xref: /freebsd/sys/net/if_ethersubr.c (revision 6419bb52)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_netgraph.h"
38 #include "opt_mbuf_profiling.h"
39 #include "opt_rss.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/eventhandler.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/module.h>
50 #include <sys/mbuf.h>
51 #include <sys/proc.h>
52 #include <sys/priv.h>
53 #include <sys/random.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <sys/uuid.h>
58 
59 #include <net/ieee_oui.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/netisr.h>
64 #include <net/route.h>
65 #include <net/if_llc.h>
66 #include <net/if_dl.h>
67 #include <net/if_types.h>
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70 #include <net/if_bridgevar.h>
71 #include <net/if_vlan_var.h>
72 #include <net/if_llatbl.h>
73 #include <net/pfil.h>
74 #include <net/rss_config.h>
75 #include <net/vnet.h>
76 
77 #include <netpfil/pf/pf_mtag.h>
78 
79 #if defined(INET) || defined(INET6)
80 #include <netinet/in.h>
81 #include <netinet/in_var.h>
82 #include <netinet/if_ether.h>
83 #include <netinet/ip_carp.h>
84 #include <netinet/ip_var.h>
85 #endif
86 #ifdef INET6
87 #include <netinet6/nd6.h>
88 #endif
89 #include <security/mac/mac_framework.h>
90 
91 #include <crypto/sha1.h>
92 
93 #ifdef CTASSERT
94 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
95 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
96 #endif
97 
98 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
99 
100 /* netgraph node hooks for ng_ether(4) */
101 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
102 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
103 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
104 void	(*ng_ether_attach_p)(struct ifnet *ifp);
105 void	(*ng_ether_detach_p)(struct ifnet *ifp);
106 
107 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
108 
109 /* if_bridge(4) support */
110 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
111 
112 /* if_lagg(4) support */
113 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *);
114 
115 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
116 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
117 
118 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
119 		struct sockaddr *);
120 #ifdef VIMAGE
121 static	void ether_reassign(struct ifnet *, struct vnet *, char *);
122 #endif
123 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
124 
125 
126 #define senderr(e) do { error = (e); goto bad;} while (0)
127 
128 static void
129 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
130 {
131 	int csum_flags = 0;
132 
133 	if (src->m_pkthdr.csum_flags & CSUM_IP)
134 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
135 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
136 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
137 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
138 		csum_flags |= CSUM_SCTP_VALID;
139 	dst->m_pkthdr.csum_flags |= csum_flags;
140 	if (csum_flags & CSUM_DATA_VALID)
141 		dst->m_pkthdr.csum_data = 0xffff;
142 }
143 
144 /*
145  * Handle link-layer encapsulation requests.
146  */
147 static int
148 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
149 {
150 	struct ether_header *eh;
151 	struct arphdr *ah;
152 	uint16_t etype;
153 	const u_char *lladdr;
154 
155 	if (req->rtype != IFENCAP_LL)
156 		return (EOPNOTSUPP);
157 
158 	if (req->bufsize < ETHER_HDR_LEN)
159 		return (ENOMEM);
160 
161 	eh = (struct ether_header *)req->buf;
162 	lladdr = req->lladdr;
163 	req->lladdr_off = 0;
164 
165 	switch (req->family) {
166 	case AF_INET:
167 		etype = htons(ETHERTYPE_IP);
168 		break;
169 	case AF_INET6:
170 		etype = htons(ETHERTYPE_IPV6);
171 		break;
172 	case AF_ARP:
173 		ah = (struct arphdr *)req->hdata;
174 		ah->ar_hrd = htons(ARPHRD_ETHER);
175 
176 		switch(ntohs(ah->ar_op)) {
177 		case ARPOP_REVREQUEST:
178 		case ARPOP_REVREPLY:
179 			etype = htons(ETHERTYPE_REVARP);
180 			break;
181 		case ARPOP_REQUEST:
182 		case ARPOP_REPLY:
183 		default:
184 			etype = htons(ETHERTYPE_ARP);
185 			break;
186 		}
187 
188 		if (req->flags & IFENCAP_FLAG_BROADCAST)
189 			lladdr = ifp->if_broadcastaddr;
190 		break;
191 	default:
192 		return (EAFNOSUPPORT);
193 	}
194 
195 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
196 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
197 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
198 	req->bufsize = sizeof(struct ether_header);
199 
200 	return (0);
201 }
202 
203 
204 static int
205 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
206 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
207 	uint32_t *pflags, struct llentry **plle)
208 {
209 	struct ether_header *eh;
210 	uint32_t lleflags = 0;
211 	int error = 0;
212 #if defined(INET) || defined(INET6)
213 	uint16_t etype;
214 #endif
215 
216 	if (plle)
217 		*plle = NULL;
218 	eh = (struct ether_header *)phdr;
219 
220 	switch (dst->sa_family) {
221 #ifdef INET
222 	case AF_INET:
223 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
224 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
225 			    plle);
226 		else {
227 			if (m->m_flags & M_BCAST)
228 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
229 				    ETHER_ADDR_LEN);
230 			else {
231 				const struct in_addr *a;
232 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
233 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
234 			}
235 			etype = htons(ETHERTYPE_IP);
236 			memcpy(&eh->ether_type, &etype, sizeof(etype));
237 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
238 		}
239 		break;
240 #endif
241 #ifdef INET6
242 	case AF_INET6:
243 		if ((m->m_flags & M_MCAST) == 0)
244 			error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
245 			    plle);
246 		else {
247 			const struct in6_addr *a6;
248 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
249 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
250 			etype = htons(ETHERTYPE_IPV6);
251 			memcpy(&eh->ether_type, &etype, sizeof(etype));
252 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
253 		}
254 		break;
255 #endif
256 	default:
257 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
258 		if (m != NULL)
259 			m_freem(m);
260 		return (EAFNOSUPPORT);
261 	}
262 
263 	if (error == EHOSTDOWN) {
264 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
265 			error = EHOSTUNREACH;
266 	}
267 
268 	if (error != 0)
269 		return (error);
270 
271 	*pflags = RT_MAY_LOOP;
272 	if (lleflags & LLE_IFADDR)
273 		*pflags |= RT_L2_ME;
274 
275 	return (0);
276 }
277 
278 /*
279  * Ethernet output routine.
280  * Encapsulate a packet of type family for the local net.
281  * Use trailer local net encapsulation if enough data in first
282  * packet leaves a multiple of 512 bytes of data in remainder.
283  */
284 int
285 ether_output(struct ifnet *ifp, struct mbuf *m,
286 	const struct sockaddr *dst, struct route *ro)
287 {
288 	int error = 0;
289 	char linkhdr[ETHER_HDR_LEN], *phdr;
290 	struct ether_header *eh;
291 	struct pf_mtag *t;
292 	int loop_copy = 1;
293 	int hlen;	/* link layer header length */
294 	uint32_t pflags;
295 	struct llentry *lle = NULL;
296 	int addref = 0;
297 
298 	phdr = NULL;
299 	pflags = 0;
300 	if (ro != NULL) {
301 		/* XXX BPF uses ro_prepend */
302 		if (ro->ro_prepend != NULL) {
303 			phdr = ro->ro_prepend;
304 			hlen = ro->ro_plen;
305 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
306 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
307 				lle = ro->ro_lle;
308 				if (lle != NULL &&
309 				    (lle->la_flags & LLE_VALID) == 0) {
310 					LLE_FREE(lle);
311 					lle = NULL;	/* redundant */
312 					ro->ro_lle = NULL;
313 				}
314 				if (lle == NULL) {
315 					/* if we lookup, keep cache */
316 					addref = 1;
317 				} else
318 					/*
319 					 * Notify LLE code that
320 					 * the entry was used
321 					 * by datapath.
322 					 */
323 					llentry_mark_used(lle);
324 			}
325 			if (lle != NULL) {
326 				phdr = lle->r_linkdata;
327 				hlen = lle->r_hdrlen;
328 				pflags = lle->r_flags;
329 			}
330 		}
331 	}
332 
333 #ifdef MAC
334 	error = mac_ifnet_check_transmit(ifp, m);
335 	if (error)
336 		senderr(error);
337 #endif
338 
339 	M_PROFILE(m);
340 	if (ifp->if_flags & IFF_MONITOR)
341 		senderr(ENETDOWN);
342 	if (!((ifp->if_flags & IFF_UP) &&
343 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
344 		senderr(ENETDOWN);
345 
346 	if (phdr == NULL) {
347 		/* No prepend data supplied. Try to calculate ourselves. */
348 		phdr = linkhdr;
349 		hlen = ETHER_HDR_LEN;
350 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
351 		    addref ? &lle : NULL);
352 		if (addref && lle != NULL)
353 			ro->ro_lle = lle;
354 		if (error != 0)
355 			return (error == EWOULDBLOCK ? 0 : error);
356 	}
357 
358 	if ((pflags & RT_L2_ME) != 0) {
359 		update_mbuf_csumflags(m, m);
360 		return (if_simloop(ifp, m, dst->sa_family, 0));
361 	}
362 	loop_copy = pflags & RT_MAY_LOOP;
363 
364 	/*
365 	 * Add local net header.  If no space in first mbuf,
366 	 * allocate another.
367 	 *
368 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
369 	 * This is done because BPF code shifts m_data pointer
370 	 * to the end of ethernet header prior to calling if_output().
371 	 */
372 	M_PREPEND(m, hlen, M_NOWAIT);
373 	if (m == NULL)
374 		senderr(ENOBUFS);
375 	if ((pflags & RT_HAS_HEADER) == 0) {
376 		eh = mtod(m, struct ether_header *);
377 		memcpy(eh, phdr, hlen);
378 	}
379 
380 	/*
381 	 * If a simplex interface, and the packet is being sent to our
382 	 * Ethernet address or a broadcast address, loopback a copy.
383 	 * XXX To make a simplex device behave exactly like a duplex
384 	 * device, we should copy in the case of sending to our own
385 	 * ethernet address (thus letting the original actually appear
386 	 * on the wire). However, we don't do that here for security
387 	 * reasons and compatibility with the original behavior.
388 	 */
389 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
390 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
391 		struct mbuf *n;
392 
393 		/*
394 		 * Because if_simloop() modifies the packet, we need a
395 		 * writable copy through m_dup() instead of a readonly
396 		 * one as m_copy[m] would give us. The alternative would
397 		 * be to modify if_simloop() to handle the readonly mbuf,
398 		 * but performancewise it is mostly equivalent (trading
399 		 * extra data copying vs. extra locking).
400 		 *
401 		 * XXX This is a local workaround.  A number of less
402 		 * often used kernel parts suffer from the same bug.
403 		 * See PR kern/105943 for a proposed general solution.
404 		 */
405 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
406 			update_mbuf_csumflags(m, n);
407 			(void)if_simloop(ifp, n, dst->sa_family, hlen);
408 		} else
409 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
410 	}
411 
412        /*
413 	* Bridges require special output handling.
414 	*/
415 	if (ifp->if_bridge) {
416 		BRIDGE_OUTPUT(ifp, m, error);
417 		return (error);
418 	}
419 
420 #if defined(INET) || defined(INET6)
421 	if (ifp->if_carp &&
422 	    (error = (*carp_output_p)(ifp, m, dst)))
423 		goto bad;
424 #endif
425 
426 	/* Handle ng_ether(4) processing, if any */
427 	if (ifp->if_l2com != NULL) {
428 		KASSERT(ng_ether_output_p != NULL,
429 		    ("ng_ether_output_p is NULL"));
430 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
431 bad:			if (m != NULL)
432 				m_freem(m);
433 			return (error);
434 		}
435 		if (m == NULL)
436 			return (0);
437 	}
438 
439 	/* Continue with link-layer output */
440 	return ether_output_frame(ifp, m);
441 }
442 
443 static bool
444 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
445 {
446 	struct ether_header *eh;
447 
448 	eh = mtod(*mp, struct ether_header *);
449 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN ||
450 	    ether_8021q_frame(mp, ifp, ifp, 0, pcp))
451 		return (true);
452 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
453 	return (false);
454 }
455 
456 /*
457  * Ethernet link layer output routine to send a raw frame to the device.
458  *
459  * This assumes that the 14 byte Ethernet header is present and contiguous
460  * in the first mbuf (if BRIDGE'ing).
461  */
462 int
463 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
464 {
465 	uint8_t pcp;
466 
467 	pcp = ifp->if_pcp;
468 	if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN &&
469 	    !ether_set_pcp(&m, ifp, pcp))
470 		return (0);
471 
472 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
473 		switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT,
474 		    NULL)) {
475 		case PFIL_DROPPED:
476 			return (EACCES);
477 		case PFIL_CONSUMED:
478 			return (0);
479 		}
480 
481 #ifdef EXPERIMENTAL
482 #if defined(INET6) && defined(INET)
483 	/* draft-ietf-6man-ipv6only-flag */
484 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
485 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
486 		struct ether_header *eh;
487 
488 		eh = mtod(m, struct ether_header *);
489 		switch (ntohs(eh->ether_type)) {
490 		case ETHERTYPE_IP:
491 		case ETHERTYPE_ARP:
492 		case ETHERTYPE_REVARP:
493 			m_freem(m);
494 			return (EAFNOSUPPORT);
495 			/* NOTREACHED */
496 			break;
497 		};
498 	}
499 #endif
500 #endif
501 
502 	/*
503 	 * Queue message on interface, update output statistics if
504 	 * successful, and start output if interface not yet active.
505 	 */
506 	return ((ifp->if_transmit)(ifp, m));
507 }
508 
509 /*
510  * Process a received Ethernet packet; the packet is in the
511  * mbuf chain m with the ethernet header at the front.
512  */
513 static void
514 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
515 {
516 	struct ether_header *eh;
517 	u_short etype;
518 
519 	if ((ifp->if_flags & IFF_UP) == 0) {
520 		m_freem(m);
521 		return;
522 	}
523 #ifdef DIAGNOSTIC
524 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
525 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
526 		m_freem(m);
527 		return;
528 	}
529 #endif
530 	if (m->m_len < ETHER_HDR_LEN) {
531 		/* XXX maybe should pullup? */
532 		if_printf(ifp, "discard frame w/o leading ethernet "
533 				"header (len %u pkt len %u)\n",
534 				m->m_len, m->m_pkthdr.len);
535 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
536 		m_freem(m);
537 		return;
538 	}
539 	eh = mtod(m, struct ether_header *);
540 	etype = ntohs(eh->ether_type);
541 	random_harvest_queue_ether(m, sizeof(*m));
542 
543 #ifdef EXPERIMENTAL
544 #if defined(INET6) && defined(INET)
545 	/* draft-ietf-6man-ipv6only-flag */
546 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
547 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
548 
549 		switch (etype) {
550 		case ETHERTYPE_IP:
551 		case ETHERTYPE_ARP:
552 		case ETHERTYPE_REVARP:
553 			m_freem(m);
554 			return;
555 			/* NOTREACHED */
556 			break;
557 		};
558 	}
559 #endif
560 #endif
561 
562 	CURVNET_SET_QUIET(ifp->if_vnet);
563 
564 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
565 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
566 			m->m_flags |= M_BCAST;
567 		else
568 			m->m_flags |= M_MCAST;
569 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
570 	}
571 
572 #ifdef MAC
573 	/*
574 	 * Tag the mbuf with an appropriate MAC label before any other
575 	 * consumers can get to it.
576 	 */
577 	mac_ifnet_create_mbuf(ifp, m);
578 #endif
579 
580 	/*
581 	 * Give bpf a chance at the packet.
582 	 */
583 	ETHER_BPF_MTAP(ifp, m);
584 
585 	/*
586 	 * If the CRC is still on the packet, trim it off. We do this once
587 	 * and once only in case we are re-entered. Nothing else on the
588 	 * Ethernet receive path expects to see the FCS.
589 	 */
590 	if (m->m_flags & M_HASFCS) {
591 		m_adj(m, -ETHER_CRC_LEN);
592 		m->m_flags &= ~M_HASFCS;
593 	}
594 
595 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
596 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
597 
598 	/* Allow monitor mode to claim this frame, after stats are updated. */
599 	if (ifp->if_flags & IFF_MONITOR) {
600 		m_freem(m);
601 		CURVNET_RESTORE();
602 		return;
603 	}
604 
605 	/* Handle input from a lagg(4) port */
606 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
607 		KASSERT(lagg_input_p != NULL,
608 		    ("%s: if_lagg not loaded!", __func__));
609 		m = (*lagg_input_p)(ifp, m);
610 		if (m != NULL)
611 			ifp = m->m_pkthdr.rcvif;
612 		else {
613 			CURVNET_RESTORE();
614 			return;
615 		}
616 	}
617 
618 	/*
619 	 * If the hardware did not process an 802.1Q tag, do this now,
620 	 * to allow 802.1P priority frames to be passed to the main input
621 	 * path correctly.
622 	 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
623 	 */
624 	if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
625 		struct ether_vlan_header *evl;
626 
627 		if (m->m_len < sizeof(*evl) &&
628 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
629 #ifdef DIAGNOSTIC
630 			if_printf(ifp, "cannot pullup VLAN header\n");
631 #endif
632 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
633 			CURVNET_RESTORE();
634 			return;
635 		}
636 
637 		evl = mtod(m, struct ether_vlan_header *);
638 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
639 		m->m_flags |= M_VLANTAG;
640 
641 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
642 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
643 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
644 		eh = mtod(m, struct ether_header *);
645 	}
646 
647 	M_SETFIB(m, ifp->if_fib);
648 
649 	/* Allow ng_ether(4) to claim this frame. */
650 	if (ifp->if_l2com != NULL) {
651 		KASSERT(ng_ether_input_p != NULL,
652 		    ("%s: ng_ether_input_p is NULL", __func__));
653 		m->m_flags &= ~M_PROMISC;
654 		(*ng_ether_input_p)(ifp, &m);
655 		if (m == NULL) {
656 			CURVNET_RESTORE();
657 			return;
658 		}
659 		eh = mtod(m, struct ether_header *);
660 	}
661 
662 	/*
663 	 * Allow if_bridge(4) to claim this frame.
664 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
665 	 * and the frame should be delivered locally.
666 	 */
667 	if (ifp->if_bridge != NULL) {
668 		m->m_flags &= ~M_PROMISC;
669 		BRIDGE_INPUT(ifp, m);
670 		if (m == NULL) {
671 			CURVNET_RESTORE();
672 			return;
673 		}
674 		eh = mtod(m, struct ether_header *);
675 	}
676 
677 #if defined(INET) || defined(INET6)
678 	/*
679 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
680 	 * mbuf flows up to Layer 3.
681 	 * FreeBSD's implementation of carp(4) uses the inprotosw
682 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
683 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
684 	 * is outside the scope of the M_PROMISC test below.
685 	 * TODO: Maintain a hash table of ethernet addresses other than
686 	 * ether_dhost which may be active on this ifp.
687 	 */
688 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
689 		m->m_flags &= ~M_PROMISC;
690 	} else
691 #endif
692 	{
693 		/*
694 		 * If the frame received was not for our MAC address, set the
695 		 * M_PROMISC flag on the mbuf chain. The frame may need to
696 		 * be seen by the rest of the Ethernet input path in case of
697 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
698 		 * seen by upper protocol layers.
699 		 */
700 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
701 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
702 			m->m_flags |= M_PROMISC;
703 	}
704 
705 	ether_demux(ifp, m);
706 	CURVNET_RESTORE();
707 }
708 
709 /*
710  * Ethernet input dispatch; by default, direct dispatch here regardless of
711  * global configuration.  However, if RSS is enabled, hook up RSS affinity
712  * so that when deferred or hybrid dispatch is enabled, we can redistribute
713  * load based on RSS.
714  *
715  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
716  * not it had already done work distribution via multi-queue.  Then we could
717  * direct dispatch in the event load balancing was already complete and
718  * handle the case of interfaces with different capabilities better.
719  *
720  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
721  * at multiple layers?
722  *
723  * XXXRW: For now, enable all this only if RSS is compiled in, although it
724  * works fine without RSS.  Need to characterise the performance overhead
725  * of the detour through the netisr code in the event the result is always
726  * direct dispatch.
727  */
728 static void
729 ether_nh_input(struct mbuf *m)
730 {
731 
732 	M_ASSERTPKTHDR(m);
733 	KASSERT(m->m_pkthdr.rcvif != NULL,
734 	    ("%s: NULL interface pointer", __func__));
735 	ether_input_internal(m->m_pkthdr.rcvif, m);
736 }
737 
738 static struct netisr_handler	ether_nh = {
739 	.nh_name = "ether",
740 	.nh_handler = ether_nh_input,
741 	.nh_proto = NETISR_ETHER,
742 #ifdef RSS
743 	.nh_policy = NETISR_POLICY_CPU,
744 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
745 	.nh_m2cpuid = rss_m2cpuid,
746 #else
747 	.nh_policy = NETISR_POLICY_SOURCE,
748 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
749 #endif
750 };
751 
752 static void
753 ether_init(__unused void *arg)
754 {
755 
756 	netisr_register(&ether_nh);
757 }
758 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
759 
760 static void
761 vnet_ether_init(__unused void *arg)
762 {
763 	struct pfil_head_args args;
764 
765 	args.pa_version = PFIL_VERSION;
766 	args.pa_flags = PFIL_IN | PFIL_OUT;
767 	args.pa_type = PFIL_TYPE_ETHERNET;
768 	args.pa_headname = PFIL_ETHER_NAME;
769 	V_link_pfil_head = pfil_head_register(&args);
770 
771 #ifdef VIMAGE
772 	netisr_register_vnet(&ether_nh);
773 #endif
774 }
775 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
776     vnet_ether_init, NULL);
777 
778 #ifdef VIMAGE
779 static void
780 vnet_ether_pfil_destroy(__unused void *arg)
781 {
782 
783 	pfil_head_unregister(V_link_pfil_head);
784 }
785 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
786     vnet_ether_pfil_destroy, NULL);
787 
788 static void
789 vnet_ether_destroy(__unused void *arg)
790 {
791 
792 	netisr_unregister_vnet(&ether_nh);
793 }
794 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
795     vnet_ether_destroy, NULL);
796 #endif
797 
798 
799 
800 static void
801 ether_input(struct ifnet *ifp, struct mbuf *m)
802 {
803 	struct epoch_tracker et;
804 	struct mbuf *mn;
805 	bool needs_epoch;
806 
807 	needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH);
808 
809 	/*
810 	 * The drivers are allowed to pass in a chain of packets linked with
811 	 * m_nextpkt. We split them up into separate packets here and pass
812 	 * them up. This allows the drivers to amortize the receive lock.
813 	 */
814 	CURVNET_SET_QUIET(ifp->if_vnet);
815 	if (__predict_false(needs_epoch))
816 		NET_EPOCH_ENTER(et);
817 	while (m) {
818 		mn = m->m_nextpkt;
819 		m->m_nextpkt = NULL;
820 
821 		/*
822 		 * We will rely on rcvif being set properly in the deferred
823 		 * context, so assert it is correct here.
824 		 */
825 		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
826 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
827 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
828 		netisr_dispatch(NETISR_ETHER, m);
829 		m = mn;
830 	}
831 	if (__predict_false(needs_epoch))
832 		NET_EPOCH_EXIT(et);
833 	CURVNET_RESTORE();
834 }
835 
836 /*
837  * Upper layer processing for a received Ethernet packet.
838  */
839 void
840 ether_demux(struct ifnet *ifp, struct mbuf *m)
841 {
842 	struct ether_header *eh;
843 	int i, isr;
844 	u_short ether_type;
845 
846 	NET_EPOCH_ASSERT();
847 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
848 
849 	/* Do not grab PROMISC frames in case we are re-entered. */
850 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
851 		i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL);
852 		if (i != 0 || m == NULL)
853 			return;
854 	}
855 
856 	eh = mtod(m, struct ether_header *);
857 	ether_type = ntohs(eh->ether_type);
858 
859 	/*
860 	 * If this frame has a VLAN tag other than 0, call vlan_input()
861 	 * if its module is loaded. Otherwise, drop.
862 	 */
863 	if ((m->m_flags & M_VLANTAG) &&
864 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
865 		if (ifp->if_vlantrunk == NULL) {
866 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
867 			m_freem(m);
868 			return;
869 		}
870 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
871 		    __func__));
872 		/* Clear before possibly re-entering ether_input(). */
873 		m->m_flags &= ~M_PROMISC;
874 		(*vlan_input_p)(ifp, m);
875 		return;
876 	}
877 
878 	/*
879 	 * Pass promiscuously received frames to the upper layer if the user
880 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
881 	 */
882 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
883 		m_freem(m);
884 		return;
885 	}
886 
887 	/*
888 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
889 	 * Strip off Ethernet header.
890 	 */
891 	m->m_flags &= ~M_VLANTAG;
892 	m_clrprotoflags(m);
893 	m_adj(m, ETHER_HDR_LEN);
894 
895 	/*
896 	 * Dispatch frame to upper layer.
897 	 */
898 	switch (ether_type) {
899 #ifdef INET
900 	case ETHERTYPE_IP:
901 		isr = NETISR_IP;
902 		break;
903 
904 	case ETHERTYPE_ARP:
905 		if (ifp->if_flags & IFF_NOARP) {
906 			/* Discard packet if ARP is disabled on interface */
907 			m_freem(m);
908 			return;
909 		}
910 		isr = NETISR_ARP;
911 		break;
912 #endif
913 #ifdef INET6
914 	case ETHERTYPE_IPV6:
915 		isr = NETISR_IPV6;
916 		break;
917 #endif
918 	default:
919 		goto discard;
920 	}
921 	netisr_dispatch(isr, m);
922 	return;
923 
924 discard:
925 	/*
926 	 * Packet is to be discarded.  If netgraph is present,
927 	 * hand the packet to it for last chance processing;
928 	 * otherwise dispose of it.
929 	 */
930 	if (ifp->if_l2com != NULL) {
931 		KASSERT(ng_ether_input_orphan_p != NULL,
932 		    ("ng_ether_input_orphan_p is NULL"));
933 		/*
934 		 * Put back the ethernet header so netgraph has a
935 		 * consistent view of inbound packets.
936 		 */
937 		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
938 		(*ng_ether_input_orphan_p)(ifp, m);
939 		return;
940 	}
941 	m_freem(m);
942 }
943 
944 /*
945  * Convert Ethernet address to printable (loggable) representation.
946  * This routine is for compatibility; it's better to just use
947  *
948  *	printf("%6D", <pointer to address>, ":");
949  *
950  * since there's no static buffer involved.
951  */
952 char *
953 ether_sprintf(const u_char *ap)
954 {
955 	static char etherbuf[18];
956 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
957 	return (etherbuf);
958 }
959 
960 /*
961  * Perform common duties while attaching to interface list
962  */
963 void
964 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
965 {
966 	int i;
967 	struct ifaddr *ifa;
968 	struct sockaddr_dl *sdl;
969 
970 	ifp->if_addrlen = ETHER_ADDR_LEN;
971 	ifp->if_hdrlen = ETHER_HDR_LEN;
972 	if_attach(ifp);
973 	ifp->if_mtu = ETHERMTU;
974 	ifp->if_output = ether_output;
975 	ifp->if_input = ether_input;
976 	ifp->if_resolvemulti = ether_resolvemulti;
977 	ifp->if_requestencap = ether_requestencap;
978 #ifdef VIMAGE
979 	ifp->if_reassign = ether_reassign;
980 #endif
981 	if (ifp->if_baudrate == 0)
982 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
983 	ifp->if_broadcastaddr = etherbroadcastaddr;
984 
985 	ifa = ifp->if_addr;
986 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
987 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
988 	sdl->sdl_type = IFT_ETHER;
989 	sdl->sdl_alen = ifp->if_addrlen;
990 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
991 
992 	if (ifp->if_hw_addr != NULL)
993 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
994 
995 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
996 	if (ng_ether_attach_p != NULL)
997 		(*ng_ether_attach_p)(ifp);
998 
999 	/* Announce Ethernet MAC address if non-zero. */
1000 	for (i = 0; i < ifp->if_addrlen; i++)
1001 		if (lla[i] != 0)
1002 			break;
1003 	if (i != ifp->if_addrlen)
1004 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1005 
1006 	uuid_ether_add(LLADDR(sdl));
1007 
1008 	/* Add necessary bits are setup; announce it now. */
1009 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1010 	if (IS_DEFAULT_VNET(curvnet))
1011 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1012 }
1013 
1014 /*
1015  * Perform common duties while detaching an Ethernet interface
1016  */
1017 void
1018 ether_ifdetach(struct ifnet *ifp)
1019 {
1020 	struct sockaddr_dl *sdl;
1021 
1022 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1023 	uuid_ether_del(LLADDR(sdl));
1024 
1025 	if (ifp->if_l2com != NULL) {
1026 		KASSERT(ng_ether_detach_p != NULL,
1027 		    ("ng_ether_detach_p is NULL"));
1028 		(*ng_ether_detach_p)(ifp);
1029 	}
1030 
1031 	bpfdetach(ifp);
1032 	if_detach(ifp);
1033 }
1034 
1035 #ifdef VIMAGE
1036 void
1037 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1038 {
1039 
1040 	if (ifp->if_l2com != NULL) {
1041 		KASSERT(ng_ether_detach_p != NULL,
1042 		    ("ng_ether_detach_p is NULL"));
1043 		(*ng_ether_detach_p)(ifp);
1044 	}
1045 
1046 	if (ng_ether_attach_p != NULL) {
1047 		CURVNET_SET_QUIET(new_vnet);
1048 		(*ng_ether_attach_p)(ifp);
1049 		CURVNET_RESTORE();
1050 	}
1051 }
1052 #endif
1053 
1054 SYSCTL_DECL(_net_link);
1055 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1056     "Ethernet");
1057 
1058 #if 0
1059 /*
1060  * This is for reference.  We have a table-driven version
1061  * of the little-endian crc32 generator, which is faster
1062  * than the double-loop.
1063  */
1064 uint32_t
1065 ether_crc32_le(const uint8_t *buf, size_t len)
1066 {
1067 	size_t i;
1068 	uint32_t crc;
1069 	int bit;
1070 	uint8_t data;
1071 
1072 	crc = 0xffffffff;	/* initial value */
1073 
1074 	for (i = 0; i < len; i++) {
1075 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1076 			carry = (crc ^ data) & 1;
1077 			crc >>= 1;
1078 			if (carry)
1079 				crc = (crc ^ ETHER_CRC_POLY_LE);
1080 		}
1081 	}
1082 
1083 	return (crc);
1084 }
1085 #else
1086 uint32_t
1087 ether_crc32_le(const uint8_t *buf, size_t len)
1088 {
1089 	static const uint32_t crctab[] = {
1090 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1091 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1092 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1093 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1094 	};
1095 	size_t i;
1096 	uint32_t crc;
1097 
1098 	crc = 0xffffffff;	/* initial value */
1099 
1100 	for (i = 0; i < len; i++) {
1101 		crc ^= buf[i];
1102 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1103 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1104 	}
1105 
1106 	return (crc);
1107 }
1108 #endif
1109 
1110 uint32_t
1111 ether_crc32_be(const uint8_t *buf, size_t len)
1112 {
1113 	size_t i;
1114 	uint32_t crc, carry;
1115 	int bit;
1116 	uint8_t data;
1117 
1118 	crc = 0xffffffff;	/* initial value */
1119 
1120 	for (i = 0; i < len; i++) {
1121 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1122 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1123 			crc <<= 1;
1124 			if (carry)
1125 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1126 		}
1127 	}
1128 
1129 	return (crc);
1130 }
1131 
1132 int
1133 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1134 {
1135 	struct ifaddr *ifa = (struct ifaddr *) data;
1136 	struct ifreq *ifr = (struct ifreq *) data;
1137 	int error = 0;
1138 
1139 	switch (command) {
1140 	case SIOCSIFADDR:
1141 		ifp->if_flags |= IFF_UP;
1142 
1143 		switch (ifa->ifa_addr->sa_family) {
1144 #ifdef INET
1145 		case AF_INET:
1146 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1147 			arp_ifinit(ifp, ifa);
1148 			break;
1149 #endif
1150 		default:
1151 			ifp->if_init(ifp->if_softc);
1152 			break;
1153 		}
1154 		break;
1155 
1156 	case SIOCGIFADDR:
1157 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1158 		    ETHER_ADDR_LEN);
1159 		break;
1160 
1161 	case SIOCSIFMTU:
1162 		/*
1163 		 * Set the interface MTU.
1164 		 */
1165 		if (ifr->ifr_mtu > ETHERMTU) {
1166 			error = EINVAL;
1167 		} else {
1168 			ifp->if_mtu = ifr->ifr_mtu;
1169 		}
1170 		break;
1171 
1172 	case SIOCSLANPCP:
1173 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1174 		if (error != 0)
1175 			break;
1176 		if (ifr->ifr_lan_pcp > 7 &&
1177 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1178 			error = EINVAL;
1179 		} else {
1180 			ifp->if_pcp = ifr->ifr_lan_pcp;
1181 			/* broadcast event about PCP change */
1182 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1183 		}
1184 		break;
1185 
1186 	case SIOCGLANPCP:
1187 		ifr->ifr_lan_pcp = ifp->if_pcp;
1188 		break;
1189 
1190 	default:
1191 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1192 		break;
1193 	}
1194 	return (error);
1195 }
1196 
1197 static int
1198 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1199 	struct sockaddr *sa)
1200 {
1201 	struct sockaddr_dl *sdl;
1202 #ifdef INET
1203 	struct sockaddr_in *sin;
1204 #endif
1205 #ifdef INET6
1206 	struct sockaddr_in6 *sin6;
1207 #endif
1208 	u_char *e_addr;
1209 
1210 	switch(sa->sa_family) {
1211 	case AF_LINK:
1212 		/*
1213 		 * No mapping needed. Just check that it's a valid MC address.
1214 		 */
1215 		sdl = (struct sockaddr_dl *)sa;
1216 		e_addr = LLADDR(sdl);
1217 		if (!ETHER_IS_MULTICAST(e_addr))
1218 			return EADDRNOTAVAIL;
1219 		*llsa = NULL;
1220 		return 0;
1221 
1222 #ifdef INET
1223 	case AF_INET:
1224 		sin = (struct sockaddr_in *)sa;
1225 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1226 			return EADDRNOTAVAIL;
1227 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1228 		sdl->sdl_alen = ETHER_ADDR_LEN;
1229 		e_addr = LLADDR(sdl);
1230 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1231 		*llsa = (struct sockaddr *)sdl;
1232 		return 0;
1233 #endif
1234 #ifdef INET6
1235 	case AF_INET6:
1236 		sin6 = (struct sockaddr_in6 *)sa;
1237 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1238 			/*
1239 			 * An IP6 address of 0 means listen to all
1240 			 * of the Ethernet multicast address used for IP6.
1241 			 * (This is used for multicast routers.)
1242 			 */
1243 			ifp->if_flags |= IFF_ALLMULTI;
1244 			*llsa = NULL;
1245 			return 0;
1246 		}
1247 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1248 			return EADDRNOTAVAIL;
1249 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1250 		sdl->sdl_alen = ETHER_ADDR_LEN;
1251 		e_addr = LLADDR(sdl);
1252 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1253 		*llsa = (struct sockaddr *)sdl;
1254 		return 0;
1255 #endif
1256 
1257 	default:
1258 		/*
1259 		 * Well, the text isn't quite right, but it's the name
1260 		 * that counts...
1261 		 */
1262 		return EAFNOSUPPORT;
1263 	}
1264 }
1265 
1266 static moduledata_t ether_mod = {
1267 	.name = "ether",
1268 };
1269 
1270 void
1271 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1272 {
1273 	struct ether_vlan_header vlan;
1274 	struct mbuf mv, mb;
1275 
1276 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1277 	    ("%s: vlan information not present", __func__));
1278 	KASSERT(m->m_len >= sizeof(struct ether_header),
1279 	    ("%s: mbuf not large enough for header", __func__));
1280 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1281 	vlan.evl_proto = vlan.evl_encap_proto;
1282 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1283 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1284 	m->m_len -= sizeof(struct ether_header);
1285 	m->m_data += sizeof(struct ether_header);
1286 	/*
1287 	 * If a data link has been supplied by the caller, then we will need to
1288 	 * re-create a stack allocated mbuf chain with the following structure:
1289 	 *
1290 	 * (1) mbuf #1 will contain the supplied data link
1291 	 * (2) mbuf #2 will contain the vlan header
1292 	 * (3) mbuf #3 will contain the original mbuf's packet data
1293 	 *
1294 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1295 	 */
1296 	if (data != NULL) {
1297 		mv.m_next = m;
1298 		mv.m_data = (caddr_t)&vlan;
1299 		mv.m_len = sizeof(vlan);
1300 		mb.m_next = &mv;
1301 		mb.m_data = data;
1302 		mb.m_len = dlen;
1303 		bpf_mtap(bp, &mb);
1304 	} else
1305 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1306 	m->m_len += sizeof(struct ether_header);
1307 	m->m_data -= sizeof(struct ether_header);
1308 }
1309 
1310 struct mbuf *
1311 ether_vlanencap(struct mbuf *m, uint16_t tag)
1312 {
1313 	struct ether_vlan_header *evl;
1314 
1315 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1316 	if (m == NULL)
1317 		return (NULL);
1318 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1319 
1320 	if (m->m_len < sizeof(*evl)) {
1321 		m = m_pullup(m, sizeof(*evl));
1322 		if (m == NULL)
1323 			return (NULL);
1324 	}
1325 
1326 	/*
1327 	 * Transform the Ethernet header into an Ethernet header
1328 	 * with 802.1Q encapsulation.
1329 	 */
1330 	evl = mtod(m, struct ether_vlan_header *);
1331 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1332 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1333 	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1334 	evl->evl_tag = htons(tag);
1335 	return (m);
1336 }
1337 
1338 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1339     "IEEE 802.1Q VLAN");
1340 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1341     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1342     "for consistency");
1343 
1344 VNET_DEFINE_STATIC(int, soft_pad);
1345 #define	V_soft_pad	VNET(soft_pad)
1346 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1347     &VNET_NAME(soft_pad), 0,
1348     "pad short frames before tagging");
1349 
1350 /*
1351  * For now, make preserving PCP via an mbuf tag optional, as it increases
1352  * per-packet memory allocations and frees.  In the future, it would be
1353  * preferable to reuse ether_vtag for this, or similar.
1354  */
1355 int vlan_mtag_pcp = 0;
1356 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW,
1357     &vlan_mtag_pcp, 0,
1358     "Retain VLAN PCP information as packets are passed up the stack");
1359 
1360 bool
1361 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1362     uint16_t vid, uint8_t pcp)
1363 {
1364 	struct m_tag *mtag;
1365 	int n;
1366 	uint16_t tag;
1367 	static const char pad[8];	/* just zeros */
1368 
1369 	/*
1370 	 * Pad the frame to the minimum size allowed if told to.
1371 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1372 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1373 	 * bridges that violate paragraph C.4.4.3.a from the same
1374 	 * document, i.e., fail to pad short frames after untagging.
1375 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1376 	 * untagging it will produce a 62-byte frame, which is a runt
1377 	 * and requires padding.  There are VLAN-enabled network
1378 	 * devices that just discard such runts instead or mishandle
1379 	 * them somehow.
1380 	 */
1381 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1382 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1383 		     n > 0; n -= sizeof(pad)) {
1384 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1385 				break;
1386 		}
1387 		if (n > 0) {
1388 			m_freem(*mp);
1389 			*mp = NULL;
1390 			if_printf(ife, "cannot pad short frame");
1391 			return (false);
1392 		}
1393 	}
1394 
1395 	/*
1396 	 * If underlying interface can do VLAN tag insertion itself,
1397 	 * just pass the packet along. However, we need some way to
1398 	 * tell the interface where the packet came from so that it
1399 	 * knows how to find the VLAN tag to use, so we attach a
1400 	 * packet tag that holds it.
1401 	 */
1402 	if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1403 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1404 		tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0);
1405 	else
1406 		tag = EVL_MAKETAG(vid, pcp, 0);
1407 	if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1408 		(*mp)->m_pkthdr.ether_vtag = tag;
1409 		(*mp)->m_flags |= M_VLANTAG;
1410 	} else {
1411 		*mp = ether_vlanencap(*mp, tag);
1412 		if (*mp == NULL) {
1413 			if_printf(ife, "unable to prepend 802.1Q header");
1414 			return (false);
1415 		}
1416 	}
1417 	return (true);
1418 }
1419 
1420 /*
1421  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1422  * cryptographic hash function on the containing jail's name, UUID and the
1423  * interface name to attempt to provide a unique but stable address.
1424  * Pseudo-interfaces which require a MAC address should use this function to
1425  * allocate non-locally-administered addresses.
1426  */
1427 void
1428 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1429 {
1430 	SHA1_CTX ctx;
1431 	char *buf;
1432 	char uuid[HOSTUUIDLEN + 1];
1433 	uint64_t addr;
1434 	int i, sz;
1435 	char digest[SHA1_RESULTLEN];
1436 	char jailname[MAXHOSTNAMELEN];
1437 
1438 	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1439 	/* If each (vnet) jail would also have a unique hostuuid this would not
1440 	 * be necessary. */
1441 	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1442 	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp),
1443 	    jailname);
1444 	if (sz < 0) {
1445 		/* Fall back to a random mac address. */
1446 		arc4rand(hwaddr, sizeof(*hwaddr), 0);
1447 		hwaddr->octet[0] = 0x02;
1448 		return;
1449 	}
1450 
1451 	SHA1Init(&ctx);
1452 	SHA1Update(&ctx, buf, sz);
1453 	SHA1Final(digest, &ctx);
1454 	free(buf, M_TEMP);
1455 
1456 	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1457 	    OUI_FREEBSD_GENERATED_MASK;
1458 	addr = OUI_FREEBSD(addr);
1459 	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1460 		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1461 		    0xFF;
1462 	}
1463 }
1464 
1465 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1466 MODULE_VERSION(ether, 1);
1467