xref: /freebsd/sys/net/if_vlan.c (revision 9768746b)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 #include "opt_inet6.h"
50 #include "opt_kern_tls.h"
51 #include "opt_vlan.h"
52 #include "opt_ratelimit.h"
53 
54 #include <sys/param.h>
55 #include <sys/eventhandler.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/rmlock.h>
62 #include <sys/priv.h>
63 #include <sys/queue.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/sysctl.h>
67 #include <sys/systm.h>
68 #include <sys/sx.h>
69 #include <sys/taskqueue.h>
70 
71 #include <net/bpf.h>
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/if_var.h>
75 #include <net/if_private.h>
76 #include <net/if_clone.h>
77 #include <net/if_dl.h>
78 #include <net/if_types.h>
79 #include <net/if_vlan_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #endif
87 
88 #ifdef INET6
89 /*
90  * XXX: declare here to avoid to include many inet6 related files..
91  * should be more generalized?
92  */
93 extern void	nd6_setmtu(struct ifnet *);
94 #endif
95 
96 #define	VLAN_DEF_HWIDTH	4
97 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
98 
99 #define	UP_AND_RUNNING(ifp) \
100     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
101 
102 CK_SLIST_HEAD(ifvlanhead, ifvlan);
103 
104 struct ifvlantrunk {
105 	struct	ifnet   *parent;	/* parent interface of this trunk */
106 	struct	mtx	lock;
107 #ifdef VLAN_ARRAY
108 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
109 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
110 #else
111 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
112 	uint16_t	hmask;
113 	uint16_t	hwidth;
114 #endif
115 	int		refcnt;
116 };
117 
118 #if defined(KERN_TLS) || defined(RATELIMIT)
119 struct vlan_snd_tag {
120 	struct m_snd_tag com;
121 	struct m_snd_tag *tag;
122 };
123 
124 static inline struct vlan_snd_tag *
125 mst_to_vst(struct m_snd_tag *mst)
126 {
127 
128 	return (__containerof(mst, struct vlan_snd_tag, com));
129 }
130 #endif
131 
132 /*
133  * This macro provides a facility to iterate over every vlan on a trunk with
134  * the assumption that none will be added/removed during iteration.
135  */
136 #ifdef VLAN_ARRAY
137 #define VLAN_FOREACH(_ifv, _trunk) \
138 	size_t _i; \
139 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
140 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
141 #else /* VLAN_ARRAY */
142 #define VLAN_FOREACH(_ifv, _trunk) \
143 	struct ifvlan *_next; \
144 	size_t _i; \
145 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
146 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
147 #endif /* VLAN_ARRAY */
148 
149 /*
150  * This macro provides a facility to iterate over every vlan on a trunk while
151  * also modifying the number of vlans on the trunk. The iteration continues
152  * until some condition is met or there are no more vlans on the trunk.
153  */
154 #ifdef VLAN_ARRAY
155 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
156 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
157 	size_t _i; \
158 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
159 		if (((_ifv) = (_trunk)->vlans[_i]))
160 #else /* VLAN_ARRAY */
161 /*
162  * The hash table case is more complicated. We allow for the hash table to be
163  * modified (i.e. vlans removed) while we are iterating over it. To allow for
164  * this we must restart the iteration every time we "touch" something during
165  * the iteration, since removal will resize the hash table and invalidate our
166  * current position. If acting on the touched element causes the trunk to be
167  * emptied, then iteration also stops.
168  */
169 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
170 	size_t _i; \
171 	bool _touch = false; \
172 	for (_i = 0; \
173 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
174 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
175 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
176 		    (_touch = true))
177 #endif /* VLAN_ARRAY */
178 
179 struct vlan_mc_entry {
180 	struct sockaddr_dl		mc_addr;
181 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
182 	struct epoch_context		mc_epoch_ctx;
183 };
184 
185 struct ifvlan {
186 	struct	ifvlantrunk *ifv_trunk;
187 	struct	ifnet *ifv_ifp;
188 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
189 #define	PARENT(ifv)	(TRUNK(ifv)->parent)
190 	void	*ifv_cookie;
191 	int	ifv_pflags;	/* special flags we have set on parent */
192 	int	ifv_capenable;
193 	int	ifv_encaplen;	/* encapsulation length */
194 	int	ifv_mtufudge;	/* MTU fudged by this much */
195 	int	ifv_mintu;	/* min transmission unit */
196 	struct  ether_8021q_tag ifv_qtag;
197 #define ifv_proto	ifv_qtag.proto
198 #define ifv_vid		ifv_qtag.vid
199 #define ifv_pcp		ifv_qtag.pcp
200 	struct task lladdr_task;
201 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
202 #ifndef VLAN_ARRAY
203 	CK_SLIST_ENTRY(ifvlan) ifv_list;
204 #endif
205 };
206 
207 /* Special flags we should propagate to parent. */
208 static struct {
209 	int flag;
210 	int (*func)(struct ifnet *, int);
211 } vlan_pflags[] = {
212 	{IFF_PROMISC, ifpromisc},
213 	{IFF_ALLMULTI, if_allmulti},
214 	{0, NULL}
215 };
216 
217 VNET_DECLARE(int, vlan_mtag_pcp);
218 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
219 
220 static const char vlanname[] = "vlan";
221 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
222 
223 static eventhandler_tag ifdetach_tag;
224 static eventhandler_tag iflladdr_tag;
225 static eventhandler_tag ifevent_tag;
226 
227 /*
228  * if_vlan uses two module-level synchronizations primitives to allow concurrent
229  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
230  * while they are being used for tx/rx. To accomplish this in a way that has
231  * acceptable performance and cooperation with other parts of the network stack
232  * there is a non-sleepable epoch(9) and an sx(9).
233  *
234  * The performance-sensitive paths that warrant using the epoch(9) are
235  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
236  * existence using if_vlantrunk, and being in the network tx/rx paths the use
237  * of an epoch(9) gives a measureable improvement in performance.
238  *
239  * The reason for having an sx(9) is mostly because there are still areas that
240  * must be sleepable and also have safe concurrent access to a vlan interface.
241  * Since the sx(9) exists, it is used by default in most paths unless sleeping
242  * is not permitted, or if it is not clear whether sleeping is permitted.
243  *
244  */
245 #define _VLAN_SX_ID ifv_sx
246 
247 static struct sx _VLAN_SX_ID;
248 
249 #define VLAN_LOCKING_INIT() \
250 	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
251 
252 #define VLAN_LOCKING_DESTROY() \
253 	sx_destroy(&_VLAN_SX_ID)
254 
255 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
256 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
257 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
258 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
259 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
260 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
261 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
262 
263 /*
264  * We also have a per-trunk mutex that should be acquired when changing
265  * its state.
266  */
267 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
268 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
269 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
270 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
271 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
272 
273 /*
274  * The VLAN_ARRAY substitutes the dynamic hash with a static array
275  * with 4096 entries. In theory this can give a boost in processing,
276  * however in practice it does not. Probably this is because the array
277  * is too big to fit into CPU cache.
278  */
279 #ifndef VLAN_ARRAY
280 static	void vlan_inithash(struct ifvlantrunk *trunk);
281 static	void vlan_freehash(struct ifvlantrunk *trunk);
282 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
283 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
284 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
285 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
286 	uint16_t vid);
287 #endif
288 static	void trunk_destroy(struct ifvlantrunk *trunk);
289 
290 static	void vlan_init(void *foo);
291 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
292 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
293 #if defined(KERN_TLS) || defined(RATELIMIT)
294 static	int vlan_snd_tag_alloc(struct ifnet *,
295     union if_snd_tag_alloc_params *, struct m_snd_tag **);
296 static	int vlan_snd_tag_modify(struct m_snd_tag *,
297     union if_snd_tag_modify_params *);
298 static	int vlan_snd_tag_query(struct m_snd_tag *,
299     union if_snd_tag_query_params *);
300 static	void vlan_snd_tag_free(struct m_snd_tag *);
301 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
302 static void vlan_ratelimit_query(struct ifnet *,
303     struct if_ratelimit_query_results *);
304 #endif
305 static	void vlan_qflush(struct ifnet *ifp);
306 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
307     int (*func)(struct ifnet *, int));
308 static	int vlan_setflags(struct ifnet *ifp, int status);
309 static	int vlan_setmulti(struct ifnet *ifp);
310 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
311 #ifdef ALTQ
312 static void vlan_altq_start(struct ifnet *ifp);
313 static	int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
314 #endif
315 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
316     const struct sockaddr *dst, struct route *ro);
317 static	void vlan_unconfig(struct ifnet *ifp);
318 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
319 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
320 	uint16_t proto);
321 static	void vlan_link_state(struct ifnet *ifp);
322 static	void vlan_capabilities(struct ifvlan *ifv);
323 static	void vlan_trunk_capabilities(struct ifnet *ifp);
324 
325 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
326 static	int vlan_clone_match(struct if_clone *, const char *);
327 static	int vlan_clone_create(struct if_clone *, char *, size_t,
328     struct ifc_data *, struct ifnet **);
329 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t);
330 
331 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
332 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
333 static  void vlan_ifevent(void *arg, struct ifnet *ifp, int event);
334 
335 static  void vlan_lladdr_fn(void *arg, int pending);
336 
337 static struct if_clone *vlan_cloner;
338 
339 #ifdef VIMAGE
340 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
341 #define	V_vlan_cloner	VNET(vlan_cloner)
342 #endif
343 
344 #ifdef RATELIMIT
345 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = {
346 	.snd_tag_modify = vlan_snd_tag_modify,
347 	.snd_tag_query = vlan_snd_tag_query,
348 	.snd_tag_free = vlan_snd_tag_free,
349 	.next_snd_tag = vlan_next_snd_tag,
350 	.type = IF_SND_TAG_TYPE_UNLIMITED
351 };
352 
353 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = {
354 	.snd_tag_modify = vlan_snd_tag_modify,
355 	.snd_tag_query = vlan_snd_tag_query,
356 	.snd_tag_free = vlan_snd_tag_free,
357 	.next_snd_tag = vlan_next_snd_tag,
358 	.type = IF_SND_TAG_TYPE_RATE_LIMIT
359 };
360 #endif
361 
362 #ifdef KERN_TLS
363 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = {
364 	.snd_tag_modify = vlan_snd_tag_modify,
365 	.snd_tag_query = vlan_snd_tag_query,
366 	.snd_tag_free = vlan_snd_tag_free,
367 	.next_snd_tag = vlan_next_snd_tag,
368 	.type = IF_SND_TAG_TYPE_TLS
369 };
370 
371 #ifdef RATELIMIT
372 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = {
373 	.snd_tag_modify = vlan_snd_tag_modify,
374 	.snd_tag_query = vlan_snd_tag_query,
375 	.snd_tag_free = vlan_snd_tag_free,
376 	.next_snd_tag = vlan_next_snd_tag,
377 	.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT
378 };
379 #endif
380 #endif
381 
382 static void
383 vlan_mc_free(struct epoch_context *ctx)
384 {
385 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
386 	free(mc, M_VLAN);
387 }
388 
389 #ifndef VLAN_ARRAY
390 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
391 
392 static void
393 vlan_inithash(struct ifvlantrunk *trunk)
394 {
395 	int i, n;
396 
397 	/*
398 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
399 	 * It is OK in case this function is called before the trunk struct
400 	 * gets hooked up and becomes visible from other threads.
401 	 */
402 
403 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
404 	    ("%s: hash already initialized", __func__));
405 
406 	trunk->hwidth = VLAN_DEF_HWIDTH;
407 	n = 1 << trunk->hwidth;
408 	trunk->hmask = n - 1;
409 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
410 	for (i = 0; i < n; i++)
411 		CK_SLIST_INIT(&trunk->hash[i]);
412 }
413 
414 static void
415 vlan_freehash(struct ifvlantrunk *trunk)
416 {
417 #ifdef INVARIANTS
418 	int i;
419 
420 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
421 	for (i = 0; i < (1 << trunk->hwidth); i++)
422 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
423 		    ("%s: hash table not empty", __func__));
424 #endif
425 	free(trunk->hash, M_VLAN);
426 	trunk->hash = NULL;
427 	trunk->hwidth = trunk->hmask = 0;
428 }
429 
430 static int
431 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
432 {
433 	int i, b;
434 	struct ifvlan *ifv2;
435 
436 	VLAN_XLOCK_ASSERT();
437 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
438 
439 	b = 1 << trunk->hwidth;
440 	i = HASH(ifv->ifv_vid, trunk->hmask);
441 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
442 		if (ifv->ifv_vid == ifv2->ifv_vid)
443 			return (EEXIST);
444 
445 	/*
446 	 * Grow the hash when the number of vlans exceeds half of the number of
447 	 * hash buckets squared. This will make the average linked-list length
448 	 * buckets/2.
449 	 */
450 	if (trunk->refcnt > (b * b) / 2) {
451 		vlan_growhash(trunk, 1);
452 		i = HASH(ifv->ifv_vid, trunk->hmask);
453 	}
454 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
455 	trunk->refcnt++;
456 
457 	return (0);
458 }
459 
460 static int
461 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
462 {
463 	int i, b;
464 	struct ifvlan *ifv2;
465 
466 	VLAN_XLOCK_ASSERT();
467 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
468 
469 	b = 1 << (trunk->hwidth - 1);
470 	i = HASH(ifv->ifv_vid, trunk->hmask);
471 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
472 		if (ifv2 == ifv) {
473 			trunk->refcnt--;
474 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
475 			if (trunk->refcnt < (b * b) / 2)
476 				vlan_growhash(trunk, -1);
477 			return (0);
478 		}
479 
480 	panic("%s: vlan not found\n", __func__);
481 	return (ENOENT); /*NOTREACHED*/
482 }
483 
484 /*
485  * Grow the hash larger or smaller if memory permits.
486  */
487 static void
488 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
489 {
490 	struct ifvlan *ifv;
491 	struct ifvlanhead *hash2;
492 	int hwidth2, i, j, n, n2;
493 
494 	VLAN_XLOCK_ASSERT();
495 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
496 
497 	if (howmuch == 0) {
498 		/* Harmless yet obvious coding error */
499 		printf("%s: howmuch is 0\n", __func__);
500 		return;
501 	}
502 
503 	hwidth2 = trunk->hwidth + howmuch;
504 	n = 1 << trunk->hwidth;
505 	n2 = 1 << hwidth2;
506 	/* Do not shrink the table below the default */
507 	if (hwidth2 < VLAN_DEF_HWIDTH)
508 		return;
509 
510 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
511 	if (hash2 == NULL) {
512 		printf("%s: out of memory -- hash size not changed\n",
513 		    __func__);
514 		return;		/* We can live with the old hash table */
515 	}
516 	for (j = 0; j < n2; j++)
517 		CK_SLIST_INIT(&hash2[j]);
518 	for (i = 0; i < n; i++)
519 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
520 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
521 			j = HASH(ifv->ifv_vid, n2 - 1);
522 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
523 		}
524 	NET_EPOCH_WAIT();
525 	free(trunk->hash, M_VLAN);
526 	trunk->hash = hash2;
527 	trunk->hwidth = hwidth2;
528 	trunk->hmask = n2 - 1;
529 
530 	if (bootverbose)
531 		if_printf(trunk->parent,
532 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
533 }
534 
535 static __inline struct ifvlan *
536 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
537 {
538 	struct ifvlan *ifv;
539 
540 	NET_EPOCH_ASSERT();
541 
542 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
543 		if (ifv->ifv_vid == vid)
544 			return (ifv);
545 	return (NULL);
546 }
547 
548 #if 0
549 /* Debugging code to view the hashtables. */
550 static void
551 vlan_dumphash(struct ifvlantrunk *trunk)
552 {
553 	int i;
554 	struct ifvlan *ifv;
555 
556 	for (i = 0; i < (1 << trunk->hwidth); i++) {
557 		printf("%d: ", i);
558 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
559 			printf("%s ", ifv->ifv_ifp->if_xname);
560 		printf("\n");
561 	}
562 }
563 #endif /* 0 */
564 #else
565 
566 static __inline struct ifvlan *
567 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
568 {
569 
570 	return trunk->vlans[vid];
571 }
572 
573 static __inline int
574 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
575 {
576 
577 	if (trunk->vlans[ifv->ifv_vid] != NULL)
578 		return EEXIST;
579 	trunk->vlans[ifv->ifv_vid] = ifv;
580 	trunk->refcnt++;
581 
582 	return (0);
583 }
584 
585 static __inline int
586 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
587 {
588 
589 	trunk->vlans[ifv->ifv_vid] = NULL;
590 	trunk->refcnt--;
591 
592 	return (0);
593 }
594 
595 static __inline void
596 vlan_freehash(struct ifvlantrunk *trunk)
597 {
598 }
599 
600 static __inline void
601 vlan_inithash(struct ifvlantrunk *trunk)
602 {
603 }
604 
605 #endif /* !VLAN_ARRAY */
606 
607 static void
608 trunk_destroy(struct ifvlantrunk *trunk)
609 {
610 	VLAN_XLOCK_ASSERT();
611 
612 	vlan_freehash(trunk);
613 	trunk->parent->if_vlantrunk = NULL;
614 	TRUNK_LOCK_DESTROY(trunk);
615 	if_rele(trunk->parent);
616 	free(trunk, M_VLAN);
617 }
618 
619 /*
620  * Program our multicast filter. What we're actually doing is
621  * programming the multicast filter of the parent. This has the
622  * side effect of causing the parent interface to receive multicast
623  * traffic that it doesn't really want, which ends up being discarded
624  * later by the upper protocol layers. Unfortunately, there's no way
625  * to avoid this: there really is only one physical interface.
626  */
627 static int
628 vlan_setmulti(struct ifnet *ifp)
629 {
630 	struct ifnet		*ifp_p;
631 	struct ifmultiaddr	*ifma;
632 	struct ifvlan		*sc;
633 	struct vlan_mc_entry	*mc;
634 	int			error;
635 
636 	VLAN_XLOCK_ASSERT();
637 
638 	/* Find the parent. */
639 	sc = ifp->if_softc;
640 	ifp_p = PARENT(sc);
641 
642 	CURVNET_SET_QUIET(ifp_p->if_vnet);
643 
644 	/* First, remove any existing filter entries. */
645 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
646 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
647 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
648 		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
649 	}
650 
651 	/* Now program new ones. */
652 	IF_ADDR_WLOCK(ifp);
653 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
654 		if (ifma->ifma_addr->sa_family != AF_LINK)
655 			continue;
656 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
657 		if (mc == NULL) {
658 			IF_ADDR_WUNLOCK(ifp);
659 			CURVNET_RESTORE();
660 			return (ENOMEM);
661 		}
662 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
663 		mc->mc_addr.sdl_index = ifp_p->if_index;
664 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
665 	}
666 	IF_ADDR_WUNLOCK(ifp);
667 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
668 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
669 		    NULL);
670 		if (error) {
671 			CURVNET_RESTORE();
672 			return (error);
673 		}
674 	}
675 
676 	CURVNET_RESTORE();
677 	return (0);
678 }
679 
680 /*
681  * A handler for interface ifnet events.
682  */
683 static void
684 vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event)
685 {
686 	struct epoch_tracker et;
687 	struct ifvlan *ifv;
688 	struct ifvlantrunk *trunk;
689 
690 	if (event != IFNET_EVENT_UPDATE_BAUDRATE)
691 		return;
692 
693 	NET_EPOCH_ENTER(et);
694 	trunk = ifp->if_vlantrunk;
695 	if (trunk == NULL) {
696 		NET_EPOCH_EXIT(et);
697 		return;
698 	}
699 
700 	TRUNK_WLOCK(trunk);
701 	VLAN_FOREACH(ifv, trunk) {
702 		ifv->ifv_ifp->if_baudrate = ifp->if_baudrate;
703 	}
704 	TRUNK_WUNLOCK(trunk);
705 	NET_EPOCH_EXIT(et);
706 }
707 
708 /*
709  * A handler for parent interface link layer address changes.
710  * If the parent interface link layer address is changed we
711  * should also change it on all children vlans.
712  */
713 static void
714 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
715 {
716 	struct epoch_tracker et;
717 	struct ifvlan *ifv;
718 	struct ifnet *ifv_ifp;
719 	struct ifvlantrunk *trunk;
720 	struct sockaddr_dl *sdl;
721 
722 	/* Need the epoch since this is run on taskqueue_swi. */
723 	NET_EPOCH_ENTER(et);
724 	trunk = ifp->if_vlantrunk;
725 	if (trunk == NULL) {
726 		NET_EPOCH_EXIT(et);
727 		return;
728 	}
729 
730 	/*
731 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
732 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
733 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
734 	 */
735 	TRUNK_WLOCK(trunk);
736 	VLAN_FOREACH(ifv, trunk) {
737 		/*
738 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
739 		 * to actually call if_setlladdr. if_setlladdr needs to
740 		 * be deferred to a taskqueue because it will call into
741 		 * the if_vlan ioctl path and try to acquire the global
742 		 * lock.
743 		 */
744 		ifv_ifp = ifv->ifv_ifp;
745 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
746 		    ifp->if_addrlen);
747 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
748 		sdl->sdl_alen = ifp->if_addrlen;
749 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
750 	}
751 	TRUNK_WUNLOCK(trunk);
752 	NET_EPOCH_EXIT(et);
753 }
754 
755 /*
756  * A handler for network interface departure events.
757  * Track departure of trunks here so that we don't access invalid
758  * pointers or whatever if a trunk is ripped from under us, e.g.,
759  * by ejecting its hot-plug card.  However, if an ifnet is simply
760  * being renamed, then there's no need to tear down the state.
761  */
762 static void
763 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
764 {
765 	struct ifvlan *ifv;
766 	struct ifvlantrunk *trunk;
767 
768 	/* If the ifnet is just being renamed, don't do anything. */
769 	if (ifp->if_flags & IFF_RENAMING)
770 		return;
771 	VLAN_XLOCK();
772 	trunk = ifp->if_vlantrunk;
773 	if (trunk == NULL) {
774 		VLAN_XUNLOCK();
775 		return;
776 	}
777 
778 	/*
779 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
780 	 * Check trunk pointer after each vlan_unconfig() as it will
781 	 * free it and set to NULL after the last vlan was detached.
782 	 */
783 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
784 	    ifp->if_vlantrunk == NULL)
785 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
786 
787 	/* Trunk should have been destroyed in vlan_unconfig(). */
788 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
789 	VLAN_XUNLOCK();
790 }
791 
792 /*
793  * Return the trunk device for a virtual interface.
794  */
795 static struct ifnet  *
796 vlan_trunkdev(struct ifnet *ifp)
797 {
798 	struct ifvlan *ifv;
799 
800 	NET_EPOCH_ASSERT();
801 
802 	if (ifp->if_type != IFT_L2VLAN)
803 		return (NULL);
804 
805 	ifv = ifp->if_softc;
806 	ifp = NULL;
807 	if (ifv->ifv_trunk)
808 		ifp = PARENT(ifv);
809 	return (ifp);
810 }
811 
812 /*
813  * Return the 12-bit VLAN VID for this interface, for use by external
814  * components such as Infiniband.
815  *
816  * XXXRW: Note that the function name here is historical; it should be named
817  * vlan_vid().
818  */
819 static int
820 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
821 {
822 	struct ifvlan *ifv;
823 
824 	if (ifp->if_type != IFT_L2VLAN)
825 		return (EINVAL);
826 	ifv = ifp->if_softc;
827 	*vidp = ifv->ifv_vid;
828 	return (0);
829 }
830 
831 static int
832 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
833 {
834 	struct ifvlan *ifv;
835 
836 	if (ifp->if_type != IFT_L2VLAN)
837 		return (EINVAL);
838 	ifv = ifp->if_softc;
839 	*pcpp = ifv->ifv_pcp;
840 	return (0);
841 }
842 
843 /*
844  * Return a driver specific cookie for this interface.  Synchronization
845  * with setcookie must be provided by the driver.
846  */
847 static void *
848 vlan_cookie(struct ifnet *ifp)
849 {
850 	struct ifvlan *ifv;
851 
852 	if (ifp->if_type != IFT_L2VLAN)
853 		return (NULL);
854 	ifv = ifp->if_softc;
855 	return (ifv->ifv_cookie);
856 }
857 
858 /*
859  * Store a cookie in our softc that drivers can use to store driver
860  * private per-instance data in.
861  */
862 static int
863 vlan_setcookie(struct ifnet *ifp, void *cookie)
864 {
865 	struct ifvlan *ifv;
866 
867 	if (ifp->if_type != IFT_L2VLAN)
868 		return (EINVAL);
869 	ifv = ifp->if_softc;
870 	ifv->ifv_cookie = cookie;
871 	return (0);
872 }
873 
874 /*
875  * Return the vlan device present at the specific VID.
876  */
877 static struct ifnet *
878 vlan_devat(struct ifnet *ifp, uint16_t vid)
879 {
880 	struct ifvlantrunk *trunk;
881 	struct ifvlan *ifv;
882 
883 	NET_EPOCH_ASSERT();
884 
885 	trunk = ifp->if_vlantrunk;
886 	if (trunk == NULL)
887 		return (NULL);
888 	ifp = NULL;
889 	ifv = vlan_gethash(trunk, vid);
890 	if (ifv)
891 		ifp = ifv->ifv_ifp;
892 	return (ifp);
893 }
894 
895 /*
896  * VLAN support can be loaded as a module.  The only place in the
897  * system that's intimately aware of this is ether_input.  We hook
898  * into this code through vlan_input_p which is defined there and
899  * set here.  No one else in the system should be aware of this so
900  * we use an explicit reference here.
901  */
902 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
903 
904 /* For if_link_state_change() eyes only... */
905 extern	void (*vlan_link_state_p)(struct ifnet *);
906 
907 static struct if_clone_addreq vlan_addreq = {
908 	.match_f = vlan_clone_match,
909 	.create_f = vlan_clone_create,
910 	.destroy_f = vlan_clone_destroy,
911 };
912 
913 static int
914 vlan_modevent(module_t mod, int type, void *data)
915 {
916 
917 	switch (type) {
918 	case MOD_LOAD:
919 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
920 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
921 		if (ifdetach_tag == NULL)
922 			return (ENOMEM);
923 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
924 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
925 		if (iflladdr_tag == NULL)
926 			return (ENOMEM);
927 		ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event,
928 		    vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY);
929 		if (ifevent_tag == NULL)
930 			return (ENOMEM);
931 		VLAN_LOCKING_INIT();
932 		vlan_input_p = vlan_input;
933 		vlan_link_state_p = vlan_link_state;
934 		vlan_trunk_cap_p = vlan_trunk_capabilities;
935 		vlan_trunkdev_p = vlan_trunkdev;
936 		vlan_cookie_p = vlan_cookie;
937 		vlan_setcookie_p = vlan_setcookie;
938 		vlan_tag_p = vlan_tag;
939 		vlan_pcp_p = vlan_pcp;
940 		vlan_devat_p = vlan_devat;
941 #ifndef VIMAGE
942 		vlan_cloner = ifc_attach_cloner(vlanname, &vlan_addreq);
943 #endif
944 		if (bootverbose)
945 			printf("vlan: initialized, using "
946 #ifdef VLAN_ARRAY
947 			       "full-size arrays"
948 #else
949 			       "hash tables with chaining"
950 #endif
951 
952 			       "\n");
953 		break;
954 	case MOD_UNLOAD:
955 #ifndef VIMAGE
956 		ifc_detach_cloner(vlan_cloner);
957 #endif
958 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
959 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
960 		EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag);
961 		vlan_input_p = NULL;
962 		vlan_link_state_p = NULL;
963 		vlan_trunk_cap_p = NULL;
964 		vlan_trunkdev_p = NULL;
965 		vlan_tag_p = NULL;
966 		vlan_cookie_p = NULL;
967 		vlan_setcookie_p = NULL;
968 		vlan_devat_p = NULL;
969 		VLAN_LOCKING_DESTROY();
970 		if (bootverbose)
971 			printf("vlan: unloaded\n");
972 		break;
973 	default:
974 		return (EOPNOTSUPP);
975 	}
976 	return (0);
977 }
978 
979 static moduledata_t vlan_mod = {
980 	"if_vlan",
981 	vlan_modevent,
982 	0
983 };
984 
985 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
986 MODULE_VERSION(if_vlan, 3);
987 
988 #ifdef VIMAGE
989 static void
990 vnet_vlan_init(const void *unused __unused)
991 {
992 	vlan_cloner = ifc_attach_cloner(vlanname, &vlan_addreq);
993 	V_vlan_cloner = vlan_cloner;
994 }
995 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
996     vnet_vlan_init, NULL);
997 
998 static void
999 vnet_vlan_uninit(const void *unused __unused)
1000 {
1001 
1002 	ifc_detach_cloner(V_vlan_cloner);
1003 }
1004 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
1005     vnet_vlan_uninit, NULL);
1006 #endif
1007 
1008 /*
1009  * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
1010  */
1011 static struct ifnet *
1012 vlan_clone_match_ethervid(const char *name, int *vidp)
1013 {
1014 	char ifname[IFNAMSIZ];
1015 	char *cp;
1016 	struct ifnet *ifp;
1017 	int vid;
1018 
1019 	strlcpy(ifname, name, IFNAMSIZ);
1020 	if ((cp = strrchr(ifname, '.')) == NULL)
1021 		return (NULL);
1022 	*cp = '\0';
1023 	if ((ifp = ifunit_ref(ifname)) == NULL)
1024 		return (NULL);
1025 	/* Parse VID. */
1026 	if (*++cp == '\0') {
1027 		if_rele(ifp);
1028 		return (NULL);
1029 	}
1030 	vid = 0;
1031 	for(; *cp >= '0' && *cp <= '9'; cp++)
1032 		vid = (vid * 10) + (*cp - '0');
1033 	if (*cp != '\0') {
1034 		if_rele(ifp);
1035 		return (NULL);
1036 	}
1037 	if (vidp != NULL)
1038 		*vidp = vid;
1039 
1040 	return (ifp);
1041 }
1042 
1043 static int
1044 vlan_clone_match(struct if_clone *ifc, const char *name)
1045 {
1046 	struct ifnet *ifp;
1047 	const char *cp;
1048 
1049 	ifp = vlan_clone_match_ethervid(name, NULL);
1050 	if (ifp != NULL) {
1051 		if_rele(ifp);
1052 		return (1);
1053 	}
1054 
1055 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
1056 		return (0);
1057 	for (cp = name + 4; *cp != '\0'; cp++) {
1058 		if (*cp < '0' || *cp > '9')
1059 			return (0);
1060 	}
1061 
1062 	return (1);
1063 }
1064 
1065 static int
1066 vlan_clone_create(struct if_clone *ifc, char *name, size_t len,
1067     struct ifc_data *ifd, struct ifnet **ifpp)
1068 {
1069 	char *dp;
1070 	bool wildcard = false;
1071 	bool subinterface = false;
1072 	int unit;
1073 	int error;
1074 	int vid = 0;
1075 	uint16_t proto = ETHERTYPE_VLAN;
1076 	struct ifvlan *ifv;
1077 	struct ifnet *ifp;
1078 	struct ifnet *p = NULL;
1079 	struct ifaddr *ifa;
1080 	struct sockaddr_dl *sdl;
1081 	struct vlanreq vlr;
1082 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
1083 
1084 
1085 	/*
1086 	 * There are three ways to specify the cloned device:
1087 	 * o pass a parameter block with the clone request.
1088 	 * o specify parameters in the text of the clone device name
1089 	 * o specify no parameters and get an unattached device that
1090 	 *   must be configured separately.
1091 	 * The first technique is preferred; the latter two are supported
1092 	 * for backwards compatibility.
1093 	 *
1094 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1095 	 * called for.
1096 	 */
1097 
1098 	if (ifd->params != NULL) {
1099 		error = ifc_copyin(ifd, &vlr, sizeof(vlr));
1100 		if (error)
1101 			return error;
1102 		vid = vlr.vlr_tag;
1103 		proto = vlr.vlr_proto;
1104 
1105 #ifdef COMPAT_FREEBSD12
1106 		if (proto == 0)
1107 			proto = ETHERTYPE_VLAN;
1108 #endif
1109 		p = ifunit_ref(vlr.vlr_parent);
1110 		if (p == NULL)
1111 			return (ENXIO);
1112 	}
1113 
1114 	if ((error = ifc_name2unit(name, &unit)) == 0) {
1115 
1116 		/*
1117 		 * vlanX interface. Set wildcard to true if the unit number
1118 		 * is not fixed (-1)
1119 		 */
1120 		wildcard = (unit < 0);
1121 	} else {
1122 		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1123 		if (p_tmp != NULL) {
1124 			error = 0;
1125 			subinterface = true;
1126 			unit = IF_DUNIT_NONE;
1127 			wildcard = false;
1128 			if (p != NULL) {
1129 				if_rele(p_tmp);
1130 				if (p != p_tmp)
1131 					error = EINVAL;
1132 			} else
1133 				p = p_tmp;
1134 		} else
1135 			error = ENXIO;
1136 	}
1137 
1138 	if (error != 0) {
1139 		if (p != NULL)
1140 			if_rele(p);
1141 		return (error);
1142 	}
1143 
1144 	if (!subinterface) {
1145 		/* vlanX interface, mark X as busy or allocate new unit # */
1146 		error = ifc_alloc_unit(ifc, &unit);
1147 		if (error != 0) {
1148 			if (p != NULL)
1149 				if_rele(p);
1150 			return (error);
1151 		}
1152 	}
1153 
1154 	/* In the wildcard case, we need to update the name. */
1155 	if (wildcard) {
1156 		for (dp = name; *dp != '\0'; dp++);
1157 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1158 		    len - (dp-name) - 1) {
1159 			panic("%s: interface name too long", __func__);
1160 		}
1161 	}
1162 
1163 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1164 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1165 	if (ifp == NULL) {
1166 		if (!subinterface)
1167 			ifc_free_unit(ifc, unit);
1168 		free(ifv, M_VLAN);
1169 		if (p != NULL)
1170 			if_rele(p);
1171 		return (ENOSPC);
1172 	}
1173 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1174 	ifp->if_softc = ifv;
1175 	/*
1176 	 * Set the name manually rather than using if_initname because
1177 	 * we don't conform to the default naming convention for interfaces.
1178 	 */
1179 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1180 	ifp->if_dname = vlanname;
1181 	ifp->if_dunit = unit;
1182 
1183 	ifp->if_init = vlan_init;
1184 #ifdef ALTQ
1185 	ifp->if_start = vlan_altq_start;
1186 	ifp->if_transmit = vlan_altq_transmit;
1187 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
1188 	ifp->if_snd.ifq_drv_maxlen = 0;
1189 	IFQ_SET_READY(&ifp->if_snd);
1190 #else
1191 	ifp->if_transmit = vlan_transmit;
1192 #endif
1193 	ifp->if_qflush = vlan_qflush;
1194 	ifp->if_ioctl = vlan_ioctl;
1195 #if defined(KERN_TLS) || defined(RATELIMIT)
1196 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1197 	ifp->if_ratelimit_query = vlan_ratelimit_query;
1198 #endif
1199 	ifp->if_flags = VLAN_IFFLAGS;
1200 	ether_ifattach(ifp, eaddr);
1201 	/* Now undo some of the damage... */
1202 	ifp->if_baudrate = 0;
1203 	ifp->if_type = IFT_L2VLAN;
1204 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1205 	ifa = ifp->if_addr;
1206 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1207 	sdl->sdl_type = IFT_L2VLAN;
1208 
1209 	if (p != NULL) {
1210 		error = vlan_config(ifv, p, vid, proto);
1211 		if_rele(p);
1212 		if (error != 0) {
1213 			/*
1214 			 * Since we've partially failed, we need to back
1215 			 * out all the way, otherwise userland could get
1216 			 * confused.  Thus, we destroy the interface.
1217 			 */
1218 			ether_ifdetach(ifp);
1219 			vlan_unconfig(ifp);
1220 			if_free(ifp);
1221 			if (!subinterface)
1222 				ifc_free_unit(ifc, unit);
1223 			free(ifv, M_VLAN);
1224 
1225 			return (error);
1226 		}
1227 	}
1228 	*ifpp = ifp;
1229 
1230 	return (0);
1231 }
1232 
1233 static int
1234 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
1235 {
1236 	struct ifvlan *ifv = ifp->if_softc;
1237 	int unit = ifp->if_dunit;
1238 
1239 	if (ifp->if_vlantrunk)
1240 		return (EBUSY);
1241 
1242 #ifdef ALTQ
1243 	IFQ_PURGE(&ifp->if_snd);
1244 #endif
1245 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1246 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1247 	/*
1248 	 * We should have the only reference to the ifv now, so we can now
1249 	 * drain any remaining lladdr task before freeing the ifnet and the
1250 	 * ifvlan.
1251 	 */
1252 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1253 	NET_EPOCH_WAIT();
1254 	if_free(ifp);
1255 	free(ifv, M_VLAN);
1256 	if (unit != IF_DUNIT_NONE)
1257 		ifc_free_unit(ifc, unit);
1258 
1259 	return (0);
1260 }
1261 
1262 /*
1263  * The ifp->if_init entry point for vlan(4) is a no-op.
1264  */
1265 static void
1266 vlan_init(void *foo __unused)
1267 {
1268 }
1269 
1270 /*
1271  * The if_transmit method for vlan(4) interface.
1272  */
1273 static int
1274 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1275 {
1276 	struct ifvlan *ifv;
1277 	struct ifnet *p;
1278 	int error, len, mcast;
1279 
1280 	NET_EPOCH_ASSERT();
1281 
1282 	ifv = ifp->if_softc;
1283 	if (TRUNK(ifv) == NULL) {
1284 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1285 		m_freem(m);
1286 		return (ENETDOWN);
1287 	}
1288 	p = PARENT(ifv);
1289 	len = m->m_pkthdr.len;
1290 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1291 
1292 	BPF_MTAP(ifp, m);
1293 
1294 #if defined(KERN_TLS) || defined(RATELIMIT)
1295 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1296 		struct vlan_snd_tag *vst;
1297 		struct m_snd_tag *mst;
1298 
1299 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1300 		mst = m->m_pkthdr.snd_tag;
1301 		vst = mst_to_vst(mst);
1302 		if (vst->tag->ifp != p) {
1303 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1304 			m_freem(m);
1305 			return (EAGAIN);
1306 		}
1307 
1308 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1309 		m_snd_tag_rele(mst);
1310 	}
1311 #endif
1312 
1313 	/*
1314 	 * Do not run parent's if_transmit() if the parent is not up,
1315 	 * or parent's driver will cause a system crash.
1316 	 */
1317 	if (!UP_AND_RUNNING(p)) {
1318 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1319 		m_freem(m);
1320 		return (ENETDOWN);
1321 	}
1322 
1323 	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1324 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1325 		return (0);
1326 	}
1327 
1328 	/*
1329 	 * Send it, precisely as ether_output() would have.
1330 	 */
1331 	error = (p->if_transmit)(p, m);
1332 	if (error == 0) {
1333 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1334 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1335 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1336 	} else
1337 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1338 	return (error);
1339 }
1340 
1341 static int
1342 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1343     struct route *ro)
1344 {
1345 	struct ifvlan *ifv;
1346 	struct ifnet *p;
1347 
1348 	NET_EPOCH_ASSERT();
1349 
1350 	/*
1351 	 * Find the first non-VLAN parent interface.
1352 	 */
1353 	ifv = ifp->if_softc;
1354 	do {
1355 		if (TRUNK(ifv) == NULL) {
1356 			m_freem(m);
1357 			return (ENETDOWN);
1358 		}
1359 		p = PARENT(ifv);
1360 		ifv = p->if_softc;
1361 	} while (p->if_type == IFT_L2VLAN);
1362 
1363 	return p->if_output(ifp, m, dst, ro);
1364 }
1365 
1366 #ifdef ALTQ
1367 static void
1368 vlan_altq_start(if_t ifp)
1369 {
1370 	struct ifaltq *ifq = &ifp->if_snd;
1371 	struct mbuf *m;
1372 
1373 	IFQ_LOCK(ifq);
1374 	IFQ_DEQUEUE_NOLOCK(ifq, m);
1375 	while (m != NULL) {
1376 		vlan_transmit(ifp, m);
1377 		IFQ_DEQUEUE_NOLOCK(ifq, m);
1378 	}
1379 	IFQ_UNLOCK(ifq);
1380 }
1381 
1382 static int
1383 vlan_altq_transmit(if_t ifp, struct mbuf *m)
1384 {
1385 	int err;
1386 
1387 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
1388 		IFQ_ENQUEUE(&ifp->if_snd, m, err);
1389 		if (err == 0)
1390 			vlan_altq_start(ifp);
1391 	} else
1392 		err = vlan_transmit(ifp, m);
1393 
1394 	return (err);
1395 }
1396 #endif	/* ALTQ */
1397 
1398 /*
1399  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1400  */
1401 static void
1402 vlan_qflush(struct ifnet *ifp __unused)
1403 {
1404 }
1405 
1406 static void
1407 vlan_input(struct ifnet *ifp, struct mbuf *m)
1408 {
1409 	struct ifvlantrunk *trunk;
1410 	struct ifvlan *ifv;
1411 	struct m_tag *mtag;
1412 	uint16_t vid, tag;
1413 
1414 	NET_EPOCH_ASSERT();
1415 
1416 	trunk = ifp->if_vlantrunk;
1417 	if (trunk == NULL) {
1418 		m_freem(m);
1419 		return;
1420 	}
1421 
1422 	if (m->m_flags & M_VLANTAG) {
1423 		/*
1424 		 * Packet is tagged, but m contains a normal
1425 		 * Ethernet frame; the tag is stored out-of-band.
1426 		 */
1427 		tag = m->m_pkthdr.ether_vtag;
1428 		m->m_flags &= ~M_VLANTAG;
1429 	} else {
1430 		struct ether_vlan_header *evl;
1431 
1432 		/*
1433 		 * Packet is tagged in-band as specified by 802.1q.
1434 		 */
1435 		switch (ifp->if_type) {
1436 		case IFT_ETHER:
1437 			if (m->m_len < sizeof(*evl) &&
1438 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1439 				if_printf(ifp, "cannot pullup VLAN header\n");
1440 				return;
1441 			}
1442 			evl = mtod(m, struct ether_vlan_header *);
1443 			tag = ntohs(evl->evl_tag);
1444 
1445 			/*
1446 			 * Remove the 802.1q header by copying the Ethernet
1447 			 * addresses over it and adjusting the beginning of
1448 			 * the data in the mbuf.  The encapsulated Ethernet
1449 			 * type field is already in place.
1450 			 */
1451 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1452 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1453 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1454 			break;
1455 
1456 		default:
1457 #ifdef INVARIANTS
1458 			panic("%s: %s has unsupported if_type %u",
1459 			      __func__, ifp->if_xname, ifp->if_type);
1460 #endif
1461 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1462 			m_freem(m);
1463 			return;
1464 		}
1465 	}
1466 
1467 	vid = EVL_VLANOFTAG(tag);
1468 
1469 	ifv = vlan_gethash(trunk, vid);
1470 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1471 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1472 		m_freem(m);
1473 		return;
1474 	}
1475 
1476 	if (V_vlan_mtag_pcp) {
1477 		/*
1478 		 * While uncommon, it is possible that we will find a 802.1q
1479 		 * packet encapsulated inside another packet that also had an
1480 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1481 		 * arriving over ethernet.  In that case, we replace the
1482 		 * existing 802.1q PCP m_tag value.
1483 		 */
1484 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1485 		if (mtag == NULL) {
1486 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1487 			    sizeof(uint8_t), M_NOWAIT);
1488 			if (mtag == NULL) {
1489 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1490 				m_freem(m);
1491 				return;
1492 			}
1493 			m_tag_prepend(m, mtag);
1494 		}
1495 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1496 	}
1497 
1498 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1499 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1500 
1501 	/* Pass it back through the parent's input routine. */
1502 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1503 }
1504 
1505 static void
1506 vlan_lladdr_fn(void *arg, int pending __unused)
1507 {
1508 	struct ifvlan *ifv;
1509 	struct ifnet *ifp;
1510 
1511 	ifv = (struct ifvlan *)arg;
1512 	ifp = ifv->ifv_ifp;
1513 
1514 	CURVNET_SET(ifp->if_vnet);
1515 
1516 	/* The ifv_ifp already has the lladdr copied in. */
1517 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1518 
1519 	CURVNET_RESTORE();
1520 }
1521 
1522 static int
1523 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1524 	uint16_t proto)
1525 {
1526 	struct epoch_tracker et;
1527 	struct ifvlantrunk *trunk;
1528 	struct ifnet *ifp;
1529 	int error = 0;
1530 
1531 	/*
1532 	 * We can handle non-ethernet hardware types as long as
1533 	 * they handle the tagging and headers themselves.
1534 	 */
1535 	if (p->if_type != IFT_ETHER &&
1536 	    p->if_type != IFT_L2VLAN &&
1537 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1538 		return (EPROTONOSUPPORT);
1539 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1540 		return (EPROTONOSUPPORT);
1541 	/*
1542 	 * Don't let the caller set up a VLAN VID with
1543 	 * anything except VLID bits.
1544 	 * VID numbers 0x0 and 0xFFF are reserved.
1545 	 */
1546 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1547 		return (EINVAL);
1548 	if (ifv->ifv_trunk) {
1549 		trunk = ifv->ifv_trunk;
1550 		if (trunk->parent != p)
1551 			return (EBUSY);
1552 
1553 		VLAN_XLOCK();
1554 
1555 		ifv->ifv_proto = proto;
1556 
1557 		if (ifv->ifv_vid != vid) {
1558 			/* Re-hash */
1559 			vlan_remhash(trunk, ifv);
1560 			ifv->ifv_vid = vid;
1561 			error = vlan_inshash(trunk, ifv);
1562 		}
1563 		/* Will unlock */
1564 		goto done;
1565 	}
1566 
1567 	VLAN_XLOCK();
1568 	if (p->if_vlantrunk == NULL) {
1569 		trunk = malloc(sizeof(struct ifvlantrunk),
1570 		    M_VLAN, M_WAITOK | M_ZERO);
1571 		vlan_inithash(trunk);
1572 		TRUNK_LOCK_INIT(trunk);
1573 		TRUNK_WLOCK(trunk);
1574 		p->if_vlantrunk = trunk;
1575 		trunk->parent = p;
1576 		if_ref(trunk->parent);
1577 		TRUNK_WUNLOCK(trunk);
1578 	} else {
1579 		trunk = p->if_vlantrunk;
1580 	}
1581 
1582 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1583 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1584 	error = vlan_inshash(trunk, ifv);
1585 	if (error)
1586 		goto done;
1587 	ifv->ifv_proto = proto;
1588 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1589 	ifv->ifv_mintu = ETHERMIN;
1590 	ifv->ifv_pflags = 0;
1591 	ifv->ifv_capenable = -1;
1592 
1593 	/*
1594 	 * If the parent supports the VLAN_MTU capability,
1595 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1596 	 * use it.
1597 	 */
1598 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1599 		/*
1600 		 * No need to fudge the MTU since the parent can
1601 		 * handle extended frames.
1602 		 */
1603 		ifv->ifv_mtufudge = 0;
1604 	} else {
1605 		/*
1606 		 * Fudge the MTU by the encapsulation size.  This
1607 		 * makes us incompatible with strictly compliant
1608 		 * 802.1Q implementations, but allows us to use
1609 		 * the feature with other NetBSD implementations,
1610 		 * which might still be useful.
1611 		 */
1612 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1613 	}
1614 
1615 	ifv->ifv_trunk = trunk;
1616 	ifp = ifv->ifv_ifp;
1617 	/*
1618 	 * Initialize fields from our parent.  This duplicates some
1619 	 * work with ether_ifattach() but allows for non-ethernet
1620 	 * interfaces to also work.
1621 	 */
1622 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1623 	ifp->if_baudrate = p->if_baudrate;
1624 	ifp->if_input = p->if_input;
1625 	ifp->if_resolvemulti = p->if_resolvemulti;
1626 	ifp->if_addrlen = p->if_addrlen;
1627 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1628 	ifp->if_pcp = ifv->ifv_pcp;
1629 
1630 	/*
1631 	 * We wrap the parent's if_output using vlan_output to ensure that it
1632 	 * can't become stale.
1633 	 */
1634 	ifp->if_output = vlan_output;
1635 
1636 	/*
1637 	 * Copy only a selected subset of flags from the parent.
1638 	 * Other flags are none of our business.
1639 	 */
1640 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1641 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1642 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1643 #undef VLAN_COPY_FLAGS
1644 
1645 	ifp->if_link_state = p->if_link_state;
1646 
1647 	NET_EPOCH_ENTER(et);
1648 	vlan_capabilities(ifv);
1649 	NET_EPOCH_EXIT(et);
1650 
1651 	/*
1652 	 * Set up our interface address to reflect the underlying
1653 	 * physical interface's.
1654 	 */
1655 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1656 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1657 	    p->if_addrlen;
1658 
1659 	/*
1660 	 * Do not schedule link address update if it was the same
1661 	 * as previous parent's. This helps avoid updating for each
1662 	 * associated llentry.
1663 	 */
1664 	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1665 		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1666 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1667 	}
1668 
1669 	/* We are ready for operation now. */
1670 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1671 
1672 	/* Update flags on the parent, if necessary. */
1673 	vlan_setflags(ifp, 1);
1674 
1675 	/*
1676 	 * Configure multicast addresses that may already be
1677 	 * joined on the vlan device.
1678 	 */
1679 	(void)vlan_setmulti(ifp);
1680 
1681 done:
1682 	if (error == 0)
1683 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1684 	VLAN_XUNLOCK();
1685 
1686 	return (error);
1687 }
1688 
1689 static void
1690 vlan_unconfig(struct ifnet *ifp)
1691 {
1692 
1693 	VLAN_XLOCK();
1694 	vlan_unconfig_locked(ifp, 0);
1695 	VLAN_XUNLOCK();
1696 }
1697 
1698 static void
1699 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1700 {
1701 	struct ifvlantrunk *trunk;
1702 	struct vlan_mc_entry *mc;
1703 	struct ifvlan *ifv;
1704 	struct ifnet  *parent;
1705 	int error;
1706 
1707 	VLAN_XLOCK_ASSERT();
1708 
1709 	ifv = ifp->if_softc;
1710 	trunk = ifv->ifv_trunk;
1711 	parent = NULL;
1712 
1713 	if (trunk != NULL) {
1714 		parent = trunk->parent;
1715 
1716 		/*
1717 		 * Since the interface is being unconfigured, we need to
1718 		 * empty the list of multicast groups that we may have joined
1719 		 * while we were alive from the parent's list.
1720 		 */
1721 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1722 			/*
1723 			 * If the parent interface is being detached,
1724 			 * all its multicast addresses have already
1725 			 * been removed.  Warn about errors if
1726 			 * if_delmulti() does fail, but don't abort as
1727 			 * all callers expect vlan destruction to
1728 			 * succeed.
1729 			 */
1730 			if (!departing) {
1731 				error = if_delmulti(parent,
1732 				    (struct sockaddr *)&mc->mc_addr);
1733 				if (error)
1734 					if_printf(ifp,
1735 		    "Failed to delete multicast address from parent: %d\n",
1736 					    error);
1737 			}
1738 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1739 			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1740 		}
1741 
1742 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1743 
1744 		vlan_remhash(trunk, ifv);
1745 		ifv->ifv_trunk = NULL;
1746 
1747 		/*
1748 		 * Check if we were the last.
1749 		 */
1750 		if (trunk->refcnt == 0) {
1751 			parent->if_vlantrunk = NULL;
1752 			NET_EPOCH_WAIT();
1753 			trunk_destroy(trunk);
1754 		}
1755 	}
1756 
1757 	/* Disconnect from parent. */
1758 	if (ifv->ifv_pflags)
1759 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1760 	ifp->if_mtu = ETHERMTU;
1761 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1762 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1763 
1764 	/*
1765 	 * Only dispatch an event if vlan was
1766 	 * attached, otherwise there is nothing
1767 	 * to cleanup anyway.
1768 	 */
1769 	if (parent != NULL)
1770 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1771 }
1772 
1773 /* Handle a reference counted flag that should be set on the parent as well */
1774 static int
1775 vlan_setflag(struct ifnet *ifp, int flag, int status,
1776 	     int (*func)(struct ifnet *, int))
1777 {
1778 	struct ifvlan *ifv;
1779 	int error;
1780 
1781 	VLAN_SXLOCK_ASSERT();
1782 
1783 	ifv = ifp->if_softc;
1784 	status = status ? (ifp->if_flags & flag) : 0;
1785 	/* Now "status" contains the flag value or 0 */
1786 
1787 	/*
1788 	 * See if recorded parent's status is different from what
1789 	 * we want it to be.  If it is, flip it.  We record parent's
1790 	 * status in ifv_pflags so that we won't clear parent's flag
1791 	 * we haven't set.  In fact, we don't clear or set parent's
1792 	 * flags directly, but get or release references to them.
1793 	 * That's why we can be sure that recorded flags still are
1794 	 * in accord with actual parent's flags.
1795 	 */
1796 	if (status != (ifv->ifv_pflags & flag)) {
1797 		error = (*func)(PARENT(ifv), status);
1798 		if (error)
1799 			return (error);
1800 		ifv->ifv_pflags &= ~flag;
1801 		ifv->ifv_pflags |= status;
1802 	}
1803 	return (0);
1804 }
1805 
1806 /*
1807  * Handle IFF_* flags that require certain changes on the parent:
1808  * if "status" is true, update parent's flags respective to our if_flags;
1809  * if "status" is false, forcedly clear the flags set on parent.
1810  */
1811 static int
1812 vlan_setflags(struct ifnet *ifp, int status)
1813 {
1814 	int error, i;
1815 
1816 	for (i = 0; vlan_pflags[i].flag; i++) {
1817 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1818 				     status, vlan_pflags[i].func);
1819 		if (error)
1820 			return (error);
1821 	}
1822 	return (0);
1823 }
1824 
1825 /* Inform all vlans that their parent has changed link state */
1826 static void
1827 vlan_link_state(struct ifnet *ifp)
1828 {
1829 	struct epoch_tracker et;
1830 	struct ifvlantrunk *trunk;
1831 	struct ifvlan *ifv;
1832 
1833 	NET_EPOCH_ENTER(et);
1834 	trunk = ifp->if_vlantrunk;
1835 	if (trunk == NULL) {
1836 		NET_EPOCH_EXIT(et);
1837 		return;
1838 	}
1839 
1840 	TRUNK_WLOCK(trunk);
1841 	VLAN_FOREACH(ifv, trunk) {
1842 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1843 		if_link_state_change(ifv->ifv_ifp,
1844 		    trunk->parent->if_link_state);
1845 	}
1846 	TRUNK_WUNLOCK(trunk);
1847 	NET_EPOCH_EXIT(et);
1848 }
1849 
1850 static void
1851 vlan_capabilities(struct ifvlan *ifv)
1852 {
1853 	struct ifnet *p;
1854 	struct ifnet *ifp;
1855 	struct ifnet_hw_tsomax hw_tsomax;
1856 	int cap = 0, ena = 0, mena;
1857 	u_long hwa = 0;
1858 
1859 	NET_EPOCH_ASSERT();
1860 	VLAN_SXLOCK_ASSERT();
1861 
1862 	p = PARENT(ifv);
1863 	ifp = ifv->ifv_ifp;
1864 
1865 	/* Mask parent interface enabled capabilities disabled by user. */
1866 	mena = p->if_capenable & ifv->ifv_capenable;
1867 
1868 	/*
1869 	 * If the parent interface can do checksum offloading
1870 	 * on VLANs, then propagate its hardware-assisted
1871 	 * checksumming flags. Also assert that checksum
1872 	 * offloading requires hardware VLAN tagging.
1873 	 */
1874 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1875 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1876 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1877 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1878 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1879 		if (ena & IFCAP_TXCSUM)
1880 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1881 			    CSUM_UDP | CSUM_SCTP);
1882 		if (ena & IFCAP_TXCSUM_IPV6)
1883 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1884 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1885 	}
1886 
1887 	/*
1888 	 * If the parent interface can do TSO on VLANs then
1889 	 * propagate the hardware-assisted flag. TSO on VLANs
1890 	 * does not necessarily require hardware VLAN tagging.
1891 	 */
1892 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1893 	if_hw_tsomax_common(p, &hw_tsomax);
1894 	if_hw_tsomax_update(ifp, &hw_tsomax);
1895 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1896 		cap |= p->if_capabilities & IFCAP_TSO;
1897 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1898 		ena |= mena & IFCAP_TSO;
1899 		if (ena & IFCAP_TSO)
1900 			hwa |= p->if_hwassist & CSUM_TSO;
1901 	}
1902 
1903 	/*
1904 	 * If the parent interface can do LRO and checksum offloading on
1905 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1906 	 * cost nothing, while false negative may lead to some confusions.
1907 	 */
1908 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1909 		cap |= p->if_capabilities & IFCAP_LRO;
1910 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1911 		ena |= p->if_capenable & IFCAP_LRO;
1912 
1913 	/*
1914 	 * If the parent interface can offload TCP connections over VLANs then
1915 	 * propagate its TOE capability to the VLAN interface.
1916 	 *
1917 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1918 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1919 	 * with its own bit.
1920 	 */
1921 #define	IFCAP_VLAN_TOE IFCAP_TOE
1922 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1923 		cap |= p->if_capabilities & IFCAP_TOE;
1924 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1925 		SETTOEDEV(ifp, TOEDEV(p));
1926 		ena |= mena & IFCAP_TOE;
1927 	}
1928 
1929 	/*
1930 	 * If the parent interface supports dynamic link state, so does the
1931 	 * VLAN interface.
1932 	 */
1933 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1934 	ena |= (mena & IFCAP_LINKSTATE);
1935 
1936 #ifdef RATELIMIT
1937 	/*
1938 	 * If the parent interface supports ratelimiting, so does the
1939 	 * VLAN interface.
1940 	 */
1941 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1942 	ena |= (mena & IFCAP_TXRTLMT);
1943 #endif
1944 
1945 	/*
1946 	 * If the parent interface supports unmapped mbufs, so does
1947 	 * the VLAN interface.  Note that this should be fine even for
1948 	 * interfaces that don't support hardware tagging as headers
1949 	 * are prepended in normal mbufs to unmapped mbufs holding
1950 	 * payload data.
1951 	 */
1952 	cap |= (p->if_capabilities & IFCAP_MEXTPG);
1953 	ena |= (mena & IFCAP_MEXTPG);
1954 
1955 	/*
1956 	 * If the parent interface can offload encryption and segmentation
1957 	 * of TLS records over TCP, propagate it's capability to the VLAN
1958 	 * interface.
1959 	 *
1960 	 * All TLS drivers in the tree today can deal with VLANs.  If
1961 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
1962 	 * defined.
1963 	 */
1964 	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1965 		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1966 	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1967 		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1968 
1969 	ifp->if_capabilities = cap;
1970 	ifp->if_capenable = ena;
1971 	ifp->if_hwassist = hwa;
1972 }
1973 
1974 static void
1975 vlan_trunk_capabilities(struct ifnet *ifp)
1976 {
1977 	struct epoch_tracker et;
1978 	struct ifvlantrunk *trunk;
1979 	struct ifvlan *ifv;
1980 
1981 	VLAN_SLOCK();
1982 	trunk = ifp->if_vlantrunk;
1983 	if (trunk == NULL) {
1984 		VLAN_SUNLOCK();
1985 		return;
1986 	}
1987 	NET_EPOCH_ENTER(et);
1988 	VLAN_FOREACH(ifv, trunk)
1989 		vlan_capabilities(ifv);
1990 	NET_EPOCH_EXIT(et);
1991 	VLAN_SUNLOCK();
1992 }
1993 
1994 static int
1995 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1996 {
1997 	struct ifnet *p;
1998 	struct ifreq *ifr;
1999 #ifdef INET
2000 	struct ifaddr *ifa;
2001 #endif
2002 	struct ifvlan *ifv;
2003 	struct ifvlantrunk *trunk;
2004 	struct vlanreq vlr;
2005 	int error = 0, oldmtu;
2006 
2007 	ifr = (struct ifreq *)data;
2008 #ifdef INET
2009 	ifa = (struct ifaddr *) data;
2010 #endif
2011 	ifv = ifp->if_softc;
2012 
2013 	switch (cmd) {
2014 	case SIOCSIFADDR:
2015 		ifp->if_flags |= IFF_UP;
2016 #ifdef INET
2017 		if (ifa->ifa_addr->sa_family == AF_INET)
2018 			arp_ifinit(ifp, ifa);
2019 #endif
2020 		break;
2021 	case SIOCGIFADDR:
2022 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
2023 		    ifp->if_addrlen);
2024 		break;
2025 	case SIOCGIFMEDIA:
2026 		VLAN_SLOCK();
2027 		if (TRUNK(ifv) != NULL) {
2028 			p = PARENT(ifv);
2029 			if_ref(p);
2030 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
2031 			if_rele(p);
2032 			/* Limit the result to the parent's current config. */
2033 			if (error == 0) {
2034 				struct ifmediareq *ifmr;
2035 
2036 				ifmr = (struct ifmediareq *)data;
2037 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
2038 					ifmr->ifm_count = 1;
2039 					error = copyout(&ifmr->ifm_current,
2040 						ifmr->ifm_ulist,
2041 						sizeof(int));
2042 				}
2043 			}
2044 		} else {
2045 			error = EINVAL;
2046 		}
2047 		VLAN_SUNLOCK();
2048 		break;
2049 
2050 	case SIOCSIFMEDIA:
2051 		error = EINVAL;
2052 		break;
2053 
2054 	case SIOCSIFMTU:
2055 		/*
2056 		 * Set the interface MTU.
2057 		 */
2058 		VLAN_SLOCK();
2059 		trunk = TRUNK(ifv);
2060 		if (trunk != NULL) {
2061 			TRUNK_WLOCK(trunk);
2062 			if (ifr->ifr_mtu >
2063 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
2064 			    ifr->ifr_mtu <
2065 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
2066 				error = EINVAL;
2067 			else
2068 				ifp->if_mtu = ifr->ifr_mtu;
2069 			TRUNK_WUNLOCK(trunk);
2070 		} else
2071 			error = EINVAL;
2072 		VLAN_SUNLOCK();
2073 		break;
2074 
2075 	case SIOCSETVLAN:
2076 #ifdef VIMAGE
2077 		/*
2078 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
2079 		 * interface to be delegated to a jail without allowing the
2080 		 * jail to change what underlying interface/VID it is
2081 		 * associated with.  We are not entirely convinced that this
2082 		 * is the right way to accomplish that policy goal.
2083 		 */
2084 		if (ifp->if_vnet != ifp->if_home_vnet) {
2085 			error = EPERM;
2086 			break;
2087 		}
2088 #endif
2089 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
2090 		if (error)
2091 			break;
2092 		if (vlr.vlr_parent[0] == '\0') {
2093 			vlan_unconfig(ifp);
2094 			break;
2095 		}
2096 		p = ifunit_ref(vlr.vlr_parent);
2097 		if (p == NULL) {
2098 			error = ENOENT;
2099 			break;
2100 		}
2101 #ifdef COMPAT_FREEBSD12
2102 		if (vlr.vlr_proto == 0)
2103 			vlr.vlr_proto = ETHERTYPE_VLAN;
2104 #endif
2105 		oldmtu = ifp->if_mtu;
2106 		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
2107 		if_rele(p);
2108 
2109 		/*
2110 		 * VLAN MTU may change during addition of the vlandev.
2111 		 * If it did, do network layer specific procedure.
2112 		 */
2113 		if (ifp->if_mtu != oldmtu) {
2114 #ifdef INET6
2115 			nd6_setmtu(ifp);
2116 #endif
2117 			rt_updatemtu(ifp);
2118 		}
2119 		break;
2120 
2121 	case SIOCGETVLAN:
2122 #ifdef VIMAGE
2123 		if (ifp->if_vnet != ifp->if_home_vnet) {
2124 			error = EPERM;
2125 			break;
2126 		}
2127 #endif
2128 		bzero(&vlr, sizeof(vlr));
2129 		VLAN_SLOCK();
2130 		if (TRUNK(ifv) != NULL) {
2131 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
2132 			    sizeof(vlr.vlr_parent));
2133 			vlr.vlr_tag = ifv->ifv_vid;
2134 			vlr.vlr_proto = ifv->ifv_proto;
2135 		}
2136 		VLAN_SUNLOCK();
2137 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
2138 		break;
2139 
2140 	case SIOCSIFFLAGS:
2141 		/*
2142 		 * We should propagate selected flags to the parent,
2143 		 * e.g., promiscuous mode.
2144 		 */
2145 		VLAN_XLOCK();
2146 		if (TRUNK(ifv) != NULL)
2147 			error = vlan_setflags(ifp, 1);
2148 		VLAN_XUNLOCK();
2149 		break;
2150 
2151 	case SIOCADDMULTI:
2152 	case SIOCDELMULTI:
2153 		/*
2154 		 * If we don't have a parent, just remember the membership for
2155 		 * when we do.
2156 		 *
2157 		 * XXX We need the rmlock here to avoid sleeping while
2158 		 * holding in6_multi_mtx.
2159 		 */
2160 		VLAN_XLOCK();
2161 		trunk = TRUNK(ifv);
2162 		if (trunk != NULL)
2163 			error = vlan_setmulti(ifp);
2164 		VLAN_XUNLOCK();
2165 
2166 		break;
2167 	case SIOCGVLANPCP:
2168 #ifdef VIMAGE
2169 		if (ifp->if_vnet != ifp->if_home_vnet) {
2170 			error = EPERM;
2171 			break;
2172 		}
2173 #endif
2174 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2175 		break;
2176 
2177 	case SIOCSVLANPCP:
2178 #ifdef VIMAGE
2179 		if (ifp->if_vnet != ifp->if_home_vnet) {
2180 			error = EPERM;
2181 			break;
2182 		}
2183 #endif
2184 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2185 		if (error)
2186 			break;
2187 		if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
2188 			error = EINVAL;
2189 			break;
2190 		}
2191 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2192 		ifp->if_pcp = ifv->ifv_pcp;
2193 		/* broadcast event about PCP change */
2194 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2195 		break;
2196 
2197 	case SIOCSIFCAP:
2198 		VLAN_SLOCK();
2199 		ifv->ifv_capenable = ifr->ifr_reqcap;
2200 		trunk = TRUNK(ifv);
2201 		if (trunk != NULL) {
2202 			struct epoch_tracker et;
2203 
2204 			NET_EPOCH_ENTER(et);
2205 			vlan_capabilities(ifv);
2206 			NET_EPOCH_EXIT(et);
2207 		}
2208 		VLAN_SUNLOCK();
2209 		break;
2210 
2211 	default:
2212 		error = EINVAL;
2213 		break;
2214 	}
2215 
2216 	return (error);
2217 }
2218 
2219 #if defined(KERN_TLS) || defined(RATELIMIT)
2220 static int
2221 vlan_snd_tag_alloc(struct ifnet *ifp,
2222     union if_snd_tag_alloc_params *params,
2223     struct m_snd_tag **ppmt)
2224 {
2225 	struct epoch_tracker et;
2226 	const struct if_snd_tag_sw *sw;
2227 	struct vlan_snd_tag *vst;
2228 	struct ifvlan *ifv;
2229 	struct ifnet *parent;
2230 	struct m_snd_tag *mst;
2231 	int error;
2232 
2233 	NET_EPOCH_ENTER(et);
2234 	ifv = ifp->if_softc;
2235 
2236 	switch (params->hdr.type) {
2237 #ifdef RATELIMIT
2238 	case IF_SND_TAG_TYPE_UNLIMITED:
2239 		sw = &vlan_snd_tag_ul_sw;
2240 		break;
2241 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2242 		sw = &vlan_snd_tag_rl_sw;
2243 		break;
2244 #endif
2245 #ifdef KERN_TLS
2246 	case IF_SND_TAG_TYPE_TLS:
2247 		sw = &vlan_snd_tag_tls_sw;
2248 		break;
2249 	case IF_SND_TAG_TYPE_TLS_RX:
2250 		sw = NULL;
2251 		if (params->tls_rx.vlan_id != 0)
2252 			goto failure;
2253 		params->tls_rx.vlan_id = ifv->ifv_vid;
2254 		break;
2255 #ifdef RATELIMIT
2256 	case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
2257 		sw = &vlan_snd_tag_tls_rl_sw;
2258 		break;
2259 #endif
2260 #endif
2261 	default:
2262 		goto failure;
2263 	}
2264 
2265 	if (ifv->ifv_trunk != NULL)
2266 		parent = PARENT(ifv);
2267 	else
2268 		parent = NULL;
2269 	if (parent == NULL)
2270 		goto failure;
2271 	if_ref(parent);
2272 	NET_EPOCH_EXIT(et);
2273 
2274 	if (sw != NULL) {
2275 		vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2276 		if (vst == NULL) {
2277 			if_rele(parent);
2278 			return (ENOMEM);
2279 		}
2280 	} else
2281 		vst = NULL;
2282 
2283 	error = m_snd_tag_alloc(parent, params, &mst);
2284 	if_rele(parent);
2285 	if (error) {
2286 		free(vst, M_VLAN);
2287 		return (error);
2288 	}
2289 
2290 	if (sw != NULL) {
2291 		m_snd_tag_init(&vst->com, ifp, sw);
2292 		vst->tag = mst;
2293 
2294 		*ppmt = &vst->com;
2295 	} else
2296 		*ppmt = mst;
2297 
2298 	return (0);
2299 failure:
2300 	NET_EPOCH_EXIT(et);
2301 	return (EOPNOTSUPP);
2302 }
2303 
2304 static struct m_snd_tag *
2305 vlan_next_snd_tag(struct m_snd_tag *mst)
2306 {
2307 	struct vlan_snd_tag *vst;
2308 
2309 	vst = mst_to_vst(mst);
2310 	return (vst->tag);
2311 }
2312 
2313 static int
2314 vlan_snd_tag_modify(struct m_snd_tag *mst,
2315     union if_snd_tag_modify_params *params)
2316 {
2317 	struct vlan_snd_tag *vst;
2318 
2319 	vst = mst_to_vst(mst);
2320 	return (vst->tag->sw->snd_tag_modify(vst->tag, params));
2321 }
2322 
2323 static int
2324 vlan_snd_tag_query(struct m_snd_tag *mst,
2325     union if_snd_tag_query_params *params)
2326 {
2327 	struct vlan_snd_tag *vst;
2328 
2329 	vst = mst_to_vst(mst);
2330 	return (vst->tag->sw->snd_tag_query(vst->tag, params));
2331 }
2332 
2333 static void
2334 vlan_snd_tag_free(struct m_snd_tag *mst)
2335 {
2336 	struct vlan_snd_tag *vst;
2337 
2338 	vst = mst_to_vst(mst);
2339 	m_snd_tag_rele(vst->tag);
2340 	free(vst, M_VLAN);
2341 }
2342 
2343 static void
2344 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2345 {
2346 	/*
2347 	 * For vlan, we have an indirect
2348 	 * interface. The caller needs to
2349 	 * get a ratelimit tag on the actual
2350 	 * interface the flow will go on.
2351 	 */
2352 	q->rate_table = NULL;
2353 	q->flags = RT_IS_INDIRECT;
2354 	q->max_flows = 0;
2355 	q->number_of_rates = 0;
2356 }
2357 
2358 #endif
2359