DDB
3851 /*
3852  * List all of the locked vnodes in the system.
3853  * Called when debugging the kernel.
3854  */
3855 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3856 {
3857 	struct mount *mp;
3858 	struct vnode *vp;
3859 
3860 	/*
3861 	 * Note: because this is DDB, we can't obey the locking semantics
3862 	 * for these structures, which means we could catch an inconsistent
3863 	 * state and dereference a nasty pointer.  Not much to be done
3864 	 * about that.
3865 	 */
3866 	db_printf("Locked vnodes\n");
3867 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3868 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3869 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3870 				vn_printf(vp, "vnode ");
3871 		}
3872 	}
3873 }
3874 
3875 /*
3876  * Show details about the given vnode.
3877  */
3878 DB_SHOW_COMMAND(vnode, db_show_vnode)
3879 {
3880 	struct vnode *vp;
3881 
3882 	if (!have_addr)
3883 		return;
3884 	vp = (struct vnode *)addr;
3885 	vn_printf(vp, "vnode ");
3886 }
3887 
3888 /*
3889  * Show details about the given mount point.
3890  */
3891 DB_SHOW_COMMAND(mount, db_show_mount)
3892 {
3893 	struct mount *mp;
3894 	struct vfsopt *opt;
3895 	struct statfs *sp;
3896 	struct vnode *vp;
3897 	char buf[512];
3898 	uint64_t mflags;
3899 	u_int flags;
3900 
3901 	if (!have_addr) {
3902 		/* No address given, print short info about all mount points. */
3903 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3904 			db_printf("%p %s on %s (%s)\n", mp,
3905 			    mp->mnt_stat.f_mntfromname,
3906 			    mp->mnt_stat.f_mntonname,
3907 			    mp->mnt_stat.f_fstypename);
3908 			if (db_pager_quit)
3909 				break;
3910 		}
3911 		db_printf("\nMore info: show mount <addr>\n");
3912 		return;
3913 	}
3914 
3915 	mp = (struct mount *)addr;
3916 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3917 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3918 
3919 	buf[0] = '\0';
3920 	mflags = mp->mnt_flag;
3921 #define	MNT_FLAG(flag)	do {						\
3922 	if (mflags & (flag)) {						\
3923 		if (buf[0] != '\0')					\
3924 			strlcat(buf, ", ", sizeof(buf));		\
3925 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3926 		mflags &= ~(flag);					\
3927 	}								\
3928 } while (0)
3929 	MNT_FLAG(MNT_RDONLY);
3930 	MNT_FLAG(MNT_SYNCHRONOUS);
3931 	MNT_FLAG(MNT_NOEXEC);
3932 	MNT_FLAG(MNT_NOSUID);
3933 	MNT_FLAG(MNT_NFS4ACLS);
3934 	MNT_FLAG(MNT_UNION);
3935 	MNT_FLAG(MNT_ASYNC);
3936 	MNT_FLAG(MNT_SUIDDIR);
3937 	MNT_FLAG(MNT_SOFTDEP);
3938 	MNT_FLAG(MNT_NOSYMFOLLOW);
3939 	MNT_FLAG(MNT_GJOURNAL);
3940 	MNT_FLAG(MNT_MULTILABEL);
3941 	MNT_FLAG(MNT_ACLS);
3942 	MNT_FLAG(MNT_NOATIME);
3943 	MNT_FLAG(MNT_NOCLUSTERR);
3944 	MNT_FLAG(MNT_NOCLUSTERW);
3945 	MNT_FLAG(MNT_SUJ);
3946 	MNT_FLAG(MNT_EXRDONLY);
3947 	MNT_FLAG(MNT_EXPORTED);
3948 	MNT_FLAG(MNT_DEFEXPORTED);
3949 	MNT_FLAG(MNT_EXPORTANON);
3950 	MNT_FLAG(MNT_EXKERB);
3951 	MNT_FLAG(MNT_EXPUBLIC);
3952 	MNT_FLAG(MNT_LOCAL);
3953 	MNT_FLAG(MNT_QUOTA);
3954 	MNT_FLAG(MNT_ROOTFS);
3955 	MNT_FLAG(MNT_USER);
3956 	MNT_FLAG(MNT_IGNORE);
3957 	MNT_FLAG(MNT_UPDATE);
3958 	MNT_FLAG(MNT_DELEXPORT);
3959 	MNT_FLAG(MNT_RELOAD);
3960 	MNT_FLAG(MNT_FORCE);
3961 	MNT_FLAG(MNT_SNAPSHOT);
3962 	MNT_FLAG(MNT_BYFSID);
3963 #undef MNT_FLAG
3964 	if (mflags != 0) {
3965 		if (buf[0] != '\0')
3966 			strlcat(buf, ", ", sizeof(buf));
3967 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3968 		    "0x%016jx", mflags);
3969 	}
3970 	db_printf("    mnt_flag = %s\n", buf);
3971 
3972 	buf[0] = '\0';
3973 	flags = mp->mnt_kern_flag;
3974 #define	MNT_KERN_FLAG(flag)	do {					\
3975 	if (flags & (flag)) {						\
3976 		if (buf[0] != '\0')					\
3977 			strlcat(buf, ", ", sizeof(buf));		\
3978 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3979 		flags &= ~(flag);					\
3980 	}								\
3981 } while (0)
3982 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3983 	MNT_KERN_FLAG(MNTK_ASYNC);
3984 	MNT_KERN_FLAG(MNTK_SOFTDEP);
3985 	MNT_KERN_FLAG(MNTK_DRAINING);
3986 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3987 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3988 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3989 	MNT_KERN_FLAG(MNTK_NO_IOPF);
3990 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3991 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3992 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3993 	MNT_KERN_FLAG(MNTK_MARKER);
3994 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
3995 	MNT_KERN_FLAG(MNTK_NOASYNC);
3996 	MNT_KERN_FLAG(MNTK_UNMOUNT);
3997 	MNT_KERN_FLAG(MNTK_MWAIT);
3998 	MNT_KERN_FLAG(MNTK_SUSPEND);
3999 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4000 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4001 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4002 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4003 #undef MNT_KERN_FLAG
4004 	if (flags != 0) {
4005 		if (buf[0] != '\0')
4006 			strlcat(buf, ", ", sizeof(buf));
4007 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4008 		    "0x%08x", flags);
4009 	}
4010 	db_printf("    mnt_kern_flag = %s\n", buf);
4011 
4012 	db_printf("    mnt_opt = ");
4013 	opt = TAILQ_FIRST(mp->mnt_opt);
4014 	if (opt != NULL) {
4015 		db_printf("%s", opt->name);
4016 		opt = TAILQ_NEXT(opt, link);
4017 		while (opt != NULL) {
4018 			db_printf(", %s", opt->name);
4019 			opt = TAILQ_NEXT(opt, link);
4020 		}
4021 	}
4022 	db_printf("\n");
4023 
4024 	sp = &mp->mnt_stat;
4025 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4026 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4027 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4028 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4029 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4030 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4031 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4032 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4033 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4034 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4035 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4036 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4037 
4038 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4039 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4040 	if (jailed(mp->mnt_cred))
4041 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4042 	db_printf(" }\n");
4043 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4044 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4045 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4046 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4047 	db_printf("    mnt_activevnodelistsize = %d\n",
4048 	    mp->mnt_activevnodelistsize);
4049 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4050 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4051 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
4052 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4053 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4054 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4055 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4056 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4057 	db_printf("    mnt_secondary_accwrites = %d\n",
4058 	    mp->mnt_secondary_accwrites);
4059 	db_printf("    mnt_gjprovider = %s\n",
4060 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4061 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4062 
4063 	db_printf("\n\nList of active vnodes\n");
4064 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
4065 		if (vp->v_type != VMARKER) {
4066 			vn_printf(vp, "vnode ");
4067 			if (db_pager_quit)
4068 				break;
4069 		}
4070 	}
4071 	db_printf("\n\nList of inactive vnodes\n");
4072 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4073 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
4074 			vn_printf(vp, "vnode ");
4075 			if (db_pager_quit)
4076 				break;
4077 		}
4078 	}
4079 }
4080 #endif	/* DDB */
4081 
4082 /*
4083  * Fill in a struct xvfsconf based on a struct vfsconf.
4084  */
4085 static int
4086 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4087 {
4088 	struct xvfsconf xvfsp;
4089 
4090 	bzero(&xvfsp, sizeof(xvfsp));
4091 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4092 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4093 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4094 	xvfsp.vfc_flags = vfsp->vfc_flags;
4095 	/*
4096 	 * These are unused in userland, we keep them
4097 	 * to not break binary compatibility.
4098 	 */
4099 	xvfsp.vfc_vfsops = NULL;
4100 	xvfsp.vfc_next = NULL;
4101 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4102 }
4103 
4104 #ifdef COMPAT_FREEBSD32
4105 struct xvfsconf32 {
4106 	uint32_t	vfc_vfsops;
4107 	char		vfc_name[MFSNAMELEN];
4108 	int32_t		vfc_typenum;
4109 	int32_t		vfc_refcount;
4110 	int32_t		vfc_flags;
4111 	uint32_t	vfc_next;
4112 };
4113 
4114 static int
4115 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4116 {
4117 	struct xvfsconf32 xvfsp;
4118 
4119 	bzero(&xvfsp, sizeof(xvfsp));
4120 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4121 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4122 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4123 	xvfsp.vfc_flags = vfsp->vfc_flags;
4124 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4125 }
4126 #endif
4127 
4128 /*
4129  * Top level filesystem related information gathering.
4130  */
4131 static int
4132 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4133 {
4134 	struct vfsconf *vfsp;
4135 	int error;
4136 
4137 	error = 0;
4138 	vfsconf_slock();
4139 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4140 #ifdef COMPAT_FREEBSD32
4141 		if (req->flags & SCTL_MASK32)
4142 			error = vfsconf2x32(req, vfsp);
4143 		else
4144 #endif
4145 			error = vfsconf2x(req, vfsp);
4146 		if (error)
4147 			break;
4148 	}
4149 	vfsconf_sunlock();
4150 	return (error);
4151 }
4152 
4153 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4154     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4155     "S,xvfsconf", "List of all configured filesystems");
4156 
4157 #ifndef BURN_BRIDGES
4158 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4159 
4160 static int
4161 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4162 {
4163 	int *name = (int *)arg1 - 1;	/* XXX */
4164 	u_int namelen = arg2 + 1;	/* XXX */
4165 	struct vfsconf *vfsp;
4166 
4167 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4168 	    "please rebuild world\n");
4169 
4170 #if 1 || defined(COMPAT_PRELITE2)
4171 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4172 	if (namelen == 1)
4173 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4174 #endif
4175 
4176 	switch (name[1]) {
4177 	case VFS_MAXTYPENUM:
4178 		if (namelen != 2)
4179 			return (ENOTDIR);
4180 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4181 	case VFS_CONF:
4182 		if (namelen != 3)
4183 			return (ENOTDIR);	/* overloaded */
4184 		vfsconf_slock();
4185 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4186 			if (vfsp->vfc_typenum == name[2])
4187 				break;
4188 		}
4189 		vfsconf_sunlock();
4190 		if (vfsp == NULL)
4191 			return (EOPNOTSUPP);
4192 #ifdef COMPAT_FREEBSD32
4193 		if (req->flags & SCTL_MASK32)
4194 			return (vfsconf2x32(req, vfsp));
4195 		else
4196 #endif
4197 			return (vfsconf2x(req, vfsp));
4198 	}
4199 	return (EOPNOTSUPP);
4200 }
4201 
4202 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4203     CTLFLAG_MPSAFE, vfs_sysctl,
4204     "Generic filesystem");
4205 
4206 #if 1 || defined(COMPAT_PRELITE2)
4207 
4208 static int
4209 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4210 {
4211 	int error;
4212 	struct vfsconf *vfsp;
4213 	struct ovfsconf ovfs;
4214 
4215 	vfsconf_slock();
4216 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4217 		bzero(&ovfs, sizeof(ovfs));
4218 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4219 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4220 		ovfs.vfc_index = vfsp->vfc_typenum;
4221 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4222 		ovfs.vfc_flags = vfsp->vfc_flags;
4223 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4224 		if (error != 0) {
4225 			vfsconf_sunlock();
4226 			return (error);
4227 		}
4228 	}
4229 	vfsconf_sunlock();
4230 	return (0);
4231 }
4232 
4233 #endif /* 1 || COMPAT_PRELITE2 */
4234 #endif /* !BURN_BRIDGES */
4235 
4236 #define KINFO_VNODESLOP		10
4237 #ifdef notyet
4238 /*
4239  * Dump vnode list (via sysctl).
4240  */
4241 /* ARGSUSED */
4242 static int
4243 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4244 {
4245 	struct xvnode *xvn;
4246 	struct mount *mp;
4247 	struct vnode *vp;
4248 	int error, len, n;
4249 
4250 	/*
4251 	 * Stale numvnodes access is not fatal here.
4252 	 */
4253 	req->lock = 0;
4254 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4255 	if (!req->oldptr)
4256 		/* Make an estimate */
4257 		return (SYSCTL_OUT(req, 0, len));
4258 
4259 	error = sysctl_wire_old_buffer(req, 0);
4260 	if (error != 0)
4261 		return (error);
4262 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4263 	n = 0;
4264 	mtx_lock(&mountlist_mtx);
4265 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4266 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4267 			continue;
4268 		MNT_ILOCK(mp);
4269 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4270 			if (n == len)
4271 				break;
4272 			vref(vp);
4273 			xvn[n].xv_size = sizeof *xvn;
4274 			xvn[n].xv_vnode = vp;
4275 			xvn[n].xv_id = 0;	/* XXX compat */
4276 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4277 			XV_COPY(usecount);
4278 			XV_COPY(writecount);
4279 			XV_COPY(holdcnt);
4280 			XV_COPY(mount);
4281 			XV_COPY(numoutput);
4282 			XV_COPY(type);
4283 #undef XV_COPY
4284 			xvn[n].xv_flag = vp->v_vflag;
4285 
4286 			switch (vp->v_type) {
4287 			case VREG:
4288 			case VDIR:
4289 			case VLNK:
4290 				break;
4291 			case VBLK:
4292 			case VCHR:
4293 				if (vp->v_rdev == NULL) {
4294 					vrele(vp);
4295 					continue;
4296 				}
4297 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4298 				break;
4299 			case VSOCK:
4300 				xvn[n].xv_socket = vp->v_socket;
4301 				break;
4302 			case VFIFO:
4303 				xvn[n].xv_fifo = vp->v_fifoinfo;
4304 				break;
4305 			case VNON:
4306 			case VBAD:
4307 			default:
4308 				/* shouldn't happen? */
4309 				vrele(vp);
4310 				continue;
4311 			}
4312 			vrele(vp);
4313 			++n;
4314 		}
4315 		MNT_IUNLOCK(mp);
4316 		mtx_lock(&mountlist_mtx);
4317 		vfs_unbusy(mp);
4318 		if (n == len)
4319 			break;
4320 	}
4321 	mtx_unlock(&mountlist_mtx);
4322 
4323 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4324 	free(xvn, M_TEMP);
4325 	return (error);
4326 }
4327 
4328 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4329     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4330     "");
4331 #endif
4332 
4333 static void
4334 unmount_or_warn(struct mount *mp)
4335 {
4336 	int error;
4337 
4338 	error = dounmount(mp, MNT_FORCE, curthread);
4339 	if (error != 0) {
4340 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4341 		if (error == EBUSY)
4342 			printf("BUSY)\n");
4343 		else
4344 			printf("%d)\n", error);
4345 	}
4346 }
4347 
4348 /*
4349  * Unmount all filesystems. The list is traversed in reverse order
4350  * of mounting to avoid dependencies.
4351  */
4352 void
4353 vfs_unmountall(void)
4354 {
4355 	struct mount *mp, *tmp;
4356 
4357 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4358 
4359 	/*
4360 	 * Since this only runs when rebooting, it is not interlocked.
4361 	 */
4362 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4363 		vfs_ref(mp);
4364 
4365 		/*
4366 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4367 		 * unmount of the latter.
4368 		 */
4369 		if (mp == rootdevmp)
4370 			continue;
4371 
4372 		unmount_or_warn(mp);
4373 	}
4374 
4375 	if (rootdevmp != NULL)
4376 		unmount_or_warn(rootdevmp);
4377 }
4378 
4379 /*
4380  * perform msync on all vnodes under a mount point
4381  * the mount point must be locked.
4382  */
4383 void
4384 vfs_msync(struct mount *mp, int flags)
4385 {
4386 	struct vnode *vp, *mvp;
4387 	struct vm_object *obj;
4388 
4389 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4390 
4391 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4392 		return;
4393 
4394 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
4395 		obj = vp->v_object;
4396 		if (obj != NULL && vm_object_mightbedirty(obj) &&
4397 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
4398 			if (!vget(vp,
4399 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
4400 			    curthread)) {
4401 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
4402 					vput(vp);
4403 					continue;
4404 				}
4405 
4406 				obj = vp->v_object;
4407 				if (obj != NULL) {
4408 					VM_OBJECT_WLOCK(obj);
4409 					vm_object_page_clean(obj, 0, 0,
4410 					    flags == MNT_WAIT ?
4411 					    OBJPC_SYNC : OBJPC_NOSYNC);
4412 					VM_OBJECT_WUNLOCK(obj);
4413 				}
4414 				vput(vp);
4415 			}
4416 		} else
4417 			VI_UNLOCK(vp);
4418 	}
4419 }
4420 
4421 static void
4422 destroy_vpollinfo_free(struct vpollinfo *vi)
4423 {
4424 
4425 	knlist_destroy(&vi->vpi_selinfo.si_note);
4426 	mtx_destroy(&vi->vpi_lock);
4427 	uma_zfree(vnodepoll_zone, vi);
4428 }
4429 
4430 static void
4431 destroy_vpollinfo(struct vpollinfo *vi)
4432 {
4433 
4434 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4435 	seldrain(&vi->vpi_selinfo);
4436 	destroy_vpollinfo_free(vi);
4437 }
4438 
4439 /*
4440  * Initialize per-vnode helper structure to hold poll-related state.
4441  */
4442 void
4443 v_addpollinfo(struct vnode *vp)
4444 {
4445 	struct vpollinfo *vi;
4446 
4447 	if (vp->v_pollinfo != NULL)
4448 		return;
4449 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
4450 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4451 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4452 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
4453 	VI_LOCK(vp);
4454 	if (vp->v_pollinfo != NULL) {
4455 		VI_UNLOCK(vp);
4456 		destroy_vpollinfo_free(vi);
4457 		return;
4458 	}
4459 	vp->v_pollinfo = vi;
4460 	VI_UNLOCK(vp);
4461 }
4462 
4463 /*
4464  * Record a process's interest in events which might happen to
4465  * a vnode.  Because poll uses the historic select-style interface
4466  * internally, this routine serves as both the ``check for any
4467  * pending events'' and the ``record my interest in future events''
4468  * functions.  (These are done together, while the lock is held,
4469  * to avoid race conditions.)
4470  */
4471 int
4472 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4473 {
4474 
4475 	v_addpollinfo(vp);
4476 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4477 	if (vp->v_pollinfo->vpi_revents & events) {
4478 		/*
4479 		 * This leaves events we are not interested
4480 		 * in available for the other process which
4481 		 * which presumably had requested them
4482 		 * (otherwise they would never have been
4483 		 * recorded).
4484 		 */
4485 		events &= vp->v_pollinfo->vpi_revents;
4486 		vp->v_pollinfo->vpi_revents &= ~events;
4487 
4488 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4489 		return (events);
4490 	}
4491 	vp->v_pollinfo->vpi_events |= events;
4492 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4493 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4494 	return (0);
4495 }
4496 
4497 /*
4498  * Routine to create and manage a filesystem syncer vnode.
4499  */
4500 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4501 static int	sync_fsync(struct  vop_fsync_args *);
4502 static int	sync_inactive(struct  vop_inactive_args *);
4503 static int	sync_reclaim(struct  vop_reclaim_args *);
4504 
4505 static struct vop_vector sync_vnodeops = {
4506 	.vop_bypass =	VOP_EOPNOTSUPP,
4507 	.vop_close =	sync_close,		/* close */
4508 	.vop_fsync =	sync_fsync,		/* fsync */
4509 	.vop_inactive =	sync_inactive,	/* inactive */
4510 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4511 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4512 	.vop_lock1 =	vop_stdlock,	/* lock */
4513 	.vop_unlock =	vop_stdunlock,	/* unlock */
4514 	.vop_islocked =	vop_stdislocked,	/* islocked */
4515 };
4516 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4517 
4518 /*
4519  * Create a new filesystem syncer vnode for the specified mount point.
4520  */
4521 void
4522 vfs_allocate_syncvnode(struct mount *mp)
4523 {
4524 	struct vnode *vp;
4525 	struct bufobj *bo;
4526 	static long start, incr, next;
4527 	int error;
4528 
4529 	/* Allocate a new vnode */
4530 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4531 	if (error != 0)
4532 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4533 	vp->v_type = VNON;
4534 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4535 	vp->v_vflag |= VV_FORCEINSMQ;
4536 	error = insmntque(vp, mp);
4537 	if (error != 0)
4538 		panic("vfs_allocate_syncvnode: insmntque() failed");
4539 	vp->v_vflag &= ~VV_FORCEINSMQ;
4540 	VOP_UNLOCK(vp);
4541 	/*
4542 	 * Place the vnode onto the syncer worklist. We attempt to
4543 	 * scatter them about on the list so that they will go off
4544 	 * at evenly distributed times even if all the filesystems
4545 	 * are mounted at once.
4546 	 */
4547 	next += incr;
4548 	if (next == 0 || next > syncer_maxdelay) {
4549 		start /= 2;
4550 		incr /= 2;
4551 		if (start == 0) {
4552 			start = syncer_maxdelay / 2;
4553 			incr = syncer_maxdelay;
4554 		}
4555 		next = start;
4556 	}
4557 	bo = &vp->v_bufobj;
4558 	BO_LOCK(bo);
4559 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4560 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4561 	mtx_lock(&sync_mtx);
4562 	sync_vnode_count++;
4563 	if (mp->mnt_syncer == NULL) {
4564 		mp->mnt_syncer = vp;
4565 		vp = NULL;
4566 	}
4567 	mtx_unlock(&sync_mtx);
4568 	BO_UNLOCK(bo);
4569 	if (vp != NULL) {
4570 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4571 		vgone(vp);
4572 		vput(vp);
4573 	}
4574 }
4575 
4576 void
4577 vfs_deallocate_syncvnode(struct mount *mp)
4578 {
4579 	struct vnode *vp;
4580 
4581 	mtx_lock(&sync_mtx);
4582 	vp = mp->mnt_syncer;
4583 	if (vp != NULL)
4584 		mp->mnt_syncer = NULL;
4585 	mtx_unlock(&sync_mtx);
4586 	if (vp != NULL)
4587 		vrele(vp);
4588 }
4589 
4590 /*
4591  * Do a lazy sync of the filesystem.
4592  */
4593 static int
4594 sync_fsync(struct vop_fsync_args *ap)
4595 {
4596 	struct vnode *syncvp = ap->a_vp;
4597 	struct mount *mp = syncvp->v_mount;
4598 	int error, save;
4599 	struct bufobj *bo;
4600 
4601 	/*
4602 	 * We only need to do something if this is a lazy evaluation.
4603 	 */
4604 	if (ap->a_waitfor != MNT_LAZY)
4605 		return (0);
4606 
4607 	/*
4608 	 * Move ourselves to the back of the sync list.
4609 	 */
4610 	bo = &syncvp->v_bufobj;
4611 	BO_LOCK(bo);
4612 	vn_syncer_add_to_worklist(bo, syncdelay);
4613 	BO_UNLOCK(bo);
4614 
4615 	/*
4616 	 * Walk the list of vnodes pushing all that are dirty and
4617 	 * not already on the sync list.
4618 	 */
4619 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4620 		return (0);
4621 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4622 		vfs_unbusy(mp);
4623 		return (0);
4624 	}
4625 	save = curthread_pflags_set(TDP_SYNCIO);
4626 	/*
4627 	 * The filesystem at hand may be idle with free vnodes stored in the
4628 	 * batch.  Return them instead of letting them stay there indefinitely.
4629 	 */
4630 	vnlru_return_batch(mp);
4631 	vfs_msync(mp, MNT_NOWAIT);
4632 	error = VFS_SYNC(mp, MNT_LAZY);
4633 	curthread_pflags_restore(save);
4634 	vn_finished_write(mp);
4635 	vfs_unbusy(mp);
4636 	return (error);
4637 }
4638 
4639 /*
4640  * The syncer vnode is no referenced.
4641  */
4642 static int
4643 sync_inactive(struct vop_inactive_args *ap)
4644 {
4645 
4646 	vgone(ap->a_vp);
4647 	return (0);
4648 }
4649 
4650 /*
4651  * The syncer vnode is no longer needed and is being decommissioned.
4652  *
4653  * Modifications to the worklist must be protected by sync_mtx.
4654  */
4655 static int
4656 sync_reclaim(struct vop_reclaim_args *ap)
4657 {
4658 	struct vnode *vp = ap->a_vp;
4659 	struct bufobj *bo;
4660 
4661 	bo = &vp->v_bufobj;
4662 	BO_LOCK(bo);
4663 	mtx_lock(&sync_mtx);
4664 	if (vp->v_mount->mnt_syncer == vp)
4665 		vp->v_mount->mnt_syncer = NULL;
4666 	if (bo->bo_flag & BO_ONWORKLST) {
4667 		LIST_REMOVE(bo, bo_synclist);
4668 		syncer_worklist_len--;
4669 		sync_vnode_count--;
4670 		bo->bo_flag &= ~BO_ONWORKLST;
4671 	}
4672 	mtx_unlock(&sync_mtx);
4673 	BO_UNLOCK(bo);
4674 
4675 	return (0);
4676 }
4677 
4678 int
4679 vn_need_pageq_flush(struct vnode *vp)
4680 {
4681 	struct vm_object *obj;
4682 	int need;
4683 
4684 	MPASS(mtx_owned(VI_MTX(vp)));
4685 	need = 0;
4686 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
4687 	    vm_object_mightbedirty(obj))
4688 		need = 1;
4689 	return (need);
4690 }
4691 
4692 /*
4693  * Check if vnode represents a disk device
4694  */
4695 int
4696 vn_isdisk(struct vnode *vp, int *errp)
4697 {
4698 	int error;
4699 
4700 	if (vp->v_type != VCHR) {
4701 		error = ENOTBLK;
4702 		goto out;
4703 	}
4704 	error = 0;
4705 	dev_lock();
4706 	if (vp->v_rdev == NULL)
4707 		error = ENXIO;
4708 	else if (vp->v_rdev->si_devsw == NULL)
4709 		error = ENXIO;
4710 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
4711 		error = ENOTBLK;
4712 	dev_unlock();
4713 out:
4714 	if (errp != NULL)
4715 		*errp = error;
4716 	return (error == 0);
4717 }
4718 
4719 /*
4720  * Common filesystem object access control check routine.  Accepts a
4721  * vnode's type, "mode", uid and gid, requested access mode, credentials,
4722  * and optional call-by-reference privused argument allowing vaccess()
4723  * to indicate to the caller whether privilege was used to satisfy the
4724  * request (obsoleted).  Returns 0 on success, or an errno on failure.
4725  */
4726 int
4727 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
4728     accmode_t accmode, struct ucred *cred, int *privused)
4729 {
4730 	accmode_t dac_granted;
4731 	accmode_t priv_granted;
4732 
4733 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
4734 	    ("invalid bit in accmode"));
4735 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
4736 	    ("VAPPEND without VWRITE"));
4737 
4738 	/*
4739 	 * Look for a normal, non-privileged way to access the file/directory
4740 	 * as requested.  If it exists, go with that.
4741 	 */
4742 
4743 	if (privused != NULL)
4744 		*privused = 0;
4745 
4746 	dac_granted = 0;
4747 
4748 	/* Check the owner. */
4749 	if (cred->cr_uid == file_uid) {
4750 		dac_granted |= VADMIN;
4751 		if (file_mode & S_IXUSR)
4752 			dac_granted |= VEXEC;
4753 		if (file_mode & S_IRUSR)
4754 			dac_granted |= VREAD;
4755 		if (file_mode & S_IWUSR)
4756 			dac_granted |= (VWRITE | VAPPEND);
4757 
4758 		if ((accmode & dac_granted) == accmode)
4759 			return (0);
4760 
4761 		goto privcheck;
4762 	}
4763 
4764 	/* Otherwise, check the groups (first match) */
4765 	if (groupmember(file_gid, cred)) {
4766 		if (file_mode & S_IXGRP)
4767 			dac_granted |= VEXEC;
4768 		if (file_mode & S_IRGRP)
4769 			dac_granted |= VREAD;
4770 		if (file_mode & S_IWGRP)
4771 			dac_granted |= (VWRITE | VAPPEND);
4772 
4773 		if ((accmode & dac_granted) == accmode)
4774 			return (0);
4775 
4776 		goto privcheck;
4777 	}
4778 
4779 	/* Otherwise, check everyone else. */
4780 	if (file_mode & S_IXOTH)
4781 		dac_granted |= VEXEC;
4782 	if (file_mode & S_IROTH)
4783 		dac_granted |= VREAD;
4784 	if (file_mode & S_IWOTH)
4785 		dac_granted |= (VWRITE | VAPPEND);
4786 	if ((accmode & dac_granted) == accmode)
4787 		return (0);
4788 
4789 privcheck:
4790 	/*
4791 	 * Build a privilege mask to determine if the set of privileges
4792 	 * satisfies the requirements when combined with the granted mask
4793 	 * from above.  For each privilege, if the privilege is required,
4794 	 * bitwise or the request type onto the priv_granted mask.
4795 	 */
4796 	priv_granted = 0;
4797 
4798 	if (type == VDIR) {
4799 		/*
4800 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4801 		 * requests, instead of PRIV_VFS_EXEC.
4802 		 */
4803 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4804 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
4805 			priv_granted |= VEXEC;
4806 	} else {
4807 		/*
4808 		 * Ensure that at least one execute bit is on. Otherwise,
4809 		 * a privileged user will always succeed, and we don't want
4810 		 * this to happen unless the file really is executable.
4811 		 */
4812 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4813 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4814 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
4815 			priv_granted |= VEXEC;
4816 	}
4817 
4818 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4819 	    !priv_check_cred(cred, PRIV_VFS_READ))
4820 		priv_granted |= VREAD;
4821 
4822 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4823 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
4824 		priv_granted |= (VWRITE | VAPPEND);
4825 
4826 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4827 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
4828 		priv_granted |= VADMIN;
4829 
4830 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4831 		/* XXX audit: privilege used */
4832 		if (privused != NULL)
4833 			*privused = 1;
4834 		return (0);
4835 	}
4836 
4837 	return ((accmode & VADMIN) ? EPERM : EACCES);
4838 }
4839 
4840 /*
4841  * Credential check based on process requesting service, and per-attribute
4842  * permissions.
4843  */
4844 int
4845 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4846     struct thread *td, accmode_t accmode)
4847 {
4848 
4849 	/*
4850 	 * Kernel-invoked always succeeds.
4851 	 */
4852 	if (cred == NOCRED)
4853 		return (0);
4854 
4855 	/*
4856 	 * Do not allow privileged processes in jail to directly manipulate
4857 	 * system attributes.
4858 	 */
4859 	switch (attrnamespace) {
4860 	case EXTATTR_NAMESPACE_SYSTEM:
4861 		/* Potentially should be: return (EPERM); */
4862 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
4863 	case EXTATTR_NAMESPACE_USER:
4864 		return (VOP_ACCESS(vp, accmode, cred, td));
4865 	default:
4866 		return (EPERM);
4867 	}
4868 }
4869 
4870 #ifdef DEBUG_VFS_LOCKS
4871 /*
4872  * This only exists to suppress warnings from unlocked specfs accesses.  It is
4873  * no longer ok to have an unlocked VFS.
4874  */
4875 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
4876 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
4877 
4878 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
4879 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
4880     "Drop into debugger on lock violation");
4881 
4882 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
4883 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
4884     0, "Check for interlock across VOPs");
4885 
4886 int vfs_badlock_print = 1;	/* Print lock violations. */
4887 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
4888     0, "Print lock violations");
4889 
4890 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
4891 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
4892     0, "Print vnode details on lock violations");
4893 
4894 #ifdef KDB
4895 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
4896 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
4897     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
4898 #endif
4899 
4900 static void
4901 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
4902 {
4903 
4904 #ifdef KDB
4905 	if (vfs_badlock_backtrace)
4906 		kdb_backtrace();
4907 #endif
4908 	if (vfs_badlock_vnode)
4909 		vn_printf(vp, "vnode ");
4910 	if (vfs_badlock_print)
4911 		printf("%s: %p %s\n", str, (void *)vp, msg);
4912 	if (vfs_badlock_ddb)
4913 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4914 }
4915 
4916 void
4917 assert_vi_locked(struct vnode *vp, const char *str)
4918 {
4919 
4920 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
4921 		vfs_badlock("interlock is not locked but should be", str, vp);
4922 }
4923 
4924 void
4925 assert_vi_unlocked(struct vnode *vp, const char *str)
4926 {
4927 
4928 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
4929 		vfs_badlock("interlock is locked but should not be", str, vp);
4930 }
4931 
4932 void
4933 assert_vop_locked(struct vnode *vp, const char *str)
4934 {
4935 	int locked;
4936 
4937 	if (!IGNORE_LOCK(vp)) {
4938 		locked = VOP_ISLOCKED(vp);
4939 		if (locked == 0 || locked == LK_EXCLOTHER)
4940 			vfs_badlock("is not locked but should be", str, vp);
4941 	}
4942 }
4943 
4944 void
4945 assert_vop_unlocked(struct vnode *vp, const char *str)
4946 {
4947 
4948 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4949 		vfs_badlock("is locked but should not be", str, vp);
4950 }
4951 
4952 void
4953 assert_vop_elocked(struct vnode *vp, const char *str)
4954 {
4955 
4956 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4957 		vfs_badlock("is not exclusive locked but should be", str, vp);
4958 }
4959 #endif /* DEBUG_VFS_LOCKS */
4960 
4961 void
4962 vop_rename_fail(struct vop_rename_args *ap)
4963 {
4964 
4965 	if (ap->a_tvp != NULL)
4966 		vput(ap->a_tvp);
4967 	if (ap->a_tdvp == ap->a_tvp)
4968 		vrele(ap->a_tdvp);
4969 	else
4970 		vput(ap->a_tdvp);
4971 	vrele(ap->a_fdvp);
4972 	vrele(ap->a_fvp);
4973 }
4974 
4975 void
4976 vop_rename_pre(void *ap)
4977 {
4978 	struct vop_rename_args *a = ap;
4979 
4980 #ifdef DEBUG_VFS_LOCKS
4981 	if (a->a_tvp)
4982 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4983 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4984 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4985 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4986 
4987 	/* Check the source (from). */
4988 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4989 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4990 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4991 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4992 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4993 
4994 	/* Check the target. */
4995 	if (a->a_tvp)
4996 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4997 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4998 #endif
4999 	if (a->a_tdvp != a->a_fdvp)
5000 		vhold(a->a_fdvp);
5001 	if (a->a_tvp != a->a_fvp)
5002 		vhold(a->a_fvp);
5003 	vhold(a->a_tdvp);
5004 	if (a->a_tvp)
5005 		vhold(a->a_tvp);
5006 }
5007 
5008 #ifdef DEBUG_VFS_LOCKS
5009 void
5010 vop_strategy_pre(void *ap)
5011 {
5012 	struct vop_strategy_args *a;
5013 	struct buf *bp;
5014 
5015 	a = ap;
5016 	bp = a->a_bp;
5017 
5018 	/*
5019 	 * Cluster ops lock their component buffers but not the IO container.
5020 	 */
5021 	if ((bp->b_flags & B_CLUSTER) != 0)
5022 		return;
5023 
5024 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
5025 		if (vfs_badlock_print)
5026 			printf(
5027 			    "VOP_STRATEGY: bp is not locked but should be\n");
5028 		if (vfs_badlock_ddb)
5029 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5030 	}
5031 }
5032 
5033 void
5034 vop_lock_pre(void *ap)
5035 {
5036 	struct vop_lock1_args *a = ap;
5037 
5038 	if ((a->a_flags & LK_INTERLOCK) == 0)
5039 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5040 	else
5041 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5042 }
5043 
5044 void
5045 vop_lock_post(void *ap, int rc)
5046 {
5047 	struct vop_lock1_args *a = ap;
5048 
5049 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5050 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5051 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5052 }
5053 
5054 void
5055 vop_unlock_pre(void *ap)
5056 {
5057 	struct vop_unlock_args *a = ap;
5058 
5059 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5060 }
5061 
5062 void
5063 vop_unlock_post(void *ap, int rc)
5064 {
5065 	return;
5066 }
5067 
5068 void
5069 vop_need_inactive_pre(void *ap)
5070 {
5071 	struct vop_need_inactive_args *a = ap;
5072 
5073 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5074 }
5075 
5076 void
5077 vop_need_inactive_post(void *ap, int rc)
5078 {
5079 	struct vop_need_inactive_args *a = ap;
5080 
5081 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5082 }
5083 #endif
5084 
5085 void
5086 vop_create_post(void *ap, int rc)
5087 {
5088 	struct vop_create_args *a = ap;
5089 
5090 	if (!rc)
5091 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5092 }
5093 
5094 void
5095 vop_deleteextattr_post(void *ap, int rc)
5096 {
5097 	struct vop_deleteextattr_args *a = ap;
5098 
5099 	if (!rc)
5100 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5101 }
5102 
5103 void
5104 vop_link_post(void *ap, int rc)
5105 {
5106 	struct vop_link_args *a = ap;
5107 
5108 	if (!rc) {
5109 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
5110 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
5111 	}
5112 }
5113 
5114 void
5115 vop_mkdir_post(void *ap, int rc)
5116 {
5117 	struct vop_mkdir_args *a = ap;
5118 
5119 	if (!rc)
5120 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5121 }
5122 
5123 void
5124 vop_mknod_post(void *ap, int rc)
5125 {
5126 	struct vop_mknod_args *a = ap;
5127 
5128 	if (!rc)
5129 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5130 }
5131 
5132 void
5133 vop_reclaim_post(void *ap, int rc)
5134 {
5135 	struct vop_reclaim_args *a = ap;
5136 
5137 	if (!rc)
5138 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
5139 }
5140 
5141 void
5142 vop_remove_post(void *ap, int rc)
5143 {
5144 	struct vop_remove_args *a = ap;
5145 
5146 	if (!rc) {
5147 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5148 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5149 	}
5150 }
5151 
5152 void
5153 vop_rename_post(void *ap, int rc)
5154 {
5155 	struct vop_rename_args *a = ap;
5156 	long hint;
5157 
5158 	if (!rc) {
5159 		hint = NOTE_WRITE;
5160 		if (a->a_fdvp == a->a_tdvp) {
5161 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5162 				hint |= NOTE_LINK;
5163 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5164 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5165 		} else {
5166 			hint |= NOTE_EXTEND;
5167 			if (a->a_fvp->v_type == VDIR)
5168 				hint |= NOTE_LINK;
5169 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5170 
5171 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5172 			    a->a_tvp->v_type == VDIR)
5173 				hint &= ~NOTE_LINK;
5174 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5175 		}
5176 
5177 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5178 		if (a->a_tvp)
5179 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5180 	}
5181 	if (a->a_tdvp != a->a_fdvp)
5182 		vdrop(a->a_fdvp);
5183 	if (a->a_tvp != a->a_fvp)
5184 		vdrop(a->a_fvp);
5185 	vdrop(a->a_tdvp);
5186 	if (a->a_tvp)
5187 		vdrop(a->a_tvp);
5188 }
5189 
5190 void
5191 vop_rmdir_post(void *ap, int rc)
5192 {
5193 	struct vop_rmdir_args *a = ap;
5194 
5195 	if (!rc) {
5196 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5197 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5198 	}
5199 }
5200 
5201 void
5202 vop_setattr_post(void *ap, int rc)
5203 {
5204 	struct vop_setattr_args *a = ap;
5205 
5206 	if (!rc)
5207 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5208 }
5209 
5210 void
5211 vop_setextattr_post(void *ap, int rc)
5212 {
5213 	struct vop_setextattr_args *a = ap;
5214 
5215 	if (!rc)
5216 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5217 }
5218 
5219 void
5220 vop_symlink_post(void *ap, int rc)
5221 {
5222 	struct vop_symlink_args *a = ap;
5223 
5224 	if (!rc)
5225 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5226 }
5227 
5228 void
5229 vop_open_post(void *ap, int rc)
5230 {
5231 	struct vop_open_args *a = ap;
5232 
5233 	if (!rc)
5234 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
5235 }
5236 
5237 void
5238 vop_close_post(void *ap, int rc)
5239 {
5240 	struct vop_close_args *a = ap;
5241 
5242 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
5243 	    !VN_IS_DOOMED(a->a_vp))) {
5244 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
5245 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
5246 	}
5247 }
5248 
5249 void
5250 vop_read_post(void *ap, int rc)
5251 {
5252 	struct vop_read_args *a = ap;
5253 
5254 	if (!rc)
5255 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5256 }
5257 
5258 void
5259 vop_readdir_post(void *ap, int rc)
5260 {
5261 	struct vop_readdir_args *a = ap;
5262 
5263 	if (!rc)
5264 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5265 }
5266 
5267 static struct knlist fs_knlist;
5268 
5269 static void
5270 vfs_event_init(void *arg)
5271 {
5272 	knlist_init_mtx(&fs_knlist, NULL);
5273 }
5274 /* XXX - correct order? */
5275 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
5276 
5277 void
5278 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
5279 {
5280 
5281 	KNOTE_UNLOCKED(&fs_knlist, event);
5282 }
5283 
5284 static int	filt_fsattach(struct knote *kn);
5285 static void	filt_fsdetach(struct knote *kn);
5286 static int	filt_fsevent(struct knote *kn, long hint);
5287 
5288 struct filterops fs_filtops = {
5289 	.f_isfd = 0,
5290 	.f_attach = filt_fsattach,
5291 	.f_detach = filt_fsdetach,
5292 	.f_event = filt_fsevent
5293 };
5294 
5295 static int
5296 filt_fsattach(struct knote *kn)
5297 {
5298 
5299 	kn->kn_flags |= EV_CLEAR;
5300 	knlist_add(&fs_knlist, kn, 0);
5301 	return (0);
5302 }
5303 
5304 static void
5305 filt_fsdetach(struct knote *kn)
5306 {
5307 
5308 	knlist_remove(&fs_knlist, kn, 0);
5309 }
5310 
5311 static int
5312 filt_fsevent(struct knote *kn, long hint)
5313 {
5314 
5315 	kn->kn_fflags |= hint;
5316 	return (kn->kn_fflags != 0);
5317 }
5318 
5319 static int
5320 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
5321 {
5322 	struct vfsidctl vc;
5323 	int error;
5324 	struct mount *mp;
5325 
5326 	error = SYSCTL_IN(req, &vc, sizeof(vc));
5327 	if (error)
5328 		return (error);
5329 	if (vc.vc_vers != VFS_CTL_VERS1)
5330 		return (EINVAL);
5331 	mp = vfs_getvfs(&vc.vc_fsid);
5332 	if (mp == NULL)
5333 		return (ENOENT);
5334 	/* ensure that a specific sysctl goes to the right filesystem. */
5335 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
5336 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
5337 		vfs_rel(mp);
5338 		return (EINVAL);
5339 	}
5340 	VCTLTOREQ(&vc, req);
5341 	error = VFS_SYSCTL(mp, vc.vc_op, req);
5342 	vfs_rel(mp);
5343 	return (error);
5344 }
5345 
5346 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
5347     NULL, 0, sysctl_vfs_ctl, "",
5348     "Sysctl by fsid");
5349 
5350 /*
5351  * Function to initialize a va_filerev field sensibly.
5352  * XXX: Wouldn't a random number make a lot more sense ??
5353  */
5354 u_quad_t
5355 init_va_filerev(void)
5356 {
5357 	struct bintime bt;
5358 
5359 	getbinuptime(&bt);
5360 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
5361 }
5362 
5363 static int	filt_vfsread(struct knote *kn, long hint);
5364 static int	filt_vfswrite(struct knote *kn, long hint);
5365 static int	filt_vfsvnode(struct knote *kn, long hint);
5366 static void	filt_vfsdetach(struct knote *kn);
5367 static struct filterops vfsread_filtops = {
5368 	.f_isfd = 1,
5369 	.f_detach = filt_vfsdetach,
5370 	.f_event = filt_vfsread
5371 };
5372 static struct filterops vfswrite_filtops = {
5373 	.f_isfd = 1,
5374 	.f_detach = filt_vfsdetach,
5375 	.f_event = filt_vfswrite
5376 };
5377 static struct filterops vfsvnode_filtops = {
5378 	.f_isfd = 1,
5379 	.f_detach = filt_vfsdetach,
5380 	.f_event = filt_vfsvnode
5381 };
5382 
5383 static void
5384 vfs_knllock(void *arg)
5385 {
5386 	struct vnode *vp = arg;
5387 
5388 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5389 }
5390 
5391 static void
5392 vfs_knlunlock(void *arg)
5393 {
5394 	struct vnode *vp = arg;
5395 
5396 	VOP_UNLOCK(vp);
5397 }
5398 
5399 static void
5400 vfs_knl_assert_locked(void *arg)
5401 {
5402 #ifdef DEBUG_VFS_LOCKS
5403 	struct vnode *vp = arg;
5404 
5405 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
5406 #endif
5407 }
5408 
5409 static void
5410 vfs_knl_assert_unlocked(void *arg)
5411 {
5412 #ifdef DEBUG_VFS_LOCKS
5413 	struct vnode *vp = arg;
5414 
5415 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
5416 #endif
5417 }
5418 
5419 int
5420 vfs_kqfilter(struct vop_kqfilter_args *ap)
5421 {
5422 	struct vnode *vp = ap->a_vp;
5423 	struct knote *kn = ap->a_kn;
5424 	struct knlist *knl;
5425 
5426 	switch (kn->kn_filter) {
5427 	case EVFILT_READ:
5428 		kn->kn_fop = &vfsread_filtops;
5429 		break;
5430 	case EVFILT_WRITE:
5431 		kn->kn_fop = &vfswrite_filtops;
5432 		break;
5433 	case EVFILT_VNODE:
5434 		kn->kn_fop = &vfsvnode_filtops;
5435 		break;
5436 	default:
5437 		return (EINVAL);
5438 	}
5439 
5440 	kn->kn_hook = (caddr_t)vp;
5441 
5442 	v_addpollinfo(vp);
5443 	if (vp->v_pollinfo == NULL)
5444 		return (ENOMEM);
5445 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
5446 	vhold(vp);
5447 	knlist_add(knl, kn, 0);
5448 
5449 	return (0);
5450 }
5451 
5452 /*
5453  * Detach knote from vnode
5454  */
5455 static void
5456 filt_vfsdetach(struct knote *kn)
5457 {
5458 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5459 
5460 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
5461 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
5462 	vdrop(vp);
5463 }
5464 
5465 /*ARGSUSED*/
5466 static int
5467 filt_vfsread(struct knote *kn, long hint)
5468 {
5469 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5470 	struct vattr va;
5471 	int res;
5472 
5473 	/*
5474 	 * filesystem is gone, so set the EOF flag and schedule
5475 	 * the knote for deletion.
5476 	 */
5477 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5478 		VI_LOCK(vp);
5479 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5480 		VI_UNLOCK(vp);
5481 		return (1);
5482 	}
5483 
5484 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
5485 		return (0);
5486 
5487 	VI_LOCK(vp);
5488 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
5489 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
5490 	VI_UNLOCK(vp);
5491 	return (res);
5492 }
5493 
5494 /*ARGSUSED*/
5495 static int
5496 filt_vfswrite(struct knote *kn, long hint)
5497 {
5498 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5499 
5500 	VI_LOCK(vp);
5501 
5502 	/*
5503 	 * filesystem is gone, so set the EOF flag and schedule
5504 	 * the knote for deletion.
5505 	 */
5506 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
5507 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5508 
5509 	kn->kn_data = 0;
5510 	VI_UNLOCK(vp);
5511 	return (1);
5512 }
5513 
5514 static int
5515 filt_vfsvnode(struct knote *kn, long hint)
5516 {
5517 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5518 	int res;
5519 
5520 	VI_LOCK(vp);
5521 	if (kn->kn_sfflags & hint)
5522 		kn->kn_fflags |= hint;
5523 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5524 		kn->kn_flags |= EV_EOF;
5525 		VI_UNLOCK(vp);
5526 		return (1);
5527 	}
5528 	res = (kn->kn_fflags != 0);
5529 	VI_UNLOCK(vp);
5530 	return (res);
5531 }
5532 
5533 /*
5534  * Returns whether the directory is empty or not.
5535  * If it is empty, the return value is 0; otherwise
5536  * the return value is an error value (which may
5537  * be ENOTEMPTY).
5538  */
5539 int
5540 vfs_emptydir(struct vnode *vp)
5541 {
5542 	struct uio uio;
5543 	struct iovec iov;
5544 	struct dirent *dirent, *dp, *endp;
5545 	int error, eof;
5546 
5547 	error = 0;
5548 	eof = 0;
5549 
5550 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
5551 
5552 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
5553 	iov.iov_base = dirent;
5554 	iov.iov_len = sizeof(struct dirent);
5555 
5556 	uio.uio_iov = &iov;
5557 	uio.uio_iovcnt = 1;
5558 	uio.uio_offset = 0;
5559 	uio.uio_resid = sizeof(struct dirent);
5560 	uio.uio_segflg = UIO_SYSSPACE;
5561 	uio.uio_rw = UIO_READ;
5562 	uio.uio_td = curthread;
5563 
5564 	while (eof == 0 && error == 0) {
5565 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
5566 		    NULL, NULL);
5567 		if (error != 0)
5568 			break;
5569 		endp = (void *)((uint8_t *)dirent +
5570 		    sizeof(struct dirent) - uio.uio_resid);
5571 		for (dp = dirent; dp < endp;
5572 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
5573 			if (dp->d_type == DT_WHT)
5574 				continue;
5575 			if (dp->d_namlen == 0)
5576 				continue;
5577 			if (dp->d_type != DT_DIR &&
5578 			    dp->d_type != DT_UNKNOWN) {
5579 				error = ENOTEMPTY;
5580 				break;
5581 			}
5582 			if (dp->d_namlen > 2) {
5583 				error = ENOTEMPTY;
5584 				break;
5585 			}
5586 			if (dp->d_namlen == 1 &&
5587 			    dp->d_name[0] != '.') {
5588 				error = ENOTEMPTY;
5589 				break;
5590 			}
5591 			if (dp->d_namlen == 2 &&
5592 			    dp->d_name[1] != '.') {
5593 				error = ENOTEMPTY;
5594 				break;
5595 			}
5596 			uio.uio_resid = sizeof(struct dirent);
5597 		}
5598 	}
5599 	free(dirent, M_TEMP);
5600 	return (error);
5601 }
5602 
5603 int
5604 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
5605 {
5606 	int error;
5607 
5608 	if (dp->d_reclen > ap->a_uio->uio_resid)
5609 		return (ENAMETOOLONG);
5610 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
5611 	if (error) {
5612 		if (ap->a_ncookies != NULL) {
5613 			if (ap->a_cookies != NULL)
5614 				free(ap->a_cookies, M_TEMP);
5615 			ap->a_cookies = NULL;
5616 			*ap->a_ncookies = 0;
5617 		}
5618 		return (error);
5619 	}
5620 	if (ap->a_ncookies == NULL)
5621 		return (0);
5622 
5623 	KASSERT(ap->a_cookies,
5624 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
5625 
5626 	*ap->a_cookies = realloc(*ap->a_cookies,
5627 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
5628 	(*ap->a_cookies)[*ap->a_ncookies] = off;
5629 	*ap->a_ncookies += 1;
5630 	return (0);
5631 }
5632 
5633 /*
5634  * Mark for update the access time of the file if the filesystem
5635  * supports VOP_MARKATIME.  This functionality is used by execve and
5636  * mmap, so we want to avoid the I/O implied by directly setting
5637  * va_atime for the sake of efficiency.
5638  */
5639 void
5640 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
5641 {
5642 	struct mount *mp;
5643 
5644 	mp = vp->v_mount;
5645 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
5646 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
5647 		(void)VOP_MARKATIME(vp);
5648 }
5649 
5650 /*
5651  * The purpose of this routine is to remove granularity from accmode_t,
5652  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
5653  * VADMIN and VAPPEND.
5654  *
5655  * If it returns 0, the caller is supposed to continue with the usual
5656  * access checks using 'accmode' as modified by this routine.  If it
5657  * returns nonzero value, the caller is supposed to return that value
5658  * as errno.
5659  *
5660  * Note that after this routine runs, accmode may be zero.
5661  */
5662 int
5663 vfs_unixify_accmode(accmode_t *accmode)
5664 {
5665 	/*
5666 	 * There is no way to specify explicit "deny" rule using
5667 	 * file mode or POSIX.1e ACLs.
5668 	 */
5669 	if (*accmode & VEXPLICIT_DENY) {
5670 		*accmode = 0;
5671 		return (0);
5672 	}
5673 
5674 	/*
5675 	 * None of these can be translated into usual access bits.
5676 	 * Also, the common case for NFSv4 ACLs is to not contain
5677 	 * either of these bits. Caller should check for VWRITE
5678 	 * on the containing directory instead.
5679 	 */
5680 	if (*accmode & (VDELETE_CHILD | VDELETE))
5681 		return (EPERM);
5682 
5683 	if (*accmode & VADMIN_PERMS) {
5684 		*accmode &= ~VADMIN_PERMS;
5685 		*accmode |= VADMIN;
5686 	}
5687 
5688 	/*
5689 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
5690 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
5691 	 */
5692 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
5693 
5694 	return (0);
5695 }
5696 
5697 /*
5698  * Clear out a doomed vnode (if any) and replace it with a new one as long
5699  * as the fs is not being unmounted. Return the root vnode to the caller.
5700  */
5701 static int __noinline
5702 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
5703 {
5704 	struct vnode *vp;
5705 	int error;
5706 
5707 restart:
5708 	if (mp->mnt_rootvnode != NULL) {
5709 		MNT_ILOCK(mp);
5710 		vp = mp->mnt_rootvnode;
5711 		if (vp != NULL) {
5712 			if (!VN_IS_DOOMED(vp)) {
5713 				vrefact(vp);
5714 				MNT_IUNLOCK(mp);
5715 				error = vn_lock(vp, flags);
5716 				if (error == 0) {
5717 					*vpp = vp;
5718 					return (0);
5719 				}
5720 				vrele(vp);
5721 				goto restart;
5722 			}
5723 			/*
5724 			 * Clear the old one.
5725 			 */
5726 			mp->mnt_rootvnode = NULL;
5727 		}
5728 		MNT_IUNLOCK(mp);
5729 		if (vp != NULL) {
5730 			/*
5731 			 * Paired with a fence in vfs_op_thread_exit().
5732 			 */
5733 			atomic_thread_fence_acq();
5734 			vfs_op_barrier_wait(mp);
5735 			vrele(vp);
5736 		}
5737 	}
5738 	error = VFS_CACHEDROOT(mp, flags, vpp);
5739 	if (error != 0)
5740 		return (error);
5741 	if (mp->mnt_vfs_ops == 0) {
5742 		MNT_ILOCK(mp);
5743 		if (mp->mnt_vfs_ops != 0) {
5744 			MNT_IUNLOCK(mp);
5745 			return (0);
5746 		}
5747 		if (mp->mnt_rootvnode == NULL) {
5748 			vrefact(*vpp);
5749 			mp->mnt_rootvnode = *vpp;
5750 		} else {
5751 			if (mp->mnt_rootvnode != *vpp) {
5752 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
5753 					panic("%s: mismatch between vnode returned "
5754 					    " by VFS_CACHEDROOT and the one cached "
5755 					    " (%p != %p)",
5756 					    __func__, *vpp, mp->mnt_rootvnode);
5757 				}
5758 			}
5759 		}
5760 		MNT_IUNLOCK(mp);
5761 	}
5762 	return (0);
5763 }
5764 
5765 int
5766 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
5767 {
5768 	struct vnode *vp;
5769 	int error;
5770 
5771 	if (!vfs_op_thread_enter(mp))
5772 		return (vfs_cache_root_fallback(mp, flags, vpp));
5773 	vp = (struct vnode *)atomic_load_ptr(&mp->mnt_rootvnode);
5774 	if (vp == NULL || VN_IS_DOOMED(vp)) {
5775 		vfs_op_thread_exit(mp);
5776 		return (vfs_cache_root_fallback(mp, flags, vpp));
5777 	}
5778 	vrefact(vp);
5779 	vfs_op_thread_exit(mp);
5780 	error = vn_lock(vp, flags);
5781 	if (error != 0) {
5782 		vrele(vp);
5783 		return (vfs_cache_root_fallback(mp, flags, vpp));
5784 	}
5785 	*vpp = vp;
5786 	return (0);
5787 }
5788 
5789 struct vnode *
5790 vfs_cache_root_clear(struct mount *mp)
5791 {
5792 	struct vnode *vp;
5793 
5794 	/*
5795 	 * ops > 0 guarantees there is nobody who can see this vnode
5796 	 */
5797 	MPASS(mp->mnt_vfs_ops > 0);
5798 	vp = mp->mnt_rootvnode;
5799 	mp->mnt_rootvnode = NULL;
5800 	return (vp);
5801 }
5802 
5803 void
5804 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
5805 {
5806 
5807 	MPASS(mp->mnt_vfs_ops > 0);
5808 	vrefact(vp);
5809 	mp->mnt_rootvnode = vp;
5810 }
5811 
5812 /*
5813  * These are helper functions for filesystems to traverse all
5814  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
5815  *
5816  * This interface replaces MNT_VNODE_FOREACH.
5817  */
5818 
5819 
5820 struct vnode *
5821 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
5822 {
5823 	struct vnode *vp;
5824 
5825 	if (should_yield())
5826 		kern_yield(PRI_USER);
5827 	MNT_ILOCK(mp);
5828 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5829 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
5830 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
5831 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
5832 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
5833 			continue;
5834 		VI_LOCK(vp);
5835 		if (VN_IS_DOOMED(vp)) {
5836 			VI_UNLOCK(vp);
5837 			continue;
5838 		}
5839 		break;
5840 	}
5841 	if (vp == NULL) {
5842 		__mnt_vnode_markerfree_all(mvp, mp);
5843 		/* MNT_IUNLOCK(mp); -- done in above function */
5844 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
5845 		return (NULL);
5846 	}
5847 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5848 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5849 	MNT_IUNLOCK(mp);
5850 	return (vp);
5851 }
5852 
5853 struct vnode *
5854 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
5855 {
5856 	struct vnode *vp;
5857 
5858 	*mvp = vn_alloc_marker(mp);
5859 	MNT_ILOCK(mp);
5860 	MNT_REF(mp);
5861 
5862 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
5863 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
5864 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
5865 			continue;
5866 		VI_LOCK(vp);
5867 		if (VN_IS_DOOMED(vp)) {
5868 			VI_UNLOCK(vp);
5869 			continue;
5870 		}
5871 		break;
5872 	}
5873 	if (vp == NULL) {
5874 		MNT_REL(mp);
5875 		MNT_IUNLOCK(mp);
5876 		vn_free_marker(*mvp);
5877 		*mvp = NULL;
5878 		return (NULL);
5879 	}
5880 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5881 	MNT_IUNLOCK(mp);
5882 	return (vp);
5883 }
5884 
5885 void
5886 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
5887 {
5888 
5889 	if (*mvp == NULL) {
5890 		MNT_IUNLOCK(mp);
5891 		return;
5892 	}
5893 
5894 	mtx_assert(MNT_MTX(mp), MA_OWNED);
5895 
5896 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5897 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5898 	MNT_REL(mp);
5899 	MNT_IUNLOCK(mp);
5900 	vn_free_marker(*mvp);
5901 	*mvp = NULL;
5902 }
5903 
5904 /*
5905  * These are helper functions for filesystems to traverse their
5906  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
5907  */
5908 static void
5909 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5910 {
5911 
5912 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5913 
5914 	MNT_ILOCK(mp);
5915 	MNT_REL(mp);
5916 	MNT_IUNLOCK(mp);
5917 	vn_free_marker(*mvp);
5918 	*mvp = NULL;
5919 }
5920 
5921 /*
5922  * Relock the mp mount vnode list lock with the vp vnode interlock in the
5923  * conventional lock order during mnt_vnode_next_active iteration.
5924  *
5925  * On entry, the mount vnode list lock is held and the vnode interlock is not.
5926  * The list lock is dropped and reacquired.  On success, both locks are held.
5927  * On failure, the mount vnode list lock is held but the vnode interlock is
5928  * not, and the procedure may have yielded.
5929  */
5930 static bool
5931 mnt_vnode_next_active_relock(struct vnode *mvp, struct mount *mp,
5932     struct vnode *vp)
5933 {
5934 	const struct vnode *tmp;
5935 	bool held, ret;
5936 
5937 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
5938 	    TAILQ_NEXT(mvp, v_actfreelist) != NULL, mvp,
5939 	    ("%s: bad marker", __func__));
5940 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
5941 	    ("%s: inappropriate vnode", __func__));
5942 	ASSERT_VI_UNLOCKED(vp, __func__);
5943 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5944 
5945 	ret = false;
5946 
5947 	TAILQ_REMOVE(&mp->mnt_activevnodelist, mvp, v_actfreelist);
5948 	TAILQ_INSERT_BEFORE(vp, mvp, v_actfreelist);
5949 
5950 	/*
5951 	 * Use a hold to prevent vp from disappearing while the mount vnode
5952 	 * list lock is dropped and reacquired.  Normally a hold would be
5953 	 * acquired with vhold(), but that might try to acquire the vnode
5954 	 * interlock, which would be a LOR with the mount vnode list lock.
5955 	 */
5956 	held = refcount_acquire_if_not_zero(&vp->v_holdcnt);
5957 	mtx_unlock(&mp->mnt_listmtx);
5958 	if (!held)
5959 		goto abort;
5960 	VI_LOCK(vp);
5961 	if (!refcount_release_if_not_last(&vp->v_holdcnt)) {
5962 		vdropl(vp);
5963 		goto abort;
5964 	}
5965 	mtx_lock(&mp->mnt_listmtx);
5966 
5967 	/*
5968 	 * Determine whether the vnode is still the next one after the marker,
5969 	 * excepting any other markers.  If the vnode has not been doomed by
5970 	 * vgone() then the hold should have ensured that it remained on the
5971 	 * active list.  If it has been doomed but is still on the active list,
5972 	 * don't abort, but rather skip over it (avoid spinning on doomed
5973 	 * vnodes).
5974 	 */
5975 	tmp = mvp;
5976 	do {
5977 		tmp = TAILQ_NEXT(tmp, v_actfreelist);
5978 	} while (tmp != NULL && tmp->v_type == VMARKER);
5979 	if (tmp != vp) {
5980 		mtx_unlock(&mp->mnt_listmtx);
5981 		VI_UNLOCK(vp);
5982 		goto abort;
5983 	}
5984 
5985 	ret = true;
5986 	goto out;
5987 abort:
5988 	maybe_yield();
5989 	mtx_lock(&mp->mnt_listmtx);
5990 out:
5991 	if (ret)
5992 		ASSERT_VI_LOCKED(vp, __func__);
5993 	else
5994 		ASSERT_VI_UNLOCKED(vp, __func__);
5995 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5996 	return (ret);
5997 }
5998 
5999 static struct vnode *
6000 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
6001 {
6002 	struct vnode *vp, *nvp;
6003 
6004 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6005 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6006 restart:
6007 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
6008 	while (vp != NULL) {
6009 		if (vp->v_type == VMARKER) {
6010 			vp = TAILQ_NEXT(vp, v_actfreelist);
6011 			continue;
6012 		}
6013 		/*
6014 		 * Try-lock because this is the wrong lock order.  If that does
6015 		 * not succeed, drop the mount vnode list lock and try to
6016 		 * reacquire it and the vnode interlock in the right order.
6017 		 */
6018 		if (!VI_TRYLOCK(vp) &&
6019 		    !mnt_vnode_next_active_relock(*mvp, mp, vp))
6020 			goto restart;
6021 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6022 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6023 		    ("alien vnode on the active list %p %p", vp, mp));
6024 		if (vp->v_mount == mp && !VN_IS_DOOMED(vp))
6025 			break;
6026 		nvp = TAILQ_NEXT(vp, v_actfreelist);
6027 		VI_UNLOCK(vp);
6028 		vp = nvp;
6029 	}
6030 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
6031 
6032 	/* Check if we are done */
6033 	if (vp == NULL) {
6034 		mtx_unlock(&mp->mnt_listmtx);
6035 		mnt_vnode_markerfree_active(mvp, mp);
6036 		return (NULL);
6037 	}
6038 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
6039 	mtx_unlock(&mp->mnt_listmtx);
6040 	ASSERT_VI_LOCKED(vp, "active iter");
6041 	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
6042 	return (vp);
6043 }
6044 
6045 struct vnode *
6046 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
6047 {
6048 
6049 	if (should_yield())
6050 		kern_yield(PRI_USER);
6051 	mtx_lock(&mp->mnt_listmtx);
6052 	return (mnt_vnode_next_active(mvp, mp));
6053 }
6054 
6055 struct vnode *
6056 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
6057 {
6058 	struct vnode *vp;
6059 
6060 	*mvp = vn_alloc_marker(mp);
6061 	MNT_ILOCK(mp);
6062 	MNT_REF(mp);
6063 	MNT_IUNLOCK(mp);
6064 
6065 	mtx_lock(&mp->mnt_listmtx);
6066 	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
6067 	if (vp == NULL) {
6068 		mtx_unlock(&mp->mnt_listmtx);
6069 		mnt_vnode_markerfree_active(mvp, mp);
6070 		return (NULL);
6071 	}
6072 	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
6073 	return (mnt_vnode_next_active(mvp, mp));
6074 }
6075 
6076 void
6077 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
6078 {
6079 
6080 	if (*mvp == NULL)
6081 		return;
6082 
6083 	mtx_lock(&mp->mnt_listmtx);
6084 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
6085 	mtx_unlock(&mp->mnt_listmtx);
6086 	mnt_vnode_markerfree_active(mvp, mp);
6087 }
6088