xref: /freebsd/sys/net/if_fwsubr.c (revision 53b70c86)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2004 Doug Rabson
5  * Copyright (c) 1982, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/netisr.h>
50 #include <net/route.h>
51 #include <net/if_llc.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/bpf.h>
55 #include <net/firewire.h>
56 #include <net/if_llatbl.h>
57 
58 #if defined(INET) || defined(INET6)
59 #include <netinet/in.h>
60 #include <netinet/in_var.h>
61 #include <netinet/if_ether.h>
62 #endif
63 #ifdef INET6
64 #include <netinet6/nd6.h>
65 #endif
66 
67 #include <security/mac/mac_framework.h>
68 
69 static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
70 
71 struct fw_hwaddr firewire_broadcastaddr = {
72 	0xffffffff,
73 	0xffffffff,
74 	0xff,
75 	0xff,
76 	0xffff,
77 	0xffffffff
78 };
79 
80 static int
81 firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
82     struct route *ro)
83 {
84 	struct fw_com *fc = IFP2FWC(ifp);
85 	int error, type;
86 	struct m_tag *mtag;
87 	union fw_encap *enc;
88 	struct fw_hwaddr *destfw;
89 	uint8_t speed;
90 	uint16_t psize, fsize, dsize;
91 	struct mbuf *mtail;
92 	int unicast, dgl, foff;
93 	static int next_dgl;
94 #if defined(INET) || defined(INET6)
95 	int is_gw = 0;
96 #endif
97 	int af = RO_GET_FAMILY(ro, dst);
98 
99 #ifdef MAC
100 	error = mac_ifnet_check_transmit(ifp, m);
101 	if (error)
102 		goto bad;
103 #endif
104 
105 	if (!((ifp->if_flags & IFF_UP) &&
106 	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
107 		error = ENETDOWN;
108 		goto bad;
109 	}
110 
111 #if defined(INET) || defined(INET6)
112 	if (ro != NULL)
113 		is_gw = (ro->ro_flags & RT_HAS_GW) != 0;
114 #endif
115 	/*
116 	 * For unicast, we make a tag to store the lladdr of the
117 	 * destination. This might not be the first time we have seen
118 	 * the packet (for instance, the arp code might be trying to
119 	 * re-send it after receiving an arp reply) so we only
120 	 * allocate a tag if there isn't one there already. For
121 	 * multicast, we will eventually use a different tag to store
122 	 * the channel number.
123 	 */
124 	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
125 	if (unicast) {
126 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
127 		if (!mtag) {
128 			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
129 			    sizeof (struct fw_hwaddr), M_NOWAIT);
130 			if (!mtag) {
131 				error = ENOMEM;
132 				goto bad;
133 			}
134 			m_tag_prepend(m, mtag);
135 		}
136 		destfw = (struct fw_hwaddr *)(mtag + 1);
137 	} else {
138 		destfw = NULL;
139 	}
140 
141 	switch (af) {
142 #ifdef INET
143 	case AF_INET:
144 		type = ETHERTYPE_IP;
145 		break;
146 	case AF_ARP:
147 		type = ETHERTYPE_ARP;
148 		break;
149 #endif
150 #ifdef INET6
151 	case AF_INET6:
152 		type = ETHERTYPE_IPV6;
153 		break;
154 #endif
155 	default:
156 		if_printf(ifp, "can't handle af%d\n", af);
157 		error = EAFNOSUPPORT;
158 		goto bad;
159 	}
160 
161 	switch (dst->sa_family) {
162 #ifdef INET
163 	case AF_INET:
164 		/*
165 		 * Only bother with arp for unicast. Allocation of
166 		 * channels etc. for firewire is quite different and
167 		 * doesn't fit into the arp model.
168 		 */
169 		if (unicast) {
170 			error = arpresolve(ifp, is_gw, m, dst,
171 			    (u_char *) destfw, NULL, NULL);
172 			if (error)
173 				return (error == EWOULDBLOCK ? 0 : error);
174 		}
175 		break;
176 
177 	case AF_ARP:
178 	{
179 		struct arphdr *ah;
180 		ah = mtod(m, struct arphdr *);
181 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
182 		if (unicast)
183 			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
184 
185 		/*
186 		 * The standard arp code leaves a hole for the target
187 		 * hardware address which we need to close up.
188 		 */
189 		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
190 		m_adj(m, -ah->ar_hln);
191 		break;
192 	}
193 #endif
194 
195 #ifdef INET6
196 	case AF_INET6:
197 		if (unicast) {
198 			error = nd6_resolve(fc->fc_ifp, LLE_SF(af, is_gw), m,
199 			    dst, (u_char *) destfw, NULL, NULL);
200 			if (error)
201 				return (error == EWOULDBLOCK ? 0 : error);
202 		}
203 		break;
204 #endif
205 
206 	default:
207 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
208 		error = EAFNOSUPPORT;
209 		goto bad;
210 	}
211 
212 	/*
213 	 * Let BPF tap off a copy before we encapsulate.
214 	 */
215 	if (bpf_peers_present(ifp->if_bpf)) {
216 		struct fw_bpfhdr h;
217 		if (unicast)
218 			bcopy(destfw, h.firewire_dhost, 8);
219 		else
220 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
221 		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
222 		h.firewire_type = htons(type);
223 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
224 	}
225 
226 	/*
227 	 * Punt on MCAP for now and send all multicast packets on the
228 	 * broadcast channel.
229 	 */
230 	if (m->m_flags & M_MCAST)
231 		m->m_flags |= M_BCAST;
232 
233 	/*
234 	 * Figure out what speed to use and what the largest supported
235 	 * packet size is. For unicast, this is the minimum of what we
236 	 * can speak and what they can hear. For broadcast, lets be
237 	 * conservative and use S100. We could possibly improve that
238 	 * by examining the bus manager's speed map or similar. We
239 	 * also reduce the packet size for broadcast to account for
240 	 * the GASP header.
241 	 */
242 	if (unicast) {
243 		speed = min(fc->fc_speed, destfw->sspd);
244 		psize = min(512 << speed, 2 << destfw->sender_max_rec);
245 	} else {
246 		speed = 0;
247 		psize = 512 - 2*sizeof(uint32_t);
248 	}
249 
250 	/*
251 	 * Next, we encapsulate, possibly fragmenting the original
252 	 * datagram if it won't fit into a single packet.
253 	 */
254 	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
255 		/*
256 		 * No fragmentation is necessary.
257 		 */
258 		M_PREPEND(m, sizeof(uint32_t), M_NOWAIT);
259 		if (!m) {
260 			error = ENOBUFS;
261 			goto bad;
262 		}
263 		enc = mtod(m, union fw_encap *);
264 		enc->unfrag.ether_type = type;
265 		enc->unfrag.lf = FW_ENCAP_UNFRAG;
266 		enc->unfrag.reserved = 0;
267 
268 		/*
269 		 * Byte swap the encapsulation header manually.
270 		 */
271 		enc->ul[0] = htonl(enc->ul[0]);
272 
273 		error = (ifp->if_transmit)(ifp, m);
274 		return (error);
275 	} else {
276 		/*
277 		 * Fragment the datagram, making sure to leave enough
278 		 * space for the encapsulation header in each packet.
279 		 */
280 		fsize = psize - 2*sizeof(uint32_t);
281 		dgl = next_dgl++;
282 		dsize = m->m_pkthdr.len;
283 		foff = 0;
284 		while (m) {
285 			if (m->m_pkthdr.len > fsize) {
286 				/*
287 				 * Split off the tail segment from the
288 				 * datagram, copying our tags over.
289 				 */
290 				mtail = m_split(m, fsize, M_NOWAIT);
291 				m_tag_copy_chain(mtail, m, M_NOWAIT);
292 			} else {
293 				mtail = NULL;
294 			}
295 
296 			/*
297 			 * Add our encapsulation header to this
298 			 * fragment and hand it off to the link.
299 			 */
300 			M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
301 			if (!m) {
302 				error = ENOBUFS;
303 				goto bad;
304 			}
305 			enc = mtod(m, union fw_encap *);
306 			if (foff == 0) {
307 				enc->firstfrag.lf = FW_ENCAP_FIRST;
308 				enc->firstfrag.reserved1 = 0;
309 				enc->firstfrag.reserved2 = 0;
310 				enc->firstfrag.datagram_size = dsize - 1;
311 				enc->firstfrag.ether_type = type;
312 				enc->firstfrag.dgl = dgl;
313 			} else {
314 				if (mtail)
315 					enc->nextfrag.lf = FW_ENCAP_NEXT;
316 				else
317 					enc->nextfrag.lf = FW_ENCAP_LAST;
318 				enc->nextfrag.reserved1 = 0;
319 				enc->nextfrag.reserved2 = 0;
320 				enc->nextfrag.reserved3 = 0;
321 				enc->nextfrag.datagram_size = dsize - 1;
322 				enc->nextfrag.fragment_offset = foff;
323 				enc->nextfrag.dgl = dgl;
324 			}
325 			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
326 
327 			/*
328 			 * Byte swap the encapsulation header manually.
329 			 */
330 			enc->ul[0] = htonl(enc->ul[0]);
331 			enc->ul[1] = htonl(enc->ul[1]);
332 
333 			error = (ifp->if_transmit)(ifp, m);
334 			if (error) {
335 				if (mtail)
336 					m_freem(mtail);
337 				return (ENOBUFS);
338 			}
339 
340 			m = mtail;
341 		}
342 
343 		return (0);
344 	}
345 
346 bad:
347 	if (m)
348 		m_freem(m);
349 	return (error);
350 }
351 
352 static struct mbuf *
353 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
354 {
355 	union fw_encap *enc;
356 	struct fw_reass *r;
357 	struct mbuf *mf, *mprev;
358 	int dsize;
359 	int fstart, fend, start, end, islast;
360 	uint32_t id;
361 
362 	/*
363 	 * Find an existing reassembly buffer or create a new one.
364 	 */
365 	enc = mtod(m, union fw_encap *);
366 	id = enc->firstfrag.dgl | (src << 16);
367 	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
368 		if (r->fr_id == id)
369 			break;
370 	if (!r) {
371 		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
372 		if (!r) {
373 			m_freem(m);
374 			return 0;
375 		}
376 		r->fr_id = id;
377 		r->fr_frags = 0;
378 		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
379 	}
380 
381 	/*
382 	 * If this fragment overlaps any other fragment, we must discard
383 	 * the partial reassembly and start again.
384 	 */
385 	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
386 		fstart = 0;
387 	else
388 		fstart = enc->nextfrag.fragment_offset;
389 	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
390 	dsize = enc->nextfrag.datagram_size;
391 	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
392 
393 	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
394 		enc = mtod(mf, union fw_encap *);
395 		if (enc->nextfrag.datagram_size != dsize) {
396 			/*
397 			 * This fragment must be from a different
398 			 * packet.
399 			 */
400 			goto bad;
401 		}
402 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
403 			start = 0;
404 		else
405 			start = enc->nextfrag.fragment_offset;
406 		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
407 		if ((fstart < end && fend > start) ||
408 		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
409 			/*
410 			 * Overlap - discard reassembly buffer and start
411 			 * again with this fragment.
412 			 */
413 			goto bad;
414 		}
415 	}
416 
417 	/*
418 	 * Find where to put this fragment in the list.
419 	 */
420 	for (mf = r->fr_frags, mprev = NULL; mf;
421 	    mprev = mf, mf = mf->m_nextpkt) {
422 		enc = mtod(mf, union fw_encap *);
423 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
424 			start = 0;
425 		else
426 			start = enc->nextfrag.fragment_offset;
427 		if (start >= fend)
428 			break;
429 	}
430 
431 	/*
432 	 * If this is a last fragment and we are not adding at the end
433 	 * of the list, discard the buffer.
434 	 */
435 	if (islast && mprev && mprev->m_nextpkt)
436 		goto bad;
437 
438 	if (mprev) {
439 		m->m_nextpkt = mprev->m_nextpkt;
440 		mprev->m_nextpkt = m;
441 
442 		/*
443 		 * Coalesce forwards and see if we can make a whole
444 		 * datagram.
445 		 */
446 		enc = mtod(mprev, union fw_encap *);
447 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
448 			start = 0;
449 		else
450 			start = enc->nextfrag.fragment_offset;
451 		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
452 		while (end == fstart) {
453 			/*
454 			 * Strip off the encap header from m and
455 			 * append it to mprev, freeing m.
456 			 */
457 			m_adj(m, 2*sizeof(uint32_t));
458 			mprev->m_nextpkt = m->m_nextpkt;
459 			mprev->m_pkthdr.len += m->m_pkthdr.len;
460 			m_cat(mprev, m);
461 
462 			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
463 				/*
464 				 * We have assembled a complete packet
465 				 * we must be finished. Make sure we have
466 				 * merged the whole chain.
467 				 */
468 				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
469 				free(r, M_TEMP);
470 				m = mprev->m_nextpkt;
471 				while (m) {
472 					mf = m->m_nextpkt;
473 					m_freem(m);
474 					m = mf;
475 				}
476 				mprev->m_nextpkt = NULL;
477 
478 				return (mprev);
479 			}
480 
481 			/*
482 			 * See if we can continue merging forwards.
483 			 */
484 			end = fend;
485 			m = mprev->m_nextpkt;
486 			if (m) {
487 				enc = mtod(m, union fw_encap *);
488 				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
489 					fstart = 0;
490 				else
491 					fstart = enc->nextfrag.fragment_offset;
492 				fend = fstart + m->m_pkthdr.len
493 				    - 2*sizeof(uint32_t);
494 			} else {
495 				break;
496 			}
497 		}
498 	} else {
499 		m->m_nextpkt = 0;
500 		r->fr_frags = m;
501 	}
502 
503 	return (0);
504 
505 bad:
506 	while (r->fr_frags) {
507 		mf = r->fr_frags;
508 		r->fr_frags = mf->m_nextpkt;
509 		m_freem(mf);
510 	}
511 	m->m_nextpkt = 0;
512 	r->fr_frags = m;
513 
514 	return (0);
515 }
516 
517 void
518 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
519 {
520 	struct fw_com *fc = IFP2FWC(ifp);
521 	union fw_encap *enc;
522 	int type, isr;
523 
524 	/*
525 	 * The caller has already stripped off the packet header
526 	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
527 	 * appropriately. We de-encapsulate the IP packet and pass it
528 	 * up the line after handling link-level fragmentation.
529 	 */
530 	if (m->m_pkthdr.len < sizeof(uint32_t)) {
531 		if_printf(ifp, "discarding frame without "
532 		    "encapsulation header (len %u pkt len %u)\n",
533 		    m->m_len, m->m_pkthdr.len);
534 	}
535 
536 	m = m_pullup(m, sizeof(uint32_t));
537 	if (m == NULL)
538 		return;
539 	enc = mtod(m, union fw_encap *);
540 
541 	/*
542 	 * Byte swap the encapsulation header manually.
543 	 */
544 	enc->ul[0] = ntohl(enc->ul[0]);
545 
546 	if (enc->unfrag.lf != 0) {
547 		m = m_pullup(m, 2*sizeof(uint32_t));
548 		if (!m)
549 			return;
550 		enc = mtod(m, union fw_encap *);
551 		enc->ul[1] = ntohl(enc->ul[1]);
552 		m = firewire_input_fragment(fc, m, src);
553 		if (!m)
554 			return;
555 		enc = mtod(m, union fw_encap *);
556 		type = enc->firstfrag.ether_type;
557 		m_adj(m, 2*sizeof(uint32_t));
558 	} else {
559 		type = enc->unfrag.ether_type;
560 		m_adj(m, sizeof(uint32_t));
561 	}
562 
563 	if (m->m_pkthdr.rcvif == NULL) {
564 		if_printf(ifp, "discard frame w/o interface pointer\n");
565 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
566 		m_freem(m);
567 		return;
568 	}
569 #ifdef DIAGNOSTIC
570 	if (m->m_pkthdr.rcvif != ifp) {
571 		if_printf(ifp, "Warning, frame marked as received on %s\n",
572 			m->m_pkthdr.rcvif->if_xname);
573 	}
574 #endif
575 
576 #ifdef MAC
577 	/*
578 	 * Tag the mbuf with an appropriate MAC label before any other
579 	 * consumers can get to it.
580 	 */
581 	mac_ifnet_create_mbuf(ifp, m);
582 #endif
583 
584 	/*
585 	 * Give bpf a chance at the packet. The link-level driver
586 	 * should have left us a tag with the EUID of the sender.
587 	 */
588 	if (bpf_peers_present(ifp->if_bpf)) {
589 		struct fw_bpfhdr h;
590 		struct m_tag *mtag;
591 
592 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
593 		if (mtag)
594 			bcopy(mtag + 1, h.firewire_shost, 8);
595 		else
596 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
597 		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
598 		h.firewire_type = htons(type);
599 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
600 	}
601 
602 	if (ifp->if_flags & IFF_MONITOR) {
603 		/*
604 		 * Interface marked for monitoring; discard packet.
605 		 */
606 		m_freem(m);
607 		return;
608 	}
609 
610 	if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
611 
612 	/* Discard packet if interface is not up */
613 	if ((ifp->if_flags & IFF_UP) == 0) {
614 		m_freem(m);
615 		return;
616 	}
617 
618 	if (m->m_flags & (M_BCAST|M_MCAST))
619 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
620 
621 	switch (type) {
622 #ifdef INET
623 	case ETHERTYPE_IP:
624 		isr = NETISR_IP;
625 		break;
626 
627 	case ETHERTYPE_ARP:
628 	{
629 		struct arphdr *ah;
630 		ah = mtod(m, struct arphdr *);
631 
632 		/*
633 		 * Adjust the arp packet to insert an empty tha slot.
634 		 */
635 		m->m_len += ah->ar_hln;
636 		m->m_pkthdr.len += ah->ar_hln;
637 		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
638 		isr = NETISR_ARP;
639 		break;
640 	}
641 #endif
642 
643 #ifdef INET6
644 	case ETHERTYPE_IPV6:
645 		isr = NETISR_IPV6;
646 		break;
647 #endif
648 
649 	default:
650 		m_freem(m);
651 		return;
652 	}
653 
654 	M_SETFIB(m, ifp->if_fib);
655 	CURVNET_SET_QUIET(ifp->if_vnet);
656 	netisr_dispatch(isr, m);
657 	CURVNET_RESTORE();
658 }
659 
660 int
661 firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
662 {
663 	struct ifaddr *ifa = (struct ifaddr *) data;
664 	struct ifreq *ifr = (struct ifreq *) data;
665 	int error = 0;
666 
667 	switch (command) {
668 	case SIOCSIFADDR:
669 		ifp->if_flags |= IFF_UP;
670 
671 		switch (ifa->ifa_addr->sa_family) {
672 #ifdef INET
673 		case AF_INET:
674 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
675 			arp_ifinit(ifp, ifa);
676 			break;
677 #endif
678 		default:
679 			ifp->if_init(ifp->if_softc);
680 			break;
681 		}
682 		break;
683 
684 	case SIOCGIFADDR:
685 		bcopy(&IFP2FWC(ifp)->fc_hwaddr, &ifr->ifr_addr.sa_data[0],
686 		    sizeof(struct fw_hwaddr));
687 		break;
688 
689 	case SIOCSIFMTU:
690 		/*
691 		 * Set the interface MTU.
692 		 */
693 		if (ifr->ifr_mtu > 1500) {
694 			error = EINVAL;
695 		} else {
696 			ifp->if_mtu = ifr->ifr_mtu;
697 		}
698 		break;
699 	default:
700 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
701 		break;
702 	}
703 	return (error);
704 }
705 
706 static int
707 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
708     struct sockaddr *sa)
709 {
710 #ifdef INET
711 	struct sockaddr_in *sin;
712 #endif
713 #ifdef INET6
714 	struct sockaddr_in6 *sin6;
715 #endif
716 
717 	switch(sa->sa_family) {
718 	case AF_LINK:
719 		/*
720 		 * No mapping needed.
721 		 */
722 		*llsa = NULL;
723 		return 0;
724 
725 #ifdef INET
726 	case AF_INET:
727 		sin = (struct sockaddr_in *)sa;
728 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
729 			return EADDRNOTAVAIL;
730 		*llsa = NULL;
731 		return 0;
732 #endif
733 #ifdef INET6
734 	case AF_INET6:
735 		sin6 = (struct sockaddr_in6 *)sa;
736 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
737 			/*
738 			 * An IP6 address of 0 means listen to all
739 			 * of the Ethernet multicast address used for IP6.
740 			 * (This is used for multicast routers.)
741 			 */
742 			ifp->if_flags |= IFF_ALLMULTI;
743 			*llsa = NULL;
744 			return 0;
745 		}
746 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
747 			return EADDRNOTAVAIL;
748 		*llsa = NULL;
749 		return 0;
750 #endif
751 
752 	default:
753 		/*
754 		 * Well, the text isn't quite right, but it's the name
755 		 * that counts...
756 		 */
757 		return EAFNOSUPPORT;
758 	}
759 }
760 
761 void
762 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
763 {
764 	struct fw_com *fc = IFP2FWC(ifp);
765 	struct ifaddr *ifa;
766 	struct sockaddr_dl *sdl;
767 	static const char* speeds[] = {
768 		"S100", "S200", "S400", "S800",
769 		"S1600", "S3200"
770 	};
771 
772 	fc->fc_speed = llc->sspd;
773 	STAILQ_INIT(&fc->fc_frags);
774 
775 	ifp->if_addrlen = sizeof(struct fw_hwaddr);
776 	ifp->if_hdrlen = 0;
777 	if_attach(ifp);
778 	ifp->if_mtu = 1500;	/* XXX */
779 	ifp->if_output = firewire_output;
780 	ifp->if_resolvemulti = firewire_resolvemulti;
781 	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
782 
783 	ifa = ifp->if_addr;
784 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
785 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
786 	sdl->sdl_type = IFT_IEEE1394;
787 	sdl->sdl_alen = ifp->if_addrlen;
788 	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
789 
790 	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
791 	    sizeof(struct fw_hwaddr));
792 
793 	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
794 	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
795 	    ntohs(llc->sender_unicast_FIFO_hi),
796 	    ntohl(llc->sender_unicast_FIFO_lo),
797 	    speeds[llc->sspd],
798 	    (2 << llc->sender_max_rec));
799 }
800 
801 void
802 firewire_ifdetach(struct ifnet *ifp)
803 {
804 	bpfdetach(ifp);
805 	if_detach(ifp);
806 }
807 
808 void
809 firewire_busreset(struct ifnet *ifp)
810 {
811 	struct fw_com *fc = IFP2FWC(ifp);
812 	struct fw_reass *r;
813 	struct mbuf *m;
814 
815 	/*
816 	 * Discard any partial datagrams since the host ids may have changed.
817 	 */
818 	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
819 		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
820 		while (r->fr_frags) {
821 			m = r->fr_frags;
822 			r->fr_frags = m->m_nextpkt;
823 			m_freem(m);
824 		}
825 		free(r, M_TEMP);
826 	}
827 }
828 
829 static void *
830 firewire_alloc(u_char type, struct ifnet *ifp)
831 {
832 	struct fw_com	*fc;
833 
834 	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
835 	fc->fc_ifp = ifp;
836 
837 	return (fc);
838 }
839 
840 static void
841 firewire_free(void *com, u_char type)
842 {
843 
844 	free(com, M_FWCOM);
845 }
846 
847 static int
848 firewire_modevent(module_t mod, int type, void *data)
849 {
850 
851 	switch (type) {
852 	case MOD_LOAD:
853 		if_register_com_alloc(IFT_IEEE1394,
854 		    firewire_alloc, firewire_free);
855 		break;
856 	case MOD_UNLOAD:
857 		if_deregister_com_alloc(IFT_IEEE1394);
858 		break;
859 	default:
860 		return (EOPNOTSUPP);
861 	}
862 
863 	return (0);
864 }
865 
866 static moduledata_t firewire_mod = {
867 	"if_firewire",
868 	firewire_modevent,
869 	0
870 };
871 
872 DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
873 MODULE_VERSION(if_firewire, 1);
874