xref: /freebsd/sys/net/if.c (revision bdd1243d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org>
5  * Copyright (c) 1980, 1986, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)if.c	8.5 (Berkeley) 1/9/95
33  * $FreeBSD$
34  */
35 
36 #include "opt_bpf.h"
37 #include "opt_inet6.h"
38 #include "opt_inet.h"
39 #include "opt_ddb.h"
40 
41 #include <sys/param.h>
42 #include <sys/capsicum.h>
43 #include <sys/conf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/malloc.h>
46 #include <sys/domainset.h>
47 #include <sys/sbuf.h>
48 #include <sys/bus.h>
49 #include <sys/epoch.h>
50 #include <sys/mbuf.h>
51 #include <sys/systm.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/kernel.h>
58 #include <sys/lock.h>
59 #include <sys/refcount.h>
60 #include <sys/module.h>
61 #include <sys/nv.h>
62 #include <sys/rwlock.h>
63 #include <sys/sockio.h>
64 #include <sys/syslog.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/taskqueue.h>
68 #include <sys/domain.h>
69 #include <sys/jail.h>
70 #include <sys/priv.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <machine/stdarg.h>
77 #include <vm/uma.h>
78 
79 #include <net/bpf.h>
80 #include <net/ethernet.h>
81 #include <net/if.h>
82 #include <net/if_arp.h>
83 #include <net/if_clone.h>
84 #include <net/if_dl.h>
85 #include <net/if_strings.h>
86 #include <net/if_types.h>
87 #include <net/if_var.h>
88 #include <net/if_media.h>
89 #include <net/if_mib.h>
90 #include <net/if_private.h>
91 #include <net/if_vlan_var.h>
92 #include <net/radix.h>
93 #include <net/route.h>
94 #include <net/route/route_ctl.h>
95 #include <net/vnet.h>
96 
97 #if defined(INET) || defined(INET6)
98 #include <net/ethernet.h>
99 #include <netinet/in.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_carp.h>
103 #ifdef INET
104 #include <net/debugnet.h>
105 #include <netinet/if_ether.h>
106 #endif /* INET */
107 #ifdef INET6
108 #include <netinet6/in6_var.h>
109 #include <netinet6/in6_ifattach.h>
110 #endif /* INET6 */
111 #endif /* INET || INET6 */
112 
113 #include <security/mac/mac_framework.h>
114 
115 /*
116  * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name
117  * and ifr_ifru when it is used in SIOCGIFCONF.
118  */
119 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) ==
120     offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru");
121 
122 __read_mostly epoch_t net_epoch_preempt;
123 #ifdef COMPAT_FREEBSD32
124 #include <sys/mount.h>
125 #include <compat/freebsd32/freebsd32.h>
126 
127 struct ifreq_buffer32 {
128 	uint32_t	length;		/* (size_t) */
129 	uint32_t	buffer;		/* (void *) */
130 };
131 
132 /*
133  * Interface request structure used for socket
134  * ioctl's.  All interface ioctl's must have parameter
135  * definitions which begin with ifr_name.  The
136  * remainder may be interface specific.
137  */
138 struct ifreq32 {
139 	char	ifr_name[IFNAMSIZ];		/* if name, e.g. "en0" */
140 	union {
141 		struct sockaddr	ifru_addr;
142 		struct sockaddr	ifru_dstaddr;
143 		struct sockaddr	ifru_broadaddr;
144 		struct ifreq_buffer32 ifru_buffer;
145 		short		ifru_flags[2];
146 		short		ifru_index;
147 		int		ifru_jid;
148 		int		ifru_metric;
149 		int		ifru_mtu;
150 		int		ifru_phys;
151 		int		ifru_media;
152 		uint32_t	ifru_data;
153 		int		ifru_cap[2];
154 		u_int		ifru_fib;
155 		u_char		ifru_vlan_pcp;
156 	} ifr_ifru;
157 };
158 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32));
159 CTASSERT(__offsetof(struct ifreq, ifr_ifru) ==
160     __offsetof(struct ifreq32, ifr_ifru));
161 
162 struct ifconf32 {
163 	int32_t	ifc_len;
164 	union {
165 		uint32_t	ifcu_buf;
166 		uint32_t	ifcu_req;
167 	} ifc_ifcu;
168 };
169 #define	SIOCGIFCONF32	_IOWR('i', 36, struct ifconf32)
170 
171 struct ifdrv32 {
172 	char		ifd_name[IFNAMSIZ];
173 	uint32_t	ifd_cmd;
174 	uint32_t	ifd_len;
175 	uint32_t	ifd_data;
176 };
177 #define SIOCSDRVSPEC32	_IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32)
178 #define SIOCGDRVSPEC32	_IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32)
179 
180 struct ifgroupreq32 {
181 	char	ifgr_name[IFNAMSIZ];
182 	u_int	ifgr_len;
183 	union {
184 		char		ifgru_group[IFNAMSIZ];
185 		uint32_t	ifgru_groups;
186 	} ifgr_ifgru;
187 };
188 #define	SIOCAIFGROUP32	_IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32)
189 #define	SIOCGIFGROUP32	_IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32)
190 #define	SIOCDIFGROUP32	_IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32)
191 #define	SIOCGIFGMEMB32	_IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32)
192 
193 struct ifmediareq32 {
194 	char		ifm_name[IFNAMSIZ];
195 	int		ifm_current;
196 	int		ifm_mask;
197 	int		ifm_status;
198 	int		ifm_active;
199 	int		ifm_count;
200 	uint32_t	ifm_ulist;	/* (int *) */
201 };
202 #define	SIOCGIFMEDIA32	_IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32)
203 #define	SIOCGIFXMEDIA32	_IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32)
204 #endif /* COMPAT_FREEBSD32 */
205 
206 union ifreq_union {
207 	struct ifreq	ifr;
208 #ifdef COMPAT_FREEBSD32
209 	struct ifreq32	ifr32;
210 #endif
211 };
212 
213 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
214     "Link layers");
215 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
216     "Generic link-management");
217 
218 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
219     &ifqmaxlen, 0, "max send queue size");
220 
221 /* Log link state change events */
222 static int log_link_state_change = 1;
223 
224 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
225 	&log_link_state_change, 0,
226 	"log interface link state change events");
227 
228 /* Log promiscuous mode change events */
229 static int log_promisc_mode_change = 1;
230 
231 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
232 	&log_promisc_mode_change, 1,
233 	"log promiscuous mode change events");
234 
235 /* Interface description */
236 static unsigned int ifdescr_maxlen = 1024;
237 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
238 	&ifdescr_maxlen, 0,
239 	"administrative maximum length for interface description");
240 
241 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
242 
243 /* global sx for non-critical path ifdescr */
244 static struct sx ifdescr_sx;
245 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
246 
247 void	(*ng_ether_link_state_p)(struct ifnet *ifp, int state);
248 void	(*lagg_linkstate_p)(struct ifnet *ifp, int state);
249 /* These are external hooks for CARP. */
250 void	(*carp_linkstate_p)(struct ifnet *ifp);
251 void	(*carp_demote_adj_p)(int, char *);
252 int	(*carp_master_p)(struct ifaddr *);
253 #if defined(INET) || defined(INET6)
254 int	(*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
255 int	(*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
256     const struct sockaddr *sa);
257 int	(*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
258 int	(*carp_attach_p)(struct ifaddr *, int);
259 void	(*carp_detach_p)(struct ifaddr *, bool);
260 #endif
261 #ifdef INET
262 int	(*carp_iamatch_p)(struct ifaddr *, uint8_t **);
263 #endif
264 #ifdef INET6
265 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
266 caddr_t	(*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
267     const struct in6_addr *taddr);
268 #endif
269 
270 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
271 
272 /*
273  * XXX: Style; these should be sorted alphabetically, and unprototyped
274  * static functions should be prototyped. Currently they are sorted by
275  * declaration order.
276  */
277 static void	if_attachdomain(void *);
278 static void	if_attachdomain1(struct ifnet *);
279 static int	ifconf(u_long, caddr_t);
280 static void	if_input_default(struct ifnet *, struct mbuf *);
281 static int	if_requestencap_default(struct ifnet *, struct if_encap_req *);
282 static int	if_setflag(struct ifnet *, int, int, int *, int);
283 static int	if_transmit_default(struct ifnet *ifp, struct mbuf *m);
284 static void	if_unroute(struct ifnet *, int flag, int fam);
285 static int	if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
286 static void	do_link_state_change(void *, int);
287 static int	if_getgroup(struct ifgroupreq *, struct ifnet *);
288 static int	if_getgroupmembers(struct ifgroupreq *);
289 static void	if_delgroups(struct ifnet *);
290 static void	if_attach_internal(struct ifnet *, bool);
291 static int	if_detach_internal(struct ifnet *, bool);
292 static void	if_siocaddmulti(void *, int);
293 static void	if_link_ifnet(struct ifnet *);
294 static bool	if_unlink_ifnet(struct ifnet *, bool);
295 #ifdef VIMAGE
296 static int	if_vmove(struct ifnet *, struct vnet *);
297 #endif
298 
299 #ifdef INET6
300 /*
301  * XXX: declare here to avoid to include many inet6 related files..
302  * should be more generalized?
303  */
304 extern void	nd6_setmtu(struct ifnet *);
305 #endif
306 
307 /* ipsec helper hooks */
308 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
309 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
310 
311 int	ifqmaxlen = IFQ_MAXLEN;
312 VNET_DEFINE(struct ifnethead, ifnet);	/* depend on static init XXX */
313 VNET_DEFINE(struct ifgrouphead, ifg_head);
314 
315 /* Table of ifnet by index. */
316 static int if_index;
317 static int if_indexlim = 8;
318 static struct ifindex_entry {
319 	struct ifnet	*ife_ifnet;
320 	uint16_t	ife_gencnt;
321 } *ifindex_table;
322 
323 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system,
324     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
325     "Variables global to all interfaces");
326 static int
327 sysctl_ifcount(SYSCTL_HANDLER_ARGS)
328 {
329 	int rv = 0;
330 
331 	IFNET_RLOCK();
332 	for (int i = 1; i <= if_index; i++)
333 		if (ifindex_table[i].ife_ifnet != NULL &&
334 		    ifindex_table[i].ife_ifnet->if_vnet == curvnet)
335 			rv = i;
336 	IFNET_RUNLOCK();
337 
338 	return (sysctl_handle_int(oidp, &rv, 0, req));
339 }
340 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount,
341     CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I",
342     "Maximum known interface index");
343 
344 /*
345  * The global network interface list (V_ifnet) and related state (such as
346  * if_index, if_indexlim, and ifindex_table) are protected by an sxlock.
347  * This may be acquired to stabilise the list, or we may rely on NET_EPOCH.
348  */
349 struct sx ifnet_sxlock;
350 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
351 
352 struct sx ifnet_detach_sxlock;
353 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx",
354     SX_RECURSE);
355 
356 #ifdef VIMAGE
357 #define	VNET_IS_SHUTTING_DOWN(_vnet)					\
358     ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE)
359 #endif
360 
361 static	if_com_alloc_t *if_com_alloc[256];
362 static	if_com_free_t *if_com_free[256];
363 
364 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
365 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
366 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
367 
368 struct ifnet *
369 ifnet_byindex(u_int idx)
370 {
371 	struct ifnet *ifp;
372 
373 	NET_EPOCH_ASSERT();
374 
375 	if (__predict_false(idx > if_index))
376 		return (NULL);
377 
378 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
379 
380 	if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet)
381 		ifp = NULL;
382 
383 	return (ifp);
384 }
385 
386 struct ifnet *
387 ifnet_byindex_ref(u_int idx)
388 {
389 	struct ifnet *ifp;
390 
391 	ifp = ifnet_byindex(idx);
392 	if (ifp == NULL || (ifp->if_flags & IFF_DYING))
393 		return (NULL);
394 	if (!if_try_ref(ifp))
395 		return (NULL);
396 	return (ifp);
397 }
398 
399 struct ifnet *
400 ifnet_byindexgen(uint16_t idx, uint16_t gen)
401 {
402 	struct ifnet *ifp;
403 
404 	NET_EPOCH_ASSERT();
405 
406 	if (__predict_false(idx > if_index))
407 		return (NULL);
408 
409 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
410 
411 	if (ifindex_table[idx].ife_gencnt == gen)
412 		return (ifp);
413 	else
414 		return (NULL);
415 }
416 
417 /*
418  * Network interface utility routines.
419  *
420  * Routines with ifa_ifwith* names take sockaddr *'s as
421  * parameters.
422  */
423 
424 static void
425 if_init_idxtable(void *arg __unused)
426 {
427 
428 	ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table),
429 	    M_IFNET, M_WAITOK | M_ZERO);
430 }
431 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL);
432 
433 static void
434 vnet_if_init(const void *unused __unused)
435 {
436 
437 	CK_STAILQ_INIT(&V_ifnet);
438 	CK_STAILQ_INIT(&V_ifg_head);
439 	vnet_if_clone_init();
440 }
441 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
442     NULL);
443 
444 static void
445 if_link_ifnet(struct ifnet *ifp)
446 {
447 
448 	IFNET_WLOCK();
449 	CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
450 #ifdef VIMAGE
451 	curvnet->vnet_ifcnt++;
452 #endif
453 	IFNET_WUNLOCK();
454 }
455 
456 static bool
457 if_unlink_ifnet(struct ifnet *ifp, bool vmove)
458 {
459 	struct ifnet *iter;
460 	int found = 0;
461 
462 	IFNET_WLOCK();
463 	CK_STAILQ_FOREACH(iter, &V_ifnet, if_link)
464 		if (iter == ifp) {
465 			CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link);
466 			if (!vmove)
467 				ifp->if_flags |= IFF_DYING;
468 			found = 1;
469 			break;
470 		}
471 #ifdef VIMAGE
472 	curvnet->vnet_ifcnt--;
473 #endif
474 	IFNET_WUNLOCK();
475 
476 	return (found);
477 }
478 
479 #ifdef VIMAGE
480 static void
481 vnet_if_return(const void *unused __unused)
482 {
483 	struct ifnet *ifp, *nifp;
484 	struct ifnet **pending;
485 	int found __diagused;
486 	int i;
487 
488 	i = 0;
489 
490 	/*
491 	 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd
492 	 * enter NET_EPOCH, but that's not possible, because if_vmove() calls
493 	 * if_detach_internal(), which waits for NET_EPOCH callbacks to
494 	 * complete. We can't do that from within NET_EPOCH.
495 	 *
496 	 * However, we can also use the IFNET_xLOCK, which is the V_ifnet
497 	 * read/write lock. We cannot hold the lock as we call if_vmove()
498 	 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib
499 	 * ctx lock.
500 	 */
501 	IFNET_WLOCK();
502 
503 	pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt,
504 	    M_IFNET, M_WAITOK | M_ZERO);
505 
506 	/* Return all inherited interfaces to their parent vnets. */
507 	CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
508 		if (ifp->if_home_vnet != ifp->if_vnet) {
509 			found = if_unlink_ifnet(ifp, true);
510 			MPASS(found);
511 
512 			pending[i++] = ifp;
513 		}
514 	}
515 	IFNET_WUNLOCK();
516 
517 	for (int j = 0; j < i; j++) {
518 		sx_xlock(&ifnet_detach_sxlock);
519 		if_vmove(pending[j], pending[j]->if_home_vnet);
520 		sx_xunlock(&ifnet_detach_sxlock);
521 	}
522 
523 	free(pending, M_IFNET);
524 }
525 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
526     vnet_if_return, NULL);
527 #endif
528 
529 /*
530  * Allocate a struct ifnet and an index for an interface.  A layer 2
531  * common structure will also be allocated if an allocation routine is
532  * registered for the passed type.
533  */
534 static struct ifnet *
535 if_alloc_domain(u_char type, int numa_domain)
536 {
537 	struct ifnet *ifp;
538 	u_short idx;
539 
540 	KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large"));
541 	if (numa_domain == IF_NODOM)
542 		ifp = malloc(sizeof(struct ifnet), M_IFNET,
543 		    M_WAITOK | M_ZERO);
544 	else
545 		ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET,
546 		    DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO);
547 	ifp->if_type = type;
548 	ifp->if_alloctype = type;
549 	ifp->if_numa_domain = numa_domain;
550 #ifdef VIMAGE
551 	ifp->if_vnet = curvnet;
552 #endif
553 	if (if_com_alloc[type] != NULL) {
554 		ifp->if_l2com = if_com_alloc[type](type, ifp);
555 		KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__,
556 		    type));
557 	}
558 
559 	IF_ADDR_LOCK_INIT(ifp);
560 	TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
561 	TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp);
562 	ifp->if_afdata_initialized = 0;
563 	IF_AFDATA_LOCK_INIT(ifp);
564 	CK_STAILQ_INIT(&ifp->if_addrhead);
565 	CK_STAILQ_INIT(&ifp->if_multiaddrs);
566 	CK_STAILQ_INIT(&ifp->if_groups);
567 #ifdef MAC
568 	mac_ifnet_init(ifp);
569 #endif
570 	ifq_init(&ifp->if_snd, ifp);
571 
572 	refcount_init(&ifp->if_refcount, 1);	/* Index reference. */
573 	for (int i = 0; i < IFCOUNTERS; i++)
574 		ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
575 	ifp->if_get_counter = if_get_counter_default;
576 	ifp->if_pcp = IFNET_PCP_NONE;
577 
578 	/* Allocate an ifindex array entry. */
579 	IFNET_WLOCK();
580 	/*
581 	 * Try to find an empty slot below if_index.  If we fail, take the
582 	 * next slot.
583 	 */
584 	for (idx = 1; idx <= if_index; idx++) {
585 		if (ifindex_table[idx].ife_ifnet == NULL)
586 			break;
587 	}
588 
589 	/* Catch if_index overflow. */
590 	if (idx >= if_indexlim) {
591 		struct ifindex_entry *new, *old;
592 		int newlim;
593 
594 		newlim = if_indexlim * 2;
595 		new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO);
596 		memcpy(new, ifindex_table, if_indexlim * sizeof(*new));
597 		old = ifindex_table;
598 		ck_pr_store_ptr(&ifindex_table, new);
599 		if_indexlim = newlim;
600 		epoch_wait_preempt(net_epoch_preempt);
601 		free(old, M_IFNET);
602 	}
603 	if (idx > if_index)
604 		if_index = idx;
605 
606 	ifp->if_index = idx;
607 	ifp->if_idxgen = ifindex_table[idx].ife_gencnt;
608 	ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp);
609 	IFNET_WUNLOCK();
610 
611 	return (ifp);
612 }
613 
614 struct ifnet *
615 if_alloc_dev(u_char type, device_t dev)
616 {
617 	int numa_domain;
618 
619 	if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0)
620 		return (if_alloc_domain(type, IF_NODOM));
621 	return (if_alloc_domain(type, numa_domain));
622 }
623 
624 struct ifnet *
625 if_alloc(u_char type)
626 {
627 
628 	return (if_alloc_domain(type, IF_NODOM));
629 }
630 /*
631  * Do the actual work of freeing a struct ifnet, and layer 2 common
632  * structure.  This call is made when the network epoch guarantees
633  * us that nobody holds a pointer to the interface.
634  */
635 static void
636 if_free_deferred(epoch_context_t ctx)
637 {
638 	struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx);
639 
640 	KASSERT((ifp->if_flags & IFF_DYING),
641 	    ("%s: interface not dying", __func__));
642 
643 	if (if_com_free[ifp->if_alloctype] != NULL)
644 		if_com_free[ifp->if_alloctype](ifp->if_l2com,
645 		    ifp->if_alloctype);
646 
647 #ifdef MAC
648 	mac_ifnet_destroy(ifp);
649 #endif /* MAC */
650 	IF_AFDATA_DESTROY(ifp);
651 	IF_ADDR_LOCK_DESTROY(ifp);
652 	ifq_delete(&ifp->if_snd);
653 
654 	for (int i = 0; i < IFCOUNTERS; i++)
655 		counter_u64_free(ifp->if_counters[i]);
656 
657 	if_freedescr(ifp->if_description);
658 	free(ifp->if_hw_addr, M_IFADDR);
659 	free(ifp, M_IFNET);
660 }
661 
662 /*
663  * Deregister an interface and free the associated storage.
664  */
665 void
666 if_free(struct ifnet *ifp)
667 {
668 
669 	ifp->if_flags |= IFF_DYING;			/* XXX: Locking */
670 
671 	/*
672 	 * XXXGL: An interface index is really an alias to ifp pointer.
673 	 * Why would we clear the alias now, and not in the deferred
674 	 * context?  Indeed there is nothing wrong with some network
675 	 * thread obtaining ifp via ifnet_byindex() inside the network
676 	 * epoch and then dereferencing ifp while we perform if_free(),
677 	 * and after if_free() finished, too.
678 	 *
679 	 * This early index freeing was important back when ifindex was
680 	 * virtualized and interface would outlive the vnet.
681 	 */
682 	IFNET_WLOCK();
683 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
684 	ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL);
685 	ifindex_table[ifp->if_index].ife_gencnt++;
686 	while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL)
687 		if_index--;
688 	IFNET_WUNLOCK();
689 
690 	if (refcount_release(&ifp->if_refcount))
691 		NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
692 }
693 
694 /*
695  * Interfaces to keep an ifnet type-stable despite the possibility of the
696  * driver calling if_free().  If there are additional references, we defer
697  * freeing the underlying data structure.
698  */
699 void
700 if_ref(struct ifnet *ifp)
701 {
702 	u_int old __diagused;
703 
704 	/* We don't assert the ifnet list lock here, but arguably should. */
705 	old = refcount_acquire(&ifp->if_refcount);
706 	KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp));
707 }
708 
709 bool
710 if_try_ref(struct ifnet *ifp)
711 {
712 	NET_EPOCH_ASSERT();
713 	return (refcount_acquire_if_not_zero(&ifp->if_refcount));
714 }
715 
716 void
717 if_rele(struct ifnet *ifp)
718 {
719 
720 	if (!refcount_release(&ifp->if_refcount))
721 		return;
722 	NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
723 }
724 
725 void
726 ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
727 {
728 
729 	mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
730 
731 	if (ifq->ifq_maxlen == 0)
732 		ifq->ifq_maxlen = ifqmaxlen;
733 
734 	ifq->altq_type = 0;
735 	ifq->altq_disc = NULL;
736 	ifq->altq_flags &= ALTQF_CANTCHANGE;
737 	ifq->altq_tbr  = NULL;
738 	ifq->altq_ifp  = ifp;
739 }
740 
741 void
742 ifq_delete(struct ifaltq *ifq)
743 {
744 	mtx_destroy(&ifq->ifq_mtx);
745 }
746 
747 /*
748  * Perform generic interface initialization tasks and attach the interface
749  * to the list of "active" interfaces.  If vmove flag is set on entry
750  * to if_attach_internal(), perform only a limited subset of initialization
751  * tasks, given that we are moving from one vnet to another an ifnet which
752  * has already been fully initialized.
753  *
754  * Note that if_detach_internal() removes group membership unconditionally
755  * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
756  * Thus, when if_vmove() is applied to a cloned interface, group membership
757  * is lost while a cloned one always joins a group whose name is
758  * ifc->ifc_name.  To recover this after if_detach_internal() and
759  * if_attach_internal(), the cloner should be specified to
760  * if_attach_internal() via ifc.  If it is non-NULL, if_attach_internal()
761  * attempts to join a group whose name is ifc->ifc_name.
762  *
763  * XXX:
764  *  - The decision to return void and thus require this function to
765  *    succeed is questionable.
766  *  - We should probably do more sanity checking.  For instance we don't
767  *    do anything to insure if_xname is unique or non-empty.
768  */
769 void
770 if_attach(struct ifnet *ifp)
771 {
772 
773 	if_attach_internal(ifp, false);
774 }
775 
776 /*
777  * Compute the least common TSO limit.
778  */
779 void
780 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
781 {
782 	/*
783 	 * 1) If there is no limit currently, take the limit from
784 	 * the network adapter.
785 	 *
786 	 * 2) If the network adapter has a limit below the current
787 	 * limit, apply it.
788 	 */
789 	if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
790 	    ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
791 		pmax->tsomaxbytes = ifp->if_hw_tsomax;
792 	}
793 	if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
794 	    ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
795 		pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
796 	}
797 	if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
798 	    ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
799 		pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
800 	}
801 }
802 
803 /*
804  * Update TSO limit of a network adapter.
805  *
806  * Returns zero if no change. Else non-zero.
807  */
808 int
809 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
810 {
811 	int retval = 0;
812 	if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
813 		ifp->if_hw_tsomax = pmax->tsomaxbytes;
814 		retval++;
815 	}
816 	if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
817 		ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
818 		retval++;
819 	}
820 	if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
821 		ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
822 		retval++;
823 	}
824 	return (retval);
825 }
826 
827 static void
828 if_attach_internal(struct ifnet *ifp, bool vmove)
829 {
830 	unsigned socksize, ifasize;
831 	int namelen, masklen;
832 	struct sockaddr_dl *sdl;
833 	struct ifaddr *ifa;
834 
835 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
836 
837 #ifdef VIMAGE
838 	ifp->if_vnet = curvnet;
839 	if (ifp->if_home_vnet == NULL)
840 		ifp->if_home_vnet = curvnet;
841 #endif
842 
843 	if_addgroup(ifp, IFG_ALL);
844 
845 #ifdef VIMAGE
846 	/* Restore group membership for cloned interface. */
847 	if (vmove)
848 		if_clone_restoregroup(ifp);
849 #endif
850 
851 	getmicrotime(&ifp->if_lastchange);
852 	ifp->if_epoch = time_uptime;
853 
854 	KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
855 	    (ifp->if_transmit != NULL && ifp->if_qflush != NULL),
856 	    ("transmit and qflush must both either be set or both be NULL"));
857 	if (ifp->if_transmit == NULL) {
858 		ifp->if_transmit = if_transmit_default;
859 		ifp->if_qflush = if_qflush;
860 	}
861 	if (ifp->if_input == NULL)
862 		ifp->if_input = if_input_default;
863 
864 	if (ifp->if_requestencap == NULL)
865 		ifp->if_requestencap = if_requestencap_default;
866 
867 	if (!vmove) {
868 #ifdef MAC
869 		mac_ifnet_create(ifp);
870 #endif
871 
872 		/*
873 		 * Create a Link Level name for this device.
874 		 */
875 		namelen = strlen(ifp->if_xname);
876 		/*
877 		 * Always save enough space for any possiable name so we
878 		 * can do a rename in place later.
879 		 */
880 		masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
881 		socksize = masklen + ifp->if_addrlen;
882 		if (socksize < sizeof(*sdl))
883 			socksize = sizeof(*sdl);
884 		socksize = roundup2(socksize, sizeof(long));
885 		ifasize = sizeof(*ifa) + 2 * socksize;
886 		ifa = ifa_alloc(ifasize, M_WAITOK);
887 		sdl = (struct sockaddr_dl *)(ifa + 1);
888 		sdl->sdl_len = socksize;
889 		sdl->sdl_family = AF_LINK;
890 		bcopy(ifp->if_xname, sdl->sdl_data, namelen);
891 		sdl->sdl_nlen = namelen;
892 		sdl->sdl_index = ifp->if_index;
893 		sdl->sdl_type = ifp->if_type;
894 		ifp->if_addr = ifa;
895 		ifa->ifa_ifp = ifp;
896 		ifa->ifa_addr = (struct sockaddr *)sdl;
897 		sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
898 		ifa->ifa_netmask = (struct sockaddr *)sdl;
899 		sdl->sdl_len = masklen;
900 		while (namelen != 0)
901 			sdl->sdl_data[--namelen] = 0xff;
902 		CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
903 		/* Reliably crash if used uninitialized. */
904 		ifp->if_broadcastaddr = NULL;
905 
906 		if (ifp->if_type == IFT_ETHER) {
907 			ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR,
908 			    M_WAITOK | M_ZERO);
909 		}
910 
911 #if defined(INET) || defined(INET6)
912 		/* Use defaults for TSO, if nothing is set */
913 		if (ifp->if_hw_tsomax == 0 &&
914 		    ifp->if_hw_tsomaxsegcount == 0 &&
915 		    ifp->if_hw_tsomaxsegsize == 0) {
916 			/*
917 			 * The TSO defaults needs to be such that an
918 			 * NFS mbuf list of 35 mbufs totalling just
919 			 * below 64K works and that a chain of mbufs
920 			 * can be defragged into at most 32 segments:
921 			 */
922 			ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
923 			    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
924 			ifp->if_hw_tsomaxsegcount = 35;
925 			ifp->if_hw_tsomaxsegsize = 2048;	/* 2K */
926 
927 			/* XXX some drivers set IFCAP_TSO after ethernet attach */
928 			if (ifp->if_capabilities & IFCAP_TSO) {
929 				if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
930 				    ifp->if_hw_tsomax,
931 				    ifp->if_hw_tsomaxsegcount,
932 				    ifp->if_hw_tsomaxsegsize);
933 			}
934 		}
935 #endif
936 	}
937 #ifdef VIMAGE
938 	else {
939 		/*
940 		 * Update the interface index in the link layer address
941 		 * of the interface.
942 		 */
943 		for (ifa = ifp->if_addr; ifa != NULL;
944 		    ifa = CK_STAILQ_NEXT(ifa, ifa_link)) {
945 			if (ifa->ifa_addr->sa_family == AF_LINK) {
946 				sdl = (struct sockaddr_dl *)ifa->ifa_addr;
947 				sdl->sdl_index = ifp->if_index;
948 			}
949 		}
950 	}
951 #endif
952 
953 	if_link_ifnet(ifp);
954 
955 	if (domain_init_status >= 2)
956 		if_attachdomain1(ifp);
957 
958 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
959 	if (IS_DEFAULT_VNET(curvnet))
960 		devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
961 }
962 
963 static void
964 if_epochalloc(void *dummy __unused)
965 {
966 
967 	net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT);
968 }
969 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL);
970 
971 static void
972 if_attachdomain(void *dummy)
973 {
974 	struct ifnet *ifp;
975 
976 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link)
977 		if_attachdomain1(ifp);
978 }
979 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
980     if_attachdomain, NULL);
981 
982 static void
983 if_attachdomain1(struct ifnet *ifp)
984 {
985 	struct domain *dp;
986 
987 	/*
988 	 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we
989 	 * cannot lock ifp->if_afdata initialization, entirely.
990 	 */
991 	IF_AFDATA_LOCK(ifp);
992 	if (ifp->if_afdata_initialized >= domain_init_status) {
993 		IF_AFDATA_UNLOCK(ifp);
994 		log(LOG_WARNING, "%s called more than once on %s\n",
995 		    __func__, ifp->if_xname);
996 		return;
997 	}
998 	ifp->if_afdata_initialized = domain_init_status;
999 	IF_AFDATA_UNLOCK(ifp);
1000 
1001 	/* address family dependent data region */
1002 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
1003 	SLIST_FOREACH(dp, &domains, dom_next) {
1004 		if (dp->dom_ifattach)
1005 			ifp->if_afdata[dp->dom_family] =
1006 			    (*dp->dom_ifattach)(ifp);
1007 	}
1008 }
1009 
1010 /*
1011  * Remove any unicast or broadcast network addresses from an interface.
1012  */
1013 void
1014 if_purgeaddrs(struct ifnet *ifp)
1015 {
1016 	struct ifaddr *ifa;
1017 
1018 #ifdef INET6
1019 	/*
1020 	 * Need to leave multicast addresses of proxy NDP llentries
1021 	 * before in6_purgeifaddr() because the llentries are keys
1022 	 * for in6_multi objects of proxy NDP entries.
1023 	 * in6_purgeifaddr()s clean up llentries including proxy NDPs
1024 	 * then we would lose the keys if they are called earlier.
1025 	 */
1026 	in6_purge_proxy_ndp(ifp);
1027 #endif
1028 	while (1) {
1029 		struct epoch_tracker et;
1030 
1031 		NET_EPOCH_ENTER(et);
1032 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1033 			if (ifa->ifa_addr->sa_family != AF_LINK)
1034 				break;
1035 		}
1036 		NET_EPOCH_EXIT(et);
1037 
1038 		if (ifa == NULL)
1039 			break;
1040 #ifdef INET
1041 		/* XXX: Ugly!! ad hoc just for INET */
1042 		if (ifa->ifa_addr->sa_family == AF_INET) {
1043 			struct ifaliasreq ifr;
1044 
1045 			bzero(&ifr, sizeof(ifr));
1046 			ifr.ifra_addr = *ifa->ifa_addr;
1047 			if (ifa->ifa_dstaddr)
1048 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
1049 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
1050 			    NULL) == 0)
1051 				continue;
1052 		}
1053 #endif /* INET */
1054 #ifdef INET6
1055 		if (ifa->ifa_addr->sa_family == AF_INET6) {
1056 			in6_purgeifaddr((struct in6_ifaddr *)ifa);
1057 			/* ifp_addrhead is already updated */
1058 			continue;
1059 		}
1060 #endif /* INET6 */
1061 		IF_ADDR_WLOCK(ifp);
1062 		CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1063 		IF_ADDR_WUNLOCK(ifp);
1064 		ifa_free(ifa);
1065 	}
1066 }
1067 
1068 /*
1069  * Remove any multicast network addresses from an interface when an ifnet
1070  * is going away.
1071  */
1072 static void
1073 if_purgemaddrs(struct ifnet *ifp)
1074 {
1075 	struct ifmultiaddr *ifma;
1076 
1077 	IF_ADDR_WLOCK(ifp);
1078 	while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) {
1079 		ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs);
1080 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
1081 		if_delmulti_locked(ifp, ifma, 1);
1082 	}
1083 	IF_ADDR_WUNLOCK(ifp);
1084 }
1085 
1086 /*
1087  * Detach an interface, removing it from the list of "active" interfaces.
1088  * If vmove flag is set on entry to if_detach_internal(), perform only a
1089  * limited subset of cleanup tasks, given that we are moving an ifnet from
1090  * one vnet to another, where it must be fully operational.
1091  *
1092  * XXXRW: There are some significant questions about event ordering, and
1093  * how to prevent things from starting to use the interface during detach.
1094  */
1095 void
1096 if_detach(struct ifnet *ifp)
1097 {
1098 	bool found;
1099 
1100 	CURVNET_SET_QUIET(ifp->if_vnet);
1101 	found = if_unlink_ifnet(ifp, false);
1102 	if (found) {
1103 		sx_xlock(&ifnet_detach_sxlock);
1104 		if_detach_internal(ifp, false);
1105 		sx_xunlock(&ifnet_detach_sxlock);
1106 	}
1107 	CURVNET_RESTORE();
1108 }
1109 
1110 /*
1111  * The vmove flag, if set, indicates that we are called from a callpath
1112  * that is moving an interface to a different vnet instance.
1113  *
1114  * The shutdown flag, if set, indicates that we are called in the
1115  * process of shutting down a vnet instance.  Currently only the
1116  * vnet_if_return SYSUNINIT function sets it.  Note: we can be called
1117  * on a vnet instance shutdown without this flag being set, e.g., when
1118  * the cloned interfaces are destoyed as first thing of teardown.
1119  */
1120 static int
1121 if_detach_internal(struct ifnet *ifp, bool vmove)
1122 {
1123 	struct ifaddr *ifa;
1124 	int i;
1125 	struct domain *dp;
1126 #ifdef VIMAGE
1127 	bool shutdown;
1128 
1129 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1130 #endif
1131 
1132 	/*
1133 	 * At this point we know the interface still was on the ifnet list
1134 	 * and we removed it so we are in a stable state.
1135 	 */
1136 	epoch_wait_preempt(net_epoch_preempt);
1137 
1138 	/*
1139 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
1140 	 * fixes issues about late destruction of multicast options
1141 	 * which lead to leave group calls, which in turn access the
1142 	 * belonging ifnet structure:
1143 	 */
1144 	NET_EPOCH_DRAIN_CALLBACKS();
1145 
1146 	/*
1147 	 * In any case (destroy or vmove) detach us from the groups
1148 	 * and remove/wait for pending events on the taskq.
1149 	 * XXX-BZ in theory an interface could still enqueue a taskq change?
1150 	 */
1151 	if_delgroups(ifp);
1152 
1153 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
1154 	taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask);
1155 
1156 	if_down(ifp);
1157 
1158 #ifdef VIMAGE
1159 	/*
1160 	 * On VNET shutdown abort here as the stack teardown will do all
1161 	 * the work top-down for us.
1162 	 */
1163 	if (shutdown) {
1164 		/* Give interface users the chance to clean up. */
1165 		EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1166 
1167 		/*
1168 		 * In case of a vmove we are done here without error.
1169 		 * If we would signal an error it would lead to the same
1170 		 * abort as if we did not find the ifnet anymore.
1171 		 * if_detach() calls us in void context and does not care
1172 		 * about an early abort notification, so life is splendid :)
1173 		 */
1174 		goto finish_vnet_shutdown;
1175 	}
1176 #endif
1177 
1178 	/*
1179 	 * At this point we are not tearing down a VNET and are either
1180 	 * going to destroy or vmove the interface and have to cleanup
1181 	 * accordingly.
1182 	 */
1183 
1184 	/*
1185 	 * Remove routes and flush queues.
1186 	 */
1187 #ifdef ALTQ
1188 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
1189 		altq_disable(&ifp->if_snd);
1190 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1191 		altq_detach(&ifp->if_snd);
1192 #endif
1193 
1194 	if_purgeaddrs(ifp);
1195 
1196 #ifdef INET
1197 	in_ifdetach(ifp);
1198 #endif
1199 
1200 #ifdef INET6
1201 	/*
1202 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1203 	 * before removing routing entries below, since IPv6 interface direct
1204 	 * routes are expected to be removed by the IPv6-specific kernel API.
1205 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1206 	 */
1207 	in6_ifdetach(ifp);
1208 #endif
1209 	if_purgemaddrs(ifp);
1210 
1211 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1212 	if (IS_DEFAULT_VNET(curvnet))
1213 		devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
1214 
1215 	if (!vmove) {
1216 		/*
1217 		 * Prevent further calls into the device driver via ifnet.
1218 		 */
1219 		if_dead(ifp);
1220 
1221 		/*
1222 		 * Clean up all addresses.
1223 		 */
1224 		IF_ADDR_WLOCK(ifp);
1225 		if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) {
1226 			ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
1227 			CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1228 			IF_ADDR_WUNLOCK(ifp);
1229 			ifa_free(ifa);
1230 		} else
1231 			IF_ADDR_WUNLOCK(ifp);
1232 	}
1233 
1234 	rt_flushifroutes(ifp);
1235 
1236 #ifdef VIMAGE
1237 finish_vnet_shutdown:
1238 #endif
1239 	/*
1240 	 * We cannot hold the lock over dom_ifdetach calls as they might
1241 	 * sleep, for example trying to drain a callout, thus open up the
1242 	 * theoretical race with re-attaching.
1243 	 */
1244 	IF_AFDATA_LOCK(ifp);
1245 	i = ifp->if_afdata_initialized;
1246 	ifp->if_afdata_initialized = 0;
1247 	IF_AFDATA_UNLOCK(ifp);
1248 	if (i == 0)
1249 		return (0);
1250 	SLIST_FOREACH(dp, &domains, dom_next) {
1251 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
1252 			(*dp->dom_ifdetach)(ifp,
1253 			    ifp->if_afdata[dp->dom_family]);
1254 			ifp->if_afdata[dp->dom_family] = NULL;
1255 		}
1256 	}
1257 
1258 	return (0);
1259 }
1260 
1261 #ifdef VIMAGE
1262 /*
1263  * if_vmove() performs a limited version of if_detach() in current
1264  * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
1265  */
1266 static int
1267 if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
1268 {
1269 #ifdef DEV_BPF
1270 	u_int bif_dlt, bif_hdrlen;
1271 #endif
1272 	int rc;
1273 
1274 #ifdef DEV_BPF
1275  	/*
1276 	 * if_detach_internal() will call the eventhandler to notify
1277 	 * interface departure.  That will detach if_bpf.  We need to
1278 	 * safe the dlt and hdrlen so we can re-attach it later.
1279 	 */
1280 	bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen);
1281 #endif
1282 
1283 	/*
1284 	 * Detach from current vnet, but preserve LLADDR info, do not
1285 	 * mark as dead etc. so that the ifnet can be reattached later.
1286 	 * If we cannot find it, we lost the race to someone else.
1287 	 */
1288 	rc = if_detach_internal(ifp, true);
1289 	if (rc != 0)
1290 		return (rc);
1291 
1292 	/*
1293 	 * Perform interface-specific reassignment tasks, if provided by
1294 	 * the driver.
1295 	 */
1296 	if (ifp->if_reassign != NULL)
1297 		ifp->if_reassign(ifp, new_vnet, NULL);
1298 
1299 	/*
1300 	 * Switch to the context of the target vnet.
1301 	 */
1302 	CURVNET_SET_QUIET(new_vnet);
1303 	if_attach_internal(ifp, true);
1304 
1305 #ifdef DEV_BPF
1306 	if (ifp->if_bpf == NULL)
1307 		bpfattach(ifp, bif_dlt, bif_hdrlen);
1308 #endif
1309 
1310 	CURVNET_RESTORE();
1311 	return (0);
1312 }
1313 
1314 /*
1315  * Move an ifnet to or from another child prison/vnet, specified by the jail id.
1316  */
1317 static int
1318 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
1319 {
1320 	struct prison *pr;
1321 	struct ifnet *difp;
1322 	int error;
1323 	bool found __diagused;
1324 	bool shutdown;
1325 
1326 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
1327 
1328 	/* Try to find the prison within our visibility. */
1329 	sx_slock(&allprison_lock);
1330 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1331 	sx_sunlock(&allprison_lock);
1332 	if (pr == NULL)
1333 		return (ENXIO);
1334 	prison_hold_locked(pr);
1335 	mtx_unlock(&pr->pr_mtx);
1336 
1337 	/* Do not try to move the iface from and to the same prison. */
1338 	if (pr->pr_vnet == ifp->if_vnet) {
1339 		prison_free(pr);
1340 		return (EEXIST);
1341 	}
1342 
1343 	/* Make sure the named iface does not exists in the dst. prison/vnet. */
1344 	/* XXX Lock interfaces to avoid races. */
1345 	CURVNET_SET_QUIET(pr->pr_vnet);
1346 	difp = ifunit(ifname);
1347 	if (difp != NULL) {
1348 		CURVNET_RESTORE();
1349 		prison_free(pr);
1350 		return (EEXIST);
1351 	}
1352 	sx_xlock(&ifnet_detach_sxlock);
1353 
1354 	/* Make sure the VNET is stable. */
1355 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1356 	if (shutdown) {
1357 		sx_xunlock(&ifnet_detach_sxlock);
1358 		CURVNET_RESTORE();
1359 		prison_free(pr);
1360 		return (EBUSY);
1361 	}
1362 	CURVNET_RESTORE();
1363 
1364 	found = if_unlink_ifnet(ifp, true);
1365 	if (! found) {
1366 		sx_xunlock(&ifnet_detach_sxlock);
1367 		CURVNET_RESTORE();
1368 		prison_free(pr);
1369 		return (ENODEV);
1370 	}
1371 
1372 	/* Move the interface into the child jail/vnet. */
1373 	error = if_vmove(ifp, pr->pr_vnet);
1374 
1375 	/* Report the new if_xname back to the userland on success. */
1376 	if (error == 0)
1377 		sprintf(ifname, "%s", ifp->if_xname);
1378 
1379 	sx_xunlock(&ifnet_detach_sxlock);
1380 
1381 	prison_free(pr);
1382 	return (error);
1383 }
1384 
1385 static int
1386 if_vmove_reclaim(struct thread *td, char *ifname, int jid)
1387 {
1388 	struct prison *pr;
1389 	struct vnet *vnet_dst;
1390 	struct ifnet *ifp;
1391 	int error, found __diagused;
1392  	bool shutdown;
1393 
1394 	/* Try to find the prison within our visibility. */
1395 	sx_slock(&allprison_lock);
1396 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1397 	sx_sunlock(&allprison_lock);
1398 	if (pr == NULL)
1399 		return (ENXIO);
1400 	prison_hold_locked(pr);
1401 	mtx_unlock(&pr->pr_mtx);
1402 
1403 	/* Make sure the named iface exists in the source prison/vnet. */
1404 	CURVNET_SET(pr->pr_vnet);
1405 	ifp = ifunit(ifname);		/* XXX Lock to avoid races. */
1406 	if (ifp == NULL) {
1407 		CURVNET_RESTORE();
1408 		prison_free(pr);
1409 		return (ENXIO);
1410 	}
1411 
1412 	/* Do not try to move the iface from and to the same prison. */
1413 	vnet_dst = TD_TO_VNET(td);
1414 	if (vnet_dst == ifp->if_vnet) {
1415 		CURVNET_RESTORE();
1416 		prison_free(pr);
1417 		return (EEXIST);
1418 	}
1419 
1420 	/* Make sure the VNET is stable. */
1421 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1422 	if (shutdown) {
1423 		CURVNET_RESTORE();
1424 		prison_free(pr);
1425 		return (EBUSY);
1426 	}
1427 
1428 	/* Get interface back from child jail/vnet. */
1429 	found = if_unlink_ifnet(ifp, true);
1430 	MPASS(found);
1431 	sx_xlock(&ifnet_detach_sxlock);
1432 	error = if_vmove(ifp, vnet_dst);
1433 	sx_xunlock(&ifnet_detach_sxlock);
1434 	CURVNET_RESTORE();
1435 
1436 	/* Report the new if_xname back to the userland on success. */
1437 	if (error == 0)
1438 		sprintf(ifname, "%s", ifp->if_xname);
1439 
1440 	prison_free(pr);
1441 	return (error);
1442 }
1443 #endif /* VIMAGE */
1444 
1445 /*
1446  * Add a group to an interface
1447  */
1448 int
1449 if_addgroup(struct ifnet *ifp, const char *groupname)
1450 {
1451 	struct ifg_list		*ifgl;
1452 	struct ifg_group	*ifg = NULL;
1453 	struct ifg_member	*ifgm;
1454 	int 			 new = 0;
1455 
1456 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1457 	    groupname[strlen(groupname) - 1] <= '9')
1458 		return (EINVAL);
1459 
1460 	IFNET_WLOCK();
1461 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1462 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
1463 			IFNET_WUNLOCK();
1464 			return (EEXIST);
1465 		}
1466 
1467 	if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) {
1468 	    	IFNET_WUNLOCK();
1469 		return (ENOMEM);
1470 	}
1471 
1472 	if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1473 		free(ifgl, M_TEMP);
1474 		IFNET_WUNLOCK();
1475 		return (ENOMEM);
1476 	}
1477 
1478 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1479 		if (!strcmp(ifg->ifg_group, groupname))
1480 			break;
1481 
1482 	if (ifg == NULL) {
1483 		if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) {
1484 			free(ifgl, M_TEMP);
1485 			free(ifgm, M_TEMP);
1486 			IFNET_WUNLOCK();
1487 			return (ENOMEM);
1488 		}
1489 		strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1490 		ifg->ifg_refcnt = 0;
1491 		CK_STAILQ_INIT(&ifg->ifg_members);
1492 		CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
1493 		new = 1;
1494 	}
1495 
1496 	ifg->ifg_refcnt++;
1497 	ifgl->ifgl_group = ifg;
1498 	ifgm->ifgm_ifp = ifp;
1499 
1500 	IF_ADDR_WLOCK(ifp);
1501 	CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1502 	CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1503 	IF_ADDR_WUNLOCK(ifp);
1504 
1505 	IFNET_WUNLOCK();
1506 
1507 	if (new)
1508 		EVENTHANDLER_INVOKE(group_attach_event, ifg);
1509 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1510 
1511 	return (0);
1512 }
1513 
1514 /*
1515  * Helper function to remove a group out of an interface.  Expects the global
1516  * ifnet lock to be write-locked, and drops it before returning.
1517  */
1518 static void
1519 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl,
1520     const char *groupname)
1521 {
1522 	struct ifg_member *ifgm;
1523 	bool freeifgl;
1524 
1525 	IFNET_WLOCK_ASSERT();
1526 
1527 	IF_ADDR_WLOCK(ifp);
1528 	CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
1529 	IF_ADDR_WUNLOCK(ifp);
1530 
1531 	CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
1532 		if (ifgm->ifgm_ifp == ifp) {
1533 			CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
1534 			    ifg_member, ifgm_next);
1535 			break;
1536 		}
1537 	}
1538 
1539 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1540 		CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group,
1541 		    ifg_next);
1542 		freeifgl = true;
1543 	} else {
1544 		freeifgl = false;
1545 	}
1546 	IFNET_WUNLOCK();
1547 
1548 	epoch_wait_preempt(net_epoch_preempt);
1549 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1550 	if (freeifgl) {
1551 		EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
1552 		free(ifgl->ifgl_group, M_TEMP);
1553 	}
1554 	free(ifgm, M_TEMP);
1555 	free(ifgl, M_TEMP);
1556 }
1557 
1558 /*
1559  * Remove a group from an interface
1560  */
1561 int
1562 if_delgroup(struct ifnet *ifp, const char *groupname)
1563 {
1564 	struct ifg_list *ifgl;
1565 
1566 	IFNET_WLOCK();
1567 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1568 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
1569 			break;
1570 	if (ifgl == NULL) {
1571 		IFNET_WUNLOCK();
1572 		return (ENOENT);
1573 	}
1574 
1575 	_if_delgroup_locked(ifp, ifgl, groupname);
1576 
1577 	return (0);
1578 }
1579 
1580 /*
1581  * Remove an interface from all groups
1582  */
1583 static void
1584 if_delgroups(struct ifnet *ifp)
1585 {
1586 	struct ifg_list *ifgl;
1587 	char groupname[IFNAMSIZ];
1588 
1589 	IFNET_WLOCK();
1590 	while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) {
1591 		strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
1592 		_if_delgroup_locked(ifp, ifgl, groupname);
1593 		IFNET_WLOCK();
1594 	}
1595 	IFNET_WUNLOCK();
1596 }
1597 
1598 /*
1599  * Stores all groups from an interface in memory pointed to by ifgr.
1600  */
1601 static int
1602 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp)
1603 {
1604 	int			 len, error;
1605 	struct ifg_list		*ifgl;
1606 	struct ifg_req		 ifgrq, *ifgp;
1607 
1608 	NET_EPOCH_ASSERT();
1609 
1610 	if (ifgr->ifgr_len == 0) {
1611 		CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1612 			ifgr->ifgr_len += sizeof(struct ifg_req);
1613 		return (0);
1614 	}
1615 
1616 	len = ifgr->ifgr_len;
1617 	ifgp = ifgr->ifgr_groups;
1618 	/* XXX: wire */
1619 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1620 		if (len < sizeof(ifgrq))
1621 			return (EINVAL);
1622 		bzero(&ifgrq, sizeof ifgrq);
1623 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1624 		    sizeof(ifgrq.ifgrq_group));
1625 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req))))
1626 			return (error);
1627 		len -= sizeof(ifgrq);
1628 		ifgp++;
1629 	}
1630 
1631 	return (0);
1632 }
1633 
1634 /*
1635  * Stores all members of a group in memory pointed to by igfr
1636  */
1637 static int
1638 if_getgroupmembers(struct ifgroupreq *ifgr)
1639 {
1640 	struct ifg_group	*ifg;
1641 	struct ifg_member	*ifgm;
1642 	struct ifg_req		 ifgrq, *ifgp;
1643 	int			 len, error;
1644 
1645 	IFNET_RLOCK();
1646 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1647 		if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
1648 			break;
1649 	if (ifg == NULL) {
1650 		IFNET_RUNLOCK();
1651 		return (ENOENT);
1652 	}
1653 
1654 	if (ifgr->ifgr_len == 0) {
1655 		CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1656 			ifgr->ifgr_len += sizeof(ifgrq);
1657 		IFNET_RUNLOCK();
1658 		return (0);
1659 	}
1660 
1661 	len = ifgr->ifgr_len;
1662 	ifgp = ifgr->ifgr_groups;
1663 	CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1664 		if (len < sizeof(ifgrq)) {
1665 			IFNET_RUNLOCK();
1666 			return (EINVAL);
1667 		}
1668 		bzero(&ifgrq, sizeof ifgrq);
1669 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1670 		    sizeof(ifgrq.ifgrq_member));
1671 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
1672 			IFNET_RUNLOCK();
1673 			return (error);
1674 		}
1675 		len -= sizeof(ifgrq);
1676 		ifgp++;
1677 	}
1678 	IFNET_RUNLOCK();
1679 
1680 	return (0);
1681 }
1682 
1683 /*
1684  * Return counter values from counter(9)s stored in ifnet.
1685  */
1686 uint64_t
1687 if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
1688 {
1689 
1690 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1691 
1692 	return (counter_u64_fetch(ifp->if_counters[cnt]));
1693 }
1694 
1695 /*
1696  * Increase an ifnet counter. Usually used for counters shared
1697  * between the stack and a driver, but function supports them all.
1698  */
1699 void
1700 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
1701 {
1702 
1703 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1704 
1705 	counter_u64_add(ifp->if_counters[cnt], inc);
1706 }
1707 
1708 /*
1709  * Copy data from ifnet to userland API structure if_data.
1710  */
1711 void
1712 if_data_copy(struct ifnet *ifp, struct if_data *ifd)
1713 {
1714 
1715 	ifd->ifi_type = ifp->if_type;
1716 	ifd->ifi_physical = 0;
1717 	ifd->ifi_addrlen = ifp->if_addrlen;
1718 	ifd->ifi_hdrlen = ifp->if_hdrlen;
1719 	ifd->ifi_link_state = ifp->if_link_state;
1720 	ifd->ifi_vhid = 0;
1721 	ifd->ifi_datalen = sizeof(struct if_data);
1722 	ifd->ifi_mtu = ifp->if_mtu;
1723 	ifd->ifi_metric = ifp->if_metric;
1724 	ifd->ifi_baudrate = ifp->if_baudrate;
1725 	ifd->ifi_hwassist = ifp->if_hwassist;
1726 	ifd->ifi_epoch = ifp->if_epoch;
1727 	ifd->ifi_lastchange = ifp->if_lastchange;
1728 
1729 	ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
1730 	ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
1731 	ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
1732 	ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
1733 	ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
1734 	ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
1735 	ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
1736 	ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
1737 	ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
1738 	ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
1739 	ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
1740 	ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
1741 }
1742 
1743 /*
1744  * Initialization, destruction and refcounting functions for ifaddrs.
1745  */
1746 struct ifaddr *
1747 ifa_alloc(size_t size, int flags)
1748 {
1749 	struct ifaddr *ifa;
1750 
1751 	KASSERT(size >= sizeof(struct ifaddr),
1752 	    ("%s: invalid size %zu", __func__, size));
1753 
1754 	ifa = malloc(size, M_IFADDR, M_ZERO | flags);
1755 	if (ifa == NULL)
1756 		return (NULL);
1757 
1758 	if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
1759 		goto fail;
1760 	if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
1761 		goto fail;
1762 	if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
1763 		goto fail;
1764 	if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
1765 		goto fail;
1766 
1767 	refcount_init(&ifa->ifa_refcnt, 1);
1768 
1769 	return (ifa);
1770 
1771 fail:
1772 	/* free(NULL) is okay */
1773 	counter_u64_free(ifa->ifa_opackets);
1774 	counter_u64_free(ifa->ifa_ipackets);
1775 	counter_u64_free(ifa->ifa_obytes);
1776 	counter_u64_free(ifa->ifa_ibytes);
1777 	free(ifa, M_IFADDR);
1778 
1779 	return (NULL);
1780 }
1781 
1782 void
1783 ifa_ref(struct ifaddr *ifa)
1784 {
1785 	u_int old __diagused;
1786 
1787 	old = refcount_acquire(&ifa->ifa_refcnt);
1788 	KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa));
1789 }
1790 
1791 int
1792 ifa_try_ref(struct ifaddr *ifa)
1793 {
1794 
1795 	NET_EPOCH_ASSERT();
1796 	return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt));
1797 }
1798 
1799 static void
1800 ifa_destroy(epoch_context_t ctx)
1801 {
1802 	struct ifaddr *ifa;
1803 
1804 	ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx);
1805 	counter_u64_free(ifa->ifa_opackets);
1806 	counter_u64_free(ifa->ifa_ipackets);
1807 	counter_u64_free(ifa->ifa_obytes);
1808 	counter_u64_free(ifa->ifa_ibytes);
1809 	free(ifa, M_IFADDR);
1810 }
1811 
1812 void
1813 ifa_free(struct ifaddr *ifa)
1814 {
1815 
1816 	if (refcount_release(&ifa->ifa_refcnt))
1817 		NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx);
1818 }
1819 
1820 /*
1821  * XXX: Because sockaddr_dl has deeper structure than the sockaddr
1822  * structs used to represent other address families, it is necessary
1823  * to perform a different comparison.
1824  */
1825 
1826 #define	sa_dl_equal(a1, a2)	\
1827 	((((const struct sockaddr_dl *)(a1))->sdl_len ==		\
1828 	 ((const struct sockaddr_dl *)(a2))->sdl_len) &&		\
1829 	 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)),		\
1830 	       CLLADDR((const struct sockaddr_dl *)(a2)),		\
1831 	       ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0))
1832 
1833 /*
1834  * Locate an interface based on a complete address.
1835  */
1836 /*ARGSUSED*/
1837 struct ifaddr *
1838 ifa_ifwithaddr(const struct sockaddr *addr)
1839 {
1840 	struct ifnet *ifp;
1841 	struct ifaddr *ifa;
1842 
1843 	NET_EPOCH_ASSERT();
1844 
1845 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1846 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1847 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1848 				continue;
1849 			if (sa_equal(addr, ifa->ifa_addr)) {
1850 				goto done;
1851 			}
1852 			/* IP6 doesn't have broadcast */
1853 			if ((ifp->if_flags & IFF_BROADCAST) &&
1854 			    ifa->ifa_broadaddr &&
1855 			    ifa->ifa_broadaddr->sa_len != 0 &&
1856 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1857 				goto done;
1858 			}
1859 		}
1860 	}
1861 	ifa = NULL;
1862 done:
1863 	return (ifa);
1864 }
1865 
1866 int
1867 ifa_ifwithaddr_check(const struct sockaddr *addr)
1868 {
1869 	struct epoch_tracker et;
1870 	int rc;
1871 
1872 	NET_EPOCH_ENTER(et);
1873 	rc = (ifa_ifwithaddr(addr) != NULL);
1874 	NET_EPOCH_EXIT(et);
1875 	return (rc);
1876 }
1877 
1878 /*
1879  * Locate an interface based on the broadcast address.
1880  */
1881 /* ARGSUSED */
1882 struct ifaddr *
1883 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
1884 {
1885 	struct ifnet *ifp;
1886 	struct ifaddr *ifa;
1887 
1888 	NET_EPOCH_ASSERT();
1889 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1890 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1891 			continue;
1892 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1893 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1894 				continue;
1895 			if ((ifp->if_flags & IFF_BROADCAST) &&
1896 			    ifa->ifa_broadaddr &&
1897 			    ifa->ifa_broadaddr->sa_len != 0 &&
1898 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1899 				goto done;
1900 			}
1901 		}
1902 	}
1903 	ifa = NULL;
1904 done:
1905 	return (ifa);
1906 }
1907 
1908 /*
1909  * Locate the point to point interface with a given destination address.
1910  */
1911 /*ARGSUSED*/
1912 struct ifaddr *
1913 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
1914 {
1915 	struct ifnet *ifp;
1916 	struct ifaddr *ifa;
1917 
1918 	NET_EPOCH_ASSERT();
1919 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1920 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1921 			continue;
1922 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1923 			continue;
1924 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1925 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1926 				continue;
1927 			if (ifa->ifa_dstaddr != NULL &&
1928 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1929 				goto done;
1930 			}
1931 		}
1932 	}
1933 	ifa = NULL;
1934 done:
1935 	return (ifa);
1936 }
1937 
1938 /*
1939  * Find an interface on a specific network.  If many, choice
1940  * is most specific found.
1941  */
1942 struct ifaddr *
1943 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
1944 {
1945 	struct ifnet *ifp;
1946 	struct ifaddr *ifa;
1947 	struct ifaddr *ifa_maybe = NULL;
1948 	u_int af = addr->sa_family;
1949 	const char *addr_data = addr->sa_data, *cplim;
1950 
1951 	NET_EPOCH_ASSERT();
1952 	/*
1953 	 * AF_LINK addresses can be looked up directly by their index number,
1954 	 * so do that if we can.
1955 	 */
1956 	if (af == AF_LINK) {
1957 		ifp = ifnet_byindex(
1958 		    ((const struct sockaddr_dl *)addr)->sdl_index);
1959 		return (ifp ? ifp->if_addr : NULL);
1960 	}
1961 
1962 	/*
1963 	 * Scan though each interface, looking for ones that have addresses
1964 	 * in this address family and the requested fib.
1965 	 */
1966 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1967 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1968 			continue;
1969 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1970 			const char *cp, *cp2, *cp3;
1971 
1972 			if (ifa->ifa_addr->sa_family != af)
1973 next:				continue;
1974 			if (af == AF_INET &&
1975 			    ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
1976 				/*
1977 				 * This is a bit broken as it doesn't
1978 				 * take into account that the remote end may
1979 				 * be a single node in the network we are
1980 				 * looking for.
1981 				 * The trouble is that we don't know the
1982 				 * netmask for the remote end.
1983 				 */
1984 				if (ifa->ifa_dstaddr != NULL &&
1985 				    sa_equal(addr, ifa->ifa_dstaddr)) {
1986 					goto done;
1987 				}
1988 			} else {
1989 				/*
1990 				 * Scan all the bits in the ifa's address.
1991 				 * If a bit dissagrees with what we are
1992 				 * looking for, mask it with the netmask
1993 				 * to see if it really matters.
1994 				 * (A byte at a time)
1995 				 */
1996 				if (ifa->ifa_netmask == 0)
1997 					continue;
1998 				cp = addr_data;
1999 				cp2 = ifa->ifa_addr->sa_data;
2000 				cp3 = ifa->ifa_netmask->sa_data;
2001 				cplim = ifa->ifa_netmask->sa_len
2002 					+ (char *)ifa->ifa_netmask;
2003 				while (cp3 < cplim)
2004 					if ((*cp++ ^ *cp2++) & *cp3++)
2005 						goto next; /* next address! */
2006 				/*
2007 				 * If the netmask of what we just found
2008 				 * is more specific than what we had before
2009 				 * (if we had one), or if the virtual status
2010 				 * of new prefix is better than of the old one,
2011 				 * then remember the new one before continuing
2012 				 * to search for an even better one.
2013 				 */
2014 				if (ifa_maybe == NULL ||
2015 				    ifa_preferred(ifa_maybe, ifa) ||
2016 				    rn_refines((caddr_t)ifa->ifa_netmask,
2017 				    (caddr_t)ifa_maybe->ifa_netmask)) {
2018 					ifa_maybe = ifa;
2019 				}
2020 			}
2021 		}
2022 	}
2023 	ifa = ifa_maybe;
2024 	ifa_maybe = NULL;
2025 done:
2026 	return (ifa);
2027 }
2028 
2029 /*
2030  * Find an interface address specific to an interface best matching
2031  * a given address.
2032  */
2033 struct ifaddr *
2034 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2035 {
2036 	struct ifaddr *ifa;
2037 	const char *cp, *cp2, *cp3;
2038 	char *cplim;
2039 	struct ifaddr *ifa_maybe = NULL;
2040 	u_int af = addr->sa_family;
2041 
2042 	if (af >= AF_MAX)
2043 		return (NULL);
2044 
2045 	NET_EPOCH_ASSERT();
2046 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2047 		if (ifa->ifa_addr->sa_family != af)
2048 			continue;
2049 		if (ifa_maybe == NULL)
2050 			ifa_maybe = ifa;
2051 		if (ifa->ifa_netmask == 0) {
2052 			if (sa_equal(addr, ifa->ifa_addr) ||
2053 			    (ifa->ifa_dstaddr &&
2054 			    sa_equal(addr, ifa->ifa_dstaddr)))
2055 				goto done;
2056 			continue;
2057 		}
2058 		if (ifp->if_flags & IFF_POINTOPOINT) {
2059 			if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))
2060 				goto done;
2061 		} else {
2062 			cp = addr->sa_data;
2063 			cp2 = ifa->ifa_addr->sa_data;
2064 			cp3 = ifa->ifa_netmask->sa_data;
2065 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2066 			for (; cp3 < cplim; cp3++)
2067 				if ((*cp++ ^ *cp2++) & *cp3)
2068 					break;
2069 			if (cp3 == cplim)
2070 				goto done;
2071 		}
2072 	}
2073 	ifa = ifa_maybe;
2074 done:
2075 	return (ifa);
2076 }
2077 
2078 /*
2079  * See whether new ifa is better than current one:
2080  * 1) A non-virtual one is preferred over virtual.
2081  * 2) A virtual in master state preferred over any other state.
2082  *
2083  * Used in several address selecting functions.
2084  */
2085 int
2086 ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
2087 {
2088 
2089 	return (cur->ifa_carp && (!next->ifa_carp ||
2090 	    ((*carp_master_p)(next) && !(*carp_master_p)(cur))));
2091 }
2092 
2093 struct sockaddr_dl *
2094 link_alloc_sdl(size_t size, int flags)
2095 {
2096 
2097 	return (malloc(size, M_TEMP, flags));
2098 }
2099 
2100 void
2101 link_free_sdl(struct sockaddr *sa)
2102 {
2103 	free(sa, M_TEMP);
2104 }
2105 
2106 /*
2107  * Fills in given sdl with interface basic info.
2108  * Returns pointer to filled sdl.
2109  */
2110 struct sockaddr_dl *
2111 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
2112 {
2113 	struct sockaddr_dl *sdl;
2114 
2115 	sdl = (struct sockaddr_dl *)paddr;
2116 	memset(sdl, 0, sizeof(struct sockaddr_dl));
2117 	sdl->sdl_len = sizeof(struct sockaddr_dl);
2118 	sdl->sdl_family = AF_LINK;
2119 	sdl->sdl_index = ifp->if_index;
2120 	sdl->sdl_type = iftype;
2121 
2122 	return (sdl);
2123 }
2124 
2125 /*
2126  * Mark an interface down and notify protocols of
2127  * the transition.
2128  */
2129 static void
2130 if_unroute(struct ifnet *ifp, int flag, int fam)
2131 {
2132 
2133 	KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
2134 
2135 	ifp->if_flags &= ~flag;
2136 	getmicrotime(&ifp->if_lastchange);
2137 	ifp->if_qflush(ifp);
2138 
2139 	if (ifp->if_carp)
2140 		(*carp_linkstate_p)(ifp);
2141 	rt_ifmsg(ifp, IFF_UP);
2142 }
2143 
2144 void	(*vlan_link_state_p)(struct ifnet *);	/* XXX: private from if_vlan */
2145 void	(*vlan_trunk_cap_p)(struct ifnet *);		/* XXX: private from if_vlan */
2146 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
2147 struct	ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
2148 int	(*vlan_tag_p)(struct ifnet *, uint16_t *);
2149 int	(*vlan_pcp_p)(struct ifnet *, uint16_t *);
2150 int	(*vlan_setcookie_p)(struct ifnet *, void *);
2151 void	*(*vlan_cookie_p)(struct ifnet *);
2152 
2153 /*
2154  * Handle a change in the interface link state. To avoid LORs
2155  * between driver lock and upper layer locks, as well as possible
2156  * recursions, we post event to taskqueue, and all job
2157  * is done in static do_link_state_change().
2158  */
2159 void
2160 if_link_state_change(struct ifnet *ifp, int link_state)
2161 {
2162 	/* Return if state hasn't changed. */
2163 	if (ifp->if_link_state == link_state)
2164 		return;
2165 
2166 	ifp->if_link_state = link_state;
2167 
2168 	/* XXXGL: reference ifp? */
2169 	taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
2170 }
2171 
2172 static void
2173 do_link_state_change(void *arg, int pending)
2174 {
2175 	struct ifnet *ifp;
2176 	int link_state;
2177 
2178 	ifp = arg;
2179 	link_state = ifp->if_link_state;
2180 
2181 	CURVNET_SET(ifp->if_vnet);
2182 	rt_ifmsg(ifp, 0);
2183 	if (ifp->if_vlantrunk != NULL)
2184 		(*vlan_link_state_p)(ifp);
2185 
2186 	if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
2187 	    ifp->if_l2com != NULL)
2188 		(*ng_ether_link_state_p)(ifp, link_state);
2189 	if (ifp->if_carp)
2190 		(*carp_linkstate_p)(ifp);
2191 	if (ifp->if_bridge)
2192 		ifp->if_bridge_linkstate(ifp);
2193 	if (ifp->if_lagg)
2194 		(*lagg_linkstate_p)(ifp, link_state);
2195 
2196 	if (IS_DEFAULT_VNET(curvnet))
2197 		devctl_notify("IFNET", ifp->if_xname,
2198 		    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
2199 		    NULL);
2200 	if (pending > 1)
2201 		if_printf(ifp, "%d link states coalesced\n", pending);
2202 	if (log_link_state_change)
2203 		if_printf(ifp, "link state changed to %s\n",
2204 		    (link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
2205 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
2206 	CURVNET_RESTORE();
2207 }
2208 
2209 /*
2210  * Mark an interface down and notify protocols of
2211  * the transition.
2212  */
2213 void
2214 if_down(struct ifnet *ifp)
2215 {
2216 
2217 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
2218 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
2219 }
2220 
2221 /*
2222  * Mark an interface up and notify protocols of
2223  * the transition.
2224  */
2225 void
2226 if_up(struct ifnet *ifp)
2227 {
2228 
2229 	ifp->if_flags |= IFF_UP;
2230 	getmicrotime(&ifp->if_lastchange);
2231 	if (ifp->if_carp)
2232 		(*carp_linkstate_p)(ifp);
2233 	rt_ifmsg(ifp, IFF_UP);
2234 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
2235 }
2236 
2237 /*
2238  * Flush an interface queue.
2239  */
2240 void
2241 if_qflush(struct ifnet *ifp)
2242 {
2243 	struct mbuf *m, *n;
2244 	struct ifaltq *ifq;
2245 
2246 	ifq = &ifp->if_snd;
2247 	IFQ_LOCK(ifq);
2248 #ifdef ALTQ
2249 	if (ALTQ_IS_ENABLED(ifq))
2250 		ALTQ_PURGE(ifq);
2251 #endif
2252 	n = ifq->ifq_head;
2253 	while ((m = n) != NULL) {
2254 		n = m->m_nextpkt;
2255 		m_freem(m);
2256 	}
2257 	ifq->ifq_head = 0;
2258 	ifq->ifq_tail = 0;
2259 	ifq->ifq_len = 0;
2260 	IFQ_UNLOCK(ifq);
2261 }
2262 
2263 /*
2264  * Map interface name to interface structure pointer, with or without
2265  * returning a reference.
2266  */
2267 struct ifnet *
2268 ifunit_ref(const char *name)
2269 {
2270 	struct epoch_tracker et;
2271 	struct ifnet *ifp;
2272 
2273 	NET_EPOCH_ENTER(et);
2274 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2275 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
2276 		    !(ifp->if_flags & IFF_DYING))
2277 			break;
2278 	}
2279 	if (ifp != NULL) {
2280 		if_ref(ifp);
2281 		MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
2282 	}
2283 
2284 	NET_EPOCH_EXIT(et);
2285 	return (ifp);
2286 }
2287 
2288 struct ifnet *
2289 ifunit(const char *name)
2290 {
2291 	struct epoch_tracker et;
2292 	struct ifnet *ifp;
2293 
2294 	NET_EPOCH_ENTER(et);
2295 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2296 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
2297 			break;
2298 	}
2299 	NET_EPOCH_EXIT(et);
2300 	return (ifp);
2301 }
2302 
2303 void *
2304 ifr_buffer_get_buffer(void *data)
2305 {
2306 	union ifreq_union *ifrup;
2307 
2308 	ifrup = data;
2309 #ifdef COMPAT_FREEBSD32
2310 	if (SV_CURPROC_FLAG(SV_ILP32))
2311 		return ((void *)(uintptr_t)
2312 		    ifrup->ifr32.ifr_ifru.ifru_buffer.buffer);
2313 #endif
2314 	return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer);
2315 }
2316 
2317 static void
2318 ifr_buffer_set_buffer_null(void *data)
2319 {
2320 	union ifreq_union *ifrup;
2321 
2322 	ifrup = data;
2323 #ifdef COMPAT_FREEBSD32
2324 	if (SV_CURPROC_FLAG(SV_ILP32))
2325 		ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0;
2326 	else
2327 #endif
2328 		ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL;
2329 }
2330 
2331 size_t
2332 ifr_buffer_get_length(void *data)
2333 {
2334 	union ifreq_union *ifrup;
2335 
2336 	ifrup = data;
2337 #ifdef COMPAT_FREEBSD32
2338 	if (SV_CURPROC_FLAG(SV_ILP32))
2339 		return (ifrup->ifr32.ifr_ifru.ifru_buffer.length);
2340 #endif
2341 	return (ifrup->ifr.ifr_ifru.ifru_buffer.length);
2342 }
2343 
2344 static void
2345 ifr_buffer_set_length(void *data, size_t len)
2346 {
2347 	union ifreq_union *ifrup;
2348 
2349 	ifrup = data;
2350 #ifdef COMPAT_FREEBSD32
2351 	if (SV_CURPROC_FLAG(SV_ILP32))
2352 		ifrup->ifr32.ifr_ifru.ifru_buffer.length = len;
2353 	else
2354 #endif
2355 		ifrup->ifr.ifr_ifru.ifru_buffer.length = len;
2356 }
2357 
2358 void *
2359 ifr_data_get_ptr(void *ifrp)
2360 {
2361 	union ifreq_union *ifrup;
2362 
2363 	ifrup = ifrp;
2364 #ifdef COMPAT_FREEBSD32
2365 	if (SV_CURPROC_FLAG(SV_ILP32))
2366 		return ((void *)(uintptr_t)
2367 		    ifrup->ifr32.ifr_ifru.ifru_data);
2368 #endif
2369 		return (ifrup->ifr.ifr_ifru.ifru_data);
2370 }
2371 
2372 struct ifcap_nv_bit_name {
2373 	uint64_t cap_bit;
2374 	const char *cap_name;
2375 };
2376 #define CAPNV(x) {.cap_bit = IFCAP_##x, \
2377     .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) }
2378 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = {
2379 	CAPNV(RXCSUM),
2380 	CAPNV(TXCSUM),
2381 	CAPNV(NETCONS),
2382 	CAPNV(VLAN_MTU),
2383 	CAPNV(VLAN_HWTAGGING),
2384 	CAPNV(JUMBO_MTU),
2385 	CAPNV(POLLING),
2386 	CAPNV(VLAN_HWCSUM),
2387 	CAPNV(TSO4),
2388 	CAPNV(TSO6),
2389 	CAPNV(LRO),
2390 	CAPNV(WOL_UCAST),
2391 	CAPNV(WOL_MCAST),
2392 	CAPNV(WOL_MAGIC),
2393 	CAPNV(TOE4),
2394 	CAPNV(TOE6),
2395 	CAPNV(VLAN_HWFILTER),
2396 	CAPNV(VLAN_HWTSO),
2397 	CAPNV(LINKSTATE),
2398 	CAPNV(NETMAP),
2399 	CAPNV(RXCSUM_IPV6),
2400 	CAPNV(TXCSUM_IPV6),
2401 	CAPNV(HWSTATS),
2402 	CAPNV(TXRTLMT),
2403 	CAPNV(HWRXTSTMP),
2404 	CAPNV(MEXTPG),
2405 	CAPNV(TXTLS4),
2406 	CAPNV(TXTLS6),
2407 	CAPNV(VXLAN_HWCSUM),
2408 	CAPNV(VXLAN_HWTSO),
2409 	CAPNV(TXTLS_RTLMT),
2410 	{0, NULL}
2411 };
2412 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \
2413     .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) }
2414 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = {
2415 	CAP2NV(RXTLS4),
2416 	CAP2NV(RXTLS6),
2417 	{0, NULL}
2418 };
2419 #undef CAPNV
2420 #undef CAP2NV
2421 
2422 int
2423 if_capnv_to_capint(const nvlist_t *nv, int *old_cap,
2424     const struct ifcap_nv_bit_name *nn, bool all)
2425 {
2426 	int i, res;
2427 
2428 	res = 0;
2429 	for (i = 0; nn[i].cap_name != NULL; i++) {
2430 		if (nvlist_exists_bool(nv, nn[i].cap_name)) {
2431 			if (all || nvlist_get_bool(nv, nn[i].cap_name))
2432 				res |= nn[i].cap_bit;
2433 		} else {
2434 			res |= *old_cap & nn[i].cap_bit;
2435 		}
2436 	}
2437 	return (res);
2438 }
2439 
2440 void
2441 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn,
2442     int ifr_cap, int ifr_req)
2443 {
2444 	int i;
2445 
2446 	for (i = 0; nn[i].cap_name != NULL; i++) {
2447 		if ((nn[i].cap_bit & ifr_cap) != 0) {
2448 			nvlist_add_bool(nv, nn[i].cap_name,
2449 			    (nn[i].cap_bit & ifr_req) != 0);
2450 		}
2451 	}
2452 }
2453 
2454 /*
2455  * Hardware specific interface ioctls.
2456  */
2457 int
2458 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
2459 {
2460 	struct ifreq *ifr;
2461 	int error = 0, do_ifup = 0;
2462 	int new_flags, temp_flags;
2463 	size_t descrlen, nvbuflen;
2464 	char *descrbuf;
2465 	char new_name[IFNAMSIZ];
2466 	void *buf;
2467 	nvlist_t *nvcap;
2468 	struct siocsifcapnv_driver_data drv_ioctl_data;
2469 
2470 	ifr = (struct ifreq *)data;
2471 	switch (cmd) {
2472 	case SIOCGIFINDEX:
2473 		ifr->ifr_index = ifp->if_index;
2474 		break;
2475 
2476 	case SIOCGIFFLAGS:
2477 		temp_flags = ifp->if_flags | ifp->if_drv_flags;
2478 		ifr->ifr_flags = temp_flags & 0xffff;
2479 		ifr->ifr_flagshigh = temp_flags >> 16;
2480 		break;
2481 
2482 	case SIOCGIFCAP:
2483 		ifr->ifr_reqcap = ifp->if_capabilities;
2484 		ifr->ifr_curcap = ifp->if_capenable;
2485 		break;
2486 
2487 	case SIOCGIFCAPNV:
2488 		if ((ifp->if_capabilities & IFCAP_NV) == 0) {
2489 			error = EINVAL;
2490 			break;
2491 		}
2492 		buf = NULL;
2493 		nvcap = nvlist_create(0);
2494 		for (;;) {
2495 			if_capint_to_capnv(nvcap, ifcap_nv_bit_names,
2496 			    ifp->if_capabilities, ifp->if_capenable);
2497 			if_capint_to_capnv(nvcap, ifcap2_nv_bit_names,
2498 			    ifp->if_capabilities2, ifp->if_capenable2);
2499 			error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV,
2500 			    __DECONST(caddr_t, nvcap));
2501 			if (error != 0) {
2502 				if_printf(ifp,
2503 			    "SIOCGIFCAPNV driver mistake: nvlist error %d\n",
2504 				    error);
2505 				break;
2506 			}
2507 			buf = nvlist_pack(nvcap, &nvbuflen);
2508 			if (buf == NULL) {
2509 				error = nvlist_error(nvcap);
2510 				if (error == 0)
2511 					error = EDOOFUS;
2512 				break;
2513 			}
2514 			if (nvbuflen > ifr->ifr_cap_nv.buf_length) {
2515 				ifr->ifr_cap_nv.length = nvbuflen;
2516 				ifr->ifr_cap_nv.buffer = NULL;
2517 				error = EFBIG;
2518 				break;
2519 			}
2520 			ifr->ifr_cap_nv.length = nvbuflen;
2521 			error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen);
2522 			break;
2523 		}
2524 		free(buf, M_NVLIST);
2525 		nvlist_destroy(nvcap);
2526 		break;
2527 
2528 	case SIOCGIFDATA:
2529 	{
2530 		struct if_data ifd;
2531 
2532 		/* Ensure uninitialised padding is not leaked. */
2533 		memset(&ifd, 0, sizeof(ifd));
2534 
2535 		if_data_copy(ifp, &ifd);
2536 		error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd));
2537 		break;
2538 	}
2539 
2540 #ifdef MAC
2541 	case SIOCGIFMAC:
2542 		error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
2543 		break;
2544 #endif
2545 
2546 	case SIOCGIFMETRIC:
2547 		ifr->ifr_metric = ifp->if_metric;
2548 		break;
2549 
2550 	case SIOCGIFMTU:
2551 		ifr->ifr_mtu = ifp->if_mtu;
2552 		break;
2553 
2554 	case SIOCGIFPHYS:
2555 		/* XXXGL: did this ever worked? */
2556 		ifr->ifr_phys = 0;
2557 		break;
2558 
2559 	case SIOCGIFDESCR:
2560 		error = 0;
2561 		sx_slock(&ifdescr_sx);
2562 		if (ifp->if_description == NULL)
2563 			error = ENOMSG;
2564 		else {
2565 			/* space for terminating nul */
2566 			descrlen = strlen(ifp->if_description) + 1;
2567 			if (ifr_buffer_get_length(ifr) < descrlen)
2568 				ifr_buffer_set_buffer_null(ifr);
2569 			else
2570 				error = copyout(ifp->if_description,
2571 				    ifr_buffer_get_buffer(ifr), descrlen);
2572 			ifr_buffer_set_length(ifr, descrlen);
2573 		}
2574 		sx_sunlock(&ifdescr_sx);
2575 		break;
2576 
2577 	case SIOCSIFDESCR:
2578 		error = priv_check(td, PRIV_NET_SETIFDESCR);
2579 		if (error)
2580 			return (error);
2581 
2582 		/*
2583 		 * Copy only (length-1) bytes to make sure that
2584 		 * if_description is always nul terminated.  The
2585 		 * length parameter is supposed to count the
2586 		 * terminating nul in.
2587 		 */
2588 		if (ifr_buffer_get_length(ifr) > ifdescr_maxlen)
2589 			return (ENAMETOOLONG);
2590 		else if (ifr_buffer_get_length(ifr) == 0)
2591 			descrbuf = NULL;
2592 		else {
2593 			descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK);
2594 			error = copyin(ifr_buffer_get_buffer(ifr), descrbuf,
2595 			    ifr_buffer_get_length(ifr) - 1);
2596 			if (error) {
2597 				if_freedescr(descrbuf);
2598 				break;
2599 			}
2600 		}
2601 
2602 		if_setdescr(ifp, descrbuf);
2603 		getmicrotime(&ifp->if_lastchange);
2604 		break;
2605 
2606 	case SIOCGIFFIB:
2607 		ifr->ifr_fib = ifp->if_fib;
2608 		break;
2609 
2610 	case SIOCSIFFIB:
2611 		error = priv_check(td, PRIV_NET_SETIFFIB);
2612 		if (error)
2613 			return (error);
2614 		if (ifr->ifr_fib >= rt_numfibs)
2615 			return (EINVAL);
2616 
2617 		ifp->if_fib = ifr->ifr_fib;
2618 		break;
2619 
2620 	case SIOCSIFFLAGS:
2621 		error = priv_check(td, PRIV_NET_SETIFFLAGS);
2622 		if (error)
2623 			return (error);
2624 		/*
2625 		 * Currently, no driver owned flags pass the IFF_CANTCHANGE
2626 		 * check, so we don't need special handling here yet.
2627 		 */
2628 		new_flags = (ifr->ifr_flags & 0xffff) |
2629 		    (ifr->ifr_flagshigh << 16);
2630 		if (ifp->if_flags & IFF_UP &&
2631 		    (new_flags & IFF_UP) == 0) {
2632 			if_down(ifp);
2633 		} else if (new_flags & IFF_UP &&
2634 		    (ifp->if_flags & IFF_UP) == 0) {
2635 			do_ifup = 1;
2636 		}
2637 		/* See if permanently promiscuous mode bit is about to flip */
2638 		if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
2639 			if (new_flags & IFF_PPROMISC)
2640 				ifp->if_flags |= IFF_PROMISC;
2641 			else if (ifp->if_pcount == 0)
2642 				ifp->if_flags &= ~IFF_PROMISC;
2643 			if (log_promisc_mode_change)
2644                                 if_printf(ifp, "permanently promiscuous mode %s\n",
2645                                     ((new_flags & IFF_PPROMISC) ?
2646                                      "enabled" : "disabled"));
2647 		}
2648 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2649 			(new_flags &~ IFF_CANTCHANGE);
2650 		if (ifp->if_ioctl) {
2651 			(void) (*ifp->if_ioctl)(ifp, cmd, data);
2652 		}
2653 		if (do_ifup)
2654 			if_up(ifp);
2655 		getmicrotime(&ifp->if_lastchange);
2656 		break;
2657 
2658 	case SIOCSIFCAP:
2659 		error = priv_check(td, PRIV_NET_SETIFCAP);
2660 		if (error != 0)
2661 			return (error);
2662 		if (ifp->if_ioctl == NULL)
2663 			return (EOPNOTSUPP);
2664 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
2665 			return (EINVAL);
2666 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2667 		if (error == 0)
2668 			getmicrotime(&ifp->if_lastchange);
2669 		break;
2670 
2671 	case SIOCSIFCAPNV:
2672 		error = priv_check(td, PRIV_NET_SETIFCAP);
2673 		if (error != 0)
2674 			return (error);
2675 		if (ifp->if_ioctl == NULL)
2676 			return (EOPNOTSUPP);
2677 		if ((ifp->if_capabilities & IFCAP_NV) == 0)
2678 			return (EINVAL);
2679 		if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE)
2680 			return (EINVAL);
2681 		nvcap = NULL;
2682 		buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK);
2683 		for (;;) {
2684 			error = copyin(ifr->ifr_cap_nv.buffer, buf,
2685 			    ifr->ifr_cap_nv.length);
2686 			if (error != 0)
2687 				break;
2688 			nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0);
2689 			if (nvcap == NULL) {
2690 				error = EINVAL;
2691 				break;
2692 			}
2693 			drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap,
2694 			    &ifp->if_capenable, ifcap_nv_bit_names, false);
2695 			if ((drv_ioctl_data.reqcap &
2696 			    ~ifp->if_capabilities) != 0) {
2697 				error = EINVAL;
2698 				break;
2699 			}
2700 			drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap,
2701 			    &ifp->if_capenable2, ifcap2_nv_bit_names, false);
2702 			if ((drv_ioctl_data.reqcap2 &
2703 			    ~ifp->if_capabilities2) != 0) {
2704 				error = EINVAL;
2705 				break;
2706 			}
2707 			drv_ioctl_data.nvcap = nvcap;
2708 			error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV,
2709 			    (caddr_t)&drv_ioctl_data);
2710 			break;
2711 		}
2712 		nvlist_destroy(nvcap);
2713 		free(buf, M_TEMP);
2714 		if (error == 0)
2715 			getmicrotime(&ifp->if_lastchange);
2716 		break;
2717 
2718 #ifdef MAC
2719 	case SIOCSIFMAC:
2720 		error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
2721 		break;
2722 #endif
2723 
2724 	case SIOCSIFNAME:
2725 		error = priv_check(td, PRIV_NET_SETIFNAME);
2726 		if (error)
2727 			return (error);
2728 		error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ,
2729 		    NULL);
2730 		if (error != 0)
2731 			return (error);
2732 		error = if_rename(ifp, new_name);
2733 		break;
2734 
2735 #ifdef VIMAGE
2736 	case SIOCSIFVNET:
2737 		error = priv_check(td, PRIV_NET_SETIFVNET);
2738 		if (error)
2739 			return (error);
2740 		error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
2741 		break;
2742 #endif
2743 
2744 	case SIOCSIFMETRIC:
2745 		error = priv_check(td, PRIV_NET_SETIFMETRIC);
2746 		if (error)
2747 			return (error);
2748 		ifp->if_metric = ifr->ifr_metric;
2749 		getmicrotime(&ifp->if_lastchange);
2750 		break;
2751 
2752 	case SIOCSIFPHYS:
2753 		error = priv_check(td, PRIV_NET_SETIFPHYS);
2754 		if (error)
2755 			return (error);
2756 		if (ifp->if_ioctl == NULL)
2757 			return (EOPNOTSUPP);
2758 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2759 		if (error == 0)
2760 			getmicrotime(&ifp->if_lastchange);
2761 		break;
2762 
2763 	case SIOCSIFMTU:
2764 	{
2765 		u_long oldmtu = ifp->if_mtu;
2766 
2767 		error = priv_check(td, PRIV_NET_SETIFMTU);
2768 		if (error)
2769 			return (error);
2770 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
2771 			return (EINVAL);
2772 		if (ifp->if_ioctl == NULL)
2773 			return (EOPNOTSUPP);
2774 		/* Disallow MTU changes on bridge member interfaces. */
2775 		if (ifp->if_bridge)
2776 			return (EOPNOTSUPP);
2777 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2778 		if (error == 0) {
2779 			getmicrotime(&ifp->if_lastchange);
2780 			rt_ifmsg(ifp, 0);
2781 #ifdef INET
2782 			DEBUGNET_NOTIFY_MTU(ifp);
2783 #endif
2784 		}
2785 		/*
2786 		 * If the link MTU changed, do network layer specific procedure.
2787 		 */
2788 		if (ifp->if_mtu != oldmtu)
2789 			if_notifymtu(ifp);
2790 		break;
2791 	}
2792 
2793 	case SIOCADDMULTI:
2794 	case SIOCDELMULTI:
2795 		if (cmd == SIOCADDMULTI)
2796 			error = priv_check(td, PRIV_NET_ADDMULTI);
2797 		else
2798 			error = priv_check(td, PRIV_NET_DELMULTI);
2799 		if (error)
2800 			return (error);
2801 
2802 		/* Don't allow group membership on non-multicast interfaces. */
2803 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
2804 			return (EOPNOTSUPP);
2805 
2806 		/* Don't let users screw up protocols' entries. */
2807 		if (ifr->ifr_addr.sa_family != AF_LINK)
2808 			return (EINVAL);
2809 
2810 		if (cmd == SIOCADDMULTI) {
2811 			struct epoch_tracker et;
2812 			struct ifmultiaddr *ifma;
2813 
2814 			/*
2815 			 * Userland is only permitted to join groups once
2816 			 * via the if_addmulti() KPI, because it cannot hold
2817 			 * struct ifmultiaddr * between calls. It may also
2818 			 * lose a race while we check if the membership
2819 			 * already exists.
2820 			 */
2821 			NET_EPOCH_ENTER(et);
2822 			ifma = if_findmulti(ifp, &ifr->ifr_addr);
2823 			NET_EPOCH_EXIT(et);
2824 			if (ifma != NULL)
2825 				error = EADDRINUSE;
2826 			else
2827 				error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2828 		} else {
2829 			error = if_delmulti(ifp, &ifr->ifr_addr);
2830 		}
2831 		if (error == 0)
2832 			getmicrotime(&ifp->if_lastchange);
2833 		break;
2834 
2835 	case SIOCSIFPHYADDR:
2836 	case SIOCDIFPHYADDR:
2837 #ifdef INET6
2838 	case SIOCSIFPHYADDR_IN6:
2839 #endif
2840 	case SIOCSIFMEDIA:
2841 	case SIOCSIFGENERIC:
2842 		error = priv_check(td, PRIV_NET_HWIOCTL);
2843 		if (error)
2844 			return (error);
2845 		if (ifp->if_ioctl == NULL)
2846 			return (EOPNOTSUPP);
2847 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2848 		if (error == 0)
2849 			getmicrotime(&ifp->if_lastchange);
2850 		break;
2851 
2852 	case SIOCGIFSTATUS:
2853 	case SIOCGIFPSRCADDR:
2854 	case SIOCGIFPDSTADDR:
2855 	case SIOCGIFMEDIA:
2856 	case SIOCGIFXMEDIA:
2857 	case SIOCGIFGENERIC:
2858 	case SIOCGIFRSSKEY:
2859 	case SIOCGIFRSSHASH:
2860 	case SIOCGIFDOWNREASON:
2861 		if (ifp->if_ioctl == NULL)
2862 			return (EOPNOTSUPP);
2863 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2864 		break;
2865 
2866 	case SIOCSIFLLADDR:
2867 		error = priv_check(td, PRIV_NET_SETLLADDR);
2868 		if (error)
2869 			return (error);
2870 		error = if_setlladdr(ifp,
2871 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
2872 		break;
2873 
2874 	case SIOCGHWADDR:
2875 		error = if_gethwaddr(ifp, ifr);
2876 		break;
2877 
2878 	case SIOCAIFGROUP:
2879 		error = priv_check(td, PRIV_NET_ADDIFGROUP);
2880 		if (error)
2881 			return (error);
2882 		error = if_addgroup(ifp,
2883 		    ((struct ifgroupreq *)data)->ifgr_group);
2884 		if (error != 0)
2885 			return (error);
2886 		break;
2887 
2888 	case SIOCGIFGROUP:
2889 	{
2890 		struct epoch_tracker et;
2891 
2892 		NET_EPOCH_ENTER(et);
2893 		error = if_getgroup((struct ifgroupreq *)data, ifp);
2894 		NET_EPOCH_EXIT(et);
2895 		break;
2896 	}
2897 
2898 	case SIOCDIFGROUP:
2899 		error = priv_check(td, PRIV_NET_DELIFGROUP);
2900 		if (error)
2901 			return (error);
2902 		error = if_delgroup(ifp,
2903 		    ((struct ifgroupreq *)data)->ifgr_group);
2904 		if (error != 0)
2905 			return (error);
2906 		break;
2907 
2908 	default:
2909 		error = ENOIOCTL;
2910 		break;
2911 	}
2912 	return (error);
2913 }
2914 
2915 /*
2916  * Interface ioctls.
2917  */
2918 int
2919 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
2920 {
2921 #ifdef COMPAT_FREEBSD32
2922 	union {
2923 		struct ifconf ifc;
2924 		struct ifdrv ifd;
2925 		struct ifgroupreq ifgr;
2926 		struct ifmediareq ifmr;
2927 	} thunk;
2928 	u_long saved_cmd;
2929 	struct ifconf32 *ifc32;
2930 	struct ifdrv32 *ifd32;
2931 	struct ifgroupreq32 *ifgr32;
2932 	struct ifmediareq32 *ifmr32;
2933 #endif
2934 	struct ifnet *ifp;
2935 	struct ifreq *ifr;
2936 	int error;
2937 	int oif_flags;
2938 #ifdef VIMAGE
2939 	bool shutdown;
2940 #endif
2941 
2942 	CURVNET_SET(so->so_vnet);
2943 #ifdef VIMAGE
2944 	/* Make sure the VNET is stable. */
2945 	shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet);
2946 	if (shutdown) {
2947 		CURVNET_RESTORE();
2948 		return (EBUSY);
2949 	}
2950 #endif
2951 
2952 #ifdef COMPAT_FREEBSD32
2953 	saved_cmd = cmd;
2954 	switch (cmd) {
2955 	case SIOCGIFCONF32:
2956 		ifc32 = (struct ifconf32 *)data;
2957 		thunk.ifc.ifc_len = ifc32->ifc_len;
2958 		thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
2959 		data = (caddr_t)&thunk.ifc;
2960 		cmd = SIOCGIFCONF;
2961 		break;
2962 	case SIOCGDRVSPEC32:
2963 	case SIOCSDRVSPEC32:
2964 		ifd32 = (struct ifdrv32 *)data;
2965 		memcpy(thunk.ifd.ifd_name, ifd32->ifd_name,
2966 		    sizeof(thunk.ifd.ifd_name));
2967 		thunk.ifd.ifd_cmd = ifd32->ifd_cmd;
2968 		thunk.ifd.ifd_len = ifd32->ifd_len;
2969 		thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data);
2970 		data = (caddr_t)&thunk.ifd;
2971 		cmd = _IOC_NEWTYPE(cmd, struct ifdrv);
2972 		break;
2973 	case SIOCAIFGROUP32:
2974 	case SIOCGIFGROUP32:
2975 	case SIOCDIFGROUP32:
2976 	case SIOCGIFGMEMB32:
2977 		ifgr32 = (struct ifgroupreq32 *)data;
2978 		memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name,
2979 		    sizeof(thunk.ifgr.ifgr_name));
2980 		thunk.ifgr.ifgr_len = ifgr32->ifgr_len;
2981 		switch (cmd) {
2982 		case SIOCAIFGROUP32:
2983 		case SIOCDIFGROUP32:
2984 			memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group,
2985 			    sizeof(thunk.ifgr.ifgr_group));
2986 			break;
2987 		case SIOCGIFGROUP32:
2988 		case SIOCGIFGMEMB32:
2989 			thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups);
2990 			break;
2991 		}
2992 		data = (caddr_t)&thunk.ifgr;
2993 		cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq);
2994 		break;
2995 	case SIOCGIFMEDIA32:
2996 	case SIOCGIFXMEDIA32:
2997 		ifmr32 = (struct ifmediareq32 *)data;
2998 		memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name,
2999 		    sizeof(thunk.ifmr.ifm_name));
3000 		thunk.ifmr.ifm_current = ifmr32->ifm_current;
3001 		thunk.ifmr.ifm_mask = ifmr32->ifm_mask;
3002 		thunk.ifmr.ifm_status = ifmr32->ifm_status;
3003 		thunk.ifmr.ifm_active = ifmr32->ifm_active;
3004 		thunk.ifmr.ifm_count = ifmr32->ifm_count;
3005 		thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist);
3006 		data = (caddr_t)&thunk.ifmr;
3007 		cmd = _IOC_NEWTYPE(cmd, struct ifmediareq);
3008 		break;
3009 	}
3010 #endif
3011 
3012 	switch (cmd) {
3013 	case SIOCGIFCONF:
3014 		error = ifconf(cmd, data);
3015 		goto out_noref;
3016 	}
3017 
3018 	ifr = (struct ifreq *)data;
3019 	switch (cmd) {
3020 #ifdef VIMAGE
3021 	case SIOCSIFRVNET:
3022 		error = priv_check(td, PRIV_NET_SETIFVNET);
3023 		if (error == 0)
3024 			error = if_vmove_reclaim(td, ifr->ifr_name,
3025 			    ifr->ifr_jid);
3026 		goto out_noref;
3027 #endif
3028 	case SIOCIFCREATE:
3029 	case SIOCIFCREATE2:
3030 		error = priv_check(td, PRIV_NET_IFCREATE);
3031 		if (error == 0)
3032 			error = if_clone_create(ifr->ifr_name,
3033 			    sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ?
3034 			    ifr_data_get_ptr(ifr) : NULL);
3035 		goto out_noref;
3036 	case SIOCIFDESTROY:
3037 		error = priv_check(td, PRIV_NET_IFDESTROY);
3038 
3039 		if (error == 0) {
3040 			sx_xlock(&ifnet_detach_sxlock);
3041 			error = if_clone_destroy(ifr->ifr_name);
3042 			sx_xunlock(&ifnet_detach_sxlock);
3043 		}
3044 		goto out_noref;
3045 
3046 	case SIOCIFGCLONERS:
3047 		error = if_clone_list((struct if_clonereq *)data);
3048 		goto out_noref;
3049 
3050 	case SIOCGIFGMEMB:
3051 		error = if_getgroupmembers((struct ifgroupreq *)data);
3052 		goto out_noref;
3053 
3054 #if defined(INET) || defined(INET6)
3055 	case SIOCSVH:
3056 	case SIOCGVH:
3057 		if (carp_ioctl_p == NULL)
3058 			error = EPROTONOSUPPORT;
3059 		else
3060 			error = (*carp_ioctl_p)(ifr, cmd, td);
3061 		goto out_noref;
3062 #endif
3063 	}
3064 
3065 	ifp = ifunit_ref(ifr->ifr_name);
3066 	if (ifp == NULL) {
3067 		error = ENXIO;
3068 		goto out_noref;
3069 	}
3070 
3071 	error = ifhwioctl(cmd, ifp, data, td);
3072 	if (error != ENOIOCTL)
3073 		goto out_ref;
3074 
3075 	oif_flags = ifp->if_flags;
3076 	if (so->so_proto == NULL) {
3077 		error = EOPNOTSUPP;
3078 		goto out_ref;
3079 	}
3080 
3081 	/*
3082 	 * Pass the request on to the socket control method, and if the
3083 	 * latter returns EOPNOTSUPP, directly to the interface.
3084 	 *
3085 	 * Make an exception for the legacy SIOCSIF* requests.  Drivers
3086 	 * trust SIOCSIFADDR et al to come from an already privileged
3087 	 * layer, and do not perform any credentials checks or input
3088 	 * validation.
3089 	 */
3090 	error = so->so_proto->pr_control(so, cmd, data, ifp, td);
3091 	if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
3092 	    cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
3093 	    cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
3094 		error = (*ifp->if_ioctl)(ifp, cmd, data);
3095 
3096 	if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP))
3097 		if_up(ifp);
3098 out_ref:
3099 	if_rele(ifp);
3100 out_noref:
3101 	CURVNET_RESTORE();
3102 #ifdef COMPAT_FREEBSD32
3103 	if (error != 0)
3104 		return (error);
3105 	switch (saved_cmd) {
3106 	case SIOCGIFCONF32:
3107 		ifc32->ifc_len = thunk.ifc.ifc_len;
3108 		break;
3109 	case SIOCGDRVSPEC32:
3110 		/*
3111 		 * SIOCGDRVSPEC is IOWR, but nothing actually touches
3112 		 * the struct so just assert that ifd_len (the only
3113 		 * field it might make sense to update) hasn't
3114 		 * changed.
3115 		 */
3116 		KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len,
3117 		    ("ifd_len was updated %u -> %zu", ifd32->ifd_len,
3118 			thunk.ifd.ifd_len));
3119 		break;
3120 	case SIOCGIFGROUP32:
3121 	case SIOCGIFGMEMB32:
3122 		ifgr32->ifgr_len = thunk.ifgr.ifgr_len;
3123 		break;
3124 	case SIOCGIFMEDIA32:
3125 	case SIOCGIFXMEDIA32:
3126 		ifmr32->ifm_current = thunk.ifmr.ifm_current;
3127 		ifmr32->ifm_mask = thunk.ifmr.ifm_mask;
3128 		ifmr32->ifm_status = thunk.ifmr.ifm_status;
3129 		ifmr32->ifm_active = thunk.ifmr.ifm_active;
3130 		ifmr32->ifm_count = thunk.ifmr.ifm_count;
3131 		break;
3132 	}
3133 #endif
3134 	return (error);
3135 }
3136 
3137 int
3138 if_rename(struct ifnet *ifp, char *new_name)
3139 {
3140 	struct ifaddr *ifa;
3141 	struct sockaddr_dl *sdl;
3142 	size_t namelen, onamelen;
3143 	char old_name[IFNAMSIZ];
3144 	char strbuf[IFNAMSIZ + 8];
3145 
3146 	if (new_name[0] == '\0')
3147 		return (EINVAL);
3148 	if (strcmp(new_name, ifp->if_xname) == 0)
3149 		return (0);
3150 	if (ifunit(new_name) != NULL)
3151 		return (EEXIST);
3152 
3153 	/*
3154 	 * XXX: Locking.  Nothing else seems to lock if_flags,
3155 	 * and there are numerous other races with the
3156 	 * ifunit() checks not being atomic with namespace
3157 	 * changes (renames, vmoves, if_attach, etc).
3158 	 */
3159 	ifp->if_flags |= IFF_RENAMING;
3160 
3161 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
3162 
3163 	if_printf(ifp, "changing name to '%s'\n", new_name);
3164 
3165 	IF_ADDR_WLOCK(ifp);
3166 	strlcpy(old_name, ifp->if_xname, sizeof(old_name));
3167 	strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
3168 	ifa = ifp->if_addr;
3169 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3170 	namelen = strlen(new_name);
3171 	onamelen = sdl->sdl_nlen;
3172 	/*
3173 	 * Move the address if needed.  This is safe because we
3174 	 * allocate space for a name of length IFNAMSIZ when we
3175 	 * create this in if_attach().
3176 	 */
3177 	if (namelen != onamelen) {
3178 		bcopy(sdl->sdl_data + onamelen,
3179 		    sdl->sdl_data + namelen, sdl->sdl_alen);
3180 	}
3181 	bcopy(new_name, sdl->sdl_data, namelen);
3182 	sdl->sdl_nlen = namelen;
3183 	sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
3184 	bzero(sdl->sdl_data, onamelen);
3185 	while (namelen != 0)
3186 		sdl->sdl_data[--namelen] = 0xff;
3187 	IF_ADDR_WUNLOCK(ifp);
3188 
3189 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
3190 
3191 	ifp->if_flags &= ~IFF_RENAMING;
3192 
3193 	snprintf(strbuf, sizeof(strbuf), "name=%s", new_name);
3194 	devctl_notify("IFNET", old_name, "RENAME", strbuf);
3195 
3196 	return (0);
3197 }
3198 
3199 /*
3200  * The code common to handling reference counted flags,
3201  * e.g., in ifpromisc() and if_allmulti().
3202  * The "pflag" argument can specify a permanent mode flag to check,
3203  * such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
3204  *
3205  * Only to be used on stack-owned flags, not driver-owned flags.
3206  */
3207 static int
3208 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
3209 {
3210 	struct ifreq ifr;
3211 	int error;
3212 	int oldflags, oldcount;
3213 
3214 	/* Sanity checks to catch programming errors */
3215 	KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
3216 	    ("%s: setting driver-owned flag %d", __func__, flag));
3217 
3218 	if (onswitch)
3219 		KASSERT(*refcount >= 0,
3220 		    ("%s: increment negative refcount %d for flag %d",
3221 		    __func__, *refcount, flag));
3222 	else
3223 		KASSERT(*refcount > 0,
3224 		    ("%s: decrement non-positive refcount %d for flag %d",
3225 		    __func__, *refcount, flag));
3226 
3227 	/* In case this mode is permanent, just touch refcount */
3228 	if (ifp->if_flags & pflag) {
3229 		*refcount += onswitch ? 1 : -1;
3230 		return (0);
3231 	}
3232 
3233 	/* Save ifnet parameters for if_ioctl() may fail */
3234 	oldcount = *refcount;
3235 	oldflags = ifp->if_flags;
3236 
3237 	/*
3238 	 * See if we aren't the only and touching refcount is enough.
3239 	 * Actually toggle interface flag if we are the first or last.
3240 	 */
3241 	if (onswitch) {
3242 		if ((*refcount)++)
3243 			return (0);
3244 		ifp->if_flags |= flag;
3245 	} else {
3246 		if (--(*refcount))
3247 			return (0);
3248 		ifp->if_flags &= ~flag;
3249 	}
3250 
3251 	/* Call down the driver since we've changed interface flags */
3252 	if (ifp->if_ioctl == NULL) {
3253 		error = EOPNOTSUPP;
3254 		goto recover;
3255 	}
3256 	ifr.ifr_flags = ifp->if_flags & 0xffff;
3257 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
3258 	error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3259 	if (error)
3260 		goto recover;
3261 	/* Notify userland that interface flags have changed */
3262 	rt_ifmsg(ifp, flag);
3263 	return (0);
3264 
3265 recover:
3266 	/* Recover after driver error */
3267 	*refcount = oldcount;
3268 	ifp->if_flags = oldflags;
3269 	return (error);
3270 }
3271 
3272 /*
3273  * Set/clear promiscuous mode on interface ifp based on the truth value
3274  * of pswitch.  The calls are reference counted so that only the first
3275  * "on" request actually has an effect, as does the final "off" request.
3276  * Results are undefined if the "off" and "on" requests are not matched.
3277  */
3278 int
3279 ifpromisc(struct ifnet *ifp, int pswitch)
3280 {
3281 	int error;
3282 	int oldflags = ifp->if_flags;
3283 
3284 	error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
3285 			   &ifp->if_pcount, pswitch);
3286 	/* If promiscuous mode status has changed, log a message */
3287 	if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
3288             log_promisc_mode_change)
3289 		if_printf(ifp, "promiscuous mode %s\n",
3290 		    (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
3291 	return (error);
3292 }
3293 
3294 /*
3295  * Return interface configuration
3296  * of system.  List may be used
3297  * in later ioctl's (above) to get
3298  * other information.
3299  */
3300 /*ARGSUSED*/
3301 static int
3302 ifconf(u_long cmd, caddr_t data)
3303 {
3304 	struct ifconf *ifc = (struct ifconf *)data;
3305 	struct ifnet *ifp;
3306 	struct ifaddr *ifa;
3307 	struct ifreq ifr;
3308 	struct sbuf *sb;
3309 	int error, full = 0, valid_len, max_len;
3310 
3311 	/* Limit initial buffer size to maxphys to avoid DoS from userspace. */
3312 	max_len = maxphys - 1;
3313 
3314 	/* Prevent hostile input from being able to crash the system */
3315 	if (ifc->ifc_len <= 0)
3316 		return (EINVAL);
3317 
3318 again:
3319 	if (ifc->ifc_len <= max_len) {
3320 		max_len = ifc->ifc_len;
3321 		full = 1;
3322 	}
3323 	sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
3324 	max_len = 0;
3325 	valid_len = 0;
3326 
3327 	IFNET_RLOCK();
3328 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
3329 		struct epoch_tracker et;
3330 		int addrs;
3331 
3332 		/*
3333 		 * Zero the ifr to make sure we don't disclose the contents
3334 		 * of the stack.
3335 		 */
3336 		memset(&ifr, 0, sizeof(ifr));
3337 
3338 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
3339 		    >= sizeof(ifr.ifr_name)) {
3340 			sbuf_delete(sb);
3341 			IFNET_RUNLOCK();
3342 			return (ENAMETOOLONG);
3343 		}
3344 
3345 		addrs = 0;
3346 		NET_EPOCH_ENTER(et);
3347 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
3348 			struct sockaddr *sa = ifa->ifa_addr;
3349 
3350 			if (prison_if(curthread->td_ucred, sa) != 0)
3351 				continue;
3352 			addrs++;
3353 			if (sa->sa_len <= sizeof(*sa)) {
3354 				if (sa->sa_len < sizeof(*sa)) {
3355 					memset(&ifr.ifr_ifru.ifru_addr, 0,
3356 					    sizeof(ifr.ifr_ifru.ifru_addr));
3357 					memcpy(&ifr.ifr_ifru.ifru_addr, sa,
3358 					    sa->sa_len);
3359 				} else
3360 					ifr.ifr_ifru.ifru_addr = *sa;
3361 				sbuf_bcat(sb, &ifr, sizeof(ifr));
3362 				max_len += sizeof(ifr);
3363 			} else {
3364 				sbuf_bcat(sb, &ifr,
3365 				    offsetof(struct ifreq, ifr_addr));
3366 				max_len += offsetof(struct ifreq, ifr_addr);
3367 				sbuf_bcat(sb, sa, sa->sa_len);
3368 				max_len += sa->sa_len;
3369 			}
3370 
3371 			if (sbuf_error(sb) == 0)
3372 				valid_len = sbuf_len(sb);
3373 		}
3374 		NET_EPOCH_EXIT(et);
3375 		if (addrs == 0) {
3376 			sbuf_bcat(sb, &ifr, sizeof(ifr));
3377 			max_len += sizeof(ifr);
3378 
3379 			if (sbuf_error(sb) == 0)
3380 				valid_len = sbuf_len(sb);
3381 		}
3382 	}
3383 	IFNET_RUNLOCK();
3384 
3385 	/*
3386 	 * If we didn't allocate enough space (uncommon), try again.  If
3387 	 * we have already allocated as much space as we are allowed,
3388 	 * return what we've got.
3389 	 */
3390 	if (valid_len != max_len && !full) {
3391 		sbuf_delete(sb);
3392 		goto again;
3393 	}
3394 
3395 	ifc->ifc_len = valid_len;
3396 	sbuf_finish(sb);
3397 	error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
3398 	sbuf_delete(sb);
3399 	return (error);
3400 }
3401 
3402 /*
3403  * Just like ifpromisc(), but for all-multicast-reception mode.
3404  */
3405 int
3406 if_allmulti(struct ifnet *ifp, int onswitch)
3407 {
3408 
3409 	return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch));
3410 }
3411 
3412 struct ifmultiaddr *
3413 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
3414 {
3415 	struct ifmultiaddr *ifma;
3416 
3417 	IF_ADDR_LOCK_ASSERT(ifp);
3418 
3419 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3420 		if (sa->sa_family == AF_LINK) {
3421 			if (sa_dl_equal(ifma->ifma_addr, sa))
3422 				break;
3423 		} else {
3424 			if (sa_equal(ifma->ifma_addr, sa))
3425 				break;
3426 		}
3427 	}
3428 
3429 	return ifma;
3430 }
3431 
3432 /*
3433  * Allocate a new ifmultiaddr and initialize based on passed arguments.  We
3434  * make copies of passed sockaddrs.  The ifmultiaddr will not be added to
3435  * the ifnet multicast address list here, so the caller must do that and
3436  * other setup work (such as notifying the device driver).  The reference
3437  * count is initialized to 1.
3438  */
3439 static struct ifmultiaddr *
3440 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
3441     int mflags)
3442 {
3443 	struct ifmultiaddr *ifma;
3444 	struct sockaddr *dupsa;
3445 
3446 	ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
3447 	    M_ZERO);
3448 	if (ifma == NULL)
3449 		return (NULL);
3450 
3451 	dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
3452 	if (dupsa == NULL) {
3453 		free(ifma, M_IFMADDR);
3454 		return (NULL);
3455 	}
3456 	bcopy(sa, dupsa, sa->sa_len);
3457 	ifma->ifma_addr = dupsa;
3458 
3459 	ifma->ifma_ifp = ifp;
3460 	ifma->ifma_refcount = 1;
3461 	ifma->ifma_protospec = NULL;
3462 
3463 	if (llsa == NULL) {
3464 		ifma->ifma_lladdr = NULL;
3465 		return (ifma);
3466 	}
3467 
3468 	dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
3469 	if (dupsa == NULL) {
3470 		free(ifma->ifma_addr, M_IFMADDR);
3471 		free(ifma, M_IFMADDR);
3472 		return (NULL);
3473 	}
3474 	bcopy(llsa, dupsa, llsa->sa_len);
3475 	ifma->ifma_lladdr = dupsa;
3476 
3477 	return (ifma);
3478 }
3479 
3480 /*
3481  * if_freemulti: free ifmultiaddr structure and possibly attached related
3482  * addresses.  The caller is responsible for implementing reference
3483  * counting, notifying the driver, handling routing messages, and releasing
3484  * any dependent link layer state.
3485  */
3486 #ifdef MCAST_VERBOSE
3487 extern void kdb_backtrace(void);
3488 #endif
3489 static void
3490 if_freemulti_internal(struct ifmultiaddr *ifma)
3491 {
3492 
3493 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
3494 	    ifma->ifma_refcount));
3495 
3496 	if (ifma->ifma_lladdr != NULL)
3497 		free(ifma->ifma_lladdr, M_IFMADDR);
3498 #ifdef MCAST_VERBOSE
3499 	kdb_backtrace();
3500 	printf("%s freeing ifma: %p\n", __func__, ifma);
3501 #endif
3502 	free(ifma->ifma_addr, M_IFMADDR);
3503 	free(ifma, M_IFMADDR);
3504 }
3505 
3506 static void
3507 if_destroymulti(epoch_context_t ctx)
3508 {
3509 	struct ifmultiaddr *ifma;
3510 
3511 	ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx);
3512 	if_freemulti_internal(ifma);
3513 }
3514 
3515 void
3516 if_freemulti(struct ifmultiaddr *ifma)
3517 {
3518 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d",
3519 	    ifma->ifma_refcount));
3520 
3521 	NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx);
3522 }
3523 
3524 /*
3525  * Register an additional multicast address with a network interface.
3526  *
3527  * - If the address is already present, bump the reference count on the
3528  *   address and return.
3529  * - If the address is not link-layer, look up a link layer address.
3530  * - Allocate address structures for one or both addresses, and attach to the
3531  *   multicast address list on the interface.  If automatically adding a link
3532  *   layer address, the protocol address will own a reference to the link
3533  *   layer address, to be freed when it is freed.
3534  * - Notify the network device driver of an addition to the multicast address
3535  *   list.
3536  *
3537  * 'sa' points to caller-owned memory with the desired multicast address.
3538  *
3539  * 'retifma' will be used to return a pointer to the resulting multicast
3540  * address reference, if desired.
3541  */
3542 int
3543 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
3544     struct ifmultiaddr **retifma)
3545 {
3546 	struct ifmultiaddr *ifma, *ll_ifma;
3547 	struct sockaddr *llsa;
3548 	struct sockaddr_dl sdl;
3549 	int error;
3550 
3551 #ifdef INET
3552 	IN_MULTI_LIST_UNLOCK_ASSERT();
3553 #endif
3554 #ifdef INET6
3555 	IN6_MULTI_LIST_UNLOCK_ASSERT();
3556 #endif
3557 	/*
3558 	 * If the address is already present, return a new reference to it;
3559 	 * otherwise, allocate storage and set up a new address.
3560 	 */
3561 	IF_ADDR_WLOCK(ifp);
3562 	ifma = if_findmulti(ifp, sa);
3563 	if (ifma != NULL) {
3564 		ifma->ifma_refcount++;
3565 		if (retifma != NULL)
3566 			*retifma = ifma;
3567 		IF_ADDR_WUNLOCK(ifp);
3568 		return (0);
3569 	}
3570 
3571 	/*
3572 	 * The address isn't already present; resolve the protocol address
3573 	 * into a link layer address, and then look that up, bump its
3574 	 * refcount or allocate an ifma for that also.
3575 	 * Most link layer resolving functions returns address data which
3576 	 * fits inside default sockaddr_dl structure. However callback
3577 	 * can allocate another sockaddr structure, in that case we need to
3578 	 * free it later.
3579 	 */
3580 	llsa = NULL;
3581 	ll_ifma = NULL;
3582 	if (ifp->if_resolvemulti != NULL) {
3583 		/* Provide called function with buffer size information */
3584 		sdl.sdl_len = sizeof(sdl);
3585 		llsa = (struct sockaddr *)&sdl;
3586 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
3587 		if (error)
3588 			goto unlock_out;
3589 	}
3590 
3591 	/*
3592 	 * Allocate the new address.  Don't hook it up yet, as we may also
3593 	 * need to allocate a link layer multicast address.
3594 	 */
3595 	ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
3596 	if (ifma == NULL) {
3597 		error = ENOMEM;
3598 		goto free_llsa_out;
3599 	}
3600 
3601 	/*
3602 	 * If a link layer address is found, we'll need to see if it's
3603 	 * already present in the address list, or allocate is as well.
3604 	 * When this block finishes, the link layer address will be on the
3605 	 * list.
3606 	 */
3607 	if (llsa != NULL) {
3608 		ll_ifma = if_findmulti(ifp, llsa);
3609 		if (ll_ifma == NULL) {
3610 			ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
3611 			if (ll_ifma == NULL) {
3612 				--ifma->ifma_refcount;
3613 				if_freemulti(ifma);
3614 				error = ENOMEM;
3615 				goto free_llsa_out;
3616 			}
3617 			ll_ifma->ifma_flags |= IFMA_F_ENQUEUED;
3618 			CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
3619 			    ifma_link);
3620 		} else
3621 			ll_ifma->ifma_refcount++;
3622 		ifma->ifma_llifma = ll_ifma;
3623 	}
3624 
3625 	/*
3626 	 * We now have a new multicast address, ifma, and possibly a new or
3627 	 * referenced link layer address.  Add the primary address to the
3628 	 * ifnet address list.
3629 	 */
3630 	ifma->ifma_flags |= IFMA_F_ENQUEUED;
3631 	CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
3632 
3633 	if (retifma != NULL)
3634 		*retifma = ifma;
3635 
3636 	/*
3637 	 * Must generate the message while holding the lock so that 'ifma'
3638 	 * pointer is still valid.
3639 	 */
3640 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
3641 	IF_ADDR_WUNLOCK(ifp);
3642 
3643 	/*
3644 	 * We are certain we have added something, so call down to the
3645 	 * interface to let them know about it.
3646 	 */
3647 	if (ifp->if_ioctl != NULL) {
3648 		if (THREAD_CAN_SLEEP())
3649 			(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3650 		else
3651 			taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask);
3652 	}
3653 
3654 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3655 		link_free_sdl(llsa);
3656 
3657 	return (0);
3658 
3659 free_llsa_out:
3660 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3661 		link_free_sdl(llsa);
3662 
3663 unlock_out:
3664 	IF_ADDR_WUNLOCK(ifp);
3665 	return (error);
3666 }
3667 
3668 static void
3669 if_siocaddmulti(void *arg, int pending)
3670 {
3671 	struct ifnet *ifp;
3672 
3673 	ifp = arg;
3674 #ifdef DIAGNOSTIC
3675 	if (pending > 1)
3676 		if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending);
3677 #endif
3678 	CURVNET_SET(ifp->if_vnet);
3679 	(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3680 	CURVNET_RESTORE();
3681 }
3682 
3683 /*
3684  * Delete a multicast group membership by network-layer group address.
3685  *
3686  * Returns ENOENT if the entry could not be found. If ifp no longer
3687  * exists, results are undefined. This entry point should only be used
3688  * from subsystems which do appropriate locking to hold ifp for the
3689  * duration of the call.
3690  * Network-layer protocol domains must use if_delmulti_ifma().
3691  */
3692 int
3693 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
3694 {
3695 	struct ifmultiaddr *ifma;
3696 	int lastref;
3697 
3698 	KASSERT(ifp, ("%s: NULL ifp", __func__));
3699 
3700 	IF_ADDR_WLOCK(ifp);
3701 	lastref = 0;
3702 	ifma = if_findmulti(ifp, sa);
3703 	if (ifma != NULL)
3704 		lastref = if_delmulti_locked(ifp, ifma, 0);
3705 	IF_ADDR_WUNLOCK(ifp);
3706 
3707 	if (ifma == NULL)
3708 		return (ENOENT);
3709 
3710 	if (lastref && ifp->if_ioctl != NULL) {
3711 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3712 	}
3713 
3714 	return (0);
3715 }
3716 
3717 /*
3718  * Delete all multicast group membership for an interface.
3719  * Should be used to quickly flush all multicast filters.
3720  */
3721 void
3722 if_delallmulti(struct ifnet *ifp)
3723 {
3724 	struct ifmultiaddr *ifma;
3725 	struct ifmultiaddr *next;
3726 
3727 	IF_ADDR_WLOCK(ifp);
3728 	CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
3729 		if_delmulti_locked(ifp, ifma, 0);
3730 	IF_ADDR_WUNLOCK(ifp);
3731 }
3732 
3733 void
3734 if_delmulti_ifma(struct ifmultiaddr *ifma)
3735 {
3736 	if_delmulti_ifma_flags(ifma, 0);
3737 }
3738 
3739 /*
3740  * Delete a multicast group membership by group membership pointer.
3741  * Network-layer protocol domains must use this routine.
3742  *
3743  * It is safe to call this routine if the ifp disappeared.
3744  */
3745 void
3746 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags)
3747 {
3748 	struct ifnet *ifp;
3749 	int lastref;
3750 	MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma);
3751 #ifdef INET
3752 	IN_MULTI_LIST_UNLOCK_ASSERT();
3753 #endif
3754 	ifp = ifma->ifma_ifp;
3755 #ifdef DIAGNOSTIC
3756 	if (ifp == NULL) {
3757 		printf("%s: ifma_ifp seems to be detached\n", __func__);
3758 	} else {
3759 		struct epoch_tracker et;
3760 		struct ifnet *oifp;
3761 
3762 		NET_EPOCH_ENTER(et);
3763 		CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
3764 			if (ifp == oifp)
3765 				break;
3766 		NET_EPOCH_EXIT(et);
3767 		if (ifp != oifp)
3768 			ifp = NULL;
3769 	}
3770 #endif
3771 	/*
3772 	 * If and only if the ifnet instance exists: Acquire the address lock.
3773 	 */
3774 	if (ifp != NULL)
3775 		IF_ADDR_WLOCK(ifp);
3776 
3777 	lastref = if_delmulti_locked(ifp, ifma, flags);
3778 
3779 	if (ifp != NULL) {
3780 		/*
3781 		 * If and only if the ifnet instance exists:
3782 		 *  Release the address lock.
3783 		 *  If the group was left: update the hardware hash filter.
3784 		 */
3785 		IF_ADDR_WUNLOCK(ifp);
3786 		if (lastref && ifp->if_ioctl != NULL) {
3787 			(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3788 		}
3789 	}
3790 }
3791 
3792 /*
3793  * Perform deletion of network-layer and/or link-layer multicast address.
3794  *
3795  * Return 0 if the reference count was decremented.
3796  * Return 1 if the final reference was released, indicating that the
3797  * hardware hash filter should be reprogrammed.
3798  */
3799 static int
3800 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
3801 {
3802 	struct ifmultiaddr *ll_ifma;
3803 
3804 	if (ifp != NULL && ifma->ifma_ifp != NULL) {
3805 		KASSERT(ifma->ifma_ifp == ifp,
3806 		    ("%s: inconsistent ifp %p", __func__, ifp));
3807 		IF_ADDR_WLOCK_ASSERT(ifp);
3808 	}
3809 
3810 	ifp = ifma->ifma_ifp;
3811 	MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : "");
3812 
3813 	/*
3814 	 * If the ifnet is detaching, null out references to ifnet,
3815 	 * so that upper protocol layers will notice, and not attempt
3816 	 * to obtain locks for an ifnet which no longer exists. The
3817 	 * routing socket announcement must happen before the ifnet
3818 	 * instance is detached from the system.
3819 	 */
3820 	if (detaching) {
3821 #ifdef DIAGNOSTIC
3822 		printf("%s: detaching ifnet instance %p\n", __func__, ifp);
3823 #endif
3824 		/*
3825 		 * ifp may already be nulled out if we are being reentered
3826 		 * to delete the ll_ifma.
3827 		 */
3828 		if (ifp != NULL) {
3829 			rt_newmaddrmsg(RTM_DELMADDR, ifma);
3830 			ifma->ifma_ifp = NULL;
3831 		}
3832 	}
3833 
3834 	if (--ifma->ifma_refcount > 0)
3835 		return 0;
3836 
3837 	if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) {
3838 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
3839 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3840 	}
3841 	/*
3842 	 * If this ifma is a network-layer ifma, a link-layer ifma may
3843 	 * have been associated with it. Release it first if so.
3844 	 */
3845 	ll_ifma = ifma->ifma_llifma;
3846 	if (ll_ifma != NULL) {
3847 		KASSERT(ifma->ifma_lladdr != NULL,
3848 		    ("%s: llifma w/o lladdr", __func__));
3849 		if (detaching)
3850 			ll_ifma->ifma_ifp = NULL;	/* XXX */
3851 		if (--ll_ifma->ifma_refcount == 0) {
3852 			if (ifp != NULL) {
3853 				if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
3854 					CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr,
3855 						ifma_link);
3856 					ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3857 				}
3858 			}
3859 			if_freemulti(ll_ifma);
3860 		}
3861 	}
3862 #ifdef INVARIANTS
3863 	if (ifp) {
3864 		struct ifmultiaddr *ifmatmp;
3865 
3866 		CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link)
3867 			MPASS(ifma != ifmatmp);
3868 	}
3869 #endif
3870 	if_freemulti(ifma);
3871 	/*
3872 	 * The last reference to this instance of struct ifmultiaddr
3873 	 * was released; the hardware should be notified of this change.
3874 	 */
3875 	return 1;
3876 }
3877 
3878 /*
3879  * Set the link layer address on an interface.
3880  *
3881  * At this time we only support certain types of interfaces,
3882  * and we don't allow the length of the address to change.
3883  *
3884  * Set noinline to be dtrace-friendly
3885  */
3886 __noinline int
3887 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
3888 {
3889 	struct sockaddr_dl *sdl;
3890 	struct ifaddr *ifa;
3891 	struct ifreq ifr;
3892 
3893 	ifa = ifp->if_addr;
3894 	if (ifa == NULL)
3895 		return (EINVAL);
3896 
3897 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3898 	if (sdl == NULL)
3899 		return (EINVAL);
3900 
3901 	if (len != sdl->sdl_alen)	/* don't allow length to change */
3902 		return (EINVAL);
3903 
3904 	switch (ifp->if_type) {
3905 	case IFT_ETHER:
3906 	case IFT_XETHER:
3907 	case IFT_L2VLAN:
3908 	case IFT_BRIDGE:
3909 	case IFT_IEEE8023ADLAG:
3910 		bcopy(lladdr, LLADDR(sdl), len);
3911 		break;
3912 	default:
3913 		return (ENODEV);
3914 	}
3915 
3916 	/*
3917 	 * If the interface is already up, we need
3918 	 * to re-init it in order to reprogram its
3919 	 * address filter.
3920 	 */
3921 	if ((ifp->if_flags & IFF_UP) != 0) {
3922 		if (ifp->if_ioctl) {
3923 			ifp->if_flags &= ~IFF_UP;
3924 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3925 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3926 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3927 			ifp->if_flags |= IFF_UP;
3928 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3929 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3930 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3931 		}
3932 	}
3933 	EVENTHANDLER_INVOKE(iflladdr_event, ifp);
3934 
3935 	return (0);
3936 }
3937 
3938 /*
3939  * Compat function for handling basic encapsulation requests.
3940  * Not converted stacks (FDDI, IB, ..) supports traditional
3941  * output model: ARP (and other similar L2 protocols) are handled
3942  * inside output routine, arpresolve/nd6_resolve() returns MAC
3943  * address instead of full prepend.
3944  *
3945  * This function creates calculated header==MAC for IPv4/IPv6 and
3946  * returns EAFNOSUPPORT (which is then handled in ARP code) for other
3947  * address families.
3948  */
3949 static int
3950 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
3951 {
3952 	if (req->rtype != IFENCAP_LL)
3953 		return (EOPNOTSUPP);
3954 
3955 	if (req->bufsize < req->lladdr_len)
3956 		return (ENOMEM);
3957 
3958 	switch (req->family) {
3959 	case AF_INET:
3960 	case AF_INET6:
3961 		break;
3962 	default:
3963 		return (EAFNOSUPPORT);
3964 	}
3965 
3966 	/* Copy lladdr to storage as is */
3967 	memmove(req->buf, req->lladdr, req->lladdr_len);
3968 	req->bufsize = req->lladdr_len;
3969 	req->lladdr_off = 0;
3970 
3971 	return (0);
3972 }
3973 
3974 /*
3975  * Tunnel interfaces can nest, also they may cause infinite recursion
3976  * calls when misconfigured. We'll prevent this by detecting loops.
3977  * High nesting level may cause stack exhaustion. We'll prevent this
3978  * by introducing upper limit.
3979  *
3980  * Return 0, if tunnel nesting count is equal or less than limit.
3981  */
3982 int
3983 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
3984     int limit)
3985 {
3986 	struct m_tag *mtag;
3987 	int count;
3988 
3989 	count = 1;
3990 	mtag = NULL;
3991 	while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) {
3992 		if (*(struct ifnet **)(mtag + 1) == ifp) {
3993 			log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp));
3994 			return (EIO);
3995 		}
3996 		count++;
3997 	}
3998 	if (count > limit) {
3999 		log(LOG_NOTICE,
4000 		    "%s: if_output recursively called too many times(%d)\n",
4001 		    if_name(ifp), count);
4002 		return (EIO);
4003 	}
4004 	mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT);
4005 	if (mtag == NULL)
4006 		return (ENOMEM);
4007 	*(struct ifnet **)(mtag + 1) = ifp;
4008 	m_tag_prepend(m, mtag);
4009 	return (0);
4010 }
4011 
4012 /*
4013  * Get the link layer address that was read from the hardware at attach.
4014  *
4015  * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type
4016  * their component interfaces as IFT_IEEE8023ADLAG.
4017  */
4018 int
4019 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr)
4020 {
4021 	if (ifp->if_hw_addr == NULL)
4022 		return (ENODEV);
4023 
4024 	switch (ifp->if_type) {
4025 	case IFT_ETHER:
4026 	case IFT_IEEE8023ADLAG:
4027 		bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen);
4028 		return (0);
4029 	default:
4030 		return (ENODEV);
4031 	}
4032 }
4033 
4034 /*
4035  * The name argument must be a pointer to storage which will last as
4036  * long as the interface does.  For physical devices, the result of
4037  * device_get_name(dev) is a good choice and for pseudo-devices a
4038  * static string works well.
4039  */
4040 void
4041 if_initname(struct ifnet *ifp, const char *name, int unit)
4042 {
4043 	ifp->if_dname = name;
4044 	ifp->if_dunit = unit;
4045 	if (unit != IF_DUNIT_NONE)
4046 		snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
4047 	else
4048 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
4049 }
4050 
4051 static int
4052 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap)
4053 {
4054 	char if_fmt[256];
4055 
4056 	snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
4057 	vlog(pri, if_fmt, ap);
4058 	return (0);
4059 }
4060 
4061 
4062 int
4063 if_printf(struct ifnet *ifp, const char *fmt, ...)
4064 {
4065 	va_list ap;
4066 
4067 	va_start(ap, fmt);
4068 	if_vlog(ifp, LOG_INFO, fmt, ap);
4069 	va_end(ap);
4070 	return (0);
4071 }
4072 
4073 int
4074 if_log(struct ifnet *ifp, int pri, const char *fmt, ...)
4075 {
4076 	va_list ap;
4077 
4078 	va_start(ap, fmt);
4079 	if_vlog(ifp, pri, fmt, ap);
4080 	va_end(ap);
4081 	return (0);
4082 }
4083 
4084 void
4085 if_start(struct ifnet *ifp)
4086 {
4087 
4088 	(*(ifp)->if_start)(ifp);
4089 }
4090 
4091 /*
4092  * Backwards compatibility interface for drivers
4093  * that have not implemented it
4094  */
4095 static int
4096 if_transmit_default(struct ifnet *ifp, struct mbuf *m)
4097 {
4098 	int error;
4099 
4100 	IFQ_HANDOFF(ifp, m, error);
4101 	return (error);
4102 }
4103 
4104 static void
4105 if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
4106 {
4107 	m_freem(m);
4108 }
4109 
4110 int
4111 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
4112 {
4113 	int active = 0;
4114 
4115 	IF_LOCK(ifq);
4116 	if (_IF_QFULL(ifq)) {
4117 		IF_UNLOCK(ifq);
4118 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4119 		m_freem(m);
4120 		return (0);
4121 	}
4122 	if (ifp != NULL) {
4123 		if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
4124 		if (m->m_flags & (M_BCAST|M_MCAST))
4125 			if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4126 		active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
4127 	}
4128 	_IF_ENQUEUE(ifq, m);
4129 	IF_UNLOCK(ifq);
4130 	if (ifp != NULL && !active)
4131 		(*(ifp)->if_start)(ifp);
4132 	return (1);
4133 }
4134 
4135 void
4136 if_register_com_alloc(u_char type,
4137     if_com_alloc_t *a, if_com_free_t *f)
4138 {
4139 
4140 	KASSERT(if_com_alloc[type] == NULL,
4141 	    ("if_register_com_alloc: %d already registered", type));
4142 	KASSERT(if_com_free[type] == NULL,
4143 	    ("if_register_com_alloc: %d free already registered", type));
4144 
4145 	if_com_alloc[type] = a;
4146 	if_com_free[type] = f;
4147 }
4148 
4149 void
4150 if_deregister_com_alloc(u_char type)
4151 {
4152 
4153 	KASSERT(if_com_alloc[type] != NULL,
4154 	    ("if_deregister_com_alloc: %d not registered", type));
4155 	KASSERT(if_com_free[type] != NULL,
4156 	    ("if_deregister_com_alloc: %d free not registered", type));
4157 
4158 	/*
4159 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
4160 	 * fixes issues about late invocation of if_destroy(), which leads
4161 	 * to memory leak from if_com_alloc[type] allocated if_l2com.
4162 	 */
4163 	NET_EPOCH_DRAIN_CALLBACKS();
4164 
4165 	if_com_alloc[type] = NULL;
4166 	if_com_free[type] = NULL;
4167 }
4168 
4169 /* API for driver access to network stack owned ifnet.*/
4170 uint64_t
4171 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
4172 {
4173 	uint64_t oldbrate;
4174 
4175 	oldbrate = ifp->if_baudrate;
4176 	ifp->if_baudrate = baudrate;
4177 	return (oldbrate);
4178 }
4179 
4180 uint64_t
4181 if_getbaudrate(const if_t ifp)
4182 {
4183 	return (ifp->if_baudrate);
4184 }
4185 
4186 int
4187 if_setcapabilities(if_t ifp, int capabilities)
4188 {
4189 	ifp->if_capabilities = capabilities;
4190 	return (0);
4191 }
4192 
4193 int
4194 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
4195 {
4196 	ifp->if_capabilities &= ~clearbit;
4197 	ifp->if_capabilities |= setbit;
4198 	return (0);
4199 }
4200 
4201 int
4202 if_getcapabilities(const if_t ifp)
4203 {
4204 	return (ifp->if_capabilities);
4205 }
4206 
4207 int
4208 if_setcapenable(if_t ifp, int capabilities)
4209 {
4210 	ifp->if_capenable = capabilities;
4211 	return (0);
4212 }
4213 
4214 int
4215 if_setcapenablebit(if_t ifp, int setcap, int clearcap)
4216 {
4217 	ifp->if_capenable &= ~clearcap;
4218 	ifp->if_capenable |= setcap;
4219 	return (0);
4220 }
4221 
4222 int
4223 if_setcapabilities2(if_t ifp, int capabilities)
4224 {
4225 	ifp->if_capabilities2 = capabilities;
4226 	return (0);
4227 }
4228 
4229 int
4230 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit)
4231 {
4232 	ifp->if_capabilities2 &= ~clearbit;
4233 	ifp->if_capabilities2 |= setbit;
4234 	return (0);
4235 }
4236 
4237 int
4238 if_getcapabilities2(const if_t ifp)
4239 {
4240 	return (ifp->if_capabilities2);
4241 }
4242 
4243 int
4244 if_setcapenable2(if_t ifp, int capabilities2)
4245 {
4246 	ifp->if_capenable2 = capabilities2;
4247 	return (0);
4248 }
4249 
4250 int
4251 if_setcapenable2bit(if_t ifp, int setcap, int clearcap)
4252 {
4253 	ifp->if_capenable2 &= ~clearcap;
4254 	ifp->if_capenable2 |= setcap;
4255 	return (0);
4256 }
4257 
4258 const char *
4259 if_getdname(const if_t ifp)
4260 {
4261 	return (ifp->if_dname);
4262 }
4263 
4264 void
4265 if_setdname(if_t ifp, const char *dname)
4266 {
4267 	ifp->if_dname = dname;
4268 }
4269 
4270 const char *
4271 if_name(if_t ifp)
4272 {
4273 	return (ifp->if_xname);
4274 }
4275 
4276 int
4277 if_setname(if_t ifp, const char *name)
4278 {
4279 	if (strlen(name) > sizeof(ifp->if_xname) - 1)
4280 		return (ENAMETOOLONG);
4281 	strcpy(ifp->if_xname, name);
4282 
4283 	return (0);
4284 }
4285 
4286 int
4287 if_togglecapenable(if_t ifp, int togglecap)
4288 {
4289 	ifp->if_capenable ^= togglecap;
4290 	return (0);
4291 }
4292 
4293 int
4294 if_getcapenable(const if_t ifp)
4295 {
4296 	return (ifp->if_capenable);
4297 }
4298 
4299 int
4300 if_togglecapenable2(if_t ifp, int togglecap)
4301 {
4302 	ifp->if_capenable2 ^= togglecap;
4303 	return (0);
4304 }
4305 
4306 int
4307 if_getcapenable2(const if_t ifp)
4308 {
4309 	return (ifp->if_capenable2);
4310 }
4311 
4312 int
4313 if_getdunit(const if_t ifp)
4314 {
4315 	return (ifp->if_dunit);
4316 }
4317 
4318 int
4319 if_getindex(const if_t ifp)
4320 {
4321 	return (ifp->if_index);
4322 }
4323 
4324 int
4325 if_getidxgen(const if_t ifp)
4326 {
4327 	return (ifp->if_idxgen);
4328 }
4329 
4330 const char *
4331 if_getdescr(if_t ifp)
4332 {
4333 	return (ifp->if_description);
4334 }
4335 
4336 void
4337 if_setdescr(if_t ifp, char *descrbuf)
4338 {
4339 	sx_xlock(&ifdescr_sx);
4340 	char *odescrbuf = ifp->if_description;
4341 	ifp->if_description = descrbuf;
4342 	sx_xunlock(&ifdescr_sx);
4343 
4344 	if_freedescr(odescrbuf);
4345 }
4346 
4347 char *
4348 if_allocdescr(size_t sz, int malloc_flag)
4349 {
4350 	malloc_flag &= (M_WAITOK | M_NOWAIT);
4351 	return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag));
4352 }
4353 
4354 void
4355 if_freedescr(char *descrbuf)
4356 {
4357 	free(descrbuf, M_IFDESCR);
4358 }
4359 
4360 int
4361 if_getalloctype(const if_t ifp)
4362 {
4363 	return (ifp->if_alloctype);
4364 }
4365 
4366 void
4367 if_setlastchange(if_t ifp)
4368 {
4369 	getmicrotime(&ifp->if_lastchange);
4370 }
4371 
4372 /*
4373  * This is largely undesirable because it ties ifnet to a device, but does
4374  * provide flexiblity for an embedded product vendor. Should be used with
4375  * the understanding that it violates the interface boundaries, and should be
4376  * a last resort only.
4377  */
4378 int
4379 if_setdev(if_t ifp, void *dev)
4380 {
4381 	return (0);
4382 }
4383 
4384 int
4385 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
4386 {
4387 	ifp->if_drv_flags &= ~clear_flags;
4388 	ifp->if_drv_flags |= set_flags;
4389 
4390 	return (0);
4391 }
4392 
4393 int
4394 if_getdrvflags(const if_t ifp)
4395 {
4396 	return (ifp->if_drv_flags);
4397 }
4398 
4399 int
4400 if_setdrvflags(if_t ifp, int flags)
4401 {
4402 	ifp->if_drv_flags = flags;
4403 	return (0);
4404 }
4405 
4406 int
4407 if_setflags(if_t ifp, int flags)
4408 {
4409 	ifp->if_flags = flags;
4410 	return (0);
4411 }
4412 
4413 int
4414 if_setflagbits(if_t ifp, int set, int clear)
4415 {
4416 	ifp->if_flags &= ~clear;
4417 	ifp->if_flags |= set;
4418 	return (0);
4419 }
4420 
4421 int
4422 if_getflags(const if_t ifp)
4423 {
4424 	return (ifp->if_flags);
4425 }
4426 
4427 int
4428 if_clearhwassist(if_t ifp)
4429 {
4430 	ifp->if_hwassist = 0;
4431 	return (0);
4432 }
4433 
4434 int
4435 if_sethwassistbits(if_t ifp, int toset, int toclear)
4436 {
4437 	ifp->if_hwassist &= ~toclear;
4438 	ifp->if_hwassist |= toset;
4439 
4440 	return (0);
4441 }
4442 
4443 int
4444 if_sethwassist(if_t ifp, int hwassist_bit)
4445 {
4446 	ifp->if_hwassist = hwassist_bit;
4447 	return (0);
4448 }
4449 
4450 int
4451 if_gethwassist(const if_t ifp)
4452 {
4453 	return (ifp->if_hwassist);
4454 }
4455 
4456 int
4457 if_togglehwassist(if_t ifp, int toggle_bits)
4458 {
4459 	ifp->if_hwassist ^= toggle_bits;
4460 	return (0);
4461 }
4462 
4463 int
4464 if_setmtu(if_t ifp, int mtu)
4465 {
4466 	ifp->if_mtu = mtu;
4467 	return (0);
4468 }
4469 
4470 void
4471 if_notifymtu(if_t ifp)
4472 {
4473 #ifdef INET6
4474 	nd6_setmtu(ifp);
4475 #endif
4476 	rt_updatemtu(ifp);
4477 }
4478 
4479 int
4480 if_getmtu(const if_t ifp)
4481 {
4482 	return (ifp->if_mtu);
4483 }
4484 
4485 int
4486 if_getmtu_family(const if_t ifp, int family)
4487 {
4488 	struct domain *dp;
4489 
4490 	SLIST_FOREACH(dp, &domains, dom_next) {
4491 		if (dp->dom_family == family && dp->dom_ifmtu != NULL)
4492 			return (dp->dom_ifmtu(ifp));
4493 	}
4494 
4495 	return (ifp->if_mtu);
4496 }
4497 
4498 /*
4499  * Methods for drivers to access interface unicast and multicast
4500  * link level addresses.  Driver shall not know 'struct ifaddr' neither
4501  * 'struct ifmultiaddr'.
4502  */
4503 u_int
4504 if_lladdr_count(if_t ifp)
4505 {
4506 	struct epoch_tracker et;
4507 	struct ifaddr *ifa;
4508 	u_int count;
4509 
4510 	count = 0;
4511 	NET_EPOCH_ENTER(et);
4512 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
4513 		if (ifa->ifa_addr->sa_family == AF_LINK)
4514 			count++;
4515 	NET_EPOCH_EXIT(et);
4516 
4517 	return (count);
4518 }
4519 
4520 int
4521 if_foreach(if_foreach_cb_t cb, void *cb_arg)
4522 {
4523 	if_t ifp;
4524 	int error;
4525 
4526 	NET_EPOCH_ASSERT();
4527 	MPASS(cb);
4528 
4529 	error = 0;
4530 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4531 		error = cb(ifp, cb_arg);
4532 		if (error != 0)
4533 			break;
4534 	}
4535 
4536 	return (error);
4537 }
4538 
4539 /*
4540  * Iterates over the list of interfaces, permitting callback function @cb to sleep.
4541  * Stops iteration if @cb returns non-zero error code.
4542  * Returns the last error code from @cb.
4543  * @match_cb: optional match callback limiting the iteration to only matched interfaces
4544  * @match_arg: argument to pass to @match_cb
4545  * @cb: iteration callback
4546  * @cb_arg: argument to pass to @cb
4547  */
4548 int
4549 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb,
4550     void *cb_arg)
4551 {
4552 	int match_count = 0, array_size = 16; /* 128 bytes for malloc */
4553 	struct ifnet **match_array = NULL;
4554 	int error = 0;
4555 
4556 	MPASS(cb);
4557 
4558 	while (true) {
4559 		struct ifnet **new_array;
4560 		int new_size = array_size;
4561 		struct epoch_tracker et;
4562 		struct ifnet *ifp;
4563 
4564 		while (new_size < match_count)
4565 			new_size *= 2;
4566 		new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK);
4567 		if (match_array != NULL)
4568 			memcpy(new_array, match_array, array_size * sizeof(void *));
4569 		free(match_array, M_TEMP);
4570 		match_array = new_array;
4571 		array_size = new_size;
4572 
4573 		match_count = 0;
4574 		NET_EPOCH_ENTER(et);
4575 		CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4576 			if (match_cb != NULL && !match_cb(ifp, match_arg))
4577 				continue;
4578 			if (match_count < array_size) {
4579 				if (if_try_ref(ifp))
4580 					match_array[match_count++] = ifp;
4581 			} else
4582 				match_count++;
4583 		}
4584 		NET_EPOCH_EXIT(et);
4585 
4586 		if (match_count > array_size) {
4587 			for (int i = 0; i < array_size; i++)
4588 				if_rele(match_array[i]);
4589 			continue;
4590 		} else {
4591 			for (int i = 0; i < match_count; i++) {
4592 				if (error == 0)
4593 					error = cb(match_array[i], cb_arg);
4594 				if_rele(match_array[i]);
4595 			}
4596 			free(match_array, M_TEMP);
4597 			break;
4598 		}
4599 	}
4600 
4601 	return (error);
4602 }
4603 
4604 
4605 /*
4606  * Uses just 1 pointer of the 4 available in the public struct.
4607  */
4608 if_t
4609 if_iter_start(struct if_iter *iter)
4610 {
4611 	if_t ifp;
4612 
4613 	NET_EPOCH_ASSERT();
4614 
4615 	bzero(iter, sizeof(*iter));
4616 	ifp = CK_STAILQ_FIRST(&V_ifnet);
4617 	if (ifp != NULL)
4618 		iter->context[0] = CK_STAILQ_NEXT(ifp, if_link);
4619 	else
4620 		iter->context[0] = NULL;
4621 	return (ifp);
4622 }
4623 
4624 if_t
4625 if_iter_next(struct if_iter *iter)
4626 {
4627 	if_t cur_ifp = iter->context[0];
4628 
4629 	if (cur_ifp != NULL)
4630 		iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link);
4631 	return (cur_ifp);
4632 }
4633 
4634 void
4635 if_iter_finish(struct if_iter *iter)
4636 {
4637 	/* Nothing to do here for now. */
4638 }
4639 
4640 u_int
4641 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4642 {
4643 	struct epoch_tracker et;
4644 	struct ifaddr *ifa;
4645 	u_int count;
4646 
4647 	MPASS(cb);
4648 
4649 	count = 0;
4650 	NET_EPOCH_ENTER(et);
4651 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4652 		if (ifa->ifa_addr->sa_family != AF_LINK)
4653 			continue;
4654 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr,
4655 		    count);
4656 	}
4657 	NET_EPOCH_EXIT(et);
4658 
4659 	return (count);
4660 }
4661 
4662 u_int
4663 if_llmaddr_count(if_t ifp)
4664 {
4665 	struct epoch_tracker et;
4666 	struct ifmultiaddr *ifma;
4667 	int count;
4668 
4669 	count = 0;
4670 	NET_EPOCH_ENTER(et);
4671 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
4672 		if (ifma->ifma_addr->sa_family == AF_LINK)
4673 			count++;
4674 	NET_EPOCH_EXIT(et);
4675 
4676 	return (count);
4677 }
4678 
4679 bool
4680 if_maddr_empty(if_t ifp)
4681 {
4682 
4683 	return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs));
4684 }
4685 
4686 u_int
4687 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4688 {
4689 	struct epoch_tracker et;
4690 	struct ifmultiaddr *ifma;
4691 	u_int count;
4692 
4693 	MPASS(cb);
4694 
4695 	count = 0;
4696 	NET_EPOCH_ENTER(et);
4697 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4698 		if (ifma->ifma_addr->sa_family != AF_LINK)
4699 			continue;
4700 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr,
4701 		    count);
4702 	}
4703 	NET_EPOCH_EXIT(et);
4704 
4705 	return (count);
4706 }
4707 
4708 u_int
4709 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg)
4710 {
4711 	struct epoch_tracker et;
4712 	struct ifaddr *ifa;
4713 	u_int count;
4714 
4715 	MPASS(cb);
4716 
4717 	count = 0;
4718 	NET_EPOCH_ENTER(et);
4719 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4720 		if (ifa->ifa_addr->sa_family != type)
4721 			continue;
4722 		count += (*cb)(cb_arg, ifa, count);
4723 	}
4724 	NET_EPOCH_EXIT(et);
4725 
4726 	return (count);
4727 }
4728 
4729 struct ifaddr *
4730 ifa_iter_start(if_t ifp, struct ifa_iter *iter)
4731 {
4732 	struct ifaddr *ifa;
4733 
4734 	NET_EPOCH_ASSERT();
4735 
4736 	bzero(iter, sizeof(*iter));
4737 	ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
4738 	if (ifa != NULL)
4739 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4740 	else
4741 		iter->context[0] = NULL;
4742 	return (ifa);
4743 }
4744 
4745 struct ifaddr *
4746 ifa_iter_next(struct ifa_iter *iter)
4747 {
4748 	struct ifaddr *ifa = iter->context[0];
4749 
4750 	if (ifa != NULL)
4751 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4752 	return (ifa);
4753 }
4754 
4755 void
4756 ifa_iter_finish(struct ifa_iter *iter)
4757 {
4758 	/* Nothing to do here for now. */
4759 }
4760 
4761 int
4762 if_setsoftc(if_t ifp, void *softc)
4763 {
4764 	ifp->if_softc = softc;
4765 	return (0);
4766 }
4767 
4768 void *
4769 if_getsoftc(const if_t ifp)
4770 {
4771 	return (ifp->if_softc);
4772 }
4773 
4774 void
4775 if_setrcvif(struct mbuf *m, if_t ifp)
4776 {
4777 
4778 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
4779 	m->m_pkthdr.rcvif = (struct ifnet *)ifp;
4780 }
4781 
4782 void
4783 if_setvtag(struct mbuf *m, uint16_t tag)
4784 {
4785 	m->m_pkthdr.ether_vtag = tag;
4786 }
4787 
4788 uint16_t
4789 if_getvtag(struct mbuf *m)
4790 {
4791 	return (m->m_pkthdr.ether_vtag);
4792 }
4793 
4794 int
4795 if_sendq_empty(if_t ifp)
4796 {
4797 	return (IFQ_DRV_IS_EMPTY(&ifp->if_snd));
4798 }
4799 
4800 struct ifaddr *
4801 if_getifaddr(const if_t ifp)
4802 {
4803 	return (ifp->if_addr);
4804 }
4805 
4806 int
4807 if_getamcount(const if_t ifp)
4808 {
4809 	return (ifp->if_amcount);
4810 }
4811 
4812 int
4813 if_setsendqready(if_t ifp)
4814 {
4815 	IFQ_SET_READY(&ifp->if_snd);
4816 	return (0);
4817 }
4818 
4819 int
4820 if_setsendqlen(if_t ifp, int tx_desc_count)
4821 {
4822 	IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count);
4823 	ifp->if_snd.ifq_drv_maxlen = tx_desc_count;
4824 	return (0);
4825 }
4826 
4827 void
4828 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na)
4829 {
4830 	ifp->if_netmap = na;
4831 }
4832 
4833 struct netmap_adapter *
4834 if_getnetmapadapter(if_t ifp)
4835 {
4836 	return (ifp->if_netmap);
4837 }
4838 
4839 int
4840 if_vlantrunkinuse(if_t ifp)
4841 {
4842 	return (ifp->if_vlantrunk != NULL);
4843 }
4844 
4845 void
4846 if_init(if_t ifp, void *ctx)
4847 {
4848 	(*ifp->if_init)(ctx);
4849 }
4850 
4851 void
4852 if_input(if_t ifp, struct mbuf* sendmp)
4853 {
4854 	(*ifp->if_input)(ifp, sendmp);
4855 }
4856 
4857 int
4858 if_transmit(if_t ifp, struct mbuf *m)
4859 {
4860 	return ((*ifp->if_transmit)(ifp, m));
4861 }
4862 
4863 int
4864 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst)
4865 {
4866 	if (ifp->if_resolvemulti == NULL)
4867 		return (EOPNOTSUPP);
4868 
4869 	return (ifp->if_resolvemulti(ifp, srcs, dst));
4870 }
4871 
4872 int
4873 if_ioctl(if_t ifp, u_long cmd, void *data)
4874 {
4875 	return (ifp->if_ioctl(ifp, cmd, data));
4876 }
4877 
4878 struct mbuf *
4879 if_dequeue(if_t ifp)
4880 {
4881 	struct mbuf *m;
4882 
4883 	IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4884 	return (m);
4885 }
4886 
4887 int
4888 if_sendq_prepend(if_t ifp, struct mbuf *m)
4889 {
4890 	IFQ_DRV_PREPEND(&ifp->if_snd, m);
4891 	return (0);
4892 }
4893 
4894 int
4895 if_setifheaderlen(if_t ifp, int len)
4896 {
4897 	ifp->if_hdrlen = len;
4898 	return (0);
4899 }
4900 
4901 caddr_t
4902 if_getlladdr(const if_t ifp)
4903 {
4904 	return (IF_LLADDR(ifp));
4905 }
4906 
4907 void *
4908 if_gethandle(u_char type)
4909 {
4910 	return (if_alloc(type));
4911 }
4912 
4913 void
4914 if_bpfmtap(if_t ifp, struct mbuf *m)
4915 {
4916 	BPF_MTAP(ifp, m);
4917 }
4918 
4919 void
4920 if_etherbpfmtap(if_t ifp, struct mbuf *m)
4921 {
4922 	ETHER_BPF_MTAP(ifp, m);
4923 }
4924 
4925 void
4926 if_vlancap(if_t ifp)
4927 {
4928 	VLAN_CAPABILITIES(ifp);
4929 }
4930 
4931 int
4932 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax)
4933 {
4934 	ifp->if_hw_tsomax = if_hw_tsomax;
4935         return (0);
4936 }
4937 
4938 int
4939 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount)
4940 {
4941 	ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount;
4942         return (0);
4943 }
4944 
4945 int
4946 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize)
4947 {
4948 	ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize;
4949         return (0);
4950 }
4951 
4952 u_int
4953 if_gethwtsomax(const if_t ifp)
4954 {
4955 	return (ifp->if_hw_tsomax);
4956 }
4957 
4958 u_int
4959 if_gethwtsomaxsegcount(const if_t ifp)
4960 {
4961 	return (ifp->if_hw_tsomaxsegcount);
4962 }
4963 
4964 u_int
4965 if_gethwtsomaxsegsize(const if_t ifp)
4966 {
4967 	return (ifp->if_hw_tsomaxsegsize);
4968 }
4969 
4970 void
4971 if_setinitfn(if_t ifp, if_init_fn_t init_fn)
4972 {
4973 	ifp->if_init = init_fn;
4974 }
4975 
4976 void
4977 if_setinputfn(if_t ifp, if_input_fn_t input_fn)
4978 {
4979 	ifp->if_input = input_fn;
4980 }
4981 
4982 if_input_fn_t
4983 if_getinputfn(if_t ifp)
4984 {
4985 	return (ifp->if_input);
4986 }
4987 
4988 void
4989 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn)
4990 {
4991 	ifp->if_ioctl = ioctl_fn;
4992 }
4993 
4994 void
4995 if_setoutputfn(if_t ifp, if_output_fn_t output_fn)
4996 {
4997 	ifp->if_output = output_fn;
4998 }
4999 
5000 void
5001 if_setstartfn(if_t ifp, if_start_fn_t start_fn)
5002 {
5003 	ifp->if_start = start_fn;
5004 }
5005 
5006 if_start_fn_t
5007 if_getstartfn(if_t ifp)
5008 {
5009 	return (ifp->if_start);
5010 }
5011 
5012 void
5013 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
5014 {
5015 	ifp->if_transmit = start_fn;
5016 }
5017 
5018 if_transmit_fn_t
5019 if_gettransmitfn(if_t ifp)
5020 {
5021 	return (ifp->if_transmit);
5022 }
5023 
5024 void
5025 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
5026 {
5027 	ifp->if_qflush = flush_fn;
5028 }
5029 
5030 void
5031 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn)
5032 {
5033 	ifp->if_snd_tag_alloc = alloc_fn;
5034 }
5035 
5036 int
5037 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
5038     struct m_snd_tag **mstp)
5039 {
5040 	if (ifp->if_snd_tag_alloc == NULL)
5041 		return (EOPNOTSUPP);
5042 	return (ifp->if_snd_tag_alloc(ifp, params, mstp));
5043 }
5044 
5045 void
5046 if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
5047 {
5048 	ifp->if_get_counter = fn;
5049 }
5050 
5051 void
5052 if_setreassignfn(if_t ifp, if_reassign_fn_t fn)
5053 {
5054 	ifp->if_reassign = fn;
5055 }
5056 
5057 void
5058 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn)
5059 {
5060 	ifp->if_ratelimit_query = fn;
5061 }
5062 
5063 void
5064 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m)
5065 {
5066 	ifp->if_debugnet_methods = m;
5067 }
5068 
5069 struct label *
5070 if_getmaclabel(if_t ifp)
5071 {
5072 	return (ifp->if_label);
5073 }
5074 
5075 void
5076 if_setmaclabel(if_t ifp, struct label *label)
5077 {
5078 	ifp->if_label = label;
5079 }
5080 
5081 int
5082 if_gettype(if_t ifp)
5083 {
5084 	return (ifp->if_type);
5085 }
5086 
5087 void *
5088 if_getllsoftc(if_t ifp)
5089 {
5090 	return (ifp->if_llsoftc);
5091 }
5092 
5093 void
5094 if_setllsoftc(if_t ifp, void *llsoftc)
5095 {
5096 	ifp->if_llsoftc = llsoftc;
5097 };
5098 
5099 int
5100 if_getlinkstate(if_t ifp)
5101 {
5102 	return (ifp->if_link_state);
5103 }
5104 
5105 const uint8_t *
5106 if_getbroadcastaddr(if_t ifp)
5107 {
5108 	return (ifp->if_broadcastaddr);
5109 }
5110 
5111 void
5112 if_setbroadcastaddr(if_t ifp, const uint8_t *addr)
5113 {
5114 	ifp->if_broadcastaddr = addr;
5115 }
5116 
5117 int
5118 if_getnumadomain(if_t ifp)
5119 {
5120 	return (ifp->if_numa_domain);
5121 }
5122 
5123 uint64_t
5124 if_getcounter(if_t ifp, ift_counter counter)
5125 {
5126 	return (ifp->if_get_counter(ifp, counter));
5127 }
5128 
5129 bool
5130 if_altq_is_enabled(if_t ifp)
5131 {
5132 	return (ALTQ_IS_ENABLED(&ifp->if_snd));
5133 }
5134 
5135 struct vnet *
5136 if_getvnet(if_t ifp)
5137 {
5138 	return (ifp->if_vnet);
5139 }
5140 
5141 void *
5142 if_getafdata(if_t ifp, int af)
5143 {
5144 	return (ifp->if_afdata[af]);
5145 }
5146 
5147 u_int
5148 if_getfib(if_t ifp)
5149 {
5150 	return (ifp->if_fib);
5151 }
5152 
5153 uint8_t
5154 if_getaddrlen(if_t ifp)
5155 {
5156 	return (ifp->if_addrlen);
5157 }
5158 
5159 struct bpf_if *
5160 if_getbpf(if_t ifp)
5161 {
5162 	return (ifp->if_bpf);
5163 }
5164 
5165 struct ifvlantrunk *
5166 if_getvlantrunk(if_t ifp)
5167 {
5168 	return (ifp->if_vlantrunk);
5169 }
5170 
5171 uint8_t
5172 if_getpcp(if_t ifp)
5173 {
5174 	return (ifp->if_pcp);
5175 }
5176 
5177 void *
5178 if_getl2com(if_t ifp)
5179 {
5180 	return (ifp->if_l2com);
5181 }
5182 
5183 #ifdef DDB
5184 static void
5185 if_show_ifnet(struct ifnet *ifp)
5186 {
5187 	if (ifp == NULL)
5188 		return;
5189 	db_printf("%s:\n", ifp->if_xname);
5190 #define	IF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, ifp->e);
5191 	IF_DB_PRINTF("%s", if_dname);
5192 	IF_DB_PRINTF("%d", if_dunit);
5193 	IF_DB_PRINTF("%s", if_description);
5194 	IF_DB_PRINTF("%u", if_index);
5195 	IF_DB_PRINTF("%d", if_idxgen);
5196 	IF_DB_PRINTF("%u", if_refcount);
5197 	IF_DB_PRINTF("%p", if_softc);
5198 	IF_DB_PRINTF("%p", if_l2com);
5199 	IF_DB_PRINTF("%p", if_llsoftc);
5200 	IF_DB_PRINTF("%d", if_amcount);
5201 	IF_DB_PRINTF("%p", if_addr);
5202 	IF_DB_PRINTF("%p", if_broadcastaddr);
5203 	IF_DB_PRINTF("%p", if_afdata);
5204 	IF_DB_PRINTF("%d", if_afdata_initialized);
5205 	IF_DB_PRINTF("%u", if_fib);
5206 	IF_DB_PRINTF("%p", if_vnet);
5207 	IF_DB_PRINTF("%p", if_home_vnet);
5208 	IF_DB_PRINTF("%p", if_vlantrunk);
5209 	IF_DB_PRINTF("%p", if_bpf);
5210 	IF_DB_PRINTF("%u", if_pcount);
5211 	IF_DB_PRINTF("%p", if_bridge);
5212 	IF_DB_PRINTF("%p", if_lagg);
5213 	IF_DB_PRINTF("%p", if_pf_kif);
5214 	IF_DB_PRINTF("%p", if_carp);
5215 	IF_DB_PRINTF("%p", if_label);
5216 	IF_DB_PRINTF("%p", if_netmap);
5217 	IF_DB_PRINTF("0x%08x", if_flags);
5218 	IF_DB_PRINTF("0x%08x", if_drv_flags);
5219 	IF_DB_PRINTF("0x%08x", if_capabilities);
5220 	IF_DB_PRINTF("0x%08x", if_capenable);
5221 	IF_DB_PRINTF("%p", if_snd.ifq_head);
5222 	IF_DB_PRINTF("%p", if_snd.ifq_tail);
5223 	IF_DB_PRINTF("%d", if_snd.ifq_len);
5224 	IF_DB_PRINTF("%d", if_snd.ifq_maxlen);
5225 	IF_DB_PRINTF("%p", if_snd.ifq_drv_head);
5226 	IF_DB_PRINTF("%p", if_snd.ifq_drv_tail);
5227 	IF_DB_PRINTF("%d", if_snd.ifq_drv_len);
5228 	IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen);
5229 	IF_DB_PRINTF("%d", if_snd.altq_type);
5230 	IF_DB_PRINTF("%x", if_snd.altq_flags);
5231 #undef IF_DB_PRINTF
5232 }
5233 
5234 DB_SHOW_COMMAND(ifnet, db_show_ifnet)
5235 {
5236 	if (!have_addr) {
5237 		db_printf("usage: show ifnet <struct ifnet *>\n");
5238 		return;
5239 	}
5240 
5241 	if_show_ifnet((struct ifnet *)addr);
5242 }
5243 
5244 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets)
5245 {
5246 	struct ifnet *ifp;
5247 	u_short idx;
5248 
5249 	for (idx = 1; idx <= if_index; idx++) {
5250 		ifp = ifindex_table[idx].ife_ifnet;
5251 		if (ifp == NULL)
5252 			continue;
5253 		db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp);
5254 		if (db_pager_quit)
5255 			break;
5256 	}
5257 }
5258 #endif	/* DDB */
5259