xref: /freebsd/sys/kern/vfs_vnops.c (revision a3557ef0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/sx.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/sysctl.h>
76 #include <sys/ttycom.h>
77 #include <sys/conf.h>
78 #include <sys/syslog.h>
79 #include <sys/unistd.h>
80 #include <sys/user.h>
81 
82 #include <security/audit/audit.h>
83 #include <security/mac/mac_framework.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pager.h>
92 
93 #ifdef HWPMC_HOOKS
94 #include <sys/pmckern.h>
95 #endif
96 
97 static fo_rdwr_t	vn_read;
98 static fo_rdwr_t	vn_write;
99 static fo_rdwr_t	vn_io_fault;
100 static fo_truncate_t	vn_truncate;
101 static fo_ioctl_t	vn_ioctl;
102 static fo_poll_t	vn_poll;
103 static fo_kqfilter_t	vn_kqfilter;
104 static fo_stat_t	vn_statfile;
105 static fo_close_t	vn_closefile;
106 static fo_mmap_t	vn_mmap;
107 static fo_fallocate_t	vn_fallocate;
108 
109 struct 	fileops vnops = {
110 	.fo_read = vn_io_fault,
111 	.fo_write = vn_io_fault,
112 	.fo_truncate = vn_truncate,
113 	.fo_ioctl = vn_ioctl,
114 	.fo_poll = vn_poll,
115 	.fo_kqfilter = vn_kqfilter,
116 	.fo_stat = vn_statfile,
117 	.fo_close = vn_closefile,
118 	.fo_chmod = vn_chmod,
119 	.fo_chown = vn_chown,
120 	.fo_sendfile = vn_sendfile,
121 	.fo_seek = vn_seek,
122 	.fo_fill_kinfo = vn_fill_kinfo,
123 	.fo_mmap = vn_mmap,
124 	.fo_fallocate = vn_fallocate,
125 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
126 };
127 
128 static const int io_hold_cnt = 16;
129 static int vn_io_fault_enable = 1;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
131     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
132 static int vn_io_fault_prefault = 0;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
134     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
135 static u_long vn_io_faults_cnt;
136 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
137     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
138 
139 static int vfs_allow_read_dir = 0;
140 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
141     &vfs_allow_read_dir, 0,
142     "Enable read(2) of directory by root for filesystems that support it");
143 
144 /*
145  * Returns true if vn_io_fault mode of handling the i/o request should
146  * be used.
147  */
148 static bool
149 do_vn_io_fault(struct vnode *vp, struct uio *uio)
150 {
151 	struct mount *mp;
152 
153 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
154 	    (mp = vp->v_mount) != NULL &&
155 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
156 }
157 
158 /*
159  * Structure used to pass arguments to vn_io_fault1(), to do either
160  * file- or vnode-based I/O calls.
161  */
162 struct vn_io_fault_args {
163 	enum {
164 		VN_IO_FAULT_FOP,
165 		VN_IO_FAULT_VOP
166 	} kind;
167 	struct ucred *cred;
168 	int flags;
169 	union {
170 		struct fop_args_tag {
171 			struct file *fp;
172 			fo_rdwr_t *doio;
173 		} fop_args;
174 		struct vop_args_tag {
175 			struct vnode *vp;
176 		} vop_args;
177 	} args;
178 };
179 
180 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
181     struct vn_io_fault_args *args, struct thread *td);
182 
183 int
184 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
185 {
186 	struct thread *td = ndp->ni_cnd.cn_thread;
187 
188 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
189 }
190 
191 /*
192  * Common code for vnode open operations via a name lookup.
193  * Lookup the vnode and invoke VOP_CREATE if needed.
194  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
195  *
196  * Note that this does NOT free nameidata for the successful case,
197  * due to the NDINIT being done elsewhere.
198  */
199 int
200 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
201     struct ucred *cred, struct file *fp)
202 {
203 	struct vnode *vp;
204 	struct mount *mp;
205 	struct thread *td = ndp->ni_cnd.cn_thread;
206 	struct vattr vat;
207 	struct vattr *vap = &vat;
208 	int fmode, error;
209 
210 restart:
211 	fmode = *flagp;
212 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
213 	    O_EXCL | O_DIRECTORY))
214 		return (EINVAL);
215 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
216 		ndp->ni_cnd.cn_nameiop = CREATE;
217 		/*
218 		 * Set NOCACHE to avoid flushing the cache when
219 		 * rolling in many files at once.
220 		*/
221 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
222 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
223 			ndp->ni_cnd.cn_flags |= FOLLOW;
224 		if ((fmode & O_BENEATH) != 0)
225 			ndp->ni_cnd.cn_flags |= BENEATH;
226 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
227 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
228 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
229 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
230 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
231 			bwillwrite();
232 		if ((error = namei(ndp)) != 0)
233 			return (error);
234 		if (ndp->ni_vp == NULL) {
235 			VATTR_NULL(vap);
236 			vap->va_type = VREG;
237 			vap->va_mode = cmode;
238 			if (fmode & O_EXCL)
239 				vap->va_vaflags |= VA_EXCLUSIVE;
240 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
241 				NDFREE(ndp, NDF_ONLY_PNBUF);
242 				vput(ndp->ni_dvp);
243 				if ((error = vn_start_write(NULL, &mp,
244 				    V_XSLEEP | PCATCH)) != 0)
245 					return (error);
246 				goto restart;
247 			}
248 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
249 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
250 #ifdef MAC
251 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
252 			    &ndp->ni_cnd, vap);
253 			if (error == 0)
254 #endif
255 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
256 						   &ndp->ni_cnd, vap);
257 			vput(ndp->ni_dvp);
258 			vn_finished_write(mp);
259 			if (error) {
260 				NDFREE(ndp, NDF_ONLY_PNBUF);
261 				return (error);
262 			}
263 			fmode &= ~O_TRUNC;
264 			vp = ndp->ni_vp;
265 		} else {
266 			if (ndp->ni_dvp == ndp->ni_vp)
267 				vrele(ndp->ni_dvp);
268 			else
269 				vput(ndp->ni_dvp);
270 			ndp->ni_dvp = NULL;
271 			vp = ndp->ni_vp;
272 			if (fmode & O_EXCL) {
273 				error = EEXIST;
274 				goto bad;
275 			}
276 			if (vp->v_type == VDIR) {
277 				error = EISDIR;
278 				goto bad;
279 			}
280 			fmode &= ~O_CREAT;
281 		}
282 	} else {
283 		ndp->ni_cnd.cn_nameiop = LOOKUP;
284 		ndp->ni_cnd.cn_flags = ISOPEN |
285 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
286 		if (!(fmode & FWRITE))
287 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
288 		if ((fmode & O_BENEATH) != 0)
289 			ndp->ni_cnd.cn_flags |= BENEATH;
290 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
291 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
292 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
293 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
294 		if ((error = namei(ndp)) != 0)
295 			return (error);
296 		vp = ndp->ni_vp;
297 	}
298 	error = vn_open_vnode(vp, fmode, cred, td, fp);
299 	if (error)
300 		goto bad;
301 	*flagp = fmode;
302 	return (0);
303 bad:
304 	NDFREE(ndp, NDF_ONLY_PNBUF);
305 	vput(vp);
306 	*flagp = fmode;
307 	ndp->ni_vp = NULL;
308 	return (error);
309 }
310 
311 static int
312 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
313 {
314 	struct flock lf;
315 	int error, lock_flags, type;
316 
317 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
318 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
319 		return (0);
320 	KASSERT(fp != NULL, ("open with flock requires fp"));
321 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
322 		return (EOPNOTSUPP);
323 
324 	lock_flags = VOP_ISLOCKED(vp);
325 	VOP_UNLOCK(vp);
326 
327 	lf.l_whence = SEEK_SET;
328 	lf.l_start = 0;
329 	lf.l_len = 0;
330 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
331 	type = F_FLOCK;
332 	if ((fmode & FNONBLOCK) == 0)
333 		type |= F_WAIT;
334 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
335 	if (error == 0)
336 		fp->f_flag |= FHASLOCK;
337 
338 	vn_lock(vp, lock_flags | LK_RETRY);
339 	if (error == 0 && VN_IS_DOOMED(vp))
340 		error = ENOENT;
341 	return (error);
342 }
343 
344 /*
345  * Common code for vnode open operations once a vnode is located.
346  * Check permissions, and call the VOP_OPEN routine.
347  */
348 int
349 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
350     struct thread *td, struct file *fp)
351 {
352 	accmode_t accmode;
353 	int error;
354 
355 	if (vp->v_type == VLNK)
356 		return (EMLINK);
357 	if (vp->v_type == VSOCK)
358 		return (EOPNOTSUPP);
359 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
360 		return (ENOTDIR);
361 	accmode = 0;
362 	if (fmode & (FWRITE | O_TRUNC)) {
363 		if (vp->v_type == VDIR)
364 			return (EISDIR);
365 		accmode |= VWRITE;
366 	}
367 	if (fmode & FREAD)
368 		accmode |= VREAD;
369 	if (fmode & FEXEC)
370 		accmode |= VEXEC;
371 	if ((fmode & O_APPEND) && (fmode & FWRITE))
372 		accmode |= VAPPEND;
373 #ifdef MAC
374 	if (fmode & O_CREAT)
375 		accmode |= VCREAT;
376 	if (fmode & O_VERIFY)
377 		accmode |= VVERIFY;
378 	error = mac_vnode_check_open(cred, vp, accmode);
379 	if (error)
380 		return (error);
381 
382 	accmode &= ~(VCREAT | VVERIFY);
383 #endif
384 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
385 		error = VOP_ACCESS(vp, accmode, cred, td);
386 		if (error != 0)
387 			return (error);
388 	}
389 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
390 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
391 	error = VOP_OPEN(vp, fmode, cred, td, fp);
392 	if (error != 0)
393 		return (error);
394 
395 	error = vn_open_vnode_advlock(vp, fmode, fp);
396 	if (error == 0 && (fmode & FWRITE) != 0) {
397 		error = VOP_ADD_WRITECOUNT(vp, 1);
398 		if (error == 0) {
399 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
400 			     __func__, vp, vp->v_writecount);
401 		}
402 	}
403 
404 	/*
405 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
406 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
407 	 * Arrange for that by having fdrop() to use vn_closefile().
408 	 */
409 	if (error != 0) {
410 		fp->f_flag |= FOPENFAILED;
411 		fp->f_vnode = vp;
412 		if (fp->f_ops == &badfileops) {
413 			fp->f_type = DTYPE_VNODE;
414 			fp->f_ops = &vnops;
415 		}
416 		vref(vp);
417 	}
418 
419 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
420 	return (error);
421 
422 }
423 
424 /*
425  * Check for write permissions on the specified vnode.
426  * Prototype text segments cannot be written.
427  * It is racy.
428  */
429 int
430 vn_writechk(struct vnode *vp)
431 {
432 
433 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
434 	/*
435 	 * If there's shared text associated with
436 	 * the vnode, try to free it up once.  If
437 	 * we fail, we can't allow writing.
438 	 */
439 	if (VOP_IS_TEXT(vp))
440 		return (ETXTBSY);
441 
442 	return (0);
443 }
444 
445 /*
446  * Vnode close call
447  */
448 static int
449 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
450     struct thread *td, bool keep_ref)
451 {
452 	struct mount *mp;
453 	int error, lock_flags;
454 
455 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
456 	    MNT_EXTENDED_SHARED(vp->v_mount))
457 		lock_flags = LK_SHARED;
458 	else
459 		lock_flags = LK_EXCLUSIVE;
460 
461 	vn_start_write(vp, &mp, V_WAIT);
462 	vn_lock(vp, lock_flags | LK_RETRY);
463 	AUDIT_ARG_VNODE1(vp);
464 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
465 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
466 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
467 		    __func__, vp, vp->v_writecount);
468 	}
469 	error = VOP_CLOSE(vp, flags, file_cred, td);
470 	if (keep_ref)
471 		VOP_UNLOCK(vp);
472 	else
473 		vput(vp);
474 	vn_finished_write(mp);
475 	return (error);
476 }
477 
478 int
479 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
480     struct thread *td)
481 {
482 
483 	return (vn_close1(vp, flags, file_cred, td, false));
484 }
485 
486 /*
487  * Heuristic to detect sequential operation.
488  */
489 static int
490 sequential_heuristic(struct uio *uio, struct file *fp)
491 {
492 
493 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
494 	if (fp->f_flag & FRDAHEAD)
495 		return (fp->f_seqcount << IO_SEQSHIFT);
496 
497 	/*
498 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
499 	 * that the first I/O is normally considered to be slightly
500 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
501 	 * unless previous seeks have reduced f_seqcount to 0, in which
502 	 * case offset 0 is not special.
503 	 */
504 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
505 	    uio->uio_offset == fp->f_nextoff) {
506 		/*
507 		 * f_seqcount is in units of fixed-size blocks so that it
508 		 * depends mainly on the amount of sequential I/O and not
509 		 * much on the number of sequential I/O's.  The fixed size
510 		 * of 16384 is hard-coded here since it is (not quite) just
511 		 * a magic size that works well here.  This size is more
512 		 * closely related to the best I/O size for real disks than
513 		 * to any block size used by software.
514 		 */
515 		if (uio->uio_resid >= IO_SEQMAX * 16384)
516 			fp->f_seqcount = IO_SEQMAX;
517 		else {
518 			fp->f_seqcount += howmany(uio->uio_resid, 16384);
519 			if (fp->f_seqcount > IO_SEQMAX)
520 				fp->f_seqcount = IO_SEQMAX;
521 		}
522 		return (fp->f_seqcount << IO_SEQSHIFT);
523 	}
524 
525 	/* Not sequential.  Quickly draw-down sequentiality. */
526 	if (fp->f_seqcount > 1)
527 		fp->f_seqcount = 1;
528 	else
529 		fp->f_seqcount = 0;
530 	return (0);
531 }
532 
533 /*
534  * Package up an I/O request on a vnode into a uio and do it.
535  */
536 int
537 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
538     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
539     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
540 {
541 	struct uio auio;
542 	struct iovec aiov;
543 	struct mount *mp;
544 	struct ucred *cred;
545 	void *rl_cookie;
546 	struct vn_io_fault_args args;
547 	int error, lock_flags;
548 
549 	if (offset < 0 && vp->v_type != VCHR)
550 		return (EINVAL);
551 	auio.uio_iov = &aiov;
552 	auio.uio_iovcnt = 1;
553 	aiov.iov_base = base;
554 	aiov.iov_len = len;
555 	auio.uio_resid = len;
556 	auio.uio_offset = offset;
557 	auio.uio_segflg = segflg;
558 	auio.uio_rw = rw;
559 	auio.uio_td = td;
560 	error = 0;
561 
562 	if ((ioflg & IO_NODELOCKED) == 0) {
563 		if ((ioflg & IO_RANGELOCKED) == 0) {
564 			if (rw == UIO_READ) {
565 				rl_cookie = vn_rangelock_rlock(vp, offset,
566 				    offset + len);
567 			} else {
568 				rl_cookie = vn_rangelock_wlock(vp, offset,
569 				    offset + len);
570 			}
571 		} else
572 			rl_cookie = NULL;
573 		mp = NULL;
574 		if (rw == UIO_WRITE) {
575 			if (vp->v_type != VCHR &&
576 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
577 			    != 0)
578 				goto out;
579 			if (MNT_SHARED_WRITES(mp) ||
580 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
581 				lock_flags = LK_SHARED;
582 			else
583 				lock_flags = LK_EXCLUSIVE;
584 		} else
585 			lock_flags = LK_SHARED;
586 		vn_lock(vp, lock_flags | LK_RETRY);
587 	} else
588 		rl_cookie = NULL;
589 
590 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
591 #ifdef MAC
592 	if ((ioflg & IO_NOMACCHECK) == 0) {
593 		if (rw == UIO_READ)
594 			error = mac_vnode_check_read(active_cred, file_cred,
595 			    vp);
596 		else
597 			error = mac_vnode_check_write(active_cred, file_cred,
598 			    vp);
599 	}
600 #endif
601 	if (error == 0) {
602 		if (file_cred != NULL)
603 			cred = file_cred;
604 		else
605 			cred = active_cred;
606 		if (do_vn_io_fault(vp, &auio)) {
607 			args.kind = VN_IO_FAULT_VOP;
608 			args.cred = cred;
609 			args.flags = ioflg;
610 			args.args.vop_args.vp = vp;
611 			error = vn_io_fault1(vp, &auio, &args, td);
612 		} else if (rw == UIO_READ) {
613 			error = VOP_READ(vp, &auio, ioflg, cred);
614 		} else /* if (rw == UIO_WRITE) */ {
615 			error = VOP_WRITE(vp, &auio, ioflg, cred);
616 		}
617 	}
618 	if (aresid)
619 		*aresid = auio.uio_resid;
620 	else
621 		if (auio.uio_resid && error == 0)
622 			error = EIO;
623 	if ((ioflg & IO_NODELOCKED) == 0) {
624 		VOP_UNLOCK(vp);
625 		if (mp != NULL)
626 			vn_finished_write(mp);
627 	}
628  out:
629 	if (rl_cookie != NULL)
630 		vn_rangelock_unlock(vp, rl_cookie);
631 	return (error);
632 }
633 
634 /*
635  * Package up an I/O request on a vnode into a uio and do it.  The I/O
636  * request is split up into smaller chunks and we try to avoid saturating
637  * the buffer cache while potentially holding a vnode locked, so we
638  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
639  * to give other processes a chance to lock the vnode (either other processes
640  * core'ing the same binary, or unrelated processes scanning the directory).
641  */
642 int
643 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
644     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
645     struct ucred *file_cred, size_t *aresid, struct thread *td)
646 {
647 	int error = 0;
648 	ssize_t iaresid;
649 
650 	do {
651 		int chunk;
652 
653 		/*
654 		 * Force `offset' to a multiple of MAXBSIZE except possibly
655 		 * for the first chunk, so that filesystems only need to
656 		 * write full blocks except possibly for the first and last
657 		 * chunks.
658 		 */
659 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
660 
661 		if (chunk > len)
662 			chunk = len;
663 		if (rw != UIO_READ && vp->v_type == VREG)
664 			bwillwrite();
665 		iaresid = 0;
666 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
667 		    ioflg, active_cred, file_cred, &iaresid, td);
668 		len -= chunk;	/* aresid calc already includes length */
669 		if (error)
670 			break;
671 		offset += chunk;
672 		base = (char *)base + chunk;
673 		kern_yield(PRI_USER);
674 	} while (len);
675 	if (aresid)
676 		*aresid = len + iaresid;
677 	return (error);
678 }
679 
680 #if OFF_MAX <= LONG_MAX
681 off_t
682 foffset_lock(struct file *fp, int flags)
683 {
684 	volatile short *flagsp;
685 	off_t res;
686 	short state;
687 
688 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
689 
690 	if ((flags & FOF_NOLOCK) != 0)
691 		return (atomic_load_long(&fp->f_offset));
692 
693 	/*
694 	 * According to McKusick the vn lock was protecting f_offset here.
695 	 * It is now protected by the FOFFSET_LOCKED flag.
696 	 */
697 	flagsp = &fp->f_vnread_flags;
698 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
699 		return (atomic_load_long(&fp->f_offset));
700 
701 	sleepq_lock(&fp->f_vnread_flags);
702 	state = atomic_load_16(flagsp);
703 	for (;;) {
704 		if ((state & FOFFSET_LOCKED) == 0) {
705 			if (!atomic_fcmpset_acq_16(flagsp, &state,
706 			    FOFFSET_LOCKED))
707 				continue;
708 			break;
709 		}
710 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
711 			if (!atomic_fcmpset_acq_16(flagsp, &state,
712 			    state | FOFFSET_LOCK_WAITING))
713 				continue;
714 		}
715 		DROP_GIANT();
716 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
717 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
718 		PICKUP_GIANT();
719 		sleepq_lock(&fp->f_vnread_flags);
720 		state = atomic_load_16(flagsp);
721 	}
722 	res = atomic_load_long(&fp->f_offset);
723 	sleepq_release(&fp->f_vnread_flags);
724 	return (res);
725 }
726 
727 void
728 foffset_unlock(struct file *fp, off_t val, int flags)
729 {
730 	volatile short *flagsp;
731 	short state;
732 
733 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
734 
735 	if ((flags & FOF_NOUPDATE) == 0)
736 		atomic_store_long(&fp->f_offset, val);
737 	if ((flags & FOF_NEXTOFF) != 0)
738 		fp->f_nextoff = val;
739 
740 	if ((flags & FOF_NOLOCK) != 0)
741 		return;
742 
743 	flagsp = &fp->f_vnread_flags;
744 	state = atomic_load_16(flagsp);
745 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
746 	    atomic_cmpset_rel_16(flagsp, state, 0))
747 		return;
748 
749 	sleepq_lock(&fp->f_vnread_flags);
750 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
751 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
752 	fp->f_vnread_flags = 0;
753 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
754 	sleepq_release(&fp->f_vnread_flags);
755 }
756 #else
757 off_t
758 foffset_lock(struct file *fp, int flags)
759 {
760 	struct mtx *mtxp;
761 	off_t res;
762 
763 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
764 
765 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
766 	mtx_lock(mtxp);
767 	if ((flags & FOF_NOLOCK) == 0) {
768 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
769 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
770 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
771 			    "vofflock", 0);
772 		}
773 		fp->f_vnread_flags |= FOFFSET_LOCKED;
774 	}
775 	res = fp->f_offset;
776 	mtx_unlock(mtxp);
777 	return (res);
778 }
779 
780 void
781 foffset_unlock(struct file *fp, off_t val, int flags)
782 {
783 	struct mtx *mtxp;
784 
785 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
786 
787 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
788 	mtx_lock(mtxp);
789 	if ((flags & FOF_NOUPDATE) == 0)
790 		fp->f_offset = val;
791 	if ((flags & FOF_NEXTOFF) != 0)
792 		fp->f_nextoff = val;
793 	if ((flags & FOF_NOLOCK) == 0) {
794 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
795 		    ("Lost FOFFSET_LOCKED"));
796 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
797 			wakeup(&fp->f_vnread_flags);
798 		fp->f_vnread_flags = 0;
799 	}
800 	mtx_unlock(mtxp);
801 }
802 #endif
803 
804 void
805 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
806 {
807 
808 	if ((flags & FOF_OFFSET) == 0)
809 		uio->uio_offset = foffset_lock(fp, flags);
810 }
811 
812 void
813 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
814 {
815 
816 	if ((flags & FOF_OFFSET) == 0)
817 		foffset_unlock(fp, uio->uio_offset, flags);
818 }
819 
820 static int
821 get_advice(struct file *fp, struct uio *uio)
822 {
823 	struct mtx *mtxp;
824 	int ret;
825 
826 	ret = POSIX_FADV_NORMAL;
827 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
828 		return (ret);
829 
830 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
831 	mtx_lock(mtxp);
832 	if (fp->f_advice != NULL &&
833 	    uio->uio_offset >= fp->f_advice->fa_start &&
834 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
835 		ret = fp->f_advice->fa_advice;
836 	mtx_unlock(mtxp);
837 	return (ret);
838 }
839 
840 /*
841  * File table vnode read routine.
842  */
843 static int
844 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
845     struct thread *td)
846 {
847 	struct vnode *vp;
848 	off_t orig_offset;
849 	int error, ioflag;
850 	int advice;
851 
852 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
853 	    uio->uio_td, td));
854 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
855 	vp = fp->f_vnode;
856 	ioflag = 0;
857 	if (fp->f_flag & FNONBLOCK)
858 		ioflag |= IO_NDELAY;
859 	if (fp->f_flag & O_DIRECT)
860 		ioflag |= IO_DIRECT;
861 	advice = get_advice(fp, uio);
862 	vn_lock(vp, LK_SHARED | LK_RETRY);
863 
864 	switch (advice) {
865 	case POSIX_FADV_NORMAL:
866 	case POSIX_FADV_SEQUENTIAL:
867 	case POSIX_FADV_NOREUSE:
868 		ioflag |= sequential_heuristic(uio, fp);
869 		break;
870 	case POSIX_FADV_RANDOM:
871 		/* Disable read-ahead for random I/O. */
872 		break;
873 	}
874 	orig_offset = uio->uio_offset;
875 
876 #ifdef MAC
877 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
878 	if (error == 0)
879 #endif
880 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
881 	fp->f_nextoff = uio->uio_offset;
882 	VOP_UNLOCK(vp);
883 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
884 	    orig_offset != uio->uio_offset)
885 		/*
886 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
887 		 * for the backing file after a POSIX_FADV_NOREUSE
888 		 * read(2).
889 		 */
890 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
891 		    POSIX_FADV_DONTNEED);
892 	return (error);
893 }
894 
895 /*
896  * File table vnode write routine.
897  */
898 static int
899 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
900     struct thread *td)
901 {
902 	struct vnode *vp;
903 	struct mount *mp;
904 	off_t orig_offset;
905 	int error, ioflag, lock_flags;
906 	int advice;
907 
908 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
909 	    uio->uio_td, td));
910 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
911 	vp = fp->f_vnode;
912 	if (vp->v_type == VREG)
913 		bwillwrite();
914 	ioflag = IO_UNIT;
915 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
916 		ioflag |= IO_APPEND;
917 	if (fp->f_flag & FNONBLOCK)
918 		ioflag |= IO_NDELAY;
919 	if (fp->f_flag & O_DIRECT)
920 		ioflag |= IO_DIRECT;
921 	if ((fp->f_flag & O_FSYNC) ||
922 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
923 		ioflag |= IO_SYNC;
924 	mp = NULL;
925 	if (vp->v_type != VCHR &&
926 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
927 		goto unlock;
928 
929 	advice = get_advice(fp, uio);
930 
931 	if (MNT_SHARED_WRITES(mp) ||
932 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
933 		lock_flags = LK_SHARED;
934 	} else {
935 		lock_flags = LK_EXCLUSIVE;
936 	}
937 
938 	vn_lock(vp, lock_flags | LK_RETRY);
939 	switch (advice) {
940 	case POSIX_FADV_NORMAL:
941 	case POSIX_FADV_SEQUENTIAL:
942 	case POSIX_FADV_NOREUSE:
943 		ioflag |= sequential_heuristic(uio, fp);
944 		break;
945 	case POSIX_FADV_RANDOM:
946 		/* XXX: Is this correct? */
947 		break;
948 	}
949 	orig_offset = uio->uio_offset;
950 
951 #ifdef MAC
952 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
953 	if (error == 0)
954 #endif
955 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
956 	fp->f_nextoff = uio->uio_offset;
957 	VOP_UNLOCK(vp);
958 	if (vp->v_type != VCHR)
959 		vn_finished_write(mp);
960 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
961 	    orig_offset != uio->uio_offset)
962 		/*
963 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
964 		 * for the backing file after a POSIX_FADV_NOREUSE
965 		 * write(2).
966 		 */
967 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
968 		    POSIX_FADV_DONTNEED);
969 unlock:
970 	return (error);
971 }
972 
973 /*
974  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
975  * prevent the following deadlock:
976  *
977  * Assume that the thread A reads from the vnode vp1 into userspace
978  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
979  * currently not resident, then system ends up with the call chain
980  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
981  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
982  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
983  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
984  * backed by the pages of vnode vp1, and some page in buf2 is not
985  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
986  *
987  * To prevent the lock order reversal and deadlock, vn_io_fault() does
988  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
989  * Instead, it first tries to do the whole range i/o with pagefaults
990  * disabled. If all pages in the i/o buffer are resident and mapped,
991  * VOP will succeed (ignoring the genuine filesystem errors).
992  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
993  * i/o in chunks, with all pages in the chunk prefaulted and held
994  * using vm_fault_quick_hold_pages().
995  *
996  * Filesystems using this deadlock avoidance scheme should use the
997  * array of the held pages from uio, saved in the curthread->td_ma,
998  * instead of doing uiomove().  A helper function
999  * vn_io_fault_uiomove() converts uiomove request into
1000  * uiomove_fromphys() over td_ma array.
1001  *
1002  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1003  * make the current i/o request atomic with respect to other i/os and
1004  * truncations.
1005  */
1006 
1007 /*
1008  * Decode vn_io_fault_args and perform the corresponding i/o.
1009  */
1010 static int
1011 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1012     struct thread *td)
1013 {
1014 	int error, save;
1015 
1016 	error = 0;
1017 	save = vm_fault_disable_pagefaults();
1018 	switch (args->kind) {
1019 	case VN_IO_FAULT_FOP:
1020 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1021 		    uio, args->cred, args->flags, td);
1022 		break;
1023 	case VN_IO_FAULT_VOP:
1024 		if (uio->uio_rw == UIO_READ) {
1025 			error = VOP_READ(args->args.vop_args.vp, uio,
1026 			    args->flags, args->cred);
1027 		} else if (uio->uio_rw == UIO_WRITE) {
1028 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1029 			    args->flags, args->cred);
1030 		}
1031 		break;
1032 	default:
1033 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1034 		    args->kind, uio->uio_rw);
1035 	}
1036 	vm_fault_enable_pagefaults(save);
1037 	return (error);
1038 }
1039 
1040 static int
1041 vn_io_fault_touch(char *base, const struct uio *uio)
1042 {
1043 	int r;
1044 
1045 	r = fubyte(base);
1046 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1047 		return (EFAULT);
1048 	return (0);
1049 }
1050 
1051 static int
1052 vn_io_fault_prefault_user(const struct uio *uio)
1053 {
1054 	char *base;
1055 	const struct iovec *iov;
1056 	size_t len;
1057 	ssize_t resid;
1058 	int error, i;
1059 
1060 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1061 	    ("vn_io_fault_prefault userspace"));
1062 
1063 	error = i = 0;
1064 	iov = uio->uio_iov;
1065 	resid = uio->uio_resid;
1066 	base = iov->iov_base;
1067 	len = iov->iov_len;
1068 	while (resid > 0) {
1069 		error = vn_io_fault_touch(base, uio);
1070 		if (error != 0)
1071 			break;
1072 		if (len < PAGE_SIZE) {
1073 			if (len != 0) {
1074 				error = vn_io_fault_touch(base + len - 1, uio);
1075 				if (error != 0)
1076 					break;
1077 				resid -= len;
1078 			}
1079 			if (++i >= uio->uio_iovcnt)
1080 				break;
1081 			iov = uio->uio_iov + i;
1082 			base = iov->iov_base;
1083 			len = iov->iov_len;
1084 		} else {
1085 			len -= PAGE_SIZE;
1086 			base += PAGE_SIZE;
1087 			resid -= PAGE_SIZE;
1088 		}
1089 	}
1090 	return (error);
1091 }
1092 
1093 /*
1094  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1095  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1096  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1097  * into args and call vn_io_fault1() to handle faults during the user
1098  * mode buffer accesses.
1099  */
1100 static int
1101 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1102     struct thread *td)
1103 {
1104 	vm_page_t ma[io_hold_cnt + 2];
1105 	struct uio *uio_clone, short_uio;
1106 	struct iovec short_iovec[1];
1107 	vm_page_t *prev_td_ma;
1108 	vm_prot_t prot;
1109 	vm_offset_t addr, end;
1110 	size_t len, resid;
1111 	ssize_t adv;
1112 	int error, cnt, saveheld, prev_td_ma_cnt;
1113 
1114 	if (vn_io_fault_prefault) {
1115 		error = vn_io_fault_prefault_user(uio);
1116 		if (error != 0)
1117 			return (error); /* Or ignore ? */
1118 	}
1119 
1120 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1121 
1122 	/*
1123 	 * The UFS follows IO_UNIT directive and replays back both
1124 	 * uio_offset and uio_resid if an error is encountered during the
1125 	 * operation.  But, since the iovec may be already advanced,
1126 	 * uio is still in an inconsistent state.
1127 	 *
1128 	 * Cache a copy of the original uio, which is advanced to the redo
1129 	 * point using UIO_NOCOPY below.
1130 	 */
1131 	uio_clone = cloneuio(uio);
1132 	resid = uio->uio_resid;
1133 
1134 	short_uio.uio_segflg = UIO_USERSPACE;
1135 	short_uio.uio_rw = uio->uio_rw;
1136 	short_uio.uio_td = uio->uio_td;
1137 
1138 	error = vn_io_fault_doio(args, uio, td);
1139 	if (error != EFAULT)
1140 		goto out;
1141 
1142 	atomic_add_long(&vn_io_faults_cnt, 1);
1143 	uio_clone->uio_segflg = UIO_NOCOPY;
1144 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1145 	uio_clone->uio_segflg = uio->uio_segflg;
1146 
1147 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1148 	prev_td_ma = td->td_ma;
1149 	prev_td_ma_cnt = td->td_ma_cnt;
1150 
1151 	while (uio_clone->uio_resid != 0) {
1152 		len = uio_clone->uio_iov->iov_len;
1153 		if (len == 0) {
1154 			KASSERT(uio_clone->uio_iovcnt >= 1,
1155 			    ("iovcnt underflow"));
1156 			uio_clone->uio_iov++;
1157 			uio_clone->uio_iovcnt--;
1158 			continue;
1159 		}
1160 		if (len > io_hold_cnt * PAGE_SIZE)
1161 			len = io_hold_cnt * PAGE_SIZE;
1162 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1163 		end = round_page(addr + len);
1164 		if (end < addr) {
1165 			error = EFAULT;
1166 			break;
1167 		}
1168 		cnt = atop(end - trunc_page(addr));
1169 		/*
1170 		 * A perfectly misaligned address and length could cause
1171 		 * both the start and the end of the chunk to use partial
1172 		 * page.  +2 accounts for such a situation.
1173 		 */
1174 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1175 		    addr, len, prot, ma, io_hold_cnt + 2);
1176 		if (cnt == -1) {
1177 			error = EFAULT;
1178 			break;
1179 		}
1180 		short_uio.uio_iov = &short_iovec[0];
1181 		short_iovec[0].iov_base = (void *)addr;
1182 		short_uio.uio_iovcnt = 1;
1183 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1184 		short_uio.uio_offset = uio_clone->uio_offset;
1185 		td->td_ma = ma;
1186 		td->td_ma_cnt = cnt;
1187 
1188 		error = vn_io_fault_doio(args, &short_uio, td);
1189 		vm_page_unhold_pages(ma, cnt);
1190 		adv = len - short_uio.uio_resid;
1191 
1192 		uio_clone->uio_iov->iov_base =
1193 		    (char *)uio_clone->uio_iov->iov_base + adv;
1194 		uio_clone->uio_iov->iov_len -= adv;
1195 		uio_clone->uio_resid -= adv;
1196 		uio_clone->uio_offset += adv;
1197 
1198 		uio->uio_resid -= adv;
1199 		uio->uio_offset += adv;
1200 
1201 		if (error != 0 || adv == 0)
1202 			break;
1203 	}
1204 	td->td_ma = prev_td_ma;
1205 	td->td_ma_cnt = prev_td_ma_cnt;
1206 	curthread_pflags_restore(saveheld);
1207 out:
1208 	free(uio_clone, M_IOV);
1209 	return (error);
1210 }
1211 
1212 static int
1213 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1214     int flags, struct thread *td)
1215 {
1216 	fo_rdwr_t *doio;
1217 	struct vnode *vp;
1218 	void *rl_cookie;
1219 	struct vn_io_fault_args args;
1220 	int error;
1221 
1222 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1223 	vp = fp->f_vnode;
1224 
1225 	/*
1226 	 * The ability to read(2) on a directory has historically been
1227 	 * allowed for all users, but this can and has been the source of
1228 	 * at least one security issue in the past.  As such, it is now hidden
1229 	 * away behind a sysctl for those that actually need it to use it, and
1230 	 * restricted to root when it's turned on to make it relatively safe to
1231 	 * leave on for longer sessions of need.
1232 	 */
1233 	if (vp->v_type == VDIR) {
1234 		KASSERT(uio->uio_rw == UIO_READ,
1235 		    ("illegal write attempted on a directory"));
1236 		if (!vfs_allow_read_dir)
1237 			return (EISDIR);
1238 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1239 			return (EISDIR);
1240 	}
1241 
1242 	foffset_lock_uio(fp, uio, flags);
1243 	if (do_vn_io_fault(vp, uio)) {
1244 		args.kind = VN_IO_FAULT_FOP;
1245 		args.args.fop_args.fp = fp;
1246 		args.args.fop_args.doio = doio;
1247 		args.cred = active_cred;
1248 		args.flags = flags | FOF_OFFSET;
1249 		if (uio->uio_rw == UIO_READ) {
1250 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1251 			    uio->uio_offset + uio->uio_resid);
1252 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1253 		    (flags & FOF_OFFSET) == 0) {
1254 			/* For appenders, punt and lock the whole range. */
1255 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1256 		} else {
1257 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1258 			    uio->uio_offset + uio->uio_resid);
1259 		}
1260 		error = vn_io_fault1(vp, uio, &args, td);
1261 		vn_rangelock_unlock(vp, rl_cookie);
1262 	} else {
1263 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1264 	}
1265 	foffset_unlock_uio(fp, uio, flags);
1266 	return (error);
1267 }
1268 
1269 /*
1270  * Helper function to perform the requested uiomove operation using
1271  * the held pages for io->uio_iov[0].iov_base buffer instead of
1272  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1273  * instead of iov_base prevents page faults that could occur due to
1274  * pmap_collect() invalidating the mapping created by
1275  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1276  * object cleanup revoking the write access from page mappings.
1277  *
1278  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1279  * instead of plain uiomove().
1280  */
1281 int
1282 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1283 {
1284 	struct uio transp_uio;
1285 	struct iovec transp_iov[1];
1286 	struct thread *td;
1287 	size_t adv;
1288 	int error, pgadv;
1289 
1290 	td = curthread;
1291 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1292 	    uio->uio_segflg != UIO_USERSPACE)
1293 		return (uiomove(data, xfersize, uio));
1294 
1295 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1296 	transp_iov[0].iov_base = data;
1297 	transp_uio.uio_iov = &transp_iov[0];
1298 	transp_uio.uio_iovcnt = 1;
1299 	if (xfersize > uio->uio_resid)
1300 		xfersize = uio->uio_resid;
1301 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1302 	transp_uio.uio_offset = 0;
1303 	transp_uio.uio_segflg = UIO_SYSSPACE;
1304 	/*
1305 	 * Since transp_iov points to data, and td_ma page array
1306 	 * corresponds to original uio->uio_iov, we need to invert the
1307 	 * direction of the i/o operation as passed to
1308 	 * uiomove_fromphys().
1309 	 */
1310 	switch (uio->uio_rw) {
1311 	case UIO_WRITE:
1312 		transp_uio.uio_rw = UIO_READ;
1313 		break;
1314 	case UIO_READ:
1315 		transp_uio.uio_rw = UIO_WRITE;
1316 		break;
1317 	}
1318 	transp_uio.uio_td = uio->uio_td;
1319 	error = uiomove_fromphys(td->td_ma,
1320 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1321 	    xfersize, &transp_uio);
1322 	adv = xfersize - transp_uio.uio_resid;
1323 	pgadv =
1324 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1325 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1326 	td->td_ma += pgadv;
1327 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1328 	    pgadv));
1329 	td->td_ma_cnt -= pgadv;
1330 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1331 	uio->uio_iov->iov_len -= adv;
1332 	uio->uio_resid -= adv;
1333 	uio->uio_offset += adv;
1334 	return (error);
1335 }
1336 
1337 int
1338 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1339     struct uio *uio)
1340 {
1341 	struct thread *td;
1342 	vm_offset_t iov_base;
1343 	int cnt, pgadv;
1344 
1345 	td = curthread;
1346 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1347 	    uio->uio_segflg != UIO_USERSPACE)
1348 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1349 
1350 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1351 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1352 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1353 	switch (uio->uio_rw) {
1354 	case UIO_WRITE:
1355 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1356 		    offset, cnt);
1357 		break;
1358 	case UIO_READ:
1359 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1360 		    cnt);
1361 		break;
1362 	}
1363 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1364 	td->td_ma += pgadv;
1365 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1366 	    pgadv));
1367 	td->td_ma_cnt -= pgadv;
1368 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1369 	uio->uio_iov->iov_len -= cnt;
1370 	uio->uio_resid -= cnt;
1371 	uio->uio_offset += cnt;
1372 	return (0);
1373 }
1374 
1375 /*
1376  * File table truncate routine.
1377  */
1378 static int
1379 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1380     struct thread *td)
1381 {
1382 	struct mount *mp;
1383 	struct vnode *vp;
1384 	void *rl_cookie;
1385 	int error;
1386 
1387 	vp = fp->f_vnode;
1388 
1389 	/*
1390 	 * Lock the whole range for truncation.  Otherwise split i/o
1391 	 * might happen partly before and partly after the truncation.
1392 	 */
1393 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1394 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1395 	if (error)
1396 		goto out1;
1397 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1398 	AUDIT_ARG_VNODE1(vp);
1399 	if (vp->v_type == VDIR) {
1400 		error = EISDIR;
1401 		goto out;
1402 	}
1403 #ifdef MAC
1404 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1405 	if (error)
1406 		goto out;
1407 #endif
1408 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1409 	    fp->f_cred);
1410 out:
1411 	VOP_UNLOCK(vp);
1412 	vn_finished_write(mp);
1413 out1:
1414 	vn_rangelock_unlock(vp, rl_cookie);
1415 	return (error);
1416 }
1417 
1418 /*
1419  * Truncate a file that is already locked.
1420  */
1421 int
1422 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1423     struct ucred *cred)
1424 {
1425 	struct vattr vattr;
1426 	int error;
1427 
1428 	error = VOP_ADD_WRITECOUNT(vp, 1);
1429 	if (error == 0) {
1430 		VATTR_NULL(&vattr);
1431 		vattr.va_size = length;
1432 		if (sync)
1433 			vattr.va_vaflags |= VA_SYNC;
1434 		error = VOP_SETATTR(vp, &vattr, cred);
1435 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1436 	}
1437 	return (error);
1438 }
1439 
1440 /*
1441  * File table vnode stat routine.
1442  */
1443 static int
1444 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1445     struct thread *td)
1446 {
1447 	struct vnode *vp = fp->f_vnode;
1448 	int error;
1449 
1450 	vn_lock(vp, LK_SHARED | LK_RETRY);
1451 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1452 	VOP_UNLOCK(vp);
1453 
1454 	return (error);
1455 }
1456 
1457 /*
1458  * Stat a vnode; implementation for the stat syscall
1459  */
1460 int
1461 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1462     struct ucred *file_cred, struct thread *td)
1463 {
1464 	struct vattr vattr;
1465 	struct vattr *vap;
1466 	int error;
1467 	u_short mode;
1468 
1469 	AUDIT_ARG_VNODE1(vp);
1470 #ifdef MAC
1471 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1472 	if (error)
1473 		return (error);
1474 #endif
1475 
1476 	vap = &vattr;
1477 
1478 	/*
1479 	 * Initialize defaults for new and unusual fields, so that file
1480 	 * systems which don't support these fields don't need to know
1481 	 * about them.
1482 	 */
1483 	vap->va_birthtime.tv_sec = -1;
1484 	vap->va_birthtime.tv_nsec = 0;
1485 	vap->va_fsid = VNOVAL;
1486 	vap->va_rdev = NODEV;
1487 
1488 	error = VOP_GETATTR(vp, vap, active_cred);
1489 	if (error)
1490 		return (error);
1491 
1492 	/*
1493 	 * Zero the spare stat fields
1494 	 */
1495 	bzero(sb, sizeof *sb);
1496 
1497 	/*
1498 	 * Copy from vattr table
1499 	 */
1500 	if (vap->va_fsid != VNOVAL)
1501 		sb->st_dev = vap->va_fsid;
1502 	else
1503 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1504 	sb->st_ino = vap->va_fileid;
1505 	mode = vap->va_mode;
1506 	switch (vap->va_type) {
1507 	case VREG:
1508 		mode |= S_IFREG;
1509 		break;
1510 	case VDIR:
1511 		mode |= S_IFDIR;
1512 		break;
1513 	case VBLK:
1514 		mode |= S_IFBLK;
1515 		break;
1516 	case VCHR:
1517 		mode |= S_IFCHR;
1518 		break;
1519 	case VLNK:
1520 		mode |= S_IFLNK;
1521 		break;
1522 	case VSOCK:
1523 		mode |= S_IFSOCK;
1524 		break;
1525 	case VFIFO:
1526 		mode |= S_IFIFO;
1527 		break;
1528 	default:
1529 		return (EBADF);
1530 	}
1531 	sb->st_mode = mode;
1532 	sb->st_nlink = vap->va_nlink;
1533 	sb->st_uid = vap->va_uid;
1534 	sb->st_gid = vap->va_gid;
1535 	sb->st_rdev = vap->va_rdev;
1536 	if (vap->va_size > OFF_MAX)
1537 		return (EOVERFLOW);
1538 	sb->st_size = vap->va_size;
1539 	sb->st_atim.tv_sec = vap->va_atime.tv_sec;
1540 	sb->st_atim.tv_nsec = vap->va_atime.tv_nsec;
1541 	sb->st_mtim.tv_sec = vap->va_mtime.tv_sec;
1542 	sb->st_mtim.tv_nsec = vap->va_mtime.tv_nsec;
1543 	sb->st_ctim.tv_sec = vap->va_ctime.tv_sec;
1544 	sb->st_ctim.tv_nsec = vap->va_ctime.tv_nsec;
1545 	sb->st_birthtim.tv_sec = vap->va_birthtime.tv_sec;
1546 	sb->st_birthtim.tv_nsec = vap->va_birthtime.tv_nsec;
1547 
1548         /*
1549 	 * According to www.opengroup.org, the meaning of st_blksize is
1550 	 *   "a filesystem-specific preferred I/O block size for this
1551 	 *    object.  In some filesystem types, this may vary from file
1552 	 *    to file"
1553 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1554 	 */
1555 
1556 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1557 
1558 	sb->st_flags = vap->va_flags;
1559 	if (priv_check_cred_vfs_generation(td->td_ucred))
1560 		sb->st_gen = 0;
1561 	else
1562 		sb->st_gen = vap->va_gen;
1563 
1564 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1565 	return (0);
1566 }
1567 
1568 /*
1569  * File table vnode ioctl routine.
1570  */
1571 static int
1572 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1573     struct thread *td)
1574 {
1575 	struct vattr vattr;
1576 	struct vnode *vp;
1577 	struct fiobmap2_arg *bmarg;
1578 	int error;
1579 
1580 	vp = fp->f_vnode;
1581 	switch (vp->v_type) {
1582 	case VDIR:
1583 	case VREG:
1584 		switch (com) {
1585 		case FIONREAD:
1586 			vn_lock(vp, LK_SHARED | LK_RETRY);
1587 			error = VOP_GETATTR(vp, &vattr, active_cred);
1588 			VOP_UNLOCK(vp);
1589 			if (error == 0)
1590 				*(int *)data = vattr.va_size - fp->f_offset;
1591 			return (error);
1592 		case FIOBMAP2:
1593 			bmarg = (struct fiobmap2_arg *)data;
1594 			vn_lock(vp, LK_SHARED | LK_RETRY);
1595 #ifdef MAC
1596 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1597 			    vp);
1598 			if (error == 0)
1599 #endif
1600 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1601 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1602 			VOP_UNLOCK(vp);
1603 			return (error);
1604 		case FIONBIO:
1605 		case FIOASYNC:
1606 			return (0);
1607 		default:
1608 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1609 			    active_cred, td));
1610 		}
1611 		break;
1612 	case VCHR:
1613 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1614 		    active_cred, td));
1615 	default:
1616 		return (ENOTTY);
1617 	}
1618 }
1619 
1620 /*
1621  * File table vnode poll routine.
1622  */
1623 static int
1624 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1625     struct thread *td)
1626 {
1627 	struct vnode *vp;
1628 	int error;
1629 
1630 	vp = fp->f_vnode;
1631 #ifdef MAC
1632 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1633 	AUDIT_ARG_VNODE1(vp);
1634 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1635 	VOP_UNLOCK(vp);
1636 	if (!error)
1637 #endif
1638 
1639 	error = VOP_POLL(vp, events, fp->f_cred, td);
1640 	return (error);
1641 }
1642 
1643 /*
1644  * Acquire the requested lock and then check for validity.  LK_RETRY
1645  * permits vn_lock to return doomed vnodes.
1646  */
1647 static int __noinline
1648 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1649     int error)
1650 {
1651 
1652 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1653 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1654 
1655 	if (error == 0)
1656 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1657 
1658 	if ((flags & LK_RETRY) == 0) {
1659 		if (error == 0) {
1660 			VOP_UNLOCK(vp);
1661 			error = ENOENT;
1662 		}
1663 		return (error);
1664 	}
1665 
1666 	/*
1667 	 * LK_RETRY case.
1668 	 *
1669 	 * Nothing to do if we got the lock.
1670 	 */
1671 	if (error == 0)
1672 		return (0);
1673 
1674 	/*
1675 	 * Interlock was dropped by the call in _vn_lock.
1676 	 */
1677 	flags &= ~LK_INTERLOCK;
1678 	do {
1679 		error = VOP_LOCK1(vp, flags, file, line);
1680 	} while (error != 0);
1681 	return (0);
1682 }
1683 
1684 int
1685 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1686 {
1687 	int error;
1688 
1689 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1690 	    ("vn_lock: no locktype (%d passed)", flags));
1691 	VNPASS(vp->v_holdcnt > 0, vp);
1692 	error = VOP_LOCK1(vp, flags, file, line);
1693 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1694 		return (_vn_lock_fallback(vp, flags, file, line, error));
1695 	return (0);
1696 }
1697 
1698 /*
1699  * File table vnode close routine.
1700  */
1701 static int
1702 vn_closefile(struct file *fp, struct thread *td)
1703 {
1704 	struct vnode *vp;
1705 	struct flock lf;
1706 	int error;
1707 	bool ref;
1708 
1709 	vp = fp->f_vnode;
1710 	fp->f_ops = &badfileops;
1711 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1712 
1713 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1714 
1715 	if (__predict_false(ref)) {
1716 		lf.l_whence = SEEK_SET;
1717 		lf.l_start = 0;
1718 		lf.l_len = 0;
1719 		lf.l_type = F_UNLCK;
1720 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1721 		vrele(vp);
1722 	}
1723 	return (error);
1724 }
1725 
1726 /*
1727  * Preparing to start a filesystem write operation. If the operation is
1728  * permitted, then we bump the count of operations in progress and
1729  * proceed. If a suspend request is in progress, we wait until the
1730  * suspension is over, and then proceed.
1731  */
1732 static int
1733 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1734 {
1735 	int error, mflags;
1736 
1737 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1738 	    vfs_op_thread_enter(mp)) {
1739 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1740 		vfs_mp_count_add_pcpu(mp, writeopcount, 1);
1741 		vfs_op_thread_exit(mp);
1742 		return (0);
1743 	}
1744 
1745 	if (mplocked)
1746 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1747 	else
1748 		MNT_ILOCK(mp);
1749 
1750 	error = 0;
1751 
1752 	/*
1753 	 * Check on status of suspension.
1754 	 */
1755 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1756 	    mp->mnt_susp_owner != curthread) {
1757 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1758 		    (flags & PCATCH) : 0) | (PUSER - 1);
1759 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1760 			if (flags & V_NOWAIT) {
1761 				error = EWOULDBLOCK;
1762 				goto unlock;
1763 			}
1764 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1765 			    "suspfs", 0);
1766 			if (error)
1767 				goto unlock;
1768 		}
1769 	}
1770 	if (flags & V_XSLEEP)
1771 		goto unlock;
1772 	mp->mnt_writeopcount++;
1773 unlock:
1774 	if (error != 0 || (flags & V_XSLEEP) != 0)
1775 		MNT_REL(mp);
1776 	MNT_IUNLOCK(mp);
1777 	return (error);
1778 }
1779 
1780 int
1781 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1782 {
1783 	struct mount *mp;
1784 	int error;
1785 
1786 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1787 	    ("V_MNTREF requires mp"));
1788 
1789 	error = 0;
1790 	/*
1791 	 * If a vnode is provided, get and return the mount point that
1792 	 * to which it will write.
1793 	 */
1794 	if (vp != NULL) {
1795 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1796 			*mpp = NULL;
1797 			if (error != EOPNOTSUPP)
1798 				return (error);
1799 			return (0);
1800 		}
1801 	}
1802 	if ((mp = *mpp) == NULL)
1803 		return (0);
1804 
1805 	/*
1806 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1807 	 * a vfs_ref().
1808 	 * As long as a vnode is not provided we need to acquire a
1809 	 * refcount for the provided mountpoint too, in order to
1810 	 * emulate a vfs_ref().
1811 	 */
1812 	if (vp == NULL && (flags & V_MNTREF) == 0)
1813 		vfs_ref(mp);
1814 
1815 	return (vn_start_write_refed(mp, flags, false));
1816 }
1817 
1818 /*
1819  * Secondary suspension. Used by operations such as vop_inactive
1820  * routines that are needed by the higher level functions. These
1821  * are allowed to proceed until all the higher level functions have
1822  * completed (indicated by mnt_writeopcount dropping to zero). At that
1823  * time, these operations are halted until the suspension is over.
1824  */
1825 int
1826 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1827 {
1828 	struct mount *mp;
1829 	int error;
1830 
1831 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1832 	    ("V_MNTREF requires mp"));
1833 
1834  retry:
1835 	if (vp != NULL) {
1836 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1837 			*mpp = NULL;
1838 			if (error != EOPNOTSUPP)
1839 				return (error);
1840 			return (0);
1841 		}
1842 	}
1843 	/*
1844 	 * If we are not suspended or have not yet reached suspended
1845 	 * mode, then let the operation proceed.
1846 	 */
1847 	if ((mp = *mpp) == NULL)
1848 		return (0);
1849 
1850 	/*
1851 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1852 	 * a vfs_ref().
1853 	 * As long as a vnode is not provided we need to acquire a
1854 	 * refcount for the provided mountpoint too, in order to
1855 	 * emulate a vfs_ref().
1856 	 */
1857 	MNT_ILOCK(mp);
1858 	if (vp == NULL && (flags & V_MNTREF) == 0)
1859 		MNT_REF(mp);
1860 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1861 		mp->mnt_secondary_writes++;
1862 		mp->mnt_secondary_accwrites++;
1863 		MNT_IUNLOCK(mp);
1864 		return (0);
1865 	}
1866 	if (flags & V_NOWAIT) {
1867 		MNT_REL(mp);
1868 		MNT_IUNLOCK(mp);
1869 		return (EWOULDBLOCK);
1870 	}
1871 	/*
1872 	 * Wait for the suspension to finish.
1873 	 */
1874 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1875 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1876 	    "suspfs", 0);
1877 	vfs_rel(mp);
1878 	if (error == 0)
1879 		goto retry;
1880 	return (error);
1881 }
1882 
1883 /*
1884  * Filesystem write operation has completed. If we are suspending and this
1885  * operation is the last one, notify the suspender that the suspension is
1886  * now in effect.
1887  */
1888 void
1889 vn_finished_write(struct mount *mp)
1890 {
1891 	int c;
1892 
1893 	if (mp == NULL)
1894 		return;
1895 
1896 	if (vfs_op_thread_enter(mp)) {
1897 		vfs_mp_count_sub_pcpu(mp, writeopcount, 1);
1898 		vfs_mp_count_sub_pcpu(mp, ref, 1);
1899 		vfs_op_thread_exit(mp);
1900 		return;
1901 	}
1902 
1903 	MNT_ILOCK(mp);
1904 	vfs_assert_mount_counters(mp);
1905 	MNT_REL(mp);
1906 	c = --mp->mnt_writeopcount;
1907 	if (mp->mnt_vfs_ops == 0) {
1908 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1909 		MNT_IUNLOCK(mp);
1910 		return;
1911 	}
1912 	if (c < 0)
1913 		vfs_dump_mount_counters(mp);
1914 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
1915 		wakeup(&mp->mnt_writeopcount);
1916 	MNT_IUNLOCK(mp);
1917 }
1918 
1919 /*
1920  * Filesystem secondary write operation has completed. If we are
1921  * suspending and this operation is the last one, notify the suspender
1922  * that the suspension is now in effect.
1923  */
1924 void
1925 vn_finished_secondary_write(struct mount *mp)
1926 {
1927 	if (mp == NULL)
1928 		return;
1929 	MNT_ILOCK(mp);
1930 	MNT_REL(mp);
1931 	mp->mnt_secondary_writes--;
1932 	if (mp->mnt_secondary_writes < 0)
1933 		panic("vn_finished_secondary_write: neg cnt");
1934 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1935 	    mp->mnt_secondary_writes <= 0)
1936 		wakeup(&mp->mnt_secondary_writes);
1937 	MNT_IUNLOCK(mp);
1938 }
1939 
1940 /*
1941  * Request a filesystem to suspend write operations.
1942  */
1943 int
1944 vfs_write_suspend(struct mount *mp, int flags)
1945 {
1946 	int error;
1947 
1948 	vfs_op_enter(mp);
1949 
1950 	MNT_ILOCK(mp);
1951 	vfs_assert_mount_counters(mp);
1952 	if (mp->mnt_susp_owner == curthread) {
1953 		vfs_op_exit_locked(mp);
1954 		MNT_IUNLOCK(mp);
1955 		return (EALREADY);
1956 	}
1957 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1958 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1959 
1960 	/*
1961 	 * Unmount holds a write reference on the mount point.  If we
1962 	 * own busy reference and drain for writers, we deadlock with
1963 	 * the reference draining in the unmount path.  Callers of
1964 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1965 	 * vfs_busy() reference is owned and caller is not in the
1966 	 * unmount context.
1967 	 */
1968 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1969 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1970 		vfs_op_exit_locked(mp);
1971 		MNT_IUNLOCK(mp);
1972 		return (EBUSY);
1973 	}
1974 
1975 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1976 	mp->mnt_susp_owner = curthread;
1977 	if (mp->mnt_writeopcount > 0)
1978 		(void) msleep(&mp->mnt_writeopcount,
1979 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1980 	else
1981 		MNT_IUNLOCK(mp);
1982 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
1983 		vfs_write_resume(mp, 0);
1984 		/* vfs_write_resume does vfs_op_exit() for us */
1985 	}
1986 	return (error);
1987 }
1988 
1989 /*
1990  * Request a filesystem to resume write operations.
1991  */
1992 void
1993 vfs_write_resume(struct mount *mp, int flags)
1994 {
1995 
1996 	MNT_ILOCK(mp);
1997 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1998 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1999 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2000 				       MNTK_SUSPENDED);
2001 		mp->mnt_susp_owner = NULL;
2002 		wakeup(&mp->mnt_writeopcount);
2003 		wakeup(&mp->mnt_flag);
2004 		curthread->td_pflags &= ~TDP_IGNSUSP;
2005 		if ((flags & VR_START_WRITE) != 0) {
2006 			MNT_REF(mp);
2007 			mp->mnt_writeopcount++;
2008 		}
2009 		MNT_IUNLOCK(mp);
2010 		if ((flags & VR_NO_SUSPCLR) == 0)
2011 			VFS_SUSP_CLEAN(mp);
2012 		vfs_op_exit(mp);
2013 	} else if ((flags & VR_START_WRITE) != 0) {
2014 		MNT_REF(mp);
2015 		vn_start_write_refed(mp, 0, true);
2016 	} else {
2017 		MNT_IUNLOCK(mp);
2018 	}
2019 }
2020 
2021 /*
2022  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2023  * methods.
2024  */
2025 int
2026 vfs_write_suspend_umnt(struct mount *mp)
2027 {
2028 	int error;
2029 
2030 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2031 	    ("vfs_write_suspend_umnt: recursed"));
2032 
2033 	/* dounmount() already called vn_start_write(). */
2034 	for (;;) {
2035 		vn_finished_write(mp);
2036 		error = vfs_write_suspend(mp, 0);
2037 		if (error != 0) {
2038 			vn_start_write(NULL, &mp, V_WAIT);
2039 			return (error);
2040 		}
2041 		MNT_ILOCK(mp);
2042 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2043 			break;
2044 		MNT_IUNLOCK(mp);
2045 		vn_start_write(NULL, &mp, V_WAIT);
2046 	}
2047 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2048 	wakeup(&mp->mnt_flag);
2049 	MNT_IUNLOCK(mp);
2050 	curthread->td_pflags |= TDP_IGNSUSP;
2051 	return (0);
2052 }
2053 
2054 /*
2055  * Implement kqueues for files by translating it to vnode operation.
2056  */
2057 static int
2058 vn_kqfilter(struct file *fp, struct knote *kn)
2059 {
2060 
2061 	return (VOP_KQFILTER(fp->f_vnode, kn));
2062 }
2063 
2064 /*
2065  * Simplified in-kernel wrapper calls for extended attribute access.
2066  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2067  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2068  */
2069 int
2070 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2071     const char *attrname, int *buflen, char *buf, struct thread *td)
2072 {
2073 	struct uio	auio;
2074 	struct iovec	iov;
2075 	int	error;
2076 
2077 	iov.iov_len = *buflen;
2078 	iov.iov_base = buf;
2079 
2080 	auio.uio_iov = &iov;
2081 	auio.uio_iovcnt = 1;
2082 	auio.uio_rw = UIO_READ;
2083 	auio.uio_segflg = UIO_SYSSPACE;
2084 	auio.uio_td = td;
2085 	auio.uio_offset = 0;
2086 	auio.uio_resid = *buflen;
2087 
2088 	if ((ioflg & IO_NODELOCKED) == 0)
2089 		vn_lock(vp, LK_SHARED | LK_RETRY);
2090 
2091 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2092 
2093 	/* authorize attribute retrieval as kernel */
2094 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2095 	    td);
2096 
2097 	if ((ioflg & IO_NODELOCKED) == 0)
2098 		VOP_UNLOCK(vp);
2099 
2100 	if (error == 0) {
2101 		*buflen = *buflen - auio.uio_resid;
2102 	}
2103 
2104 	return (error);
2105 }
2106 
2107 /*
2108  * XXX failure mode if partially written?
2109  */
2110 int
2111 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2112     const char *attrname, int buflen, char *buf, struct thread *td)
2113 {
2114 	struct uio	auio;
2115 	struct iovec	iov;
2116 	struct mount	*mp;
2117 	int	error;
2118 
2119 	iov.iov_len = buflen;
2120 	iov.iov_base = buf;
2121 
2122 	auio.uio_iov = &iov;
2123 	auio.uio_iovcnt = 1;
2124 	auio.uio_rw = UIO_WRITE;
2125 	auio.uio_segflg = UIO_SYSSPACE;
2126 	auio.uio_td = td;
2127 	auio.uio_offset = 0;
2128 	auio.uio_resid = buflen;
2129 
2130 	if ((ioflg & IO_NODELOCKED) == 0) {
2131 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2132 			return (error);
2133 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2134 	}
2135 
2136 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2137 
2138 	/* authorize attribute setting as kernel */
2139 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2140 
2141 	if ((ioflg & IO_NODELOCKED) == 0) {
2142 		vn_finished_write(mp);
2143 		VOP_UNLOCK(vp);
2144 	}
2145 
2146 	return (error);
2147 }
2148 
2149 int
2150 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2151     const char *attrname, struct thread *td)
2152 {
2153 	struct mount	*mp;
2154 	int	error;
2155 
2156 	if ((ioflg & IO_NODELOCKED) == 0) {
2157 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2158 			return (error);
2159 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2160 	}
2161 
2162 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2163 
2164 	/* authorize attribute removal as kernel */
2165 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2166 	if (error == EOPNOTSUPP)
2167 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2168 		    NULL, td);
2169 
2170 	if ((ioflg & IO_NODELOCKED) == 0) {
2171 		vn_finished_write(mp);
2172 		VOP_UNLOCK(vp);
2173 	}
2174 
2175 	return (error);
2176 }
2177 
2178 static int
2179 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2180     struct vnode **rvp)
2181 {
2182 
2183 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2184 }
2185 
2186 int
2187 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2188 {
2189 
2190 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2191 	    lkflags, rvp));
2192 }
2193 
2194 int
2195 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2196     int lkflags, struct vnode **rvp)
2197 {
2198 	struct mount *mp;
2199 	int ltype, error;
2200 
2201 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2202 	mp = vp->v_mount;
2203 	ltype = VOP_ISLOCKED(vp);
2204 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2205 	    ("vn_vget_ino: vp not locked"));
2206 	error = vfs_busy(mp, MBF_NOWAIT);
2207 	if (error != 0) {
2208 		vfs_ref(mp);
2209 		VOP_UNLOCK(vp);
2210 		error = vfs_busy(mp, 0);
2211 		vn_lock(vp, ltype | LK_RETRY);
2212 		vfs_rel(mp);
2213 		if (error != 0)
2214 			return (ENOENT);
2215 		if (VN_IS_DOOMED(vp)) {
2216 			vfs_unbusy(mp);
2217 			return (ENOENT);
2218 		}
2219 	}
2220 	VOP_UNLOCK(vp);
2221 	error = alloc(mp, alloc_arg, lkflags, rvp);
2222 	vfs_unbusy(mp);
2223 	if (error != 0 || *rvp != vp)
2224 		vn_lock(vp, ltype | LK_RETRY);
2225 	if (VN_IS_DOOMED(vp)) {
2226 		if (error == 0) {
2227 			if (*rvp == vp)
2228 				vunref(vp);
2229 			else
2230 				vput(*rvp);
2231 		}
2232 		error = ENOENT;
2233 	}
2234 	return (error);
2235 }
2236 
2237 int
2238 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2239     struct thread *td)
2240 {
2241 
2242 	if (vp->v_type != VREG || td == NULL)
2243 		return (0);
2244 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2245 	    lim_cur(td, RLIMIT_FSIZE)) {
2246 		PROC_LOCK(td->td_proc);
2247 		kern_psignal(td->td_proc, SIGXFSZ);
2248 		PROC_UNLOCK(td->td_proc);
2249 		return (EFBIG);
2250 	}
2251 	return (0);
2252 }
2253 
2254 int
2255 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2256     struct thread *td)
2257 {
2258 	struct vnode *vp;
2259 
2260 	vp = fp->f_vnode;
2261 #ifdef AUDIT
2262 	vn_lock(vp, LK_SHARED | LK_RETRY);
2263 	AUDIT_ARG_VNODE1(vp);
2264 	VOP_UNLOCK(vp);
2265 #endif
2266 	return (setfmode(td, active_cred, vp, mode));
2267 }
2268 
2269 int
2270 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2271     struct thread *td)
2272 {
2273 	struct vnode *vp;
2274 
2275 	vp = fp->f_vnode;
2276 #ifdef AUDIT
2277 	vn_lock(vp, LK_SHARED | LK_RETRY);
2278 	AUDIT_ARG_VNODE1(vp);
2279 	VOP_UNLOCK(vp);
2280 #endif
2281 	return (setfown(td, active_cred, vp, uid, gid));
2282 }
2283 
2284 void
2285 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2286 {
2287 	vm_object_t object;
2288 
2289 	if ((object = vp->v_object) == NULL)
2290 		return;
2291 	VM_OBJECT_WLOCK(object);
2292 	vm_object_page_remove(object, start, end, 0);
2293 	VM_OBJECT_WUNLOCK(object);
2294 }
2295 
2296 int
2297 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2298 {
2299 	struct vattr va;
2300 	daddr_t bn, bnp;
2301 	uint64_t bsize;
2302 	off_t noff;
2303 	int error;
2304 
2305 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2306 	    ("Wrong command %lu", cmd));
2307 
2308 	if (vn_lock(vp, LK_SHARED) != 0)
2309 		return (EBADF);
2310 	if (vp->v_type != VREG) {
2311 		error = ENOTTY;
2312 		goto unlock;
2313 	}
2314 	error = VOP_GETATTR(vp, &va, cred);
2315 	if (error != 0)
2316 		goto unlock;
2317 	noff = *off;
2318 	if (noff >= va.va_size) {
2319 		error = ENXIO;
2320 		goto unlock;
2321 	}
2322 	bsize = vp->v_mount->mnt_stat.f_iosize;
2323 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2324 	    noff % bsize) {
2325 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2326 		if (error == EOPNOTSUPP) {
2327 			error = ENOTTY;
2328 			goto unlock;
2329 		}
2330 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2331 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2332 			noff = bn * bsize;
2333 			if (noff < *off)
2334 				noff = *off;
2335 			goto unlock;
2336 		}
2337 	}
2338 	if (noff > va.va_size)
2339 		noff = va.va_size;
2340 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2341 	if (cmd == FIOSEEKDATA)
2342 		error = ENXIO;
2343 unlock:
2344 	VOP_UNLOCK(vp);
2345 	if (error == 0)
2346 		*off = noff;
2347 	return (error);
2348 }
2349 
2350 int
2351 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2352 {
2353 	struct ucred *cred;
2354 	struct vnode *vp;
2355 	struct vattr vattr;
2356 	off_t foffset, size;
2357 	int error, noneg;
2358 
2359 	cred = td->td_ucred;
2360 	vp = fp->f_vnode;
2361 	foffset = foffset_lock(fp, 0);
2362 	noneg = (vp->v_type != VCHR);
2363 	error = 0;
2364 	switch (whence) {
2365 	case L_INCR:
2366 		if (noneg &&
2367 		    (foffset < 0 ||
2368 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2369 			error = EOVERFLOW;
2370 			break;
2371 		}
2372 		offset += foffset;
2373 		break;
2374 	case L_XTND:
2375 		vn_lock(vp, LK_SHARED | LK_RETRY);
2376 		error = VOP_GETATTR(vp, &vattr, cred);
2377 		VOP_UNLOCK(vp);
2378 		if (error)
2379 			break;
2380 
2381 		/*
2382 		 * If the file references a disk device, then fetch
2383 		 * the media size and use that to determine the ending
2384 		 * offset.
2385 		 */
2386 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2387 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2388 			vattr.va_size = size;
2389 		if (noneg &&
2390 		    (vattr.va_size > OFF_MAX ||
2391 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2392 			error = EOVERFLOW;
2393 			break;
2394 		}
2395 		offset += vattr.va_size;
2396 		break;
2397 	case L_SET:
2398 		break;
2399 	case SEEK_DATA:
2400 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2401 		if (error == ENOTTY)
2402 			error = EINVAL;
2403 		break;
2404 	case SEEK_HOLE:
2405 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2406 		if (error == ENOTTY)
2407 			error = EINVAL;
2408 		break;
2409 	default:
2410 		error = EINVAL;
2411 	}
2412 	if (error == 0 && noneg && offset < 0)
2413 		error = EINVAL;
2414 	if (error != 0)
2415 		goto drop;
2416 	VFS_KNOTE_UNLOCKED(vp, 0);
2417 	td->td_uretoff.tdu_off = offset;
2418 drop:
2419 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2420 	return (error);
2421 }
2422 
2423 int
2424 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2425     struct thread *td)
2426 {
2427 	int error;
2428 
2429 	/*
2430 	 * Grant permission if the caller is the owner of the file, or
2431 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2432 	 * on the file.  If the time pointer is null, then write
2433 	 * permission on the file is also sufficient.
2434 	 *
2435 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2436 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2437 	 * will be allowed to set the times [..] to the current
2438 	 * server time.
2439 	 */
2440 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2441 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2442 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2443 	return (error);
2444 }
2445 
2446 int
2447 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2448 {
2449 	struct vnode *vp;
2450 	int error;
2451 
2452 	if (fp->f_type == DTYPE_FIFO)
2453 		kif->kf_type = KF_TYPE_FIFO;
2454 	else
2455 		kif->kf_type = KF_TYPE_VNODE;
2456 	vp = fp->f_vnode;
2457 	vref(vp);
2458 	FILEDESC_SUNLOCK(fdp);
2459 	error = vn_fill_kinfo_vnode(vp, kif);
2460 	vrele(vp);
2461 	FILEDESC_SLOCK(fdp);
2462 	return (error);
2463 }
2464 
2465 static inline void
2466 vn_fill_junk(struct kinfo_file *kif)
2467 {
2468 	size_t len, olen;
2469 
2470 	/*
2471 	 * Simulate vn_fullpath returning changing values for a given
2472 	 * vp during e.g. coredump.
2473 	 */
2474 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2475 	olen = strlen(kif->kf_path);
2476 	if (len < olen)
2477 		strcpy(&kif->kf_path[len - 1], "$");
2478 	else
2479 		for (; olen < len; olen++)
2480 			strcpy(&kif->kf_path[olen], "A");
2481 }
2482 
2483 int
2484 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2485 {
2486 	struct vattr va;
2487 	char *fullpath, *freepath;
2488 	int error;
2489 
2490 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2491 	freepath = NULL;
2492 	fullpath = "-";
2493 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2494 	if (error == 0) {
2495 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2496 	}
2497 	if (freepath != NULL)
2498 		free(freepath, M_TEMP);
2499 
2500 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2501 		vn_fill_junk(kif);
2502 	);
2503 
2504 	/*
2505 	 * Retrieve vnode attributes.
2506 	 */
2507 	va.va_fsid = VNOVAL;
2508 	va.va_rdev = NODEV;
2509 	vn_lock(vp, LK_SHARED | LK_RETRY);
2510 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2511 	VOP_UNLOCK(vp);
2512 	if (error != 0)
2513 		return (error);
2514 	if (va.va_fsid != VNOVAL)
2515 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2516 	else
2517 		kif->kf_un.kf_file.kf_file_fsid =
2518 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2519 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2520 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2521 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2522 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2523 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2524 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2525 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2526 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2527 	return (0);
2528 }
2529 
2530 int
2531 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2532     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2533     struct thread *td)
2534 {
2535 #ifdef HWPMC_HOOKS
2536 	struct pmckern_map_in pkm;
2537 #endif
2538 	struct mount *mp;
2539 	struct vnode *vp;
2540 	vm_object_t object;
2541 	vm_prot_t maxprot;
2542 	boolean_t writecounted;
2543 	int error;
2544 
2545 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2546     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2547 	/*
2548 	 * POSIX shared-memory objects are defined to have
2549 	 * kernel persistence, and are not defined to support
2550 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2551 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2552 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2553 	 * flag to request this behavior.
2554 	 */
2555 	if ((fp->f_flag & FPOSIXSHM) != 0)
2556 		flags |= MAP_NOSYNC;
2557 #endif
2558 	vp = fp->f_vnode;
2559 
2560 	/*
2561 	 * Ensure that file and memory protections are
2562 	 * compatible.  Note that we only worry about
2563 	 * writability if mapping is shared; in this case,
2564 	 * current and max prot are dictated by the open file.
2565 	 * XXX use the vnode instead?  Problem is: what
2566 	 * credentials do we use for determination? What if
2567 	 * proc does a setuid?
2568 	 */
2569 	mp = vp->v_mount;
2570 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2571 		maxprot = VM_PROT_NONE;
2572 		if ((prot & VM_PROT_EXECUTE) != 0)
2573 			return (EACCES);
2574 	} else
2575 		maxprot = VM_PROT_EXECUTE;
2576 	if ((fp->f_flag & FREAD) != 0)
2577 		maxprot |= VM_PROT_READ;
2578 	else if ((prot & VM_PROT_READ) != 0)
2579 		return (EACCES);
2580 
2581 	/*
2582 	 * If we are sharing potential changes via MAP_SHARED and we
2583 	 * are trying to get write permission although we opened it
2584 	 * without asking for it, bail out.
2585 	 */
2586 	if ((flags & MAP_SHARED) != 0) {
2587 		if ((fp->f_flag & FWRITE) != 0)
2588 			maxprot |= VM_PROT_WRITE;
2589 		else if ((prot & VM_PROT_WRITE) != 0)
2590 			return (EACCES);
2591 	} else {
2592 		maxprot |= VM_PROT_WRITE;
2593 		cap_maxprot |= VM_PROT_WRITE;
2594 	}
2595 	maxprot &= cap_maxprot;
2596 
2597 	/*
2598 	 * For regular files and shared memory, POSIX requires that
2599 	 * the value of foff be a legitimate offset within the data
2600 	 * object.  In particular, negative offsets are invalid.
2601 	 * Blocking negative offsets and overflows here avoids
2602 	 * possible wraparound or user-level access into reserved
2603 	 * ranges of the data object later.  In contrast, POSIX does
2604 	 * not dictate how offsets are used by device drivers, so in
2605 	 * the case of a device mapping a negative offset is passed
2606 	 * on.
2607 	 */
2608 	if (
2609 #ifdef _LP64
2610 	    size > OFF_MAX ||
2611 #endif
2612 	    foff < 0 || foff > OFF_MAX - size)
2613 		return (EINVAL);
2614 
2615 	writecounted = FALSE;
2616 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2617 	    &foff, &object, &writecounted);
2618 	if (error != 0)
2619 		return (error);
2620 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2621 	    foff, writecounted, td);
2622 	if (error != 0) {
2623 		/*
2624 		 * If this mapping was accounted for in the vnode's
2625 		 * writecount, then undo that now.
2626 		 */
2627 		if (writecounted)
2628 			vm_pager_release_writecount(object, 0, size);
2629 		vm_object_deallocate(object);
2630 	}
2631 #ifdef HWPMC_HOOKS
2632 	/* Inform hwpmc(4) if an executable is being mapped. */
2633 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2634 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2635 			pkm.pm_file = vp;
2636 			pkm.pm_address = (uintptr_t) *addr;
2637 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2638 		}
2639 	}
2640 #endif
2641 	return (error);
2642 }
2643 
2644 void
2645 vn_fsid(struct vnode *vp, struct vattr *va)
2646 {
2647 	fsid_t *f;
2648 
2649 	f = &vp->v_mount->mnt_stat.f_fsid;
2650 	va->va_fsid = (uint32_t)f->val[1];
2651 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2652 	va->va_fsid += (uint32_t)f->val[0];
2653 }
2654 
2655 int
2656 vn_fsync_buf(struct vnode *vp, int waitfor)
2657 {
2658 	struct buf *bp, *nbp;
2659 	struct bufobj *bo;
2660 	struct mount *mp;
2661 	int error, maxretry;
2662 
2663 	error = 0;
2664 	maxretry = 10000;     /* large, arbitrarily chosen */
2665 	mp = NULL;
2666 	if (vp->v_type == VCHR) {
2667 		VI_LOCK(vp);
2668 		mp = vp->v_rdev->si_mountpt;
2669 		VI_UNLOCK(vp);
2670 	}
2671 	bo = &vp->v_bufobj;
2672 	BO_LOCK(bo);
2673 loop1:
2674 	/*
2675 	 * MARK/SCAN initialization to avoid infinite loops.
2676 	 */
2677         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2678 		bp->b_vflags &= ~BV_SCANNED;
2679 		bp->b_error = 0;
2680 	}
2681 
2682 	/*
2683 	 * Flush all dirty buffers associated with a vnode.
2684 	 */
2685 loop2:
2686 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2687 		if ((bp->b_vflags & BV_SCANNED) != 0)
2688 			continue;
2689 		bp->b_vflags |= BV_SCANNED;
2690 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2691 			if (waitfor != MNT_WAIT)
2692 				continue;
2693 			if (BUF_LOCK(bp,
2694 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2695 			    BO_LOCKPTR(bo)) != 0) {
2696 				BO_LOCK(bo);
2697 				goto loop1;
2698 			}
2699 			BO_LOCK(bo);
2700 		}
2701 		BO_UNLOCK(bo);
2702 		KASSERT(bp->b_bufobj == bo,
2703 		    ("bp %p wrong b_bufobj %p should be %p",
2704 		    bp, bp->b_bufobj, bo));
2705 		if ((bp->b_flags & B_DELWRI) == 0)
2706 			panic("fsync: not dirty");
2707 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2708 			vfs_bio_awrite(bp);
2709 		} else {
2710 			bremfree(bp);
2711 			bawrite(bp);
2712 		}
2713 		if (maxretry < 1000)
2714 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2715 		BO_LOCK(bo);
2716 		goto loop2;
2717 	}
2718 
2719 	/*
2720 	 * If synchronous the caller expects us to completely resolve all
2721 	 * dirty buffers in the system.  Wait for in-progress I/O to
2722 	 * complete (which could include background bitmap writes), then
2723 	 * retry if dirty blocks still exist.
2724 	 */
2725 	if (waitfor == MNT_WAIT) {
2726 		bufobj_wwait(bo, 0, 0);
2727 		if (bo->bo_dirty.bv_cnt > 0) {
2728 			/*
2729 			 * If we are unable to write any of these buffers
2730 			 * then we fail now rather than trying endlessly
2731 			 * to write them out.
2732 			 */
2733 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2734 				if ((error = bp->b_error) != 0)
2735 					break;
2736 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2737 			    (error == 0 && --maxretry >= 0))
2738 				goto loop1;
2739 			if (error == 0)
2740 				error = EAGAIN;
2741 		}
2742 	}
2743 	BO_UNLOCK(bo);
2744 	if (error != 0)
2745 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2746 
2747 	return (error);
2748 }
2749 
2750 /*
2751  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
2752  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
2753  * to do the actual copy.
2754  * vn_generic_copy_file_range() is factored out, so it can be called
2755  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
2756  * different file systems.
2757  */
2758 int
2759 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
2760     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
2761     struct ucred *outcred, struct thread *fsize_td)
2762 {
2763 	int error;
2764 	size_t len;
2765 	uint64_t uvalin, uvalout;
2766 
2767 	len = *lenp;
2768 	*lenp = 0;		/* For error returns. */
2769 	error = 0;
2770 
2771 	/* Do some sanity checks on the arguments. */
2772 	uvalin = *inoffp;
2773 	uvalin += len;
2774 	uvalout = *outoffp;
2775 	uvalout += len;
2776 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
2777 		error = EISDIR;
2778 	else if (*inoffp < 0 || uvalin > INT64_MAX || uvalin <
2779 	    (uint64_t)*inoffp || *outoffp < 0 || uvalout > INT64_MAX ||
2780 	    uvalout < (uint64_t)*outoffp || invp->v_type != VREG ||
2781 	    outvp->v_type != VREG)
2782 		error = EINVAL;
2783 	if (error != 0)
2784 		goto out;
2785 
2786 	/*
2787 	 * If the two vnode are for the same file system, call
2788 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
2789 	 * which can handle copies across multiple file systems.
2790 	 */
2791 	*lenp = len;
2792 	if (invp->v_mount == outvp->v_mount)
2793 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
2794 		    lenp, flags, incred, outcred, fsize_td);
2795 	else
2796 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
2797 		    outoffp, lenp, flags, incred, outcred, fsize_td);
2798 out:
2799 	return (error);
2800 }
2801 
2802 /*
2803  * Test len bytes of data starting at dat for all bytes == 0.
2804  * Return true if all bytes are zero, false otherwise.
2805  * Expects dat to be well aligned.
2806  */
2807 static bool
2808 mem_iszero(void *dat, int len)
2809 {
2810 	int i;
2811 	const u_int *p;
2812 	const char *cp;
2813 
2814 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
2815 		if (len >= sizeof(*p)) {
2816 			if (*p != 0)
2817 				return (false);
2818 		} else {
2819 			cp = (const char *)p;
2820 			for (i = 0; i < len; i++, cp++)
2821 				if (*cp != '\0')
2822 					return (false);
2823 		}
2824 	}
2825 	return (true);
2826 }
2827 
2828 /*
2829  * Look for a hole in the output file and, if found, adjust *outoffp
2830  * and *xferp to skip past the hole.
2831  * *xferp is the entire hole length to be written and xfer2 is how many bytes
2832  * to be written as 0's upon return.
2833  */
2834 static off_t
2835 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
2836     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
2837 {
2838 	int error;
2839 	off_t delta;
2840 
2841 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
2842 		*dataoffp = *outoffp;
2843 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
2844 		    curthread);
2845 		if (error == 0) {
2846 			*holeoffp = *dataoffp;
2847 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
2848 			    curthread);
2849 		}
2850 		if (error != 0 || *holeoffp == *dataoffp) {
2851 			/*
2852 			 * Since outvp is unlocked, it may be possible for
2853 			 * another thread to do a truncate(), lseek(), write()
2854 			 * creating a hole at startoff between the above
2855 			 * VOP_IOCTL() calls, if the other thread does not do
2856 			 * rangelocking.
2857 			 * If that happens, *holeoffp == *dataoffp and finding
2858 			 * the hole has failed, so disable vn_skip_hole().
2859 			 */
2860 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
2861 			return (xfer2);
2862 		}
2863 		KASSERT(*dataoffp >= *outoffp,
2864 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
2865 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
2866 		KASSERT(*holeoffp > *dataoffp,
2867 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
2868 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
2869 	}
2870 
2871 	/*
2872 	 * If there is a hole before the data starts, advance *outoffp and
2873 	 * *xferp past the hole.
2874 	 */
2875 	if (*dataoffp > *outoffp) {
2876 		delta = *dataoffp - *outoffp;
2877 		if (delta >= *xferp) {
2878 			/* Entire *xferp is a hole. */
2879 			*outoffp += *xferp;
2880 			*xferp = 0;
2881 			return (0);
2882 		}
2883 		*xferp -= delta;
2884 		*outoffp += delta;
2885 		xfer2 = MIN(xfer2, *xferp);
2886 	}
2887 
2888 	/*
2889 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
2890 	 * that the write ends at the start of the hole.
2891 	 * *holeoffp should always be greater than *outoffp, but for the
2892 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
2893 	 * value.
2894 	 */
2895 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
2896 		xfer2 = *holeoffp - *outoffp;
2897 	return (xfer2);
2898 }
2899 
2900 /*
2901  * Write an xfer sized chunk to outvp in blksize blocks from dat.
2902  * dat is a maximum of blksize in length and can be written repeatedly in
2903  * the chunk.
2904  * If growfile == true, just grow the file via vn_truncate_locked() instead
2905  * of doing actual writes.
2906  * If checkhole == true, a hole is being punched, so skip over any hole
2907  * already in the output file.
2908  */
2909 static int
2910 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
2911     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
2912 {
2913 	struct mount *mp;
2914 	off_t dataoff, holeoff, xfer2;
2915 	int error, lckf;
2916 
2917 	/*
2918 	 * Loop around doing writes of blksize until write has been completed.
2919 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
2920 	 * done for each iteration, since the xfer argument can be very
2921 	 * large if there is a large hole to punch in the output file.
2922 	 */
2923 	error = 0;
2924 	holeoff = 0;
2925 	do {
2926 		xfer2 = MIN(xfer, blksize);
2927 		if (checkhole) {
2928 			/*
2929 			 * Punching a hole.  Skip writing if there is
2930 			 * already a hole in the output file.
2931 			 */
2932 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
2933 			    &dataoff, &holeoff, cred);
2934 			if (xfer == 0)
2935 				break;
2936 			if (holeoff < 0)
2937 				checkhole = false;
2938 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
2939 			    (intmax_t)xfer2));
2940 		}
2941 		bwillwrite();
2942 		mp = NULL;
2943 		error = vn_start_write(outvp, &mp, V_WAIT);
2944 		if (error == 0) {
2945 			if (MNT_SHARED_WRITES(mp))
2946 				lckf = LK_SHARED;
2947 			else
2948 				lckf = LK_EXCLUSIVE;
2949 			error = vn_lock(outvp, lckf);
2950 		}
2951 		if (error == 0) {
2952 			if (growfile)
2953 				error = vn_truncate_locked(outvp, outoff + xfer,
2954 				    false, cred);
2955 			else {
2956 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
2957 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
2958 				    curthread->td_ucred, cred, NULL, curthread);
2959 				outoff += xfer2;
2960 				xfer -= xfer2;
2961 			}
2962 			VOP_UNLOCK(outvp);
2963 		}
2964 		if (mp != NULL)
2965 			vn_finished_write(mp);
2966 	} while (!growfile && xfer > 0 && error == 0);
2967 	return (error);
2968 }
2969 
2970 /*
2971  * Copy a byte range of one file to another.  This function can handle the
2972  * case where invp and outvp are on different file systems.
2973  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
2974  * is no better file system specific way to do it.
2975  */
2976 int
2977 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
2978     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
2979     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
2980 {
2981 	struct vattr va;
2982 	struct mount *mp;
2983 	struct uio io;
2984 	off_t startoff, endoff, xfer, xfer2;
2985 	u_long blksize;
2986 	int error;
2987 	bool cantseek, readzeros, eof, lastblock;
2988 	ssize_t aresid;
2989 	size_t copylen, len, savlen;
2990 	char *dat;
2991 	long holein, holeout;
2992 
2993 	holein = holeout = 0;
2994 	savlen = len = *lenp;
2995 	error = 0;
2996 	dat = NULL;
2997 
2998 	error = vn_lock(invp, LK_SHARED);
2999 	if (error != 0)
3000 		goto out;
3001 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3002 		holein = 0;
3003 	VOP_UNLOCK(invp);
3004 
3005 	mp = NULL;
3006 	error = vn_start_write(outvp, &mp, V_WAIT);
3007 	if (error == 0)
3008 		error = vn_lock(outvp, LK_EXCLUSIVE);
3009 	if (error == 0) {
3010 		/*
3011 		 * If fsize_td != NULL, do a vn_rlimit_fsize() call,
3012 		 * now that outvp is locked.
3013 		 */
3014 		if (fsize_td != NULL) {
3015 			io.uio_offset = *outoffp;
3016 			io.uio_resid = len;
3017 			error = vn_rlimit_fsize(outvp, &io, fsize_td);
3018 			if (error != 0)
3019 				error = EFBIG;
3020 		}
3021 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3022 			holeout = 0;
3023 		/*
3024 		 * Holes that are past EOF do not need to be written as a block
3025 		 * of zero bytes.  So, truncate the output file as far as
3026 		 * possible and then use va.va_size to decide if writing 0
3027 		 * bytes is necessary in the loop below.
3028 		 */
3029 		if (error == 0)
3030 			error = VOP_GETATTR(outvp, &va, outcred);
3031 		if (error == 0 && va.va_size > *outoffp && va.va_size <=
3032 		    *outoffp + len) {
3033 #ifdef MAC
3034 			error = mac_vnode_check_write(curthread->td_ucred,
3035 			    outcred, outvp);
3036 			if (error == 0)
3037 #endif
3038 				error = vn_truncate_locked(outvp, *outoffp,
3039 				    false, outcred);
3040 			if (error == 0)
3041 				va.va_size = *outoffp;
3042 		}
3043 		VOP_UNLOCK(outvp);
3044 	}
3045 	if (mp != NULL)
3046 		vn_finished_write(mp);
3047 	if (error != 0)
3048 		goto out;
3049 
3050 	/*
3051 	 * Set the blksize to the larger of the hole sizes for invp and outvp.
3052 	 * If hole sizes aren't available, set the blksize to the larger
3053 	 * f_iosize of invp and outvp.
3054 	 * This code expects the hole sizes and f_iosizes to be powers of 2.
3055 	 * This value is clipped at 4Kbytes and 1Mbyte.
3056 	 */
3057 	blksize = MAX(holein, holeout);
3058 	if (blksize == 0)
3059 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3060 		    outvp->v_mount->mnt_stat.f_iosize);
3061 	if (blksize < 4096)
3062 		blksize = 4096;
3063 	else if (blksize > 1024 * 1024)
3064 		blksize = 1024 * 1024;
3065 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3066 
3067 	/*
3068 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3069 	 * to find holes.  Otherwise, just scan the read block for all 0s
3070 	 * in the inner loop where the data copying is done.
3071 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3072 	 * support holes on the server, but do not support FIOSEEKHOLE.
3073 	 */
3074 	eof = false;
3075 	while (len > 0 && error == 0 && !eof) {
3076 		endoff = 0;			/* To shut up compilers. */
3077 		cantseek = true;
3078 		startoff = *inoffp;
3079 		copylen = len;
3080 
3081 		/*
3082 		 * Find the next data area.  If there is just a hole to EOF,
3083 		 * FIOSEEKDATA should fail and then we drop down into the
3084 		 * inner loop and create the hole on the outvp file.
3085 		 * (I do not know if any file system will report a hole to
3086 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3087 		 *  will fail for those file systems.)
3088 		 *
3089 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3090 		 * the code just falls through to the inner copy loop.
3091 		 */
3092 		error = EINVAL;
3093 		if (holein > 0)
3094 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3095 			    incred, curthread);
3096 		if (error == 0) {
3097 			endoff = startoff;
3098 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3099 			    incred, curthread);
3100 			/*
3101 			 * Since invp is unlocked, it may be possible for
3102 			 * another thread to do a truncate(), lseek(), write()
3103 			 * creating a hole at startoff between the above
3104 			 * VOP_IOCTL() calls, if the other thread does not do
3105 			 * rangelocking.
3106 			 * If that happens, startoff == endoff and finding
3107 			 * the hole has failed, so set an error.
3108 			 */
3109 			if (error == 0 && startoff == endoff)
3110 				error = EINVAL; /* Any error. Reset to 0. */
3111 		}
3112 		if (error == 0) {
3113 			if (startoff > *inoffp) {
3114 				/* Found hole before data block. */
3115 				xfer = MIN(startoff - *inoffp, len);
3116 				if (*outoffp < va.va_size) {
3117 					/* Must write 0s to punch hole. */
3118 					xfer2 = MIN(va.va_size - *outoffp,
3119 					    xfer);
3120 					memset(dat, 0, MIN(xfer2, blksize));
3121 					error = vn_write_outvp(outvp, dat,
3122 					    *outoffp, xfer2, blksize, false,
3123 					    holeout > 0, outcred);
3124 				}
3125 
3126 				if (error == 0 && *outoffp + xfer >
3127 				    va.va_size && xfer == len)
3128 					/* Grow last block. */
3129 					error = vn_write_outvp(outvp, dat,
3130 					    *outoffp, xfer, blksize, true,
3131 					    false, outcred);
3132 				if (error == 0) {
3133 					*inoffp += xfer;
3134 					*outoffp += xfer;
3135 					len -= xfer;
3136 				}
3137 			}
3138 			copylen = MIN(len, endoff - startoff);
3139 			cantseek = false;
3140 		} else {
3141 			cantseek = true;
3142 			startoff = *inoffp;
3143 			copylen = len;
3144 			error = 0;
3145 		}
3146 
3147 		xfer = blksize;
3148 		if (cantseek) {
3149 			/*
3150 			 * Set first xfer to end at a block boundary, so that
3151 			 * holes are more likely detected in the loop below via
3152 			 * the for all bytes 0 method.
3153 			 */
3154 			xfer -= (*inoffp % blksize);
3155 		}
3156 		/* Loop copying the data block. */
3157 		while (copylen > 0 && error == 0 && !eof) {
3158 			if (copylen < xfer)
3159 				xfer = copylen;
3160 			error = vn_lock(invp, LK_SHARED);
3161 			if (error != 0)
3162 				goto out;
3163 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3164 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3165 			    curthread->td_ucred, incred, &aresid,
3166 			    curthread);
3167 			VOP_UNLOCK(invp);
3168 			lastblock = false;
3169 			if (error == 0 && aresid > 0) {
3170 				/* Stop the copy at EOF on the input file. */
3171 				xfer -= aresid;
3172 				eof = true;
3173 				lastblock = true;
3174 			}
3175 			if (error == 0) {
3176 				/*
3177 				 * Skip the write for holes past the initial EOF
3178 				 * of the output file, unless this is the last
3179 				 * write of the output file at EOF.
3180 				 */
3181 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3182 				    false;
3183 				if (xfer == len)
3184 					lastblock = true;
3185 				if (!cantseek || *outoffp < va.va_size ||
3186 				    lastblock || !readzeros)
3187 					error = vn_write_outvp(outvp, dat,
3188 					    *outoffp, xfer, blksize,
3189 					    readzeros && lastblock &&
3190 					    *outoffp >= va.va_size, false,
3191 					    outcred);
3192 				if (error == 0) {
3193 					*inoffp += xfer;
3194 					startoff += xfer;
3195 					*outoffp += xfer;
3196 					copylen -= xfer;
3197 					len -= xfer;
3198 				}
3199 			}
3200 			xfer = blksize;
3201 		}
3202 	}
3203 out:
3204 	*lenp = savlen - len;
3205 	free(dat, M_TEMP);
3206 	return (error);
3207 }
3208 
3209 static int
3210 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3211 {
3212 	struct mount *mp;
3213 	struct vnode *vp;
3214 	off_t olen, ooffset;
3215 	int error;
3216 #ifdef AUDIT
3217 	int audited_vnode1 = 0;
3218 #endif
3219 
3220 	vp = fp->f_vnode;
3221 	if (vp->v_type != VREG)
3222 		return (ENODEV);
3223 
3224 	/* Allocating blocks may take a long time, so iterate. */
3225 	for (;;) {
3226 		olen = len;
3227 		ooffset = offset;
3228 
3229 		bwillwrite();
3230 		mp = NULL;
3231 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
3232 		if (error != 0)
3233 			break;
3234 		error = vn_lock(vp, LK_EXCLUSIVE);
3235 		if (error != 0) {
3236 			vn_finished_write(mp);
3237 			break;
3238 		}
3239 #ifdef AUDIT
3240 		if (!audited_vnode1) {
3241 			AUDIT_ARG_VNODE1(vp);
3242 			audited_vnode1 = 1;
3243 		}
3244 #endif
3245 #ifdef MAC
3246 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3247 		if (error == 0)
3248 #endif
3249 			error = VOP_ALLOCATE(vp, &offset, &len);
3250 		VOP_UNLOCK(vp);
3251 		vn_finished_write(mp);
3252 
3253 		if (olen + ooffset != offset + len) {
3254 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3255 			    ooffset, olen, offset, len);
3256 		}
3257 		if (error != 0 || len == 0)
3258 			break;
3259 		KASSERT(olen > len, ("Iteration did not make progress?"));
3260 		maybe_yield();
3261 	}
3262 
3263 	return (error);
3264 }
3265