xref: /freebsd/sys/net/bpf.c (revision 699281b5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7  *
8  * This code is derived from the Stanford/CMU enet packet filter,
9  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11  * Berkeley Laboratory.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_bpf.h"
44 #include "opt_ddb.h"
45 #include "opt_netgraph.h"
46 
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/lock.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/fcntl.h>
53 #include <sys/jail.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/time.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/signalvar.h>
60 #include <sys/filio.h>
61 #include <sys/sockio.h>
62 #include <sys/ttycom.h>
63 #include <sys/uio.h>
64 #include <sys/sysent.h>
65 
66 #include <sys/event.h>
67 #include <sys/file.h>
68 #include <sys/poll.h>
69 #include <sys/proc.h>
70 
71 #include <sys/socket.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <net/if.h>
78 #include <net/if_var.h>
79 #include <net/if_dl.h>
80 #include <net/bpf.h>
81 #include <net/bpf_buffer.h>
82 #ifdef BPF_JITTER
83 #include <net/bpf_jitter.h>
84 #endif
85 #include <net/bpf_zerocopy.h>
86 #include <net/bpfdesc.h>
87 #include <net/route.h>
88 #include <net/vnet.h>
89 
90 #include <netinet/in.h>
91 #include <netinet/if_ether.h>
92 #include <sys/kernel.h>
93 #include <sys/sysctl.h>
94 
95 #include <net80211/ieee80211_freebsd.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
100 
101 static struct bpf_if_ext dead_bpf_if = {
102 	.bif_dlist = CK_LIST_HEAD_INITIALIZER()
103 };
104 
105 struct bpf_if {
106 #define	bif_next	bif_ext.bif_next
107 #define	bif_dlist	bif_ext.bif_dlist
108 	struct bpf_if_ext bif_ext;	/* public members */
109 	u_int		bif_dlt;	/* link layer type */
110 	u_int		bif_hdrlen;	/* length of link header */
111 	struct bpfd_list bif_wlist;	/* writer-only list */
112 	struct ifnet	*bif_ifp;	/* corresponding interface */
113 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
114 	volatile u_int	bif_refcnt;
115 	struct epoch_context epoch_ctx;
116 };
117 
118 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
119 
120 struct bpf_program_buffer {
121 	struct epoch_context	epoch_ctx;
122 #ifdef BPF_JITTER
123 	bpf_jit_filter		*func;
124 #endif
125 	void			*buffer[0];
126 };
127 
128 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
129 
130 #define PRINET  26			/* interruptible */
131 
132 #define	SIZEOF_BPF_HDR(type)	\
133     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
134 
135 #ifdef COMPAT_FREEBSD32
136 #include <sys/mount.h>
137 #include <compat/freebsd32/freebsd32.h>
138 #define BPF_ALIGNMENT32 sizeof(int32_t)
139 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
140 
141 #ifndef BURN_BRIDGES
142 /*
143  * 32-bit version of structure prepended to each packet.  We use this header
144  * instead of the standard one for 32-bit streams.  We mark the a stream as
145  * 32-bit the first time we see a 32-bit compat ioctl request.
146  */
147 struct bpf_hdr32 {
148 	struct timeval32 bh_tstamp;	/* time stamp */
149 	uint32_t	bh_caplen;	/* length of captured portion */
150 	uint32_t	bh_datalen;	/* original length of packet */
151 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
152 					   plus alignment padding) */
153 };
154 #endif
155 
156 struct bpf_program32 {
157 	u_int bf_len;
158 	uint32_t bf_insns;
159 };
160 
161 struct bpf_dltlist32 {
162 	u_int	bfl_len;
163 	u_int	bfl_list;
164 };
165 
166 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
167 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
168 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
169 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
170 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
171 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
172 #endif
173 
174 #define BPF_LOCK()	   sx_xlock(&bpf_sx)
175 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
176 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
177 /*
178  * bpf_iflist is a list of BPF interface structures, each corresponding to a
179  * specific DLT. The same network interface might have several BPF interface
180  * structures registered by different layers in the stack (i.e., 802.11
181  * frames, ethernet frames, etc).
182  */
183 CK_LIST_HEAD(bpf_iflist, bpf_if);
184 static struct bpf_iflist bpf_iflist;
185 static struct sx	bpf_sx;		/* bpf global lock */
186 static int		bpf_bpfd_cnt;
187 
188 static void	bpfif_ref(struct bpf_if *);
189 static void	bpfif_rele(struct bpf_if *);
190 
191 static void	bpfd_ref(struct bpf_d *);
192 static void	bpfd_rele(struct bpf_d *);
193 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
194 static void	bpf_detachd(struct bpf_d *);
195 static void	bpf_detachd_locked(struct bpf_d *, bool);
196 static void	bpfd_free(epoch_context_t);
197 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
198 		    struct sockaddr *, int *, struct bpf_d *);
199 static int	bpf_setif(struct bpf_d *, struct ifreq *);
200 static void	bpf_timed_out(void *);
201 static __inline void
202 		bpf_wakeup(struct bpf_d *);
203 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
204 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
205 		    struct bintime *);
206 static void	reset_d(struct bpf_d *);
207 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
208 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
209 static int	bpf_setdlt(struct bpf_d *, u_int);
210 static void	filt_bpfdetach(struct knote *);
211 static int	filt_bpfread(struct knote *, long);
212 static void	bpf_drvinit(void *);
213 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
214 
215 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl");
216 int bpf_maxinsns = BPF_MAXINSNS;
217 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
218     &bpf_maxinsns, 0, "Maximum bpf program instructions");
219 static int bpf_zerocopy_enable = 0;
220 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
221     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
222 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
223     bpf_stats_sysctl, "bpf statistics portal");
224 
225 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
226 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
227 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RW,
228     &VNET_NAME(bpf_optimize_writers), 0,
229     "Do not send packets until BPF program is set");
230 
231 static	d_open_t	bpfopen;
232 static	d_read_t	bpfread;
233 static	d_write_t	bpfwrite;
234 static	d_ioctl_t	bpfioctl;
235 static	d_poll_t	bpfpoll;
236 static	d_kqfilter_t	bpfkqfilter;
237 
238 static struct cdevsw bpf_cdevsw = {
239 	.d_version =	D_VERSION,
240 	.d_open =	bpfopen,
241 	.d_read =	bpfread,
242 	.d_write =	bpfwrite,
243 	.d_ioctl =	bpfioctl,
244 	.d_poll =	bpfpoll,
245 	.d_name =	"bpf",
246 	.d_kqfilter =	bpfkqfilter,
247 };
248 
249 static struct filterops bpfread_filtops = {
250 	.f_isfd = 1,
251 	.f_detach = filt_bpfdetach,
252 	.f_event = filt_bpfread,
253 };
254 
255 /*
256  * LOCKING MODEL USED BY BPF
257  *
258  * Locks:
259  * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
260  * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
261  * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
262  * structure fields used by bpf_*tap* code.
263  *
264  * Lock order: global lock, then descriptor lock.
265  *
266  * There are several possible consumers:
267  *
268  * 1. The kernel registers interface pointer with bpfattach().
269  * Each call allocates new bpf_if structure, references ifnet pointer
270  * and links bpf_if into bpf_iflist chain. This is protected with global
271  * lock.
272  *
273  * 2. An userland application uses ioctl() call to bpf_d descriptor.
274  * All such call are serialized with global lock. BPF filters can be
275  * changed, but pointer to old filter will be freed using epoch_call().
276  * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
277  * filter pointers, even if change will happen during bpf_tap execution.
278  * Destroying of bpf_d descriptor also is doing using epoch_call().
279  *
280  * 3. An userland application can write packets into bpf_d descriptor.
281  * There we need to be sure, that ifnet won't disappear during bpfwrite().
282  *
283  * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
284  * bif_dlist is protected with net_epoch_preempt section. So, it should
285  * be safe to make access to bpf_d descriptor inside the section.
286  *
287  * 5. The kernel invokes bpfdetach() on interface destroying. All lists
288  * are modified with global lock held and actual free() is done using
289  * epoch_call().
290  */
291 
292 static void
293 bpfif_free(epoch_context_t ctx)
294 {
295 	struct bpf_if *bp;
296 
297 	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
298 	if_rele(bp->bif_ifp);
299 	free(bp, M_BPF);
300 }
301 
302 static void
303 bpfif_ref(struct bpf_if *bp)
304 {
305 
306 	refcount_acquire(&bp->bif_refcnt);
307 }
308 
309 static void
310 bpfif_rele(struct bpf_if *bp)
311 {
312 
313 	if (!refcount_release(&bp->bif_refcnt))
314 		return;
315 	epoch_call(net_epoch_preempt, &bp->epoch_ctx, bpfif_free);
316 }
317 
318 static void
319 bpfd_ref(struct bpf_d *d)
320 {
321 
322 	refcount_acquire(&d->bd_refcnt);
323 }
324 
325 static void
326 bpfd_rele(struct bpf_d *d)
327 {
328 
329 	if (!refcount_release(&d->bd_refcnt))
330 		return;
331 	epoch_call(net_epoch_preempt, &d->epoch_ctx, bpfd_free);
332 }
333 
334 static struct bpf_program_buffer*
335 bpf_program_buffer_alloc(size_t size, int flags)
336 {
337 
338 	return (malloc(sizeof(struct bpf_program_buffer) + size,
339 	    M_BPF, flags));
340 }
341 
342 static void
343 bpf_program_buffer_free(epoch_context_t ctx)
344 {
345 	struct bpf_program_buffer *ptr;
346 
347 	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
348 #ifdef BPF_JITTER
349 	if (ptr->func != NULL)
350 		bpf_destroy_jit_filter(ptr->func);
351 #endif
352 	free(ptr, M_BPF);
353 }
354 
355 /*
356  * Wrapper functions for various buffering methods.  If the set of buffer
357  * modes expands, we will probably want to introduce a switch data structure
358  * similar to protosw, et.
359  */
360 static void
361 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
362     u_int len)
363 {
364 
365 	BPFD_LOCK_ASSERT(d);
366 
367 	switch (d->bd_bufmode) {
368 	case BPF_BUFMODE_BUFFER:
369 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
370 
371 	case BPF_BUFMODE_ZBUF:
372 		counter_u64_add(d->bd_zcopy, 1);
373 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
374 
375 	default:
376 		panic("bpf_buf_append_bytes");
377 	}
378 }
379 
380 static void
381 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
382     u_int len)
383 {
384 
385 	BPFD_LOCK_ASSERT(d);
386 
387 	switch (d->bd_bufmode) {
388 	case BPF_BUFMODE_BUFFER:
389 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
390 
391 	case BPF_BUFMODE_ZBUF:
392 		counter_u64_add(d->bd_zcopy, 1);
393 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
394 
395 	default:
396 		panic("bpf_buf_append_mbuf");
397 	}
398 }
399 
400 /*
401  * This function gets called when the free buffer is re-assigned.
402  */
403 static void
404 bpf_buf_reclaimed(struct bpf_d *d)
405 {
406 
407 	BPFD_LOCK_ASSERT(d);
408 
409 	switch (d->bd_bufmode) {
410 	case BPF_BUFMODE_BUFFER:
411 		return;
412 
413 	case BPF_BUFMODE_ZBUF:
414 		bpf_zerocopy_buf_reclaimed(d);
415 		return;
416 
417 	default:
418 		panic("bpf_buf_reclaimed");
419 	}
420 }
421 
422 /*
423  * If the buffer mechanism has a way to decide that a held buffer can be made
424  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
425  * returned if the buffer can be discarded, (0) is returned if it cannot.
426  */
427 static int
428 bpf_canfreebuf(struct bpf_d *d)
429 {
430 
431 	BPFD_LOCK_ASSERT(d);
432 
433 	switch (d->bd_bufmode) {
434 	case BPF_BUFMODE_ZBUF:
435 		return (bpf_zerocopy_canfreebuf(d));
436 	}
437 	return (0);
438 }
439 
440 /*
441  * Allow the buffer model to indicate that the current store buffer is
442  * immutable, regardless of the appearance of space.  Return (1) if the
443  * buffer is writable, and (0) if not.
444  */
445 static int
446 bpf_canwritebuf(struct bpf_d *d)
447 {
448 	BPFD_LOCK_ASSERT(d);
449 
450 	switch (d->bd_bufmode) {
451 	case BPF_BUFMODE_ZBUF:
452 		return (bpf_zerocopy_canwritebuf(d));
453 	}
454 	return (1);
455 }
456 
457 /*
458  * Notify buffer model that an attempt to write to the store buffer has
459  * resulted in a dropped packet, in which case the buffer may be considered
460  * full.
461  */
462 static void
463 bpf_buffull(struct bpf_d *d)
464 {
465 
466 	BPFD_LOCK_ASSERT(d);
467 
468 	switch (d->bd_bufmode) {
469 	case BPF_BUFMODE_ZBUF:
470 		bpf_zerocopy_buffull(d);
471 		break;
472 	}
473 }
474 
475 /*
476  * Notify the buffer model that a buffer has moved into the hold position.
477  */
478 void
479 bpf_bufheld(struct bpf_d *d)
480 {
481 
482 	BPFD_LOCK_ASSERT(d);
483 
484 	switch (d->bd_bufmode) {
485 	case BPF_BUFMODE_ZBUF:
486 		bpf_zerocopy_bufheld(d);
487 		break;
488 	}
489 }
490 
491 static void
492 bpf_free(struct bpf_d *d)
493 {
494 
495 	switch (d->bd_bufmode) {
496 	case BPF_BUFMODE_BUFFER:
497 		return (bpf_buffer_free(d));
498 
499 	case BPF_BUFMODE_ZBUF:
500 		return (bpf_zerocopy_free(d));
501 
502 	default:
503 		panic("bpf_buf_free");
504 	}
505 }
506 
507 static int
508 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
509 {
510 
511 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
512 		return (EOPNOTSUPP);
513 	return (bpf_buffer_uiomove(d, buf, len, uio));
514 }
515 
516 static int
517 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
518 {
519 
520 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
521 		return (EOPNOTSUPP);
522 	return (bpf_buffer_ioctl_sblen(d, i));
523 }
524 
525 static int
526 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
527 {
528 
529 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
530 		return (EOPNOTSUPP);
531 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
532 }
533 
534 static int
535 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
536 {
537 
538 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
539 		return (EOPNOTSUPP);
540 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
541 }
542 
543 static int
544 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
545 {
546 
547 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
548 		return (EOPNOTSUPP);
549 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
550 }
551 
552 /*
553  * General BPF functions.
554  */
555 static int
556 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
557     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
558 {
559 	const struct ieee80211_bpf_params *p;
560 	struct ether_header *eh;
561 	struct mbuf *m;
562 	int error;
563 	int len;
564 	int hlen;
565 	int slen;
566 
567 	/*
568 	 * Build a sockaddr based on the data link layer type.
569 	 * We do this at this level because the ethernet header
570 	 * is copied directly into the data field of the sockaddr.
571 	 * In the case of SLIP, there is no header and the packet
572 	 * is forwarded as is.
573 	 * Also, we are careful to leave room at the front of the mbuf
574 	 * for the link level header.
575 	 */
576 	switch (linktype) {
577 
578 	case DLT_SLIP:
579 		sockp->sa_family = AF_INET;
580 		hlen = 0;
581 		break;
582 
583 	case DLT_EN10MB:
584 		sockp->sa_family = AF_UNSPEC;
585 		/* XXX Would MAXLINKHDR be better? */
586 		hlen = ETHER_HDR_LEN;
587 		break;
588 
589 	case DLT_FDDI:
590 		sockp->sa_family = AF_IMPLINK;
591 		hlen = 0;
592 		break;
593 
594 	case DLT_RAW:
595 		sockp->sa_family = AF_UNSPEC;
596 		hlen = 0;
597 		break;
598 
599 	case DLT_NULL:
600 		/*
601 		 * null interface types require a 4 byte pseudo header which
602 		 * corresponds to the address family of the packet.
603 		 */
604 		sockp->sa_family = AF_UNSPEC;
605 		hlen = 4;
606 		break;
607 
608 	case DLT_ATM_RFC1483:
609 		/*
610 		 * en atm driver requires 4-byte atm pseudo header.
611 		 * though it isn't standard, vpi:vci needs to be
612 		 * specified anyway.
613 		 */
614 		sockp->sa_family = AF_UNSPEC;
615 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
616 		break;
617 
618 	case DLT_PPP:
619 		sockp->sa_family = AF_UNSPEC;
620 		hlen = 4;	/* This should match PPP_HDRLEN */
621 		break;
622 
623 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
624 		sockp->sa_family = AF_IEEE80211;
625 		hlen = 0;
626 		break;
627 
628 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
629 		sockp->sa_family = AF_IEEE80211;
630 		sockp->sa_len = 12;	/* XXX != 0 */
631 		hlen = sizeof(struct ieee80211_bpf_params);
632 		break;
633 
634 	default:
635 		return (EIO);
636 	}
637 
638 	len = uio->uio_resid;
639 	if (len < hlen || len - hlen > ifp->if_mtu)
640 		return (EMSGSIZE);
641 
642 	m = m_get2(len, M_WAITOK, MT_DATA, M_PKTHDR);
643 	if (m == NULL)
644 		return (EIO);
645 	m->m_pkthdr.len = m->m_len = len;
646 	*mp = m;
647 
648 	error = uiomove(mtod(m, u_char *), len, uio);
649 	if (error)
650 		goto bad;
651 
652 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
653 	if (slen == 0) {
654 		error = EPERM;
655 		goto bad;
656 	}
657 
658 	/* Check for multicast destination */
659 	switch (linktype) {
660 	case DLT_EN10MB:
661 		eh = mtod(m, struct ether_header *);
662 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
663 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
664 			    ETHER_ADDR_LEN) == 0)
665 				m->m_flags |= M_BCAST;
666 			else
667 				m->m_flags |= M_MCAST;
668 		}
669 		if (d->bd_hdrcmplt == 0) {
670 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
671 			    sizeof(eh->ether_shost));
672 		}
673 		break;
674 	}
675 
676 	/*
677 	 * Make room for link header, and copy it to sockaddr
678 	 */
679 	if (hlen != 0) {
680 		if (sockp->sa_family == AF_IEEE80211) {
681 			/*
682 			 * Collect true length from the parameter header
683 			 * NB: sockp is known to be zero'd so if we do a
684 			 *     short copy unspecified parameters will be
685 			 *     zero.
686 			 * NB: packet may not be aligned after stripping
687 			 *     bpf params
688 			 * XXX check ibp_vers
689 			 */
690 			p = mtod(m, const struct ieee80211_bpf_params *);
691 			hlen = p->ibp_len;
692 			if (hlen > sizeof(sockp->sa_data)) {
693 				error = EINVAL;
694 				goto bad;
695 			}
696 		}
697 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
698 	}
699 	*hdrlen = hlen;
700 
701 	return (0);
702 bad:
703 	m_freem(m);
704 	return (error);
705 }
706 
707 /*
708  * Attach descriptor to the bpf interface, i.e. make d listen on bp,
709  * then reset its buffers and counters with reset_d().
710  */
711 static void
712 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
713 {
714 	int op_w;
715 
716 	BPF_LOCK_ASSERT();
717 
718 	/*
719 	 * Save sysctl value to protect from sysctl change
720 	 * between reads
721 	 */
722 	op_w = V_bpf_optimize_writers || d->bd_writer;
723 
724 	if (d->bd_bif != NULL)
725 		bpf_detachd_locked(d, false);
726 	/*
727 	 * Point d at bp, and add d to the interface's list.
728 	 * Since there are many applications using BPF for
729 	 * sending raw packets only (dhcpd, cdpd are good examples)
730 	 * we can delay adding d to the list of active listeners until
731 	 * some filter is configured.
732 	 */
733 
734 	BPFD_LOCK(d);
735 	/*
736 	 * Hold reference to bpif while descriptor uses this interface.
737 	 */
738 	bpfif_ref(bp);
739 	d->bd_bif = bp;
740 	if (op_w != 0) {
741 		/* Add to writers-only list */
742 		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
743 		/*
744 		 * We decrement bd_writer on every filter set operation.
745 		 * First BIOCSETF is done by pcap_open_live() to set up
746 		 * snap length. After that appliation usually sets its own
747 		 * filter.
748 		 */
749 		d->bd_writer = 2;
750 	} else
751 		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
752 
753 	reset_d(d);
754 	BPFD_UNLOCK(d);
755 	bpf_bpfd_cnt++;
756 
757 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
758 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
759 
760 	if (op_w == 0)
761 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
762 }
763 
764 /*
765  * Check if we need to upgrade our descriptor @d from write-only mode.
766  */
767 static int
768 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
769     int flen)
770 {
771 	int is_snap, need_upgrade;
772 
773 	/*
774 	 * Check if we've already upgraded or new filter is empty.
775 	 */
776 	if (d->bd_writer == 0 || fcode == NULL)
777 		return (0);
778 
779 	need_upgrade = 0;
780 
781 	/*
782 	 * Check if cmd looks like snaplen setting from
783 	 * pcap_bpf.c:pcap_open_live().
784 	 * Note we're not checking .k value here:
785 	 * while pcap_open_live() definitely sets to non-zero value,
786 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
787 	 * do not consider upgrading immediately
788 	 */
789 	if (cmd == BIOCSETF && flen == 1 &&
790 	    fcode[0].code == (BPF_RET | BPF_K))
791 		is_snap = 1;
792 	else
793 		is_snap = 0;
794 
795 	if (is_snap == 0) {
796 		/*
797 		 * We're setting first filter and it doesn't look like
798 		 * setting snaplen.  We're probably using bpf directly.
799 		 * Upgrade immediately.
800 		 */
801 		need_upgrade = 1;
802 	} else {
803 		/*
804 		 * Do not require upgrade by first BIOCSETF
805 		 * (used to set snaplen) by pcap_open_live().
806 		 */
807 
808 		if (--d->bd_writer == 0) {
809 			/*
810 			 * First snaplen filter has already
811 			 * been set. This is probably catch-all
812 			 * filter
813 			 */
814 			need_upgrade = 1;
815 		}
816 	}
817 
818 	CTR5(KTR_NET,
819 	    "%s: filter function set by pid %d, "
820 	    "bd_writer counter %d, snap %d upgrade %d",
821 	    __func__, d->bd_pid, d->bd_writer,
822 	    is_snap, need_upgrade);
823 
824 	return (need_upgrade);
825 }
826 
827 /*
828  * Detach a file from its interface.
829  */
830 static void
831 bpf_detachd(struct bpf_d *d)
832 {
833 	BPF_LOCK();
834 	bpf_detachd_locked(d, false);
835 	BPF_UNLOCK();
836 }
837 
838 static void
839 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
840 {
841 	struct bpf_if *bp;
842 	struct ifnet *ifp;
843 	int error;
844 
845 	BPF_LOCK_ASSERT();
846 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
847 
848 	/* Check if descriptor is attached */
849 	if ((bp = d->bd_bif) == NULL)
850 		return;
851 
852 	BPFD_LOCK(d);
853 	/* Remove d from the interface's descriptor list. */
854 	CK_LIST_REMOVE(d, bd_next);
855 	/* Save bd_writer value */
856 	error = d->bd_writer;
857 	ifp = bp->bif_ifp;
858 	d->bd_bif = NULL;
859 	if (detached_ifp) {
860 		/*
861 		 * Notify descriptor as it's detached, so that any
862 		 * sleepers wake up and get ENXIO.
863 		 */
864 		bpf_wakeup(d);
865 	}
866 	BPFD_UNLOCK(d);
867 	bpf_bpfd_cnt--;
868 
869 	/* Call event handler iff d is attached */
870 	if (error == 0)
871 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
872 
873 	/*
874 	 * Check if this descriptor had requested promiscuous mode.
875 	 * If so and ifnet is not detached, turn it off.
876 	 */
877 	if (d->bd_promisc && !detached_ifp) {
878 		d->bd_promisc = 0;
879 		CURVNET_SET(ifp->if_vnet);
880 		error = ifpromisc(ifp, 0);
881 		CURVNET_RESTORE();
882 		if (error != 0 && error != ENXIO) {
883 			/*
884 			 * ENXIO can happen if a pccard is unplugged
885 			 * Something is really wrong if we were able to put
886 			 * the driver into promiscuous mode, but can't
887 			 * take it out.
888 			 */
889 			if_printf(bp->bif_ifp,
890 				"bpf_detach: ifpromisc failed (%d)\n", error);
891 		}
892 	}
893 	bpfif_rele(bp);
894 }
895 
896 /*
897  * Close the descriptor by detaching it from its interface,
898  * deallocating its buffers, and marking it free.
899  */
900 static void
901 bpf_dtor(void *data)
902 {
903 	struct bpf_d *d = data;
904 
905 	BPFD_LOCK(d);
906 	if (d->bd_state == BPF_WAITING)
907 		callout_stop(&d->bd_callout);
908 	d->bd_state = BPF_IDLE;
909 	BPFD_UNLOCK(d);
910 	funsetown(&d->bd_sigio);
911 	bpf_detachd(d);
912 #ifdef MAC
913 	mac_bpfdesc_destroy(d);
914 #endif /* MAC */
915 	seldrain(&d->bd_sel);
916 	knlist_destroy(&d->bd_sel.si_note);
917 	callout_drain(&d->bd_callout);
918 	bpfd_rele(d);
919 }
920 
921 /*
922  * Open ethernet device.  Returns ENXIO for illegal minor device number,
923  * EBUSY if file is open by another process.
924  */
925 /* ARGSUSED */
926 static	int
927 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
928 {
929 	struct bpf_d *d;
930 	int error;
931 
932 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
933 	error = devfs_set_cdevpriv(d, bpf_dtor);
934 	if (error != 0) {
935 		free(d, M_BPF);
936 		return (error);
937 	}
938 
939 	/* Setup counters */
940 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
941 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
942 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
943 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
944 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
945 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
946 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
947 
948 	/*
949 	 * For historical reasons, perform a one-time initialization call to
950 	 * the buffer routines, even though we're not yet committed to a
951 	 * particular buffer method.
952 	 */
953 	bpf_buffer_init(d);
954 	if ((flags & FREAD) == 0)
955 		d->bd_writer = 2;
956 	d->bd_hbuf_in_use = 0;
957 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
958 	d->bd_sig = SIGIO;
959 	d->bd_direction = BPF_D_INOUT;
960 	d->bd_refcnt = 1;
961 	BPF_PID_REFRESH(d, td);
962 #ifdef MAC
963 	mac_bpfdesc_init(d);
964 	mac_bpfdesc_create(td->td_ucred, d);
965 #endif
966 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
967 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
968 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
969 
970 	return (0);
971 }
972 
973 /*
974  *  bpfread - read next chunk of packets from buffers
975  */
976 static	int
977 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
978 {
979 	struct bpf_d *d;
980 	int error;
981 	int non_block;
982 	int timed_out;
983 
984 	error = devfs_get_cdevpriv((void **)&d);
985 	if (error != 0)
986 		return (error);
987 
988 	/*
989 	 * Restrict application to use a buffer the same size as
990 	 * as kernel buffers.
991 	 */
992 	if (uio->uio_resid != d->bd_bufsize)
993 		return (EINVAL);
994 
995 	non_block = ((ioflag & O_NONBLOCK) != 0);
996 
997 	BPFD_LOCK(d);
998 	BPF_PID_REFRESH_CUR(d);
999 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1000 		BPFD_UNLOCK(d);
1001 		return (EOPNOTSUPP);
1002 	}
1003 	if (d->bd_state == BPF_WAITING)
1004 		callout_stop(&d->bd_callout);
1005 	timed_out = (d->bd_state == BPF_TIMED_OUT);
1006 	d->bd_state = BPF_IDLE;
1007 	while (d->bd_hbuf_in_use) {
1008 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1009 		    PRINET|PCATCH, "bd_hbuf", 0);
1010 		if (error != 0) {
1011 			BPFD_UNLOCK(d);
1012 			return (error);
1013 		}
1014 	}
1015 	/*
1016 	 * If the hold buffer is empty, then do a timed sleep, which
1017 	 * ends when the timeout expires or when enough packets
1018 	 * have arrived to fill the store buffer.
1019 	 */
1020 	while (d->bd_hbuf == NULL) {
1021 		if (d->bd_slen != 0) {
1022 			/*
1023 			 * A packet(s) either arrived since the previous
1024 			 * read or arrived while we were asleep.
1025 			 */
1026 			if (d->bd_immediate || non_block || timed_out) {
1027 				/*
1028 				 * Rotate the buffers and return what's here
1029 				 * if we are in immediate mode, non-blocking
1030 				 * flag is set, or this descriptor timed out.
1031 				 */
1032 				ROTATE_BUFFERS(d);
1033 				break;
1034 			}
1035 		}
1036 
1037 		/*
1038 		 * No data is available, check to see if the bpf device
1039 		 * is still pointed at a real interface.  If not, return
1040 		 * ENXIO so that the userland process knows to rebind
1041 		 * it before using it again.
1042 		 */
1043 		if (d->bd_bif == NULL) {
1044 			BPFD_UNLOCK(d);
1045 			return (ENXIO);
1046 		}
1047 
1048 		if (non_block) {
1049 			BPFD_UNLOCK(d);
1050 			return (EWOULDBLOCK);
1051 		}
1052 		error = msleep(d, &d->bd_lock, PRINET|PCATCH,
1053 		     "bpf", d->bd_rtout);
1054 		if (error == EINTR || error == ERESTART) {
1055 			BPFD_UNLOCK(d);
1056 			return (error);
1057 		}
1058 		if (error == EWOULDBLOCK) {
1059 			/*
1060 			 * On a timeout, return what's in the buffer,
1061 			 * which may be nothing.  If there is something
1062 			 * in the store buffer, we can rotate the buffers.
1063 			 */
1064 			if (d->bd_hbuf)
1065 				/*
1066 				 * We filled up the buffer in between
1067 				 * getting the timeout and arriving
1068 				 * here, so we don't need to rotate.
1069 				 */
1070 				break;
1071 
1072 			if (d->bd_slen == 0) {
1073 				BPFD_UNLOCK(d);
1074 				return (0);
1075 			}
1076 			ROTATE_BUFFERS(d);
1077 			break;
1078 		}
1079 	}
1080 	/*
1081 	 * At this point, we know we have something in the hold slot.
1082 	 */
1083 	d->bd_hbuf_in_use = 1;
1084 	BPFD_UNLOCK(d);
1085 
1086 	/*
1087 	 * Move data from hold buffer into user space.
1088 	 * We know the entire buffer is transferred since
1089 	 * we checked above that the read buffer is bpf_bufsize bytes.
1090   	 *
1091 	 * We do not have to worry about simultaneous reads because
1092 	 * we waited for sole access to the hold buffer above.
1093 	 */
1094 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1095 
1096 	BPFD_LOCK(d);
1097 	KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1098 	d->bd_fbuf = d->bd_hbuf;
1099 	d->bd_hbuf = NULL;
1100 	d->bd_hlen = 0;
1101 	bpf_buf_reclaimed(d);
1102 	d->bd_hbuf_in_use = 0;
1103 	wakeup(&d->bd_hbuf_in_use);
1104 	BPFD_UNLOCK(d);
1105 
1106 	return (error);
1107 }
1108 
1109 /*
1110  * If there are processes sleeping on this descriptor, wake them up.
1111  */
1112 static __inline void
1113 bpf_wakeup(struct bpf_d *d)
1114 {
1115 
1116 	BPFD_LOCK_ASSERT(d);
1117 	if (d->bd_state == BPF_WAITING) {
1118 		callout_stop(&d->bd_callout);
1119 		d->bd_state = BPF_IDLE;
1120 	}
1121 	wakeup(d);
1122 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1123 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1124 
1125 	selwakeuppri(&d->bd_sel, PRINET);
1126 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1127 }
1128 
1129 static void
1130 bpf_timed_out(void *arg)
1131 {
1132 	struct bpf_d *d = (struct bpf_d *)arg;
1133 
1134 	BPFD_LOCK_ASSERT(d);
1135 
1136 	if (callout_pending(&d->bd_callout) ||
1137 	    !callout_active(&d->bd_callout))
1138 		return;
1139 	if (d->bd_state == BPF_WAITING) {
1140 		d->bd_state = BPF_TIMED_OUT;
1141 		if (d->bd_slen != 0)
1142 			bpf_wakeup(d);
1143 	}
1144 }
1145 
1146 static int
1147 bpf_ready(struct bpf_d *d)
1148 {
1149 
1150 	BPFD_LOCK_ASSERT(d);
1151 
1152 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1153 		return (1);
1154 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1155 	    d->bd_slen != 0)
1156 		return (1);
1157 	return (0);
1158 }
1159 
1160 static int
1161 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1162 {
1163 	struct route ro;
1164 	struct sockaddr dst;
1165 	struct epoch_tracker et;
1166 	struct bpf_if *bp;
1167 	struct bpf_d *d;
1168 	struct ifnet *ifp;
1169 	struct mbuf *m, *mc;
1170 	int error, hlen;
1171 
1172 	error = devfs_get_cdevpriv((void **)&d);
1173 	if (error != 0)
1174 		return (error);
1175 
1176 	NET_EPOCH_ENTER(et);
1177 	BPFD_LOCK(d);
1178 	BPF_PID_REFRESH_CUR(d);
1179 	counter_u64_add(d->bd_wcount, 1);
1180 	if ((bp = d->bd_bif) == NULL) {
1181 		error = ENXIO;
1182 		goto out_locked;
1183 	}
1184 
1185 	ifp = bp->bif_ifp;
1186 	if ((ifp->if_flags & IFF_UP) == 0) {
1187 		error = ENETDOWN;
1188 		goto out_locked;
1189 	}
1190 
1191 	if (uio->uio_resid == 0)
1192 		goto out_locked;
1193 
1194 	bzero(&dst, sizeof(dst));
1195 	m = NULL;
1196 	hlen = 0;
1197 
1198 	/*
1199 	 * Take extra reference, unlock d and exit from epoch section,
1200 	 * since bpf_movein() can sleep.
1201 	 */
1202 	bpfd_ref(d);
1203 	NET_EPOCH_EXIT(et);
1204 	BPFD_UNLOCK(d);
1205 
1206 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1207 	    &m, &dst, &hlen, d);
1208 
1209 	if (error != 0) {
1210 		counter_u64_add(d->bd_wdcount, 1);
1211 		bpfd_rele(d);
1212 		return (error);
1213 	}
1214 
1215 	BPFD_LOCK(d);
1216 	/*
1217 	 * Check that descriptor is still attached to the interface.
1218 	 * This can happen on bpfdetach(). To avoid access to detached
1219 	 * ifnet, free mbuf and return ENXIO.
1220 	 */
1221 	if (d->bd_bif == NULL) {
1222 		counter_u64_add(d->bd_wdcount, 1);
1223 		BPFD_UNLOCK(d);
1224 		bpfd_rele(d);
1225 		m_freem(m);
1226 		return (ENXIO);
1227 	}
1228 	counter_u64_add(d->bd_wfcount, 1);
1229 	if (d->bd_hdrcmplt)
1230 		dst.sa_family = pseudo_AF_HDRCMPLT;
1231 
1232 	if (d->bd_feedback) {
1233 		mc = m_dup(m, M_NOWAIT);
1234 		if (mc != NULL)
1235 			mc->m_pkthdr.rcvif = ifp;
1236 		/* Set M_PROMISC for outgoing packets to be discarded. */
1237 		if (d->bd_direction == BPF_D_INOUT)
1238 			m->m_flags |= M_PROMISC;
1239 	} else
1240 		mc = NULL;
1241 
1242 	m->m_pkthdr.len -= hlen;
1243 	m->m_len -= hlen;
1244 	m->m_data += hlen;	/* XXX */
1245 
1246 	CURVNET_SET(ifp->if_vnet);
1247 #ifdef MAC
1248 	mac_bpfdesc_create_mbuf(d, m);
1249 	if (mc != NULL)
1250 		mac_bpfdesc_create_mbuf(d, mc);
1251 #endif
1252 
1253 	bzero(&ro, sizeof(ro));
1254 	if (hlen != 0) {
1255 		ro.ro_prepend = (u_char *)&dst.sa_data;
1256 		ro.ro_plen = hlen;
1257 		ro.ro_flags = RT_HAS_HEADER;
1258 	}
1259 
1260 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1261 	if (error)
1262 		counter_u64_add(d->bd_wdcount, 1);
1263 
1264 	if (mc != NULL) {
1265 		if (error == 0)
1266 			(*ifp->if_input)(ifp, mc);
1267 		else
1268 			m_freem(mc);
1269 	}
1270 	CURVNET_RESTORE();
1271 	BPFD_UNLOCK(d);
1272 	bpfd_rele(d);
1273 	return (error);
1274 
1275 out_locked:
1276 	counter_u64_add(d->bd_wdcount, 1);
1277 	NET_EPOCH_EXIT(et);
1278 	BPFD_UNLOCK(d);
1279 	return (error);
1280 }
1281 
1282 /*
1283  * Reset a descriptor by flushing its packet buffer and clearing the receive
1284  * and drop counts.  This is doable for kernel-only buffers, but with
1285  * zero-copy buffers, we can't write to (or rotate) buffers that are
1286  * currently owned by userspace.  It would be nice if we could encapsulate
1287  * this logic in the buffer code rather than here.
1288  */
1289 static void
1290 reset_d(struct bpf_d *d)
1291 {
1292 
1293 	BPFD_LOCK_ASSERT(d);
1294 
1295 	while (d->bd_hbuf_in_use)
1296 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1297 		    "bd_hbuf", 0);
1298 	if ((d->bd_hbuf != NULL) &&
1299 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1300 		/* Free the hold buffer. */
1301 		d->bd_fbuf = d->bd_hbuf;
1302 		d->bd_hbuf = NULL;
1303 		d->bd_hlen = 0;
1304 		bpf_buf_reclaimed(d);
1305 	}
1306 	if (bpf_canwritebuf(d))
1307 		d->bd_slen = 0;
1308 	counter_u64_zero(d->bd_rcount);
1309 	counter_u64_zero(d->bd_dcount);
1310 	counter_u64_zero(d->bd_fcount);
1311 	counter_u64_zero(d->bd_wcount);
1312 	counter_u64_zero(d->bd_wfcount);
1313 	counter_u64_zero(d->bd_wdcount);
1314 	counter_u64_zero(d->bd_zcopy);
1315 }
1316 
1317 /*
1318  *  FIONREAD		Check for read packet available.
1319  *  BIOCGBLEN		Get buffer len [for read()].
1320  *  BIOCSETF		Set read filter.
1321  *  BIOCSETFNR		Set read filter without resetting descriptor.
1322  *  BIOCSETWF		Set write filter.
1323  *  BIOCFLUSH		Flush read packet buffer.
1324  *  BIOCPROMISC		Put interface into promiscuous mode.
1325  *  BIOCGDLT		Get link layer type.
1326  *  BIOCGETIF		Get interface name.
1327  *  BIOCSETIF		Set interface.
1328  *  BIOCSRTIMEOUT	Set read timeout.
1329  *  BIOCGRTIMEOUT	Get read timeout.
1330  *  BIOCGSTATS		Get packet stats.
1331  *  BIOCIMMEDIATE	Set immediate mode.
1332  *  BIOCVERSION		Get filter language version.
1333  *  BIOCGHDRCMPLT	Get "header already complete" flag
1334  *  BIOCSHDRCMPLT	Set "header already complete" flag
1335  *  BIOCGDIRECTION	Get packet direction flag
1336  *  BIOCSDIRECTION	Set packet direction flag
1337  *  BIOCGTSTAMP		Get time stamp format and resolution.
1338  *  BIOCSTSTAMP		Set time stamp format and resolution.
1339  *  BIOCLOCK		Set "locked" flag
1340  *  BIOCFEEDBACK	Set packet feedback mode.
1341  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1342  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1343  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1344  *  BIOCSETBUFMODE	Set buffer mode.
1345  *  BIOCGETBUFMODE	Get current buffer mode.
1346  */
1347 /* ARGSUSED */
1348 static	int
1349 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1350     struct thread *td)
1351 {
1352 	struct bpf_d *d;
1353 	int error;
1354 
1355 	error = devfs_get_cdevpriv((void **)&d);
1356 	if (error != 0)
1357 		return (error);
1358 
1359 	/*
1360 	 * Refresh PID associated with this descriptor.
1361 	 */
1362 	BPFD_LOCK(d);
1363 	BPF_PID_REFRESH(d, td);
1364 	if (d->bd_state == BPF_WAITING)
1365 		callout_stop(&d->bd_callout);
1366 	d->bd_state = BPF_IDLE;
1367 	BPFD_UNLOCK(d);
1368 
1369 	if (d->bd_locked == 1) {
1370 		switch (cmd) {
1371 		case BIOCGBLEN:
1372 		case BIOCFLUSH:
1373 		case BIOCGDLT:
1374 		case BIOCGDLTLIST:
1375 #ifdef COMPAT_FREEBSD32
1376 		case BIOCGDLTLIST32:
1377 #endif
1378 		case BIOCGETIF:
1379 		case BIOCGRTIMEOUT:
1380 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1381 		case BIOCGRTIMEOUT32:
1382 #endif
1383 		case BIOCGSTATS:
1384 		case BIOCVERSION:
1385 		case BIOCGRSIG:
1386 		case BIOCGHDRCMPLT:
1387 		case BIOCSTSTAMP:
1388 		case BIOCFEEDBACK:
1389 		case FIONREAD:
1390 		case BIOCLOCK:
1391 		case BIOCSRTIMEOUT:
1392 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1393 		case BIOCSRTIMEOUT32:
1394 #endif
1395 		case BIOCIMMEDIATE:
1396 		case TIOCGPGRP:
1397 		case BIOCROTZBUF:
1398 			break;
1399 		default:
1400 			return (EPERM);
1401 		}
1402 	}
1403 #ifdef COMPAT_FREEBSD32
1404 	/*
1405 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1406 	 * that it will get 32-bit packet headers.
1407 	 */
1408 	switch (cmd) {
1409 	case BIOCSETF32:
1410 	case BIOCSETFNR32:
1411 	case BIOCSETWF32:
1412 	case BIOCGDLTLIST32:
1413 	case BIOCGRTIMEOUT32:
1414 	case BIOCSRTIMEOUT32:
1415 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1416 			BPFD_LOCK(d);
1417 			d->bd_compat32 = 1;
1418 			BPFD_UNLOCK(d);
1419 		}
1420 	}
1421 #endif
1422 
1423 	CURVNET_SET(TD_TO_VNET(td));
1424 	switch (cmd) {
1425 
1426 	default:
1427 		error = EINVAL;
1428 		break;
1429 
1430 	/*
1431 	 * Check for read packet available.
1432 	 */
1433 	case FIONREAD:
1434 		{
1435 			int n;
1436 
1437 			BPFD_LOCK(d);
1438 			n = d->bd_slen;
1439 			while (d->bd_hbuf_in_use)
1440 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1441 				    PRINET, "bd_hbuf", 0);
1442 			if (d->bd_hbuf)
1443 				n += d->bd_hlen;
1444 			BPFD_UNLOCK(d);
1445 
1446 			*(int *)addr = n;
1447 			break;
1448 		}
1449 
1450 	/*
1451 	 * Get buffer len [for read()].
1452 	 */
1453 	case BIOCGBLEN:
1454 		BPFD_LOCK(d);
1455 		*(u_int *)addr = d->bd_bufsize;
1456 		BPFD_UNLOCK(d);
1457 		break;
1458 
1459 	/*
1460 	 * Set buffer length.
1461 	 */
1462 	case BIOCSBLEN:
1463 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1464 		break;
1465 
1466 	/*
1467 	 * Set link layer read filter.
1468 	 */
1469 	case BIOCSETF:
1470 	case BIOCSETFNR:
1471 	case BIOCSETWF:
1472 #ifdef COMPAT_FREEBSD32
1473 	case BIOCSETF32:
1474 	case BIOCSETFNR32:
1475 	case BIOCSETWF32:
1476 #endif
1477 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1478 		break;
1479 
1480 	/*
1481 	 * Flush read packet buffer.
1482 	 */
1483 	case BIOCFLUSH:
1484 		BPFD_LOCK(d);
1485 		reset_d(d);
1486 		BPFD_UNLOCK(d);
1487 		break;
1488 
1489 	/*
1490 	 * Put interface into promiscuous mode.
1491 	 */
1492 	case BIOCPROMISC:
1493 		if (d->bd_bif == NULL) {
1494 			/*
1495 			 * No interface attached yet.
1496 			 */
1497 			error = EINVAL;
1498 			break;
1499 		}
1500 		if (d->bd_promisc == 0) {
1501 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1502 			if (error == 0)
1503 				d->bd_promisc = 1;
1504 		}
1505 		break;
1506 
1507 	/*
1508 	 * Get current data link type.
1509 	 */
1510 	case BIOCGDLT:
1511 		BPF_LOCK();
1512 		if (d->bd_bif == NULL)
1513 			error = EINVAL;
1514 		else
1515 			*(u_int *)addr = d->bd_bif->bif_dlt;
1516 		BPF_UNLOCK();
1517 		break;
1518 
1519 	/*
1520 	 * Get a list of supported data link types.
1521 	 */
1522 #ifdef COMPAT_FREEBSD32
1523 	case BIOCGDLTLIST32:
1524 		{
1525 			struct bpf_dltlist32 *list32;
1526 			struct bpf_dltlist dltlist;
1527 
1528 			list32 = (struct bpf_dltlist32 *)addr;
1529 			dltlist.bfl_len = list32->bfl_len;
1530 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1531 			BPF_LOCK();
1532 			if (d->bd_bif == NULL)
1533 				error = EINVAL;
1534 			else {
1535 				error = bpf_getdltlist(d, &dltlist);
1536 				if (error == 0)
1537 					list32->bfl_len = dltlist.bfl_len;
1538 			}
1539 			BPF_UNLOCK();
1540 			break;
1541 		}
1542 #endif
1543 
1544 	case BIOCGDLTLIST:
1545 		BPF_LOCK();
1546 		if (d->bd_bif == NULL)
1547 			error = EINVAL;
1548 		else
1549 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1550 		BPF_UNLOCK();
1551 		break;
1552 
1553 	/*
1554 	 * Set data link type.
1555 	 */
1556 	case BIOCSDLT:
1557 		BPF_LOCK();
1558 		if (d->bd_bif == NULL)
1559 			error = EINVAL;
1560 		else
1561 			error = bpf_setdlt(d, *(u_int *)addr);
1562 		BPF_UNLOCK();
1563 		break;
1564 
1565 	/*
1566 	 * Get interface name.
1567 	 */
1568 	case BIOCGETIF:
1569 		BPF_LOCK();
1570 		if (d->bd_bif == NULL)
1571 			error = EINVAL;
1572 		else {
1573 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1574 			struct ifreq *const ifr = (struct ifreq *)addr;
1575 
1576 			strlcpy(ifr->ifr_name, ifp->if_xname,
1577 			    sizeof(ifr->ifr_name));
1578 		}
1579 		BPF_UNLOCK();
1580 		break;
1581 
1582 	/*
1583 	 * Set interface.
1584 	 */
1585 	case BIOCSETIF:
1586 		{
1587 			int alloc_buf, size;
1588 
1589 			/*
1590 			 * Behavior here depends on the buffering model.  If
1591 			 * we're using kernel memory buffers, then we can
1592 			 * allocate them here.  If we're using zero-copy,
1593 			 * then the user process must have registered buffers
1594 			 * by the time we get here.
1595 			 */
1596 			alloc_buf = 0;
1597 			BPFD_LOCK(d);
1598 			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1599 			    d->bd_sbuf == NULL)
1600 				alloc_buf = 1;
1601 			BPFD_UNLOCK(d);
1602 			if (alloc_buf) {
1603 				size = d->bd_bufsize;
1604 				error = bpf_buffer_ioctl_sblen(d, &size);
1605 				if (error != 0)
1606 					break;
1607 			}
1608 			BPF_LOCK();
1609 			error = bpf_setif(d, (struct ifreq *)addr);
1610 			BPF_UNLOCK();
1611 			break;
1612 		}
1613 
1614 	/*
1615 	 * Set read timeout.
1616 	 */
1617 	case BIOCSRTIMEOUT:
1618 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1619 	case BIOCSRTIMEOUT32:
1620 #endif
1621 		{
1622 			struct timeval *tv = (struct timeval *)addr;
1623 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1624 			struct timeval32 *tv32;
1625 			struct timeval tv64;
1626 
1627 			if (cmd == BIOCSRTIMEOUT32) {
1628 				tv32 = (struct timeval32 *)addr;
1629 				tv = &tv64;
1630 				tv->tv_sec = tv32->tv_sec;
1631 				tv->tv_usec = tv32->tv_usec;
1632 			} else
1633 #endif
1634 				tv = (struct timeval *)addr;
1635 
1636 			/*
1637 			 * Subtract 1 tick from tvtohz() since this isn't
1638 			 * a one-shot timer.
1639 			 */
1640 			if ((error = itimerfix(tv)) == 0)
1641 				d->bd_rtout = tvtohz(tv) - 1;
1642 			break;
1643 		}
1644 
1645 	/*
1646 	 * Get read timeout.
1647 	 */
1648 	case BIOCGRTIMEOUT:
1649 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1650 	case BIOCGRTIMEOUT32:
1651 #endif
1652 		{
1653 			struct timeval *tv;
1654 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1655 			struct timeval32 *tv32;
1656 			struct timeval tv64;
1657 
1658 			if (cmd == BIOCGRTIMEOUT32)
1659 				tv = &tv64;
1660 			else
1661 #endif
1662 				tv = (struct timeval *)addr;
1663 
1664 			tv->tv_sec = d->bd_rtout / hz;
1665 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1666 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1667 			if (cmd == BIOCGRTIMEOUT32) {
1668 				tv32 = (struct timeval32 *)addr;
1669 				tv32->tv_sec = tv->tv_sec;
1670 				tv32->tv_usec = tv->tv_usec;
1671 			}
1672 #endif
1673 
1674 			break;
1675 		}
1676 
1677 	/*
1678 	 * Get packet stats.
1679 	 */
1680 	case BIOCGSTATS:
1681 		{
1682 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1683 
1684 			/* XXXCSJP overflow */
1685 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1686 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1687 			break;
1688 		}
1689 
1690 	/*
1691 	 * Set immediate mode.
1692 	 */
1693 	case BIOCIMMEDIATE:
1694 		BPFD_LOCK(d);
1695 		d->bd_immediate = *(u_int *)addr;
1696 		BPFD_UNLOCK(d);
1697 		break;
1698 
1699 	case BIOCVERSION:
1700 		{
1701 			struct bpf_version *bv = (struct bpf_version *)addr;
1702 
1703 			bv->bv_major = BPF_MAJOR_VERSION;
1704 			bv->bv_minor = BPF_MINOR_VERSION;
1705 			break;
1706 		}
1707 
1708 	/*
1709 	 * Get "header already complete" flag
1710 	 */
1711 	case BIOCGHDRCMPLT:
1712 		BPFD_LOCK(d);
1713 		*(u_int *)addr = d->bd_hdrcmplt;
1714 		BPFD_UNLOCK(d);
1715 		break;
1716 
1717 	/*
1718 	 * Set "header already complete" flag
1719 	 */
1720 	case BIOCSHDRCMPLT:
1721 		BPFD_LOCK(d);
1722 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1723 		BPFD_UNLOCK(d);
1724 		break;
1725 
1726 	/*
1727 	 * Get packet direction flag
1728 	 */
1729 	case BIOCGDIRECTION:
1730 		BPFD_LOCK(d);
1731 		*(u_int *)addr = d->bd_direction;
1732 		BPFD_UNLOCK(d);
1733 		break;
1734 
1735 	/*
1736 	 * Set packet direction flag
1737 	 */
1738 	case BIOCSDIRECTION:
1739 		{
1740 			u_int	direction;
1741 
1742 			direction = *(u_int *)addr;
1743 			switch (direction) {
1744 			case BPF_D_IN:
1745 			case BPF_D_INOUT:
1746 			case BPF_D_OUT:
1747 				BPFD_LOCK(d);
1748 				d->bd_direction = direction;
1749 				BPFD_UNLOCK(d);
1750 				break;
1751 			default:
1752 				error = EINVAL;
1753 			}
1754 		}
1755 		break;
1756 
1757 	/*
1758 	 * Get packet timestamp format and resolution.
1759 	 */
1760 	case BIOCGTSTAMP:
1761 		BPFD_LOCK(d);
1762 		*(u_int *)addr = d->bd_tstamp;
1763 		BPFD_UNLOCK(d);
1764 		break;
1765 
1766 	/*
1767 	 * Set packet timestamp format and resolution.
1768 	 */
1769 	case BIOCSTSTAMP:
1770 		{
1771 			u_int	func;
1772 
1773 			func = *(u_int *)addr;
1774 			if (BPF_T_VALID(func))
1775 				d->bd_tstamp = func;
1776 			else
1777 				error = EINVAL;
1778 		}
1779 		break;
1780 
1781 	case BIOCFEEDBACK:
1782 		BPFD_LOCK(d);
1783 		d->bd_feedback = *(u_int *)addr;
1784 		BPFD_UNLOCK(d);
1785 		break;
1786 
1787 	case BIOCLOCK:
1788 		BPFD_LOCK(d);
1789 		d->bd_locked = 1;
1790 		BPFD_UNLOCK(d);
1791 		break;
1792 
1793 	case FIONBIO:		/* Non-blocking I/O */
1794 		break;
1795 
1796 	case FIOASYNC:		/* Send signal on receive packets */
1797 		BPFD_LOCK(d);
1798 		d->bd_async = *(int *)addr;
1799 		BPFD_UNLOCK(d);
1800 		break;
1801 
1802 	case FIOSETOWN:
1803 		/*
1804 		 * XXX: Add some sort of locking here?
1805 		 * fsetown() can sleep.
1806 		 */
1807 		error = fsetown(*(int *)addr, &d->bd_sigio);
1808 		break;
1809 
1810 	case FIOGETOWN:
1811 		BPFD_LOCK(d);
1812 		*(int *)addr = fgetown(&d->bd_sigio);
1813 		BPFD_UNLOCK(d);
1814 		break;
1815 
1816 	/* This is deprecated, FIOSETOWN should be used instead. */
1817 	case TIOCSPGRP:
1818 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1819 		break;
1820 
1821 	/* This is deprecated, FIOGETOWN should be used instead. */
1822 	case TIOCGPGRP:
1823 		*(int *)addr = -fgetown(&d->bd_sigio);
1824 		break;
1825 
1826 	case BIOCSRSIG:		/* Set receive signal */
1827 		{
1828 			u_int sig;
1829 
1830 			sig = *(u_int *)addr;
1831 
1832 			if (sig >= NSIG)
1833 				error = EINVAL;
1834 			else {
1835 				BPFD_LOCK(d);
1836 				d->bd_sig = sig;
1837 				BPFD_UNLOCK(d);
1838 			}
1839 			break;
1840 		}
1841 	case BIOCGRSIG:
1842 		BPFD_LOCK(d);
1843 		*(u_int *)addr = d->bd_sig;
1844 		BPFD_UNLOCK(d);
1845 		break;
1846 
1847 	case BIOCGETBUFMODE:
1848 		BPFD_LOCK(d);
1849 		*(u_int *)addr = d->bd_bufmode;
1850 		BPFD_UNLOCK(d);
1851 		break;
1852 
1853 	case BIOCSETBUFMODE:
1854 		/*
1855 		 * Allow the buffering mode to be changed as long as we
1856 		 * haven't yet committed to a particular mode.  Our
1857 		 * definition of commitment, for now, is whether or not a
1858 		 * buffer has been allocated or an interface attached, since
1859 		 * that's the point where things get tricky.
1860 		 */
1861 		switch (*(u_int *)addr) {
1862 		case BPF_BUFMODE_BUFFER:
1863 			break;
1864 
1865 		case BPF_BUFMODE_ZBUF:
1866 			if (bpf_zerocopy_enable)
1867 				break;
1868 			/* FALLSTHROUGH */
1869 
1870 		default:
1871 			CURVNET_RESTORE();
1872 			return (EINVAL);
1873 		}
1874 
1875 		BPFD_LOCK(d);
1876 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1877 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1878 			BPFD_UNLOCK(d);
1879 			CURVNET_RESTORE();
1880 			return (EBUSY);
1881 		}
1882 		d->bd_bufmode = *(u_int *)addr;
1883 		BPFD_UNLOCK(d);
1884 		break;
1885 
1886 	case BIOCGETZMAX:
1887 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1888 		break;
1889 
1890 	case BIOCSETZBUF:
1891 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1892 		break;
1893 
1894 	case BIOCROTZBUF:
1895 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1896 		break;
1897 	}
1898 	CURVNET_RESTORE();
1899 	return (error);
1900 }
1901 
1902 /*
1903  * Set d's packet filter program to fp. If this file already has a filter,
1904  * free it and replace it. Returns EINVAL for bogus requests.
1905  *
1906  * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1907  * calls.
1908  */
1909 static int
1910 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1911 {
1912 #ifdef COMPAT_FREEBSD32
1913 	struct bpf_program fp_swab;
1914 	struct bpf_program32 *fp32;
1915 #endif
1916 	struct bpf_program_buffer *fcode;
1917 	struct bpf_insn *filter;
1918 #ifdef BPF_JITTER
1919 	bpf_jit_filter *jfunc;
1920 #endif
1921 	size_t size;
1922 	u_int flen;
1923 	bool track_event;
1924 
1925 #ifdef COMPAT_FREEBSD32
1926 	switch (cmd) {
1927 	case BIOCSETF32:
1928 	case BIOCSETWF32:
1929 	case BIOCSETFNR32:
1930 		fp32 = (struct bpf_program32 *)fp;
1931 		fp_swab.bf_len = fp32->bf_len;
1932 		fp_swab.bf_insns =
1933 		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1934 		fp = &fp_swab;
1935 		switch (cmd) {
1936 		case BIOCSETF32:
1937 			cmd = BIOCSETF;
1938 			break;
1939 		case BIOCSETWF32:
1940 			cmd = BIOCSETWF;
1941 			break;
1942 		}
1943 		break;
1944 	}
1945 #endif
1946 
1947 	filter = NULL;
1948 #ifdef BPF_JITTER
1949 	jfunc = NULL;
1950 #endif
1951 	/*
1952 	 * Check new filter validness before acquiring any locks.
1953 	 * Allocate memory for new filter, if needed.
1954 	 */
1955 	flen = fp->bf_len;
1956 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1957 		return (EINVAL);
1958 	size = flen * sizeof(*fp->bf_insns);
1959 	if (size > 0) {
1960 		/* We're setting up new filter. Copy and check actual data. */
1961 		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
1962 		filter = (struct bpf_insn *)fcode->buffer;
1963 		if (copyin(fp->bf_insns, filter, size) != 0 ||
1964 		    !bpf_validate(filter, flen)) {
1965 			free(fcode, M_BPF);
1966 			return (EINVAL);
1967 		}
1968 #ifdef BPF_JITTER
1969 		if (cmd != BIOCSETWF) {
1970 			/*
1971 			 * Filter is copied inside fcode and is
1972 			 * perfectly valid.
1973 			 */
1974 			jfunc = bpf_jitter(filter, flen);
1975 		}
1976 #endif
1977 	}
1978 
1979 	track_event = false;
1980 	fcode = NULL;
1981 
1982 	BPF_LOCK();
1983 	BPFD_LOCK(d);
1984 	/* Set up new filter. */
1985 	if (cmd == BIOCSETWF) {
1986 		if (d->bd_wfilter != NULL) {
1987 			fcode = __containerof((void *)d->bd_wfilter,
1988 			    struct bpf_program_buffer, buffer);
1989 #ifdef BPF_JITTER
1990 			fcode->func = NULL;
1991 #endif
1992 		}
1993 		d->bd_wfilter = filter;
1994 	} else {
1995 		if (d->bd_rfilter != NULL) {
1996 			fcode = __containerof((void *)d->bd_rfilter,
1997 			    struct bpf_program_buffer, buffer);
1998 #ifdef BPF_JITTER
1999 			fcode->func = d->bd_bfilter;
2000 #endif
2001 		}
2002 		d->bd_rfilter = filter;
2003 #ifdef BPF_JITTER
2004 		d->bd_bfilter = jfunc;
2005 #endif
2006 		if (cmd == BIOCSETF)
2007 			reset_d(d);
2008 
2009 		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2010 			/*
2011 			 * Filter can be set several times without
2012 			 * specifying interface. In this case just mark d
2013 			 * as reader.
2014 			 */
2015 			d->bd_writer = 0;
2016 			if (d->bd_bif != NULL) {
2017 				/*
2018 				 * Remove descriptor from writers-only list
2019 				 * and add it to active readers list.
2020 				 */
2021 				CK_LIST_REMOVE(d, bd_next);
2022 				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2023 				    d, bd_next);
2024 				CTR2(KTR_NET,
2025 				    "%s: upgrade required by pid %d",
2026 				    __func__, d->bd_pid);
2027 				track_event = true;
2028 			}
2029 		}
2030 	}
2031 	BPFD_UNLOCK(d);
2032 
2033 	if (fcode != NULL)
2034 		epoch_call(net_epoch_preempt, &fcode->epoch_ctx,
2035 		    bpf_program_buffer_free);
2036 
2037 	if (track_event)
2038 		EVENTHANDLER_INVOKE(bpf_track,
2039 		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2040 
2041 	BPF_UNLOCK();
2042 	return (0);
2043 }
2044 
2045 /*
2046  * Detach a file from its current interface (if attached at all) and attach
2047  * to the interface indicated by the name stored in ifr.
2048  * Return an errno or 0.
2049  */
2050 static int
2051 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2052 {
2053 	struct bpf_if *bp;
2054 	struct ifnet *theywant;
2055 
2056 	BPF_LOCK_ASSERT();
2057 
2058 	theywant = ifunit(ifr->ifr_name);
2059 	if (theywant == NULL || theywant->if_bpf == NULL)
2060 		return (ENXIO);
2061 
2062 	bp = theywant->if_bpf;
2063 	/*
2064 	 * At this point, we expect the buffer is already allocated.  If not,
2065 	 * return an error.
2066 	 */
2067 	switch (d->bd_bufmode) {
2068 	case BPF_BUFMODE_BUFFER:
2069 	case BPF_BUFMODE_ZBUF:
2070 		if (d->bd_sbuf == NULL)
2071 			return (EINVAL);
2072 		break;
2073 
2074 	default:
2075 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2076 	}
2077 	if (bp != d->bd_bif)
2078 		bpf_attachd(d, bp);
2079 	else {
2080 		BPFD_LOCK(d);
2081 		reset_d(d);
2082 		BPFD_UNLOCK(d);
2083 	}
2084 	return (0);
2085 }
2086 
2087 /*
2088  * Support for select() and poll() system calls
2089  *
2090  * Return true iff the specific operation will not block indefinitely.
2091  * Otherwise, return false but make a note that a selwakeup() must be done.
2092  */
2093 static int
2094 bpfpoll(struct cdev *dev, int events, struct thread *td)
2095 {
2096 	struct bpf_d *d;
2097 	int revents;
2098 
2099 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2100 		return (events &
2101 		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
2102 
2103 	/*
2104 	 * Refresh PID associated with this descriptor.
2105 	 */
2106 	revents = events & (POLLOUT | POLLWRNORM);
2107 	BPFD_LOCK(d);
2108 	BPF_PID_REFRESH(d, td);
2109 	if (events & (POLLIN | POLLRDNORM)) {
2110 		if (bpf_ready(d))
2111 			revents |= events & (POLLIN | POLLRDNORM);
2112 		else {
2113 			selrecord(td, &d->bd_sel);
2114 			/* Start the read timeout if necessary. */
2115 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2116 				callout_reset(&d->bd_callout, d->bd_rtout,
2117 				    bpf_timed_out, d);
2118 				d->bd_state = BPF_WAITING;
2119 			}
2120 		}
2121 	}
2122 	BPFD_UNLOCK(d);
2123 	return (revents);
2124 }
2125 
2126 /*
2127  * Support for kevent() system call.  Register EVFILT_READ filters and
2128  * reject all others.
2129  */
2130 int
2131 bpfkqfilter(struct cdev *dev, struct knote *kn)
2132 {
2133 	struct bpf_d *d;
2134 
2135 	if (devfs_get_cdevpriv((void **)&d) != 0 ||
2136 	    kn->kn_filter != EVFILT_READ)
2137 		return (1);
2138 
2139 	/*
2140 	 * Refresh PID associated with this descriptor.
2141 	 */
2142 	BPFD_LOCK(d);
2143 	BPF_PID_REFRESH_CUR(d);
2144 	kn->kn_fop = &bpfread_filtops;
2145 	kn->kn_hook = d;
2146 	knlist_add(&d->bd_sel.si_note, kn, 1);
2147 	BPFD_UNLOCK(d);
2148 
2149 	return (0);
2150 }
2151 
2152 static void
2153 filt_bpfdetach(struct knote *kn)
2154 {
2155 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2156 
2157 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2158 }
2159 
2160 static int
2161 filt_bpfread(struct knote *kn, long hint)
2162 {
2163 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2164 	int ready;
2165 
2166 	BPFD_LOCK_ASSERT(d);
2167 	ready = bpf_ready(d);
2168 	if (ready) {
2169 		kn->kn_data = d->bd_slen;
2170 		/*
2171 		 * Ignore the hold buffer if it is being copied to user space.
2172 		 */
2173 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2174 			kn->kn_data += d->bd_hlen;
2175 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2176 		callout_reset(&d->bd_callout, d->bd_rtout,
2177 		    bpf_timed_out, d);
2178 		d->bd_state = BPF_WAITING;
2179 	}
2180 
2181 	return (ready);
2182 }
2183 
2184 #define	BPF_TSTAMP_NONE		0
2185 #define	BPF_TSTAMP_FAST		1
2186 #define	BPF_TSTAMP_NORMAL	2
2187 #define	BPF_TSTAMP_EXTERN	3
2188 
2189 static int
2190 bpf_ts_quality(int tstype)
2191 {
2192 
2193 	if (tstype == BPF_T_NONE)
2194 		return (BPF_TSTAMP_NONE);
2195 	if ((tstype & BPF_T_FAST) != 0)
2196 		return (BPF_TSTAMP_FAST);
2197 
2198 	return (BPF_TSTAMP_NORMAL);
2199 }
2200 
2201 static int
2202 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2203 {
2204 	struct m_tag *tag;
2205 	int quality;
2206 
2207 	quality = bpf_ts_quality(tstype);
2208 	if (quality == BPF_TSTAMP_NONE)
2209 		return (quality);
2210 
2211 	if (m != NULL) {
2212 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2213 		if (tag != NULL) {
2214 			*bt = *(struct bintime *)(tag + 1);
2215 			return (BPF_TSTAMP_EXTERN);
2216 		}
2217 	}
2218 	if (quality == BPF_TSTAMP_NORMAL)
2219 		binuptime(bt);
2220 	else
2221 		getbinuptime(bt);
2222 
2223 	return (quality);
2224 }
2225 
2226 /*
2227  * Incoming linkage from device drivers.  Process the packet pkt, of length
2228  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2229  * by each process' filter, and if accepted, stashed into the corresponding
2230  * buffer.
2231  */
2232 void
2233 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2234 {
2235 	struct epoch_tracker et;
2236 	struct bintime bt;
2237 	struct bpf_d *d;
2238 #ifdef BPF_JITTER
2239 	bpf_jit_filter *bf;
2240 #endif
2241 	u_int slen;
2242 	int gottime;
2243 
2244 	gottime = BPF_TSTAMP_NONE;
2245 	NET_EPOCH_ENTER(et);
2246 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2247 		counter_u64_add(d->bd_rcount, 1);
2248 		/*
2249 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2250 		 * is no way for the caller to indiciate to us whether this
2251 		 * packet is inbound or outbound. In the bpf_mtap() routines,
2252 		 * we use the interface pointers on the mbuf to figure it out.
2253 		 */
2254 #ifdef BPF_JITTER
2255 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2256 		if (bf != NULL)
2257 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2258 		else
2259 #endif
2260 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2261 		if (slen != 0) {
2262 			/*
2263 			 * Filter matches. Let's to acquire write lock.
2264 			 */
2265 			BPFD_LOCK(d);
2266 			counter_u64_add(d->bd_fcount, 1);
2267 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2268 				gottime = bpf_gettime(&bt, d->bd_tstamp,
2269 				    NULL);
2270 #ifdef MAC
2271 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2272 #endif
2273 				catchpacket(d, pkt, pktlen, slen,
2274 				    bpf_append_bytes, &bt);
2275 			BPFD_UNLOCK(d);
2276 		}
2277 	}
2278 	NET_EPOCH_EXIT(et);
2279 }
2280 
2281 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2282 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2283 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2284 
2285 /*
2286  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2287  * Locking model is explained in bpf_tap().
2288  */
2289 void
2290 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2291 {
2292 	struct epoch_tracker et;
2293 	struct bintime bt;
2294 	struct bpf_d *d;
2295 #ifdef BPF_JITTER
2296 	bpf_jit_filter *bf;
2297 #endif
2298 	u_int pktlen, slen;
2299 	int gottime;
2300 
2301 	/* Skip outgoing duplicate packets. */
2302 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2303 		m->m_flags &= ~M_PROMISC;
2304 		return;
2305 	}
2306 
2307 	pktlen = m_length(m, NULL);
2308 	gottime = BPF_TSTAMP_NONE;
2309 
2310 	NET_EPOCH_ENTER(et);
2311 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2312 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2313 			continue;
2314 		counter_u64_add(d->bd_rcount, 1);
2315 #ifdef BPF_JITTER
2316 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2317 		/* XXX We cannot handle multiple mbufs. */
2318 		if (bf != NULL && m->m_next == NULL)
2319 			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2320 			    pktlen);
2321 		else
2322 #endif
2323 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2324 		if (slen != 0) {
2325 			BPFD_LOCK(d);
2326 
2327 			counter_u64_add(d->bd_fcount, 1);
2328 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2329 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2330 #ifdef MAC
2331 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2332 #endif
2333 				catchpacket(d, (u_char *)m, pktlen, slen,
2334 				    bpf_append_mbuf, &bt);
2335 			BPFD_UNLOCK(d);
2336 		}
2337 	}
2338 	NET_EPOCH_EXIT(et);
2339 }
2340 
2341 /*
2342  * Incoming linkage from device drivers, when packet is in
2343  * an mbuf chain and to be prepended by a contiguous header.
2344  */
2345 void
2346 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2347 {
2348 	struct epoch_tracker et;
2349 	struct bintime bt;
2350 	struct mbuf mb;
2351 	struct bpf_d *d;
2352 	u_int pktlen, slen;
2353 	int gottime;
2354 
2355 	/* Skip outgoing duplicate packets. */
2356 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2357 		m->m_flags &= ~M_PROMISC;
2358 		return;
2359 	}
2360 
2361 	pktlen = m_length(m, NULL);
2362 	/*
2363 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2364 	 * Note that we cut corners here; we only setup what's
2365 	 * absolutely needed--this mbuf should never go anywhere else.
2366 	 */
2367 	mb.m_next = m;
2368 	mb.m_data = data;
2369 	mb.m_len = dlen;
2370 	pktlen += dlen;
2371 
2372 	gottime = BPF_TSTAMP_NONE;
2373 
2374 	NET_EPOCH_ENTER(et);
2375 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2376 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2377 			continue;
2378 		counter_u64_add(d->bd_rcount, 1);
2379 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2380 		if (slen != 0) {
2381 			BPFD_LOCK(d);
2382 
2383 			counter_u64_add(d->bd_fcount, 1);
2384 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2385 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2386 #ifdef MAC
2387 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2388 #endif
2389 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2390 				    bpf_append_mbuf, &bt);
2391 			BPFD_UNLOCK(d);
2392 		}
2393 	}
2394 	NET_EPOCH_EXIT(et);
2395 }
2396 
2397 #undef	BPF_CHECK_DIRECTION
2398 #undef	BPF_TSTAMP_NONE
2399 #undef	BPF_TSTAMP_FAST
2400 #undef	BPF_TSTAMP_NORMAL
2401 #undef	BPF_TSTAMP_EXTERN
2402 
2403 static int
2404 bpf_hdrlen(struct bpf_d *d)
2405 {
2406 	int hdrlen;
2407 
2408 	hdrlen = d->bd_bif->bif_hdrlen;
2409 #ifndef BURN_BRIDGES
2410 	if (d->bd_tstamp == BPF_T_NONE ||
2411 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2412 #ifdef COMPAT_FREEBSD32
2413 		if (d->bd_compat32)
2414 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2415 		else
2416 #endif
2417 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2418 	else
2419 #endif
2420 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2421 #ifdef COMPAT_FREEBSD32
2422 	if (d->bd_compat32)
2423 		hdrlen = BPF_WORDALIGN32(hdrlen);
2424 	else
2425 #endif
2426 		hdrlen = BPF_WORDALIGN(hdrlen);
2427 
2428 	return (hdrlen - d->bd_bif->bif_hdrlen);
2429 }
2430 
2431 static void
2432 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2433 {
2434 	struct bintime bt2, boottimebin;
2435 	struct timeval tsm;
2436 	struct timespec tsn;
2437 
2438 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2439 		bt2 = *bt;
2440 		getboottimebin(&boottimebin);
2441 		bintime_add(&bt2, &boottimebin);
2442 		bt = &bt2;
2443 	}
2444 	switch (BPF_T_FORMAT(tstype)) {
2445 	case BPF_T_MICROTIME:
2446 		bintime2timeval(bt, &tsm);
2447 		ts->bt_sec = tsm.tv_sec;
2448 		ts->bt_frac = tsm.tv_usec;
2449 		break;
2450 	case BPF_T_NANOTIME:
2451 		bintime2timespec(bt, &tsn);
2452 		ts->bt_sec = tsn.tv_sec;
2453 		ts->bt_frac = tsn.tv_nsec;
2454 		break;
2455 	case BPF_T_BINTIME:
2456 		ts->bt_sec = bt->sec;
2457 		ts->bt_frac = bt->frac;
2458 		break;
2459 	}
2460 }
2461 
2462 /*
2463  * Move the packet data from interface memory (pkt) into the
2464  * store buffer.  "cpfn" is the routine called to do the actual data
2465  * transfer.  bcopy is passed in to copy contiguous chunks, while
2466  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2467  * pkt is really an mbuf.
2468  */
2469 static void
2470 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2471     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2472     struct bintime *bt)
2473 {
2474 	struct bpf_xhdr hdr;
2475 #ifndef BURN_BRIDGES
2476 	struct bpf_hdr hdr_old;
2477 #ifdef COMPAT_FREEBSD32
2478 	struct bpf_hdr32 hdr32_old;
2479 #endif
2480 #endif
2481 	int caplen, curlen, hdrlen, totlen;
2482 	int do_wakeup = 0;
2483 	int do_timestamp;
2484 	int tstype;
2485 
2486 	BPFD_LOCK_ASSERT(d);
2487 
2488 	/*
2489 	 * Detect whether user space has released a buffer back to us, and if
2490 	 * so, move it from being a hold buffer to a free buffer.  This may
2491 	 * not be the best place to do it (for example, we might only want to
2492 	 * run this check if we need the space), but for now it's a reliable
2493 	 * spot to do it.
2494 	 */
2495 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2496 		d->bd_fbuf = d->bd_hbuf;
2497 		d->bd_hbuf = NULL;
2498 		d->bd_hlen = 0;
2499 		bpf_buf_reclaimed(d);
2500 	}
2501 
2502 	/*
2503 	 * Figure out how many bytes to move.  If the packet is
2504 	 * greater or equal to the snapshot length, transfer that
2505 	 * much.  Otherwise, transfer the whole packet (unless
2506 	 * we hit the buffer size limit).
2507 	 */
2508 	hdrlen = bpf_hdrlen(d);
2509 	totlen = hdrlen + min(snaplen, pktlen);
2510 	if (totlen > d->bd_bufsize)
2511 		totlen = d->bd_bufsize;
2512 
2513 	/*
2514 	 * Round up the end of the previous packet to the next longword.
2515 	 *
2516 	 * Drop the packet if there's no room and no hope of room
2517 	 * If the packet would overflow the storage buffer or the storage
2518 	 * buffer is considered immutable by the buffer model, try to rotate
2519 	 * the buffer and wakeup pending processes.
2520 	 */
2521 #ifdef COMPAT_FREEBSD32
2522 	if (d->bd_compat32)
2523 		curlen = BPF_WORDALIGN32(d->bd_slen);
2524 	else
2525 #endif
2526 		curlen = BPF_WORDALIGN(d->bd_slen);
2527 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2528 		if (d->bd_fbuf == NULL) {
2529 			/*
2530 			 * There's no room in the store buffer, and no
2531 			 * prospect of room, so drop the packet.  Notify the
2532 			 * buffer model.
2533 			 */
2534 			bpf_buffull(d);
2535 			counter_u64_add(d->bd_dcount, 1);
2536 			return;
2537 		}
2538 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2539 		ROTATE_BUFFERS(d);
2540 		do_wakeup = 1;
2541 		curlen = 0;
2542 	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
2543 		/*
2544 		 * Immediate mode is set, or the read timeout has already
2545 		 * expired during a select call.  A packet arrived, so the
2546 		 * reader should be woken up.
2547 		 */
2548 		do_wakeup = 1;
2549 	caplen = totlen - hdrlen;
2550 	tstype = d->bd_tstamp;
2551 	do_timestamp = tstype != BPF_T_NONE;
2552 #ifndef BURN_BRIDGES
2553 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2554 		struct bpf_ts ts;
2555 		if (do_timestamp)
2556 			bpf_bintime2ts(bt, &ts, tstype);
2557 #ifdef COMPAT_FREEBSD32
2558 		if (d->bd_compat32) {
2559 			bzero(&hdr32_old, sizeof(hdr32_old));
2560 			if (do_timestamp) {
2561 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2562 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2563 			}
2564 			hdr32_old.bh_datalen = pktlen;
2565 			hdr32_old.bh_hdrlen = hdrlen;
2566 			hdr32_old.bh_caplen = caplen;
2567 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2568 			    sizeof(hdr32_old));
2569 			goto copy;
2570 		}
2571 #endif
2572 		bzero(&hdr_old, sizeof(hdr_old));
2573 		if (do_timestamp) {
2574 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2575 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2576 		}
2577 		hdr_old.bh_datalen = pktlen;
2578 		hdr_old.bh_hdrlen = hdrlen;
2579 		hdr_old.bh_caplen = caplen;
2580 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2581 		    sizeof(hdr_old));
2582 		goto copy;
2583 	}
2584 #endif
2585 
2586 	/*
2587 	 * Append the bpf header.  Note we append the actual header size, but
2588 	 * move forward the length of the header plus padding.
2589 	 */
2590 	bzero(&hdr, sizeof(hdr));
2591 	if (do_timestamp)
2592 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2593 	hdr.bh_datalen = pktlen;
2594 	hdr.bh_hdrlen = hdrlen;
2595 	hdr.bh_caplen = caplen;
2596 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2597 
2598 	/*
2599 	 * Copy the packet data into the store buffer and update its length.
2600 	 */
2601 #ifndef BURN_BRIDGES
2602 copy:
2603 #endif
2604 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2605 	d->bd_slen = curlen + totlen;
2606 
2607 	if (do_wakeup)
2608 		bpf_wakeup(d);
2609 }
2610 
2611 /*
2612  * Free buffers currently in use by a descriptor.
2613  * Called on close.
2614  */
2615 static void
2616 bpfd_free(epoch_context_t ctx)
2617 {
2618 	struct bpf_d *d;
2619 	struct bpf_program_buffer *p;
2620 
2621 	/*
2622 	 * We don't need to lock out interrupts since this descriptor has
2623 	 * been detached from its interface and it yet hasn't been marked
2624 	 * free.
2625 	 */
2626 	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2627 	bpf_free(d);
2628 	if (d->bd_rfilter != NULL) {
2629 		p = __containerof((void *)d->bd_rfilter,
2630 		    struct bpf_program_buffer, buffer);
2631 		bpf_program_buffer_free(&p->epoch_ctx);
2632 	}
2633 	if (d->bd_wfilter != NULL) {
2634 		p = __containerof((void *)d->bd_wfilter,
2635 		    struct bpf_program_buffer, buffer);
2636 		bpf_program_buffer_free(&p->epoch_ctx);
2637 	}
2638 
2639 	mtx_destroy(&d->bd_lock);
2640 	counter_u64_free(d->bd_rcount);
2641 	counter_u64_free(d->bd_dcount);
2642 	counter_u64_free(d->bd_fcount);
2643 	counter_u64_free(d->bd_wcount);
2644 	counter_u64_free(d->bd_wfcount);
2645 	counter_u64_free(d->bd_wdcount);
2646 	counter_u64_free(d->bd_zcopy);
2647 	free(d, M_BPF);
2648 }
2649 
2650 /*
2651  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2652  * fixed size of the link header (variable length headers not yet supported).
2653  */
2654 void
2655 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2656 {
2657 
2658 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2659 }
2660 
2661 /*
2662  * Attach an interface to bpf.  ifp is a pointer to the structure
2663  * defining the interface to be attached, dlt is the link layer type,
2664  * and hdrlen is the fixed size of the link header (variable length
2665  * headers are not yet supporrted).
2666  */
2667 void
2668 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2669     struct bpf_if **driverp)
2670 {
2671 	struct bpf_if *bp;
2672 
2673 	KASSERT(*driverp == NULL,
2674 	    ("bpfattach2: driverp already initialized"));
2675 
2676 	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2677 
2678 	CK_LIST_INIT(&bp->bif_dlist);
2679 	CK_LIST_INIT(&bp->bif_wlist);
2680 	bp->bif_ifp = ifp;
2681 	bp->bif_dlt = dlt;
2682 	bp->bif_hdrlen = hdrlen;
2683 	bp->bif_bpf = driverp;
2684 	bp->bif_refcnt = 1;
2685 	*driverp = bp;
2686 	/*
2687 	 * Reference ifnet pointer, so it won't freed until
2688 	 * we release it.
2689 	 */
2690 	if_ref(ifp);
2691 	BPF_LOCK();
2692 	CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2693 	BPF_UNLOCK();
2694 
2695 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2696 		if_printf(ifp, "bpf attached\n");
2697 }
2698 
2699 #ifdef VIMAGE
2700 /*
2701  * When moving interfaces between vnet instances we need a way to
2702  * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2703  * after the vmove.  We unfortunately have no device driver infrastructure
2704  * to query the interface for these values after creation/attach, thus
2705  * add this as a workaround.
2706  */
2707 int
2708 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2709 {
2710 
2711 	if (bp == NULL)
2712 		return (ENXIO);
2713 	if (bif_dlt == NULL && bif_hdrlen == NULL)
2714 		return (0);
2715 
2716 	if (bif_dlt != NULL)
2717 		*bif_dlt = bp->bif_dlt;
2718 	if (bif_hdrlen != NULL)
2719 		*bif_hdrlen = bp->bif_hdrlen;
2720 
2721 	return (0);
2722 }
2723 #endif
2724 
2725 /*
2726  * Detach bpf from an interface. This involves detaching each descriptor
2727  * associated with the interface. Notify each descriptor as it's detached
2728  * so that any sleepers wake up and get ENXIO.
2729  */
2730 void
2731 bpfdetach(struct ifnet *ifp)
2732 {
2733 	struct bpf_if *bp, *bp_temp;
2734 	struct bpf_d *d;
2735 
2736 	BPF_LOCK();
2737 	/* Find all bpf_if struct's which reference ifp and detach them. */
2738 	CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2739 		if (ifp != bp->bif_ifp)
2740 			continue;
2741 
2742 		CK_LIST_REMOVE(bp, bif_next);
2743 		*bp->bif_bpf = (struct bpf_if *)&dead_bpf_if;
2744 
2745 		CTR4(KTR_NET,
2746 		    "%s: sheduling free for encap %d (%p) for if %p",
2747 		    __func__, bp->bif_dlt, bp, ifp);
2748 
2749 		/* Detach common descriptors */
2750 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2751 			bpf_detachd_locked(d, true);
2752 		}
2753 
2754 		/* Detach writer-only descriptors */
2755 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2756 			bpf_detachd_locked(d, true);
2757 		}
2758 		bpfif_rele(bp);
2759 	}
2760 	BPF_UNLOCK();
2761 }
2762 
2763 /*
2764  * Get a list of available data link type of the interface.
2765  */
2766 static int
2767 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2768 {
2769 	struct ifnet *ifp;
2770 	struct bpf_if *bp;
2771 	u_int *lst;
2772 	int error, n, n1;
2773 
2774 	BPF_LOCK_ASSERT();
2775 
2776 	ifp = d->bd_bif->bif_ifp;
2777 	n1 = 0;
2778 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2779 		if (bp->bif_ifp == ifp)
2780 			n1++;
2781 	}
2782 	if (bfl->bfl_list == NULL) {
2783 		bfl->bfl_len = n1;
2784 		return (0);
2785 	}
2786 	if (n1 > bfl->bfl_len)
2787 		return (ENOMEM);
2788 
2789 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2790 	n = 0;
2791 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2792 		if (bp->bif_ifp != ifp)
2793 			continue;
2794 		lst[n++] = bp->bif_dlt;
2795 	}
2796 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2797 	free(lst, M_TEMP);
2798 	bfl->bfl_len = n;
2799 	return (error);
2800 }
2801 
2802 /*
2803  * Set the data link type of a BPF instance.
2804  */
2805 static int
2806 bpf_setdlt(struct bpf_d *d, u_int dlt)
2807 {
2808 	int error, opromisc;
2809 	struct ifnet *ifp;
2810 	struct bpf_if *bp;
2811 
2812 	BPF_LOCK_ASSERT();
2813 	MPASS(d->bd_bif != NULL);
2814 
2815 	/*
2816 	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2817 	 * changed while we hold global lock.
2818 	 */
2819 	if (d->bd_bif->bif_dlt == dlt)
2820 		return (0);
2821 
2822 	ifp = d->bd_bif->bif_ifp;
2823 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2824 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2825 			break;
2826 	}
2827 	if (bp == NULL)
2828 		return (EINVAL);
2829 
2830 	opromisc = d->bd_promisc;
2831 	bpf_attachd(d, bp);
2832 	if (opromisc) {
2833 		error = ifpromisc(bp->bif_ifp, 1);
2834 		if (error)
2835 			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2836 			    __func__, error);
2837 		else
2838 			d->bd_promisc = 1;
2839 	}
2840 	return (0);
2841 }
2842 
2843 static void
2844 bpf_drvinit(void *unused)
2845 {
2846 	struct cdev *dev;
2847 
2848 	sx_init(&bpf_sx, "bpf global lock");
2849 	CK_LIST_INIT(&bpf_iflist);
2850 
2851 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2852 	/* For compatibility */
2853 	make_dev_alias(dev, "bpf0");
2854 }
2855 
2856 /*
2857  * Zero out the various packet counters associated with all of the bpf
2858  * descriptors.  At some point, we will probably want to get a bit more
2859  * granular and allow the user to specify descriptors to be zeroed.
2860  */
2861 static void
2862 bpf_zero_counters(void)
2863 {
2864 	struct bpf_if *bp;
2865 	struct bpf_d *bd;
2866 
2867 	BPF_LOCK();
2868 	/*
2869 	 * We are protected by global lock here, interfaces and
2870 	 * descriptors can not be deleted while we hold it.
2871 	 */
2872 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2873 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2874 			counter_u64_zero(bd->bd_rcount);
2875 			counter_u64_zero(bd->bd_dcount);
2876 			counter_u64_zero(bd->bd_fcount);
2877 			counter_u64_zero(bd->bd_wcount);
2878 			counter_u64_zero(bd->bd_wfcount);
2879 			counter_u64_zero(bd->bd_zcopy);
2880 		}
2881 	}
2882 	BPF_UNLOCK();
2883 }
2884 
2885 /*
2886  * Fill filter statistics
2887  */
2888 static void
2889 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
2890 {
2891 
2892 	BPF_LOCK_ASSERT();
2893 	bzero(d, sizeof(*d));
2894 	d->bd_structsize = sizeof(*d);
2895 	d->bd_immediate = bd->bd_immediate;
2896 	d->bd_promisc = bd->bd_promisc;
2897 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
2898 	d->bd_direction = bd->bd_direction;
2899 	d->bd_feedback = bd->bd_feedback;
2900 	d->bd_async = bd->bd_async;
2901 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
2902 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
2903 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
2904 	d->bd_sig = bd->bd_sig;
2905 	d->bd_slen = bd->bd_slen;
2906 	d->bd_hlen = bd->bd_hlen;
2907 	d->bd_bufsize = bd->bd_bufsize;
2908 	d->bd_pid = bd->bd_pid;
2909 	strlcpy(d->bd_ifname,
2910 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
2911 	d->bd_locked = bd->bd_locked;
2912 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
2913 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
2914 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
2915 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
2916 	d->bd_bufmode = bd->bd_bufmode;
2917 }
2918 
2919 /*
2920  * Handle `netstat -B' stats request
2921  */
2922 static int
2923 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
2924 {
2925 	static const struct xbpf_d zerostats;
2926 	struct xbpf_d *xbdbuf, *xbd, tempstats;
2927 	int index, error;
2928 	struct bpf_if *bp;
2929 	struct bpf_d *bd;
2930 
2931 	/*
2932 	 * XXX This is not technically correct. It is possible for non
2933 	 * privileged users to open bpf devices. It would make sense
2934 	 * if the users who opened the devices were able to retrieve
2935 	 * the statistics for them, too.
2936 	 */
2937 	error = priv_check(req->td, PRIV_NET_BPF);
2938 	if (error)
2939 		return (error);
2940 	/*
2941 	 * Check to see if the user is requesting that the counters be
2942 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
2943 	 * as we aren't allowing the user to set the counters currently.
2944 	 */
2945 	if (req->newptr != NULL) {
2946 		if (req->newlen != sizeof(tempstats))
2947 			return (EINVAL);
2948 		memset(&tempstats, 0, sizeof(tempstats));
2949 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
2950 		if (error)
2951 			return (error);
2952 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
2953 			return (EINVAL);
2954 		bpf_zero_counters();
2955 		return (0);
2956 	}
2957 	if (req->oldptr == NULL)
2958 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
2959 	if (bpf_bpfd_cnt == 0)
2960 		return (SYSCTL_OUT(req, 0, 0));
2961 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
2962 	BPF_LOCK();
2963 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
2964 		BPF_UNLOCK();
2965 		free(xbdbuf, M_BPF);
2966 		return (ENOMEM);
2967 	}
2968 	index = 0;
2969 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2970 		/* Send writers-only first */
2971 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
2972 			xbd = &xbdbuf[index++];
2973 			bpfstats_fill_xbpf(xbd, bd);
2974 		}
2975 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2976 			xbd = &xbdbuf[index++];
2977 			bpfstats_fill_xbpf(xbd, bd);
2978 		}
2979 	}
2980 	BPF_UNLOCK();
2981 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
2982 	free(xbdbuf, M_BPF);
2983 	return (error);
2984 }
2985 
2986 SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
2987 
2988 #else /* !DEV_BPF && !NETGRAPH_BPF */
2989 
2990 /*
2991  * NOP stubs to allow bpf-using drivers to load and function.
2992  *
2993  * A 'better' implementation would allow the core bpf functionality
2994  * to be loaded at runtime.
2995  */
2996 
2997 void
2998 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2999 {
3000 }
3001 
3002 void
3003 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3004 {
3005 }
3006 
3007 void
3008 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3009 {
3010 }
3011 
3012 void
3013 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3014 {
3015 
3016 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3017 }
3018 
3019 void
3020 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3021 {
3022 
3023 	*driverp = (struct bpf_if *)&dead_bpf_if;
3024 }
3025 
3026 void
3027 bpfdetach(struct ifnet *ifp)
3028 {
3029 }
3030 
3031 u_int
3032 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3033 {
3034 	return -1;	/* "no filter" behaviour */
3035 }
3036 
3037 int
3038 bpf_validate(const struct bpf_insn *f, int len)
3039 {
3040 	return 0;		/* false */
3041 }
3042 
3043 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3044 
3045 #ifdef DDB
3046 static void
3047 bpf_show_bpf_if(struct bpf_if *bpf_if)
3048 {
3049 
3050 	if (bpf_if == NULL)
3051 		return;
3052 	db_printf("%p:\n", bpf_if);
3053 #define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3054 	/* bif_ext.bif_next */
3055 	/* bif_ext.bif_dlist */
3056 	BPF_DB_PRINTF("%#x", bif_dlt);
3057 	BPF_DB_PRINTF("%u", bif_hdrlen);
3058 	/* bif_wlist */
3059 	BPF_DB_PRINTF("%p", bif_ifp);
3060 	BPF_DB_PRINTF("%p", bif_bpf);
3061 	BPF_DB_PRINTF("%u", bif_refcnt);
3062 }
3063 
3064 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3065 {
3066 
3067 	if (!have_addr) {
3068 		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3069 		return;
3070 	}
3071 
3072 	bpf_show_bpf_if((struct bpf_if *)addr);
3073 }
3074 #endif
3075