xref: /freebsd/sys/net/if_ethersubr.c (revision 315ee00f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_netgraph.h"
37 #include "opt_mbuf_profiling.h"
38 #include "opt_rss.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/devctl.h>
43 #include <sys/eventhandler.h>
44 #include <sys/jail.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/module.h>
50 #include <sys/msan.h>
51 #include <sys/proc.h>
52 #include <sys/priv.h>
53 #include <sys/random.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <sys/uuid.h>
58 #ifdef KDB
59 #include <sys/kdb.h>
60 #endif
61 
62 #include <net/ieee_oui.h>
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_private.h>
66 #include <net/if_arp.h>
67 #include <net/netisr.h>
68 #include <net/route.h>
69 #include <net/if_llc.h>
70 #include <net/if_dl.h>
71 #include <net/if_types.h>
72 #include <net/bpf.h>
73 #include <net/ethernet.h>
74 #include <net/if_bridgevar.h>
75 #include <net/if_vlan_var.h>
76 #include <net/if_llatbl.h>
77 #include <net/pfil.h>
78 #include <net/rss_config.h>
79 #include <net/vnet.h>
80 
81 #include <netpfil/pf/pf_mtag.h>
82 
83 #if defined(INET) || defined(INET6)
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/if_ether.h>
87 #include <netinet/ip_carp.h>
88 #include <netinet/ip_var.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/nd6.h>
92 #endif
93 #include <security/mac/mac_framework.h>
94 
95 #include <crypto/sha1.h>
96 
97 #ifdef CTASSERT
98 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
99 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
100 #endif
101 
102 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
103 
104 /* netgraph node hooks for ng_ether(4) */
105 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
106 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
107 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
108 void	(*ng_ether_attach_p)(struct ifnet *ifp);
109 void	(*ng_ether_detach_p)(struct ifnet *ifp);
110 
111 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
112 
113 /* if_bridge(4) support */
114 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
115 
116 /* if_lagg(4) support */
117 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
118 
119 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
120 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
121 
122 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
123 		struct sockaddr *);
124 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
125 
126 #define senderr(e) do { error = (e); goto bad;} while (0)
127 
128 static void
129 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
130 {
131 	int csum_flags = 0;
132 
133 	if (src->m_pkthdr.csum_flags & CSUM_IP)
134 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
135 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
136 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
137 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
138 		csum_flags |= CSUM_SCTP_VALID;
139 	dst->m_pkthdr.csum_flags |= csum_flags;
140 	if (csum_flags & CSUM_DATA_VALID)
141 		dst->m_pkthdr.csum_data = 0xffff;
142 }
143 
144 /*
145  * Handle link-layer encapsulation requests.
146  */
147 static int
148 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
149 {
150 	struct ether_header *eh;
151 	struct arphdr *ah;
152 	uint16_t etype;
153 	const u_char *lladdr;
154 
155 	if (req->rtype != IFENCAP_LL)
156 		return (EOPNOTSUPP);
157 
158 	if (req->bufsize < ETHER_HDR_LEN)
159 		return (ENOMEM);
160 
161 	eh = (struct ether_header *)req->buf;
162 	lladdr = req->lladdr;
163 	req->lladdr_off = 0;
164 
165 	switch (req->family) {
166 	case AF_INET:
167 		etype = htons(ETHERTYPE_IP);
168 		break;
169 	case AF_INET6:
170 		etype = htons(ETHERTYPE_IPV6);
171 		break;
172 	case AF_ARP:
173 		ah = (struct arphdr *)req->hdata;
174 		ah->ar_hrd = htons(ARPHRD_ETHER);
175 
176 		switch(ntohs(ah->ar_op)) {
177 		case ARPOP_REVREQUEST:
178 		case ARPOP_REVREPLY:
179 			etype = htons(ETHERTYPE_REVARP);
180 			break;
181 		case ARPOP_REQUEST:
182 		case ARPOP_REPLY:
183 		default:
184 			etype = htons(ETHERTYPE_ARP);
185 			break;
186 		}
187 
188 		if (req->flags & IFENCAP_FLAG_BROADCAST)
189 			lladdr = ifp->if_broadcastaddr;
190 		break;
191 	default:
192 		return (EAFNOSUPPORT);
193 	}
194 
195 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
196 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
197 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
198 	req->bufsize = sizeof(struct ether_header);
199 
200 	return (0);
201 }
202 
203 static int
204 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
205 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
206 	uint32_t *pflags, struct llentry **plle)
207 {
208 	uint32_t lleflags = 0;
209 	int error = 0;
210 #if defined(INET) || defined(INET6)
211 	struct ether_header *eh = (struct ether_header *)phdr;
212 	uint16_t etype;
213 #endif
214 
215 	if (plle)
216 		*plle = NULL;
217 
218 	switch (dst->sa_family) {
219 #ifdef INET
220 	case AF_INET:
221 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
222 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
223 			    plle);
224 		else {
225 			if (m->m_flags & M_BCAST)
226 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
227 				    ETHER_ADDR_LEN);
228 			else {
229 				const struct in_addr *a;
230 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
231 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
232 			}
233 			etype = htons(ETHERTYPE_IP);
234 			memcpy(&eh->ether_type, &etype, sizeof(etype));
235 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
236 		}
237 		break;
238 #endif
239 #ifdef INET6
240 	case AF_INET6:
241 		if ((m->m_flags & M_MCAST) == 0) {
242 			int af = RO_GET_FAMILY(ro, dst);
243 			error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
244 			    &lleflags, plle);
245 		} else {
246 			const struct in6_addr *a6;
247 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
248 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
249 			etype = htons(ETHERTYPE_IPV6);
250 			memcpy(&eh->ether_type, &etype, sizeof(etype));
251 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
252 		}
253 		break;
254 #endif
255 	default:
256 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
257 		if (m != NULL)
258 			m_freem(m);
259 		return (EAFNOSUPPORT);
260 	}
261 
262 	if (error == EHOSTDOWN) {
263 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
264 			error = EHOSTUNREACH;
265 	}
266 
267 	if (error != 0)
268 		return (error);
269 
270 	*pflags = RT_MAY_LOOP;
271 	if (lleflags & LLE_IFADDR)
272 		*pflags |= RT_L2_ME;
273 
274 	return (0);
275 }
276 
277 /*
278  * Ethernet output routine.
279  * Encapsulate a packet of type family for the local net.
280  * Use trailer local net encapsulation if enough data in first
281  * packet leaves a multiple of 512 bytes of data in remainder.
282  */
283 int
284 ether_output(struct ifnet *ifp, struct mbuf *m,
285 	const struct sockaddr *dst, struct route *ro)
286 {
287 	int error = 0;
288 	char linkhdr[ETHER_HDR_LEN], *phdr;
289 	struct ether_header *eh;
290 	struct pf_mtag *t;
291 	bool loop_copy;
292 	int hlen;	/* link layer header length */
293 	uint32_t pflags;
294 	struct llentry *lle = NULL;
295 	int addref = 0;
296 
297 	phdr = NULL;
298 	pflags = 0;
299 	if (ro != NULL) {
300 		/* XXX BPF uses ro_prepend */
301 		if (ro->ro_prepend != NULL) {
302 			phdr = ro->ro_prepend;
303 			hlen = ro->ro_plen;
304 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
305 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
306 				lle = ro->ro_lle;
307 				if (lle != NULL &&
308 				    (lle->la_flags & LLE_VALID) == 0) {
309 					LLE_FREE(lle);
310 					lle = NULL;	/* redundant */
311 					ro->ro_lle = NULL;
312 				}
313 				if (lle == NULL) {
314 					/* if we lookup, keep cache */
315 					addref = 1;
316 				} else
317 					/*
318 					 * Notify LLE code that
319 					 * the entry was used
320 					 * by datapath.
321 					 */
322 					llentry_provide_feedback(lle);
323 			}
324 			if (lle != NULL) {
325 				phdr = lle->r_linkdata;
326 				hlen = lle->r_hdrlen;
327 				pflags = lle->r_flags;
328 			}
329 		}
330 	}
331 
332 #ifdef MAC
333 	error = mac_ifnet_check_transmit(ifp, m);
334 	if (error)
335 		senderr(error);
336 #endif
337 
338 	M_PROFILE(m);
339 	if (ifp->if_flags & IFF_MONITOR)
340 		senderr(ENETDOWN);
341 	if (!((ifp->if_flags & IFF_UP) &&
342 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
343 		senderr(ENETDOWN);
344 
345 	if (phdr == NULL) {
346 		/* No prepend data supplied. Try to calculate ourselves. */
347 		phdr = linkhdr;
348 		hlen = ETHER_HDR_LEN;
349 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
350 		    addref ? &lle : NULL);
351 		if (addref && lle != NULL)
352 			ro->ro_lle = lle;
353 		if (error != 0)
354 			return (error == EWOULDBLOCK ? 0 : error);
355 	}
356 
357 	if ((pflags & RT_L2_ME) != 0) {
358 		update_mbuf_csumflags(m, m);
359 		return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
360 	}
361 	loop_copy = (pflags & RT_MAY_LOOP) != 0;
362 
363 	/*
364 	 * Add local net header.  If no space in first mbuf,
365 	 * allocate another.
366 	 *
367 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
368 	 * This is done because BPF code shifts m_data pointer
369 	 * to the end of ethernet header prior to calling if_output().
370 	 */
371 	M_PREPEND(m, hlen, M_NOWAIT);
372 	if (m == NULL)
373 		senderr(ENOBUFS);
374 	if ((pflags & RT_HAS_HEADER) == 0) {
375 		eh = mtod(m, struct ether_header *);
376 		memcpy(eh, phdr, hlen);
377 	}
378 
379 	/*
380 	 * If a simplex interface, and the packet is being sent to our
381 	 * Ethernet address or a broadcast address, loopback a copy.
382 	 * XXX To make a simplex device behave exactly like a duplex
383 	 * device, we should copy in the case of sending to our own
384 	 * ethernet address (thus letting the original actually appear
385 	 * on the wire). However, we don't do that here for security
386 	 * reasons and compatibility with the original behavior.
387 	 */
388 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
389 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
390 		struct mbuf *n;
391 
392 		/*
393 		 * Because if_simloop() modifies the packet, we need a
394 		 * writable copy through m_dup() instead of a readonly
395 		 * one as m_copy[m] would give us. The alternative would
396 		 * be to modify if_simloop() to handle the readonly mbuf,
397 		 * but performancewise it is mostly equivalent (trading
398 		 * extra data copying vs. extra locking).
399 		 *
400 		 * XXX This is a local workaround.  A number of less
401 		 * often used kernel parts suffer from the same bug.
402 		 * See PR kern/105943 for a proposed general solution.
403 		 */
404 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
405 			update_mbuf_csumflags(m, n);
406 			(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
407 		} else
408 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
409 	}
410 
411        /*
412 	* Bridges require special output handling.
413 	*/
414 	if (ifp->if_bridge) {
415 		BRIDGE_OUTPUT(ifp, m, error);
416 		return (error);
417 	}
418 
419 #if defined(INET) || defined(INET6)
420 	if (ifp->if_carp &&
421 	    (error = (*carp_output_p)(ifp, m, dst)))
422 		goto bad;
423 #endif
424 
425 	/* Handle ng_ether(4) processing, if any */
426 	if (ifp->if_l2com != NULL) {
427 		KASSERT(ng_ether_output_p != NULL,
428 		    ("ng_ether_output_p is NULL"));
429 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
430 bad:			if (m != NULL)
431 				m_freem(m);
432 			return (error);
433 		}
434 		if (m == NULL)
435 			return (0);
436 	}
437 
438 	/* Continue with link-layer output */
439 	return ether_output_frame(ifp, m);
440 }
441 
442 static bool
443 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
444 {
445 	struct ether_8021q_tag qtag;
446 	struct ether_header *eh;
447 
448 	eh = mtod(*mp, struct ether_header *);
449 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN ||
450 	    ntohs(eh->ether_type) == ETHERTYPE_QINQ)
451 		return (true);
452 
453 	qtag.vid = 0;
454 	qtag.pcp = pcp;
455 	qtag.proto = ETHERTYPE_VLAN;
456 	if (ether_8021q_frame(mp, ifp, ifp, &qtag))
457 		return (true);
458 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
459 	return (false);
460 }
461 
462 /*
463  * Ethernet link layer output routine to send a raw frame to the device.
464  *
465  * This assumes that the 14 byte Ethernet header is present and contiguous
466  * in the first mbuf (if BRIDGE'ing).
467  */
468 int
469 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
470 {
471 	uint8_t pcp;
472 
473 	pcp = ifp->if_pcp;
474 	if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN &&
475 	    !ether_set_pcp(&m, ifp, pcp))
476 		return (0);
477 
478 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
479 		switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
480 		case PFIL_DROPPED:
481 			return (EACCES);
482 		case PFIL_CONSUMED:
483 			return (0);
484 		}
485 
486 #ifdef EXPERIMENTAL
487 #if defined(INET6) && defined(INET)
488 	/* draft-ietf-6man-ipv6only-flag */
489 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
490 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
491 		struct ether_header *eh;
492 
493 		eh = mtod(m, struct ether_header *);
494 		switch (ntohs(eh->ether_type)) {
495 		case ETHERTYPE_IP:
496 		case ETHERTYPE_ARP:
497 		case ETHERTYPE_REVARP:
498 			m_freem(m);
499 			return (EAFNOSUPPORT);
500 			/* NOTREACHED */
501 			break;
502 		};
503 	}
504 #endif
505 #endif
506 
507 	/*
508 	 * Queue message on interface, update output statistics if successful,
509 	 * and start output if interface not yet active.
510 	 *
511 	 * If KMSAN is enabled, use it to verify that the data does not contain
512 	 * any uninitialized bytes.
513 	 */
514 	kmsan_check_mbuf(m, "ether_output");
515 	return ((ifp->if_transmit)(ifp, m));
516 }
517 
518 /*
519  * Process a received Ethernet packet; the packet is in the
520  * mbuf chain m with the ethernet header at the front.
521  */
522 static void
523 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
524 {
525 	struct ether_header *eh;
526 	u_short etype;
527 
528 	if ((ifp->if_flags & IFF_UP) == 0) {
529 		m_freem(m);
530 		return;
531 	}
532 #ifdef DIAGNOSTIC
533 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
534 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
535 		m_freem(m);
536 		return;
537 	}
538 #endif
539 	if (m->m_len < ETHER_HDR_LEN) {
540 		/* XXX maybe should pullup? */
541 		if_printf(ifp, "discard frame w/o leading ethernet "
542 				"header (len %u pkt len %u)\n",
543 				m->m_len, m->m_pkthdr.len);
544 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
545 		m_freem(m);
546 		return;
547 	}
548 	eh = mtod(m, struct ether_header *);
549 	etype = ntohs(eh->ether_type);
550 	random_harvest_queue_ether(m, sizeof(*m));
551 
552 #ifdef EXPERIMENTAL
553 #if defined(INET6) && defined(INET)
554 	/* draft-ietf-6man-ipv6only-flag */
555 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
556 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
557 		switch (etype) {
558 		case ETHERTYPE_IP:
559 		case ETHERTYPE_ARP:
560 		case ETHERTYPE_REVARP:
561 			m_freem(m);
562 			return;
563 			/* NOTREACHED */
564 			break;
565 		};
566 	}
567 #endif
568 #endif
569 
570 	CURVNET_SET_QUIET(ifp->if_vnet);
571 
572 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
573 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
574 			m->m_flags |= M_BCAST;
575 		else
576 			m->m_flags |= M_MCAST;
577 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
578 	}
579 
580 #ifdef MAC
581 	/*
582 	 * Tag the mbuf with an appropriate MAC label before any other
583 	 * consumers can get to it.
584 	 */
585 	mac_ifnet_create_mbuf(ifp, m);
586 #endif
587 
588 	/*
589 	 * Give bpf a chance at the packet.
590 	 */
591 	ETHER_BPF_MTAP(ifp, m);
592 
593 	/*
594 	 * If the CRC is still on the packet, trim it off. We do this once
595 	 * and once only in case we are re-entered. Nothing else on the
596 	 * Ethernet receive path expects to see the FCS.
597 	 */
598 	if (m->m_flags & M_HASFCS) {
599 		m_adj(m, -ETHER_CRC_LEN);
600 		m->m_flags &= ~M_HASFCS;
601 	}
602 
603 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
604 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
605 
606 	/* Allow monitor mode to claim this frame, after stats are updated. */
607 	if (ifp->if_flags & IFF_MONITOR) {
608 		m_freem(m);
609 		CURVNET_RESTORE();
610 		return;
611 	}
612 
613 	/* Handle input from a lagg(4) port */
614 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
615 		KASSERT(lagg_input_ethernet_p != NULL,
616 		    ("%s: if_lagg not loaded!", __func__));
617 		m = (*lagg_input_ethernet_p)(ifp, m);
618 		if (m != NULL)
619 			ifp = m->m_pkthdr.rcvif;
620 		else {
621 			CURVNET_RESTORE();
622 			return;
623 		}
624 	}
625 
626 	/*
627 	 * If the hardware did not process an 802.1Q tag, do this now,
628 	 * to allow 802.1P priority frames to be passed to the main input
629 	 * path correctly.
630 	 */
631 	if ((m->m_flags & M_VLANTAG) == 0 &&
632 	    ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
633 		struct ether_vlan_header *evl;
634 
635 		if (m->m_len < sizeof(*evl) &&
636 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
637 #ifdef DIAGNOSTIC
638 			if_printf(ifp, "cannot pullup VLAN header\n");
639 #endif
640 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
641 			CURVNET_RESTORE();
642 			return;
643 		}
644 
645 		evl = mtod(m, struct ether_vlan_header *);
646 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
647 		m->m_flags |= M_VLANTAG;
648 
649 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
650 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
651 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
652 		eh = mtod(m, struct ether_header *);
653 	}
654 
655 	M_SETFIB(m, ifp->if_fib);
656 
657 	/* Allow ng_ether(4) to claim this frame. */
658 	if (ifp->if_l2com != NULL) {
659 		KASSERT(ng_ether_input_p != NULL,
660 		    ("%s: ng_ether_input_p is NULL", __func__));
661 		m->m_flags &= ~M_PROMISC;
662 		(*ng_ether_input_p)(ifp, &m);
663 		if (m == NULL) {
664 			CURVNET_RESTORE();
665 			return;
666 		}
667 		eh = mtod(m, struct ether_header *);
668 	}
669 
670 	/*
671 	 * Allow if_bridge(4) to claim this frame.
672 	 *
673 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
674 	 * and the frame should be delivered locally.
675 	 *
676 	 * If M_BRIDGE_INJECT is set, the packet was received directly by the
677 	 * bridge via netmap, so "ifp" is the bridge itself and the packet
678 	 * should be re-examined.
679 	 */
680 	if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
681 		m->m_flags &= ~M_PROMISC;
682 		BRIDGE_INPUT(ifp, m);
683 		if (m == NULL) {
684 			CURVNET_RESTORE();
685 			return;
686 		}
687 		eh = mtod(m, struct ether_header *);
688 	}
689 
690 #if defined(INET) || defined(INET6)
691 	/*
692 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
693 	 * mbuf flows up to Layer 3.
694 	 * FreeBSD's implementation of carp(4) uses the inprotosw
695 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
696 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
697 	 * is outside the scope of the M_PROMISC test below.
698 	 * TODO: Maintain a hash table of ethernet addresses other than
699 	 * ether_dhost which may be active on this ifp.
700 	 */
701 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
702 		m->m_flags &= ~M_PROMISC;
703 	} else
704 #endif
705 	{
706 		/*
707 		 * If the frame received was not for our MAC address, set the
708 		 * M_PROMISC flag on the mbuf chain. The frame may need to
709 		 * be seen by the rest of the Ethernet input path in case of
710 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
711 		 * seen by upper protocol layers.
712 		 */
713 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
714 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
715 			m->m_flags |= M_PROMISC;
716 	}
717 
718 	ether_demux(ifp, m);
719 	CURVNET_RESTORE();
720 }
721 
722 /*
723  * Ethernet input dispatch; by default, direct dispatch here regardless of
724  * global configuration.  However, if RSS is enabled, hook up RSS affinity
725  * so that when deferred or hybrid dispatch is enabled, we can redistribute
726  * load based on RSS.
727  *
728  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
729  * not it had already done work distribution via multi-queue.  Then we could
730  * direct dispatch in the event load balancing was already complete and
731  * handle the case of interfaces with different capabilities better.
732  *
733  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
734  * at multiple layers?
735  *
736  * XXXRW: For now, enable all this only if RSS is compiled in, although it
737  * works fine without RSS.  Need to characterise the performance overhead
738  * of the detour through the netisr code in the event the result is always
739  * direct dispatch.
740  */
741 static void
742 ether_nh_input(struct mbuf *m)
743 {
744 
745 	M_ASSERTPKTHDR(m);
746 	KASSERT(m->m_pkthdr.rcvif != NULL,
747 	    ("%s: NULL interface pointer", __func__));
748 	ether_input_internal(m->m_pkthdr.rcvif, m);
749 }
750 
751 static struct netisr_handler	ether_nh = {
752 	.nh_name = "ether",
753 	.nh_handler = ether_nh_input,
754 	.nh_proto = NETISR_ETHER,
755 #ifdef RSS
756 	.nh_policy = NETISR_POLICY_CPU,
757 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
758 	.nh_m2cpuid = rss_m2cpuid,
759 #else
760 	.nh_policy = NETISR_POLICY_SOURCE,
761 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
762 #endif
763 };
764 
765 static void
766 ether_init(__unused void *arg)
767 {
768 
769 	netisr_register(&ether_nh);
770 }
771 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
772 
773 static void
774 vnet_ether_init(__unused void *arg)
775 {
776 	struct pfil_head_args args;
777 
778 	args.pa_version = PFIL_VERSION;
779 	args.pa_flags = PFIL_IN | PFIL_OUT;
780 	args.pa_type = PFIL_TYPE_ETHERNET;
781 	args.pa_headname = PFIL_ETHER_NAME;
782 	V_link_pfil_head = pfil_head_register(&args);
783 
784 #ifdef VIMAGE
785 	netisr_register_vnet(&ether_nh);
786 #endif
787 }
788 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
789     vnet_ether_init, NULL);
790 
791 #ifdef VIMAGE
792 static void
793 vnet_ether_pfil_destroy(__unused void *arg)
794 {
795 
796 	pfil_head_unregister(V_link_pfil_head);
797 }
798 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
799     vnet_ether_pfil_destroy, NULL);
800 
801 static void
802 vnet_ether_destroy(__unused void *arg)
803 {
804 
805 	netisr_unregister_vnet(&ether_nh);
806 }
807 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
808     vnet_ether_destroy, NULL);
809 #endif
810 
811 static void
812 ether_input(struct ifnet *ifp, struct mbuf *m)
813 {
814 	struct epoch_tracker et;
815 	struct mbuf *mn;
816 	bool needs_epoch;
817 
818 	needs_epoch = (ifp->if_flags & IFF_NEEDSEPOCH);
819 #ifdef INVARIANTS
820 	/*
821 	 * This temporary code is here to prevent epoch unaware and unmarked
822 	 * drivers to panic the system.  Once all drivers are taken care of,
823 	 * the whole INVARIANTS block should go away.
824 	 */
825 	if (!needs_epoch && !in_epoch(net_epoch_preempt)) {
826 		static bool printedonce;
827 
828 		needs_epoch = true;
829 		if (!printedonce) {
830 			printedonce = true;
831 			if_printf(ifp, "called %s w/o net epoch! "
832 			    "PLEASE file a bug report.", __func__);
833 #ifdef KDB
834 			kdb_backtrace();
835 #endif
836 		}
837 	}
838 #endif
839 
840 	/*
841 	 * The drivers are allowed to pass in a chain of packets linked with
842 	 * m_nextpkt. We split them up into separate packets here and pass
843 	 * them up. This allows the drivers to amortize the receive lock.
844 	 */
845 	CURVNET_SET_QUIET(ifp->if_vnet);
846 	if (__predict_false(needs_epoch))
847 		NET_EPOCH_ENTER(et);
848 	while (m) {
849 		mn = m->m_nextpkt;
850 		m->m_nextpkt = NULL;
851 
852 		/*
853 		 * We will rely on rcvif being set properly in the deferred
854 		 * context, so assert it is correct here.
855 		 */
856 		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
857 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
858 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
859 		netisr_dispatch(NETISR_ETHER, m);
860 		m = mn;
861 	}
862 	if (__predict_false(needs_epoch))
863 		NET_EPOCH_EXIT(et);
864 	CURVNET_RESTORE();
865 }
866 
867 /*
868  * Upper layer processing for a received Ethernet packet.
869  */
870 void
871 ether_demux(struct ifnet *ifp, struct mbuf *m)
872 {
873 	struct ether_header *eh;
874 	int i, isr;
875 	u_short ether_type;
876 
877 	NET_EPOCH_ASSERT();
878 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
879 
880 	/* Do not grab PROMISC frames in case we are re-entered. */
881 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
882 		i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
883 		if (i != 0 || m == NULL)
884 			return;
885 	}
886 
887 	eh = mtod(m, struct ether_header *);
888 	ether_type = ntohs(eh->ether_type);
889 
890 	/*
891 	 * If this frame has a VLAN tag other than 0, call vlan_input()
892 	 * if its module is loaded. Otherwise, drop.
893 	 */
894 	if ((m->m_flags & M_VLANTAG) &&
895 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
896 		if (ifp->if_vlantrunk == NULL) {
897 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
898 			m_freem(m);
899 			return;
900 		}
901 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
902 		    __func__));
903 		/* Clear before possibly re-entering ether_input(). */
904 		m->m_flags &= ~M_PROMISC;
905 		(*vlan_input_p)(ifp, m);
906 		return;
907 	}
908 
909 	/*
910 	 * Pass promiscuously received frames to the upper layer if the user
911 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
912 	 */
913 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
914 		m_freem(m);
915 		return;
916 	}
917 
918 	/*
919 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
920 	 */
921 	m->m_flags &= ~M_VLANTAG;
922 	m_clrprotoflags(m);
923 
924 	/*
925 	 * Dispatch frame to upper layer.
926 	 */
927 	switch (ether_type) {
928 #ifdef INET
929 	case ETHERTYPE_IP:
930 		isr = NETISR_IP;
931 		break;
932 
933 	case ETHERTYPE_ARP:
934 		if (ifp->if_flags & IFF_NOARP) {
935 			/* Discard packet if ARP is disabled on interface */
936 			m_freem(m);
937 			return;
938 		}
939 		isr = NETISR_ARP;
940 		break;
941 #endif
942 #ifdef INET6
943 	case ETHERTYPE_IPV6:
944 		isr = NETISR_IPV6;
945 		break;
946 #endif
947 	default:
948 		goto discard;
949 	}
950 
951 	/* Strip off Ethernet header. */
952 	m_adj(m, ETHER_HDR_LEN);
953 
954 	netisr_dispatch(isr, m);
955 	return;
956 
957 discard:
958 	/*
959 	 * Packet is to be discarded.  If netgraph is present,
960 	 * hand the packet to it for last chance processing;
961 	 * otherwise dispose of it.
962 	 */
963 	if (ifp->if_l2com != NULL) {
964 		KASSERT(ng_ether_input_orphan_p != NULL,
965 		    ("ng_ether_input_orphan_p is NULL"));
966 		(*ng_ether_input_orphan_p)(ifp, m);
967 		return;
968 	}
969 	m_freem(m);
970 }
971 
972 /*
973  * Convert Ethernet address to printable (loggable) representation.
974  * This routine is for compatibility; it's better to just use
975  *
976  *	printf("%6D", <pointer to address>, ":");
977  *
978  * since there's no static buffer involved.
979  */
980 char *
981 ether_sprintf(const u_char *ap)
982 {
983 	static char etherbuf[18];
984 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
985 	return (etherbuf);
986 }
987 
988 /*
989  * Perform common duties while attaching to interface list
990  */
991 void
992 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
993 {
994 	int i;
995 	struct ifaddr *ifa;
996 	struct sockaddr_dl *sdl;
997 
998 	ifp->if_addrlen = ETHER_ADDR_LEN;
999 	ifp->if_hdrlen = ETHER_HDR_LEN;
1000 	ifp->if_mtu = ETHERMTU;
1001 	if_attach(ifp);
1002 	ifp->if_output = ether_output;
1003 	ifp->if_input = ether_input;
1004 	ifp->if_resolvemulti = ether_resolvemulti;
1005 	ifp->if_requestencap = ether_requestencap;
1006 #ifdef VIMAGE
1007 	ifp->if_reassign = ether_reassign;
1008 #endif
1009 	if (ifp->if_baudrate == 0)
1010 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1011 	ifp->if_broadcastaddr = etherbroadcastaddr;
1012 
1013 	ifa = ifp->if_addr;
1014 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
1015 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1016 	sdl->sdl_type = IFT_ETHER;
1017 	sdl->sdl_alen = ifp->if_addrlen;
1018 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
1019 
1020 	if (ifp->if_hw_addr != NULL)
1021 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1022 
1023 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1024 	if (ng_ether_attach_p != NULL)
1025 		(*ng_ether_attach_p)(ifp);
1026 
1027 	/* Announce Ethernet MAC address if non-zero. */
1028 	for (i = 0; i < ifp->if_addrlen; i++)
1029 		if (lla[i] != 0)
1030 			break;
1031 	if (i != ifp->if_addrlen)
1032 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1033 
1034 	uuid_ether_add(LLADDR(sdl));
1035 
1036 	/* Add necessary bits are setup; announce it now. */
1037 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1038 	if (IS_DEFAULT_VNET(curvnet))
1039 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1040 }
1041 
1042 /*
1043  * Perform common duties while detaching an Ethernet interface
1044  */
1045 void
1046 ether_ifdetach(struct ifnet *ifp)
1047 {
1048 	struct sockaddr_dl *sdl;
1049 
1050 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1051 	uuid_ether_del(LLADDR(sdl));
1052 
1053 	if (ifp->if_l2com != NULL) {
1054 		KASSERT(ng_ether_detach_p != NULL,
1055 		    ("ng_ether_detach_p is NULL"));
1056 		(*ng_ether_detach_p)(ifp);
1057 	}
1058 
1059 	bpfdetach(ifp);
1060 	if_detach(ifp);
1061 }
1062 
1063 #ifdef VIMAGE
1064 void
1065 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1066 {
1067 
1068 	if (ifp->if_l2com != NULL) {
1069 		KASSERT(ng_ether_detach_p != NULL,
1070 		    ("ng_ether_detach_p is NULL"));
1071 		(*ng_ether_detach_p)(ifp);
1072 	}
1073 
1074 	if (ng_ether_attach_p != NULL) {
1075 		CURVNET_SET_QUIET(new_vnet);
1076 		(*ng_ether_attach_p)(ifp);
1077 		CURVNET_RESTORE();
1078 	}
1079 }
1080 #endif
1081 
1082 SYSCTL_DECL(_net_link);
1083 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1084     "Ethernet");
1085 
1086 #if 0
1087 /*
1088  * This is for reference.  We have a table-driven version
1089  * of the little-endian crc32 generator, which is faster
1090  * than the double-loop.
1091  */
1092 uint32_t
1093 ether_crc32_le(const uint8_t *buf, size_t len)
1094 {
1095 	size_t i;
1096 	uint32_t crc;
1097 	int bit;
1098 	uint8_t data;
1099 
1100 	crc = 0xffffffff;	/* initial value */
1101 
1102 	for (i = 0; i < len; i++) {
1103 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1104 			carry = (crc ^ data) & 1;
1105 			crc >>= 1;
1106 			if (carry)
1107 				crc = (crc ^ ETHER_CRC_POLY_LE);
1108 		}
1109 	}
1110 
1111 	return (crc);
1112 }
1113 #else
1114 uint32_t
1115 ether_crc32_le(const uint8_t *buf, size_t len)
1116 {
1117 	static const uint32_t crctab[] = {
1118 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1119 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1120 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1121 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1122 	};
1123 	size_t i;
1124 	uint32_t crc;
1125 
1126 	crc = 0xffffffff;	/* initial value */
1127 
1128 	for (i = 0; i < len; i++) {
1129 		crc ^= buf[i];
1130 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1131 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1132 	}
1133 
1134 	return (crc);
1135 }
1136 #endif
1137 
1138 uint32_t
1139 ether_crc32_be(const uint8_t *buf, size_t len)
1140 {
1141 	size_t i;
1142 	uint32_t crc, carry;
1143 	int bit;
1144 	uint8_t data;
1145 
1146 	crc = 0xffffffff;	/* initial value */
1147 
1148 	for (i = 0; i < len; i++) {
1149 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1150 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1151 			crc <<= 1;
1152 			if (carry)
1153 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1154 		}
1155 	}
1156 
1157 	return (crc);
1158 }
1159 
1160 int
1161 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1162 {
1163 	struct ifaddr *ifa = (struct ifaddr *) data;
1164 	struct ifreq *ifr = (struct ifreq *) data;
1165 	int error = 0;
1166 
1167 	switch (command) {
1168 	case SIOCSIFADDR:
1169 		ifp->if_flags |= IFF_UP;
1170 
1171 		switch (ifa->ifa_addr->sa_family) {
1172 #ifdef INET
1173 		case AF_INET:
1174 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1175 			arp_ifinit(ifp, ifa);
1176 			break;
1177 #endif
1178 		default:
1179 			ifp->if_init(ifp->if_softc);
1180 			break;
1181 		}
1182 		break;
1183 
1184 	case SIOCGIFADDR:
1185 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1186 		    ETHER_ADDR_LEN);
1187 		break;
1188 
1189 	case SIOCSIFMTU:
1190 		/*
1191 		 * Set the interface MTU.
1192 		 */
1193 		if (ifr->ifr_mtu > ETHERMTU) {
1194 			error = EINVAL;
1195 		} else {
1196 			ifp->if_mtu = ifr->ifr_mtu;
1197 		}
1198 		break;
1199 
1200 	case SIOCSLANPCP:
1201 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1202 		if (error != 0)
1203 			break;
1204 		if (ifr->ifr_lan_pcp > 7 &&
1205 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1206 			error = EINVAL;
1207 		} else {
1208 			ifp->if_pcp = ifr->ifr_lan_pcp;
1209 			/* broadcast event about PCP change */
1210 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1211 		}
1212 		break;
1213 
1214 	case SIOCGLANPCP:
1215 		ifr->ifr_lan_pcp = ifp->if_pcp;
1216 		break;
1217 
1218 	default:
1219 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1220 		break;
1221 	}
1222 	return (error);
1223 }
1224 
1225 static int
1226 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1227 	struct sockaddr *sa)
1228 {
1229 	struct sockaddr_dl *sdl;
1230 #ifdef INET
1231 	struct sockaddr_in *sin;
1232 #endif
1233 #ifdef INET6
1234 	struct sockaddr_in6 *sin6;
1235 #endif
1236 	u_char *e_addr;
1237 
1238 	switch(sa->sa_family) {
1239 	case AF_LINK:
1240 		/*
1241 		 * No mapping needed. Just check that it's a valid MC address.
1242 		 */
1243 		sdl = (struct sockaddr_dl *)sa;
1244 		e_addr = LLADDR(sdl);
1245 		if (!ETHER_IS_MULTICAST(e_addr))
1246 			return EADDRNOTAVAIL;
1247 		*llsa = NULL;
1248 		return 0;
1249 
1250 #ifdef INET
1251 	case AF_INET:
1252 		sin = (struct sockaddr_in *)sa;
1253 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1254 			return EADDRNOTAVAIL;
1255 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1256 		sdl->sdl_alen = ETHER_ADDR_LEN;
1257 		e_addr = LLADDR(sdl);
1258 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1259 		*llsa = (struct sockaddr *)sdl;
1260 		return 0;
1261 #endif
1262 #ifdef INET6
1263 	case AF_INET6:
1264 		sin6 = (struct sockaddr_in6 *)sa;
1265 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1266 			/*
1267 			 * An IP6 address of 0 means listen to all
1268 			 * of the Ethernet multicast address used for IP6.
1269 			 * (This is used for multicast routers.)
1270 			 */
1271 			ifp->if_flags |= IFF_ALLMULTI;
1272 			*llsa = NULL;
1273 			return 0;
1274 		}
1275 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1276 			return EADDRNOTAVAIL;
1277 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1278 		sdl->sdl_alen = ETHER_ADDR_LEN;
1279 		e_addr = LLADDR(sdl);
1280 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1281 		*llsa = (struct sockaddr *)sdl;
1282 		return 0;
1283 #endif
1284 
1285 	default:
1286 		/*
1287 		 * Well, the text isn't quite right, but it's the name
1288 		 * that counts...
1289 		 */
1290 		return EAFNOSUPPORT;
1291 	}
1292 }
1293 
1294 static moduledata_t ether_mod = {
1295 	.name = "ether",
1296 };
1297 
1298 void
1299 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1300 {
1301 	struct ether_vlan_header vlan;
1302 	struct mbuf mv, mb;
1303 
1304 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1305 	    ("%s: vlan information not present", __func__));
1306 	KASSERT(m->m_len >= sizeof(struct ether_header),
1307 	    ("%s: mbuf not large enough for header", __func__));
1308 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1309 	vlan.evl_proto = vlan.evl_encap_proto;
1310 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1311 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1312 	m->m_len -= sizeof(struct ether_header);
1313 	m->m_data += sizeof(struct ether_header);
1314 	/*
1315 	 * If a data link has been supplied by the caller, then we will need to
1316 	 * re-create a stack allocated mbuf chain with the following structure:
1317 	 *
1318 	 * (1) mbuf #1 will contain the supplied data link
1319 	 * (2) mbuf #2 will contain the vlan header
1320 	 * (3) mbuf #3 will contain the original mbuf's packet data
1321 	 *
1322 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1323 	 */
1324 	if (data != NULL) {
1325 		mv.m_next = m;
1326 		mv.m_data = (caddr_t)&vlan;
1327 		mv.m_len = sizeof(vlan);
1328 		mb.m_next = &mv;
1329 		mb.m_data = data;
1330 		mb.m_len = dlen;
1331 		bpf_mtap(bp, &mb);
1332 	} else
1333 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1334 	m->m_len += sizeof(struct ether_header);
1335 	m->m_data -= sizeof(struct ether_header);
1336 }
1337 
1338 struct mbuf *
1339 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1340 {
1341 	struct ether_vlan_header *evl;
1342 
1343 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1344 	if (m == NULL)
1345 		return (NULL);
1346 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1347 
1348 	if (m->m_len < sizeof(*evl)) {
1349 		m = m_pullup(m, sizeof(*evl));
1350 		if (m == NULL)
1351 			return (NULL);
1352 	}
1353 
1354 	/*
1355 	 * Transform the Ethernet header into an Ethernet header
1356 	 * with 802.1Q encapsulation.
1357 	 */
1358 	evl = mtod(m, struct ether_vlan_header *);
1359 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1360 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1361 	evl->evl_encap_proto = htons(proto);
1362 	evl->evl_tag = htons(tag);
1363 	return (m);
1364 }
1365 
1366 void
1367 ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1368 {
1369 	if (bpf_peers_present(ifp->if_bpf)) {
1370 		M_ASSERTVALID(m);
1371 		if ((m->m_flags & M_VLANTAG) != 0)
1372 			ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1373 		else
1374 			bpf_mtap(ifp->if_bpf, m);
1375 	}
1376 }
1377 
1378 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1379     "IEEE 802.1Q VLAN");
1380 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1381     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1382     "for consistency");
1383 
1384 VNET_DEFINE_STATIC(int, soft_pad);
1385 #define	V_soft_pad	VNET(soft_pad)
1386 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1387     &VNET_NAME(soft_pad), 0,
1388     "pad short frames before tagging");
1389 
1390 /*
1391  * For now, make preserving PCP via an mbuf tag optional, as it increases
1392  * per-packet memory allocations and frees.  In the future, it would be
1393  * preferable to reuse ether_vtag for this, or similar.
1394  */
1395 VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1396 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
1397 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1398     &VNET_NAME(vlan_mtag_pcp), 0,
1399     "Retain VLAN PCP information as packets are passed up the stack");
1400 
1401 bool
1402 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1403     const struct ether_8021q_tag *qtag)
1404 {
1405 	struct m_tag *mtag;
1406 	int n;
1407 	uint16_t tag;
1408 	uint8_t pcp = qtag->pcp;
1409 	static const char pad[8];	/* just zeros */
1410 
1411 	/*
1412 	 * Pad the frame to the minimum size allowed if told to.
1413 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1414 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1415 	 * bridges that violate paragraph C.4.4.3.a from the same
1416 	 * document, i.e., fail to pad short frames after untagging.
1417 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1418 	 * untagging it will produce a 62-byte frame, which is a runt
1419 	 * and requires padding.  There are VLAN-enabled network
1420 	 * devices that just discard such runts instead or mishandle
1421 	 * them somehow.
1422 	 */
1423 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1424 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1425 		     n > 0; n -= sizeof(pad)) {
1426 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1427 				break;
1428 		}
1429 		if (n > 0) {
1430 			m_freem(*mp);
1431 			*mp = NULL;
1432 			if_printf(ife, "cannot pad short frame");
1433 			return (false);
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * If PCP is set in mbuf, use it
1439 	 */
1440 	if ((*mp)->m_flags & M_VLANTAG) {
1441 		pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1442 	}
1443 
1444 	/*
1445 	 * If underlying interface can do VLAN tag insertion itself,
1446 	 * just pass the packet along. However, we need some way to
1447 	 * tell the interface where the packet came from so that it
1448 	 * knows how to find the VLAN tag to use, so we attach a
1449 	 * packet tag that holds it.
1450 	 */
1451 	if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1452 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1453 		tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1454 	else
1455 		tag = EVL_MAKETAG(qtag->vid, pcp, 0);
1456 	if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1457 	    (qtag->proto == ETHERTYPE_VLAN)) {
1458 		(*mp)->m_pkthdr.ether_vtag = tag;
1459 		(*mp)->m_flags |= M_VLANTAG;
1460 	} else {
1461 		*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1462 		if (*mp == NULL) {
1463 			if_printf(ife, "unable to prepend 802.1Q header");
1464 			return (false);
1465 		}
1466 	}
1467 	return (true);
1468 }
1469 
1470 /*
1471  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1472  * cryptographic hash function on the containing jail's name, UUID and the
1473  * interface name to attempt to provide a unique but stable address.
1474  * Pseudo-interfaces which require a MAC address should use this function to
1475  * allocate non-locally-administered addresses.
1476  */
1477 void
1478 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1479 {
1480 	SHA1_CTX ctx;
1481 	char *buf;
1482 	char uuid[HOSTUUIDLEN + 1];
1483 	uint64_t addr;
1484 	int i, sz;
1485 	char digest[SHA1_RESULTLEN];
1486 	char jailname[MAXHOSTNAMELEN];
1487 
1488 	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1489 	if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1490 		/* Fall back to a random mac address. */
1491 		goto rando;
1492 	}
1493 
1494 	/* If each (vnet) jail would also have a unique hostuuid this would not
1495 	 * be necessary. */
1496 	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1497 	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp),
1498 	    jailname);
1499 	if (sz < 0) {
1500 		/* Fall back to a random mac address. */
1501 		goto rando;
1502 	}
1503 
1504 	SHA1Init(&ctx);
1505 	SHA1Update(&ctx, buf, sz);
1506 	SHA1Final(digest, &ctx);
1507 	free(buf, M_TEMP);
1508 
1509 	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1510 	    OUI_FREEBSD_GENERATED_MASK;
1511 	addr = OUI_FREEBSD(addr);
1512 	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1513 		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1514 		    0xFF;
1515 	}
1516 
1517 	return;
1518 rando:
1519 	arc4rand(hwaddr, sizeof(*hwaddr), 0);
1520 	/* Unicast */
1521 	hwaddr->octet[0] &= 0xFE;
1522 	/* Locally administered. */
1523 	hwaddr->octet[0] |= 0x02;
1524 }
1525 
1526 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1527 MODULE_VERSION(ether, 1);
1528