xref: /freebsd/sys/net/radix.c (revision 315ee00f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
32  */
33 
34 /*
35  * Routines to build and maintain radix trees for routing lookups.
36  */
37 #include <sys/param.h>
38 #ifdef	_KERNEL
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/rmlock.h>
42 #include <sys/systm.h>
43 #include <sys/malloc.h>
44 #include <sys/syslog.h>
45 #include <net/radix.h>
46 #else /* !_KERNEL */
47 #include <stdio.h>
48 #include <strings.h>
49 #include <stdlib.h>
50 #define log(x, arg...)	fprintf(stderr, ## arg)
51 #define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
52 #define min(a, b) ((a) < (b) ? (a) : (b) )
53 #include <net/radix.h>
54 #endif /* !_KERNEL */
55 
56 static struct radix_node
57 	 *rn_insert(void *, struct radix_head *, int *,
58 	     struct radix_node [2]),
59 	 *rn_newpair(void *, int, struct radix_node[2]),
60 	 *rn_search(const void *, struct radix_node *),
61 	 *rn_search_m(const void *, struct radix_node *, void *);
62 static struct radix_node *rn_addmask(const void *, struct radix_mask_head *, int,int);
63 
64 static void rn_detachhead_internal(struct radix_head *);
65 
66 #define	RADIX_MAX_KEY_LEN	32
67 
68 static char rn_zeros[RADIX_MAX_KEY_LEN];
69 static char rn_ones[RADIX_MAX_KEY_LEN] = {
70 	-1, -1, -1, -1, -1, -1, -1, -1,
71 	-1, -1, -1, -1, -1, -1, -1, -1,
72 	-1, -1, -1, -1, -1, -1, -1, -1,
73 	-1, -1, -1, -1, -1, -1, -1, -1,
74 };
75 
76 static int	rn_lexobetter(const void *m_arg, const void *n_arg);
77 static struct radix_mask *
78 		rn_new_radix_mask(struct radix_node *tt,
79 		    struct radix_mask *next);
80 static int	rn_satisfies_leaf(const char *trial, struct radix_node *leaf,
81 		    int skip);
82 
83 /*
84  * The data structure for the keys is a radix tree with one way
85  * branching removed.  The index rn_bit at an internal node n represents a bit
86  * position to be tested.  The tree is arranged so that all descendants
87  * of a node n have keys whose bits all agree up to position rn_bit - 1.
88  * (We say the index of n is rn_bit.)
89  *
90  * There is at least one descendant which has a one bit at position rn_bit,
91  * and at least one with a zero there.
92  *
93  * A route is determined by a pair of key and mask.  We require that the
94  * bit-wise logical and of the key and mask to be the key.
95  * We define the index of a route to associated with the mask to be
96  * the first bit number in the mask where 0 occurs (with bit number 0
97  * representing the highest order bit).
98  *
99  * We say a mask is normal if every bit is 0, past the index of the mask.
100  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
101  * and m is a normal mask, then the route applies to every descendant of n.
102  * If the index(m) < rn_bit, this implies the trailing last few bits of k
103  * before bit b are all 0, (and hence consequently true of every descendant
104  * of n), so the route applies to all descendants of the node as well.
105  *
106  * Similar logic shows that a non-normal mask m such that
107  * index(m) <= index(n) could potentially apply to many children of n.
108  * Thus, for each non-host route, we attach its mask to a list at an internal
109  * node as high in the tree as we can go.
110  *
111  * The present version of the code makes use of normal routes in short-
112  * circuiting an explict mask and compare operation when testing whether
113  * a key satisfies a normal route, and also in remembering the unique leaf
114  * that governs a subtree.
115  */
116 
117 /*
118  * Most of the functions in this code assume that the key/mask arguments
119  * are sockaddr-like structures, where the first byte is an u_char
120  * indicating the size of the entire structure.
121  *
122  * To make the assumption more explicit, we use the LEN() macro to access
123  * this field. It is safe to pass an expression with side effects
124  * to LEN() as the argument is evaluated only once.
125  * We cast the result to int as this is the dominant usage.
126  */
127 #define LEN(x) ( (int) (*(const u_char *)(x)) )
128 
129 /*
130  * XXX THIS NEEDS TO BE FIXED
131  * In the code, pointers to keys and masks are passed as either
132  * 'void *' (because callers use to pass pointers of various kinds), or
133  * 'caddr_t' (which is fine for pointer arithmetics, but not very
134  * clean when you dereference it to access data). Furthermore, caddr_t
135  * is really 'char *', while the natural type to operate on keys and
136  * masks would be 'u_char'. This mismatch require a lot of casts and
137  * intermediate variables to adapt types that clutter the code.
138  */
139 
140 /*
141  * Search a node in the tree matching the key.
142  */
143 static struct radix_node *
144 rn_search(const void *v_arg, struct radix_node *head)
145 {
146 	struct radix_node *x;
147 	c_caddr_t v;
148 
149 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
150 		if (x->rn_bmask & v[x->rn_offset])
151 			x = x->rn_right;
152 		else
153 			x = x->rn_left;
154 	}
155 	return (x);
156 }
157 
158 /*
159  * Same as above, but with an additional mask.
160  * XXX note this function is used only once.
161  */
162 static struct radix_node *
163 rn_search_m(const void *v_arg, struct radix_node *head, void *m_arg)
164 {
165 	struct radix_node *x;
166 	c_caddr_t v = v_arg, m = m_arg;
167 
168 	for (x = head; x->rn_bit >= 0;) {
169 		if ((x->rn_bmask & m[x->rn_offset]) &&
170 		    (x->rn_bmask & v[x->rn_offset]))
171 			x = x->rn_right;
172 		else
173 			x = x->rn_left;
174 	}
175 	return (x);
176 }
177 
178 int
179 rn_refines(const void *m_arg, const void *n_arg)
180 {
181 	c_caddr_t m = m_arg, n = n_arg;
182 	c_caddr_t lim, lim2 = lim = n + LEN(n);
183 	int longer = LEN(n++) - LEN(m++);
184 	int masks_are_equal = 1;
185 
186 	if (longer > 0)
187 		lim -= longer;
188 	while (n < lim) {
189 		if (*n & ~(*m))
190 			return (0);
191 		if (*n++ != *m++)
192 			masks_are_equal = 0;
193 	}
194 	while (n < lim2)
195 		if (*n++)
196 			return (0);
197 	if (masks_are_equal && (longer < 0))
198 		for (lim2 = m - longer; m < lim2; )
199 			if (*m++)
200 				return (1);
201 	return (!masks_are_equal);
202 }
203 
204 /*
205  * Search for exact match in given @head.
206  * Assume host bits are cleared in @v_arg if @m_arg is not NULL
207  * Note that prefixes with /32 or /128 masks are treated differently
208  * from host routes.
209  */
210 struct radix_node *
211 rn_lookup(const void *v_arg, const void *m_arg, struct radix_head *head)
212 {
213 	struct radix_node *x;
214 	caddr_t netmask;
215 
216 	if (m_arg != NULL) {
217 		/*
218 		 * Most common case: search exact prefix/mask
219 		 */
220 		x = rn_addmask(m_arg, head->rnh_masks, 1,
221 		    head->rnh_treetop->rn_offset);
222 		if (x == NULL)
223 			return (NULL);
224 		netmask = x->rn_key;
225 
226 		x = rn_match(v_arg, head);
227 
228 		while (x != NULL && x->rn_mask != netmask)
229 			x = x->rn_dupedkey;
230 
231 		return (x);
232 	}
233 
234 	/*
235 	 * Search for host address.
236 	 */
237 	if ((x = rn_match(v_arg, head)) == NULL)
238 		return (NULL);
239 
240 	/* Check if found key is the same */
241 	if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
242 		return (NULL);
243 
244 	/* Check if this is not host route */
245 	if (x->rn_mask != NULL)
246 		return (NULL);
247 
248 	return (x);
249 }
250 
251 static int
252 rn_satisfies_leaf(const char *trial, struct radix_node *leaf, int skip)
253 {
254 	const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
255 	const char *cplim;
256 	int length = min(LEN(cp), LEN(cp2));
257 
258 	if (cp3 == NULL)
259 		cp3 = rn_ones;
260 	else
261 		length = min(length, LEN(cp3));
262 	cplim = cp + length; cp3 += skip; cp2 += skip;
263 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
264 		if ((*cp ^ *cp2) & *cp3)
265 			return (0);
266 	return (1);
267 }
268 
269 /*
270  * Search for longest-prefix match in given @head
271  */
272 struct radix_node *
273 rn_match(const void *v_arg, struct radix_head *head)
274 {
275 	c_caddr_t v = v_arg;
276 	struct radix_node *t = head->rnh_treetop, *x;
277 	c_caddr_t cp = v, cp2;
278 	c_caddr_t cplim;
279 	struct radix_node *saved_t, *top = t;
280 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
281 	int test, b, rn_bit;
282 
283 	/*
284 	 * Open code rn_search(v, top) to avoid overhead of extra
285 	 * subroutine call.
286 	 */
287 	for (; t->rn_bit >= 0; ) {
288 		if (t->rn_bmask & cp[t->rn_offset])
289 			t = t->rn_right;
290 		else
291 			t = t->rn_left;
292 	}
293 	/*
294 	 * See if we match exactly as a host destination
295 	 * or at least learn how many bits match, for normal mask finesse.
296 	 *
297 	 * It doesn't hurt us to limit how many bytes to check
298 	 * to the length of the mask, since if it matches we had a genuine
299 	 * match and the leaf we have is the most specific one anyway;
300 	 * if it didn't match with a shorter length it would fail
301 	 * with a long one.  This wins big for class B&C netmasks which
302 	 * are probably the most common case...
303 	 */
304 	if (t->rn_mask)
305 		vlen = *(u_char *)t->rn_mask;
306 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
307 	for (; cp < cplim; cp++, cp2++)
308 		if (*cp != *cp2)
309 			goto on1;
310 	/*
311 	 * This extra grot is in case we are explicitly asked
312 	 * to look up the default.  Ugh!
313 	 *
314 	 * Never return the root node itself, it seems to cause a
315 	 * lot of confusion.
316 	 */
317 	if (t->rn_flags & RNF_ROOT)
318 		t = t->rn_dupedkey;
319 	return (t);
320 on1:
321 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
322 	for (b = 7; (test >>= 1) > 0;)
323 		b--;
324 	matched_off = cp - v;
325 	b += matched_off << 3;
326 	rn_bit = -1 - b;
327 	/*
328 	 * If there is a host route in a duped-key chain, it will be first.
329 	 */
330 	if ((saved_t = t)->rn_mask == 0)
331 		t = t->rn_dupedkey;
332 	for (; t; t = t->rn_dupedkey)
333 		/*
334 		 * Even if we don't match exactly as a host,
335 		 * we may match if the leaf we wound up at is
336 		 * a route to a net.
337 		 */
338 		if (t->rn_flags & RNF_NORMAL) {
339 			if (rn_bit <= t->rn_bit)
340 				return (t);
341 		} else if (rn_satisfies_leaf(v, t, matched_off))
342 				return (t);
343 	t = saved_t;
344 	/* start searching up the tree */
345 	do {
346 		struct radix_mask *m;
347 		t = t->rn_parent;
348 		m = t->rn_mklist;
349 		/*
350 		 * If non-contiguous masks ever become important
351 		 * we can restore the masking and open coding of
352 		 * the search and satisfaction test and put the
353 		 * calculation of "off" back before the "do".
354 		 */
355 		while (m) {
356 			if (m->rm_flags & RNF_NORMAL) {
357 				if (rn_bit <= m->rm_bit)
358 					return (m->rm_leaf);
359 			} else {
360 				off = min(t->rn_offset, matched_off);
361 				x = rn_search_m(v, t, m->rm_mask);
362 				while (x && x->rn_mask != m->rm_mask)
363 					x = x->rn_dupedkey;
364 				if (x && rn_satisfies_leaf(v, x, off))
365 					return (x);
366 			}
367 			m = m->rm_mklist;
368 		}
369 	} while (t != top);
370 	return (0);
371 }
372 
373 /*
374  * Returns the next (wider) prefix for the key defined by @rn
375  *  if exists.
376  */
377 struct radix_node *
378 rn_nextprefix(struct radix_node *rn)
379 {
380 	for (rn = rn->rn_dupedkey; rn != NULL; rn = rn->rn_dupedkey) {
381 		if (!(rn->rn_flags & RNF_ROOT))
382 			return (rn);
383 	}
384 	return (NULL);
385 }
386 
387 #ifdef RN_DEBUG
388 int	rn_nodenum;
389 struct	radix_node *rn_clist;
390 int	rn_saveinfo;
391 int	rn_debug =  1;
392 #endif
393 
394 /*
395  * Whenever we add a new leaf to the tree, we also add a parent node,
396  * so we allocate them as an array of two elements: the first one must be
397  * the leaf (see RNTORT() in route.c), the second one is the parent.
398  * This routine initializes the relevant fields of the nodes, so that
399  * the leaf is the left child of the parent node, and both nodes have
400  * (almost) all all fields filled as appropriate.
401  * (XXX some fields are left unset, see the '#if 0' section).
402  * The function returns a pointer to the parent node.
403  */
404 
405 static struct radix_node *
406 rn_newpair(void *v, int b, struct radix_node nodes[2])
407 {
408 	struct radix_node *tt = nodes, *t = tt + 1;
409 	t->rn_bit = b;
410 	t->rn_bmask = 0x80 >> (b & 7);
411 	t->rn_left = tt;
412 	t->rn_offset = b >> 3;
413 
414 #if 0  /* XXX perhaps we should fill these fields as well. */
415 	t->rn_parent = t->rn_right = NULL;
416 
417 	tt->rn_mask = NULL;
418 	tt->rn_dupedkey = NULL;
419 	tt->rn_bmask = 0;
420 #endif
421 	tt->rn_bit = -1;
422 	tt->rn_key = (caddr_t)v;
423 	tt->rn_parent = t;
424 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
425 	tt->rn_mklist = t->rn_mklist = 0;
426 #ifdef RN_DEBUG
427 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
428 	tt->rn_twin = t;
429 	tt->rn_ybro = rn_clist;
430 	rn_clist = tt;
431 #endif
432 	return (t);
433 }
434 
435 static struct radix_node *
436 rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
437     struct radix_node nodes[2])
438 {
439 	caddr_t v = v_arg;
440 	struct radix_node *top = head->rnh_treetop;
441 	int head_off = top->rn_offset, vlen = LEN(v);
442 	struct radix_node *t = rn_search(v_arg, top);
443 	caddr_t cp = v + head_off;
444 	unsigned b;
445 	struct radix_node *p, *tt, *x;
446     	/*
447 	 * Find first bit at which v and t->rn_key differ
448 	 */
449 	caddr_t cp2 = t->rn_key + head_off;
450 	int cmp_res;
451 	caddr_t cplim = v + vlen;
452 
453 	while (cp < cplim)
454 		if (*cp2++ != *cp++)
455 			goto on1;
456 	*dupentry = 1;
457 	return (t);
458 on1:
459 	*dupentry = 0;
460 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
461 	for (b = (cp - v) << 3; cmp_res; b--)
462 		cmp_res >>= 1;
463 
464 	x = top;
465 	cp = v;
466 	do {
467 		p = x;
468 		if (cp[x->rn_offset] & x->rn_bmask)
469 			x = x->rn_right;
470 		else
471 			x = x->rn_left;
472 	} while (b > (unsigned) x->rn_bit);
473 				/* x->rn_bit < b && x->rn_bit >= 0 */
474 #ifdef RN_DEBUG
475 	if (rn_debug)
476 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
477 #endif
478 	t = rn_newpair(v_arg, b, nodes);
479 	tt = t->rn_left;
480 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
481 		p->rn_left = t;
482 	else
483 		p->rn_right = t;
484 	x->rn_parent = t;
485 	t->rn_parent = p; /* frees x, p as temp vars below */
486 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
487 		t->rn_right = x;
488 	} else {
489 		t->rn_right = tt;
490 		t->rn_left = x;
491 	}
492 #ifdef RN_DEBUG
493 	if (rn_debug)
494 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
495 #endif
496 	return (tt);
497 }
498 
499 static struct radix_node *
500 rn_addmask(const void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
501 {
502 	const unsigned char *netmask = n_arg;
503 	const unsigned char *c, *clim;
504 	unsigned char *cp;
505 	struct radix_node *x;
506 	int b = 0, mlen, j;
507 	int maskduplicated, isnormal;
508 	struct radix_node *saved_x;
509 	unsigned char addmask_key[RADIX_MAX_KEY_LEN];
510 
511 	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
512 		mlen = RADIX_MAX_KEY_LEN;
513 	if (skip == 0)
514 		skip = 1;
515 	if (mlen <= skip)
516 		return (maskhead->mask_nodes);
517 
518 	bzero(addmask_key, RADIX_MAX_KEY_LEN);
519 	if (skip > 1)
520 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
521 	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
522 	/*
523 	 * Trim trailing zeroes.
524 	 */
525 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
526 		cp--;
527 	mlen = cp - addmask_key;
528 	if (mlen <= skip)
529 		return (maskhead->mask_nodes);
530 	*addmask_key = mlen;
531 	x = rn_search(addmask_key, maskhead->head.rnh_treetop);
532 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
533 		x = NULL;
534 	if (x || search)
535 		return (x);
536 	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
537 	if ((saved_x = x) == NULL)
538 		return (0);
539 	netmask = cp = (unsigned char *)(x + 2);
540 	bcopy(addmask_key, cp, mlen);
541 	x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
542 	if (maskduplicated) {
543 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
544 		R_Free(saved_x);
545 		return (x);
546 	}
547 	/*
548 	 * Calculate index of mask, and check for normalcy.
549 	 * First find the first byte with a 0 bit, then if there are
550 	 * more bits left (remember we already trimmed the trailing 0's),
551 	 * the bits should be contiguous, otherwise we have got
552 	 * a non-contiguous mask.
553 	 */
554 #define	CONTIG(_c)	(((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
555 	clim = netmask + mlen;
556 	isnormal = 1;
557 	for (c = netmask + skip; (c < clim) && *(const u_char *)c == 0xff;)
558 		c++;
559 	if (c != clim) {
560 		for (j = 0x80; (j & *c) != 0; j >>= 1)
561 			b++;
562 		if (!CONTIG(*c) || c != (clim - 1))
563 			isnormal = 0;
564 	}
565 	b += (c - netmask) << 3;
566 	x->rn_bit = -1 - b;
567 	if (isnormal)
568 		x->rn_flags |= RNF_NORMAL;
569 	return (x);
570 }
571 
572 static int	/* XXX: arbitrary ordering for non-contiguous masks */
573 rn_lexobetter(const void *m_arg, const void *n_arg)
574 {
575 	const u_char *mp = m_arg, *np = n_arg, *lim;
576 
577 	if (LEN(mp) > LEN(np))
578 		return (1);  /* not really, but need to check longer one first */
579 	if (LEN(mp) == LEN(np))
580 		for (lim = mp + LEN(mp); mp < lim;)
581 			if (*mp++ > *np++)
582 				return (1);
583 	return (0);
584 }
585 
586 static struct radix_mask *
587 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
588 {
589 	struct radix_mask *m;
590 
591 	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
592 	if (m == NULL) {
593 		log(LOG_ERR, "Failed to allocate route mask\n");
594 		return (0);
595 	}
596 	bzero(m, sizeof(*m));
597 	m->rm_bit = tt->rn_bit;
598 	m->rm_flags = tt->rn_flags;
599 	if (tt->rn_flags & RNF_NORMAL)
600 		m->rm_leaf = tt;
601 	else
602 		m->rm_mask = tt->rn_mask;
603 	m->rm_mklist = next;
604 	tt->rn_mklist = m;
605 	return (m);
606 }
607 
608 struct radix_node *
609 rn_addroute(void *v_arg, const void *n_arg, struct radix_head *head,
610     struct radix_node treenodes[2])
611 {
612 	caddr_t v = (caddr_t)v_arg, netmask = NULL;
613 	struct radix_node *t, *x = NULL, *tt;
614 	struct radix_node *saved_tt, *top = head->rnh_treetop;
615 	short b = 0, b_leaf = 0;
616 	int keyduplicated;
617 	caddr_t mmask;
618 	struct radix_mask *m, **mp;
619 
620 	/*
621 	 * In dealing with non-contiguous masks, there may be
622 	 * many different routes which have the same mask.
623 	 * We will find it useful to have a unique pointer to
624 	 * the mask to speed avoiding duplicate references at
625 	 * nodes and possibly save time in calculating indices.
626 	 */
627 	if (n_arg)  {
628 		x = rn_addmask(n_arg, head->rnh_masks, 0, top->rn_offset);
629 		if (x == NULL)
630 			return (0);
631 		b_leaf = x->rn_bit;
632 		b = -1 - x->rn_bit;
633 		netmask = x->rn_key;
634 	}
635 	/*
636 	 * Deal with duplicated keys: attach node to previous instance
637 	 */
638 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
639 	if (keyduplicated) {
640 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
641 			if (tt->rn_mask == netmask)
642 				return (0);
643 			if (netmask == 0 ||
644 			    (tt->rn_mask &&
645 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
646 			      || rn_refines(netmask, tt->rn_mask)
647 			      || rn_lexobetter(netmask, tt->rn_mask))))
648 				break;
649 		}
650 		/*
651 		 * If the mask is not duplicated, we wouldn't
652 		 * find it among possible duplicate key entries
653 		 * anyway, so the above test doesn't hurt.
654 		 *
655 		 * We sort the masks for a duplicated key the same way as
656 		 * in a masklist -- most specific to least specific.
657 		 * This may require the unfortunate nuisance of relocating
658 		 * the head of the list.
659 		 *
660 		 * We also reverse, or doubly link the list through the
661 		 * parent pointer.
662 		 */
663 		if (tt == saved_tt) {
664 			struct	radix_node *xx = x;
665 			/* link in at head of list */
666 			(tt = treenodes)->rn_dupedkey = t;
667 			tt->rn_flags = t->rn_flags;
668 			tt->rn_parent = x = t->rn_parent;
669 			t->rn_parent = tt;	 		/* parent */
670 			if (x->rn_left == t)
671 				x->rn_left = tt;
672 			else
673 				x->rn_right = tt;
674 			saved_tt = tt; x = xx;
675 		} else {
676 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
677 			t->rn_dupedkey = tt;
678 			tt->rn_parent = t;			/* parent */
679 			if (tt->rn_dupedkey)			/* parent */
680 				tt->rn_dupedkey->rn_parent = tt; /* parent */
681 		}
682 #ifdef RN_DEBUG
683 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
684 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
685 #endif
686 		tt->rn_key = (caddr_t) v;
687 		tt->rn_bit = -1;
688 		tt->rn_flags = RNF_ACTIVE;
689 	}
690 	/*
691 	 * Put mask in tree.
692 	 */
693 	if (netmask) {
694 		tt->rn_mask = netmask;
695 		tt->rn_bit = x->rn_bit;
696 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
697 	}
698 	t = saved_tt->rn_parent;
699 	if (keyduplicated)
700 		goto on2;
701 	b_leaf = -1 - t->rn_bit;
702 	if (t->rn_right == saved_tt)
703 		x = t->rn_left;
704 	else
705 		x = t->rn_right;
706 	/* Promote general routes from below */
707 	if (x->rn_bit < 0) {
708 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
709 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
710 			*mp = m = rn_new_radix_mask(x, 0);
711 			if (m)
712 				mp = &m->rm_mklist;
713 		}
714 	} else if (x->rn_mklist) {
715 		/*
716 		 * Skip over masks whose index is > that of new node
717 		 */
718 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
719 			if (m->rm_bit >= b_leaf)
720 				break;
721 		t->rn_mklist = m; *mp = NULL;
722 	}
723 on2:
724 	/* Add new route to highest possible ancestor's list */
725 	if ((netmask == 0) || (b > t->rn_bit ))
726 		return (tt); /* can't lift at all */
727 	b_leaf = tt->rn_bit;
728 	do {
729 		x = t;
730 		t = t->rn_parent;
731 	} while (b <= t->rn_bit && x != top);
732 	/*
733 	 * Search through routes associated with node to
734 	 * insert new route according to index.
735 	 * Need same criteria as when sorting dupedkeys to avoid
736 	 * double loop on deletion.
737 	 */
738 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
739 		if (m->rm_bit < b_leaf)
740 			continue;
741 		if (m->rm_bit > b_leaf)
742 			break;
743 		if (m->rm_flags & RNF_NORMAL) {
744 			mmask = m->rm_leaf->rn_mask;
745 			if (tt->rn_flags & RNF_NORMAL) {
746 			    log(LOG_ERR,
747 			        "Non-unique normal route, mask not entered\n");
748 				return (tt);
749 			}
750 		} else
751 			mmask = m->rm_mask;
752 		if (mmask == netmask) {
753 			m->rm_refs++;
754 			tt->rn_mklist = m;
755 			return (tt);
756 		}
757 		if (rn_refines(netmask, mmask)
758 		    || rn_lexobetter(netmask, mmask))
759 			break;
760 	}
761 	*mp = rn_new_radix_mask(tt, *mp);
762 	return (tt);
763 }
764 
765 struct radix_node *
766 rn_delete(const void *v_arg, const void *netmask_arg, struct radix_head *head)
767 {
768 	struct radix_node *t, *p, *x, *tt;
769 	struct radix_mask *m, *saved_m, **mp;
770 	struct radix_node *dupedkey, *saved_tt, *top;
771 	c_caddr_t v;
772 	c_caddr_t netmask;
773 	int b, head_off, vlen;
774 
775 	v = v_arg;
776 	netmask = netmask_arg;
777 	x = head->rnh_treetop;
778 	tt = rn_search(v, x);
779 	head_off = x->rn_offset;
780 	vlen =  LEN(v);
781 	saved_tt = tt;
782 	top = x;
783 	if (tt == NULL ||
784 	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
785 		return (0);
786 	/*
787 	 * Delete our route from mask lists.
788 	 */
789 	if (netmask) {
790 		x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
791 		if (x == NULL)
792 			return (0);
793 		netmask = x->rn_key;
794 		while (tt->rn_mask != netmask)
795 			if ((tt = tt->rn_dupedkey) == NULL)
796 				return (0);
797 	}
798 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
799 		goto on1;
800 	if (tt->rn_flags & RNF_NORMAL) {
801 		if (m->rm_leaf != tt || m->rm_refs > 0) {
802 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
803 			return (0);  /* dangling ref could cause disaster */
804 		}
805 	} else {
806 		if (m->rm_mask != tt->rn_mask) {
807 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
808 			goto on1;
809 		}
810 		if (--m->rm_refs >= 0)
811 			goto on1;
812 	}
813 	b = -1 - tt->rn_bit;
814 	t = saved_tt->rn_parent;
815 	if (b > t->rn_bit)
816 		goto on1; /* Wasn't lifted at all */
817 	do {
818 		x = t;
819 		t = t->rn_parent;
820 	} while (b <= t->rn_bit && x != top);
821 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
822 		if (m == saved_m) {
823 			*mp = m->rm_mklist;
824 			R_Free(m);
825 			break;
826 		}
827 	if (m == NULL) {
828 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
829 		if (tt->rn_flags & RNF_NORMAL)
830 			return (0); /* Dangling ref to us */
831 	}
832 on1:
833 	/*
834 	 * Eliminate us from tree
835 	 */
836 	if (tt->rn_flags & RNF_ROOT)
837 		return (0);
838 #ifdef RN_DEBUG
839 	/* Get us out of the creation list */
840 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
841 	if (t) t->rn_ybro = tt->rn_ybro;
842 #endif
843 	t = tt->rn_parent;
844 	dupedkey = saved_tt->rn_dupedkey;
845 	if (dupedkey) {
846 		/*
847 		 * Here, tt is the deletion target and
848 		 * saved_tt is the head of the dupekey chain.
849 		 */
850 		if (tt == saved_tt) {
851 			/* remove from head of chain */
852 			x = dupedkey; x->rn_parent = t;
853 			if (t->rn_left == tt)
854 				t->rn_left = x;
855 			else
856 				t->rn_right = x;
857 		} else {
858 			/* find node in front of tt on the chain */
859 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
860 				p = p->rn_dupedkey;
861 			if (p) {
862 				p->rn_dupedkey = tt->rn_dupedkey;
863 				if (tt->rn_dupedkey)		/* parent */
864 					tt->rn_dupedkey->rn_parent = p;
865 								/* parent */
866 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
867 		}
868 		t = tt + 1;
869 		if  (t->rn_flags & RNF_ACTIVE) {
870 #ifndef RN_DEBUG
871 			*++x = *t;
872 			p = t->rn_parent;
873 #else
874 			b = t->rn_info;
875 			*++x = *t;
876 			t->rn_info = b;
877 			p = t->rn_parent;
878 #endif
879 			if (p->rn_left == t)
880 				p->rn_left = x;
881 			else
882 				p->rn_right = x;
883 			x->rn_left->rn_parent = x;
884 			x->rn_right->rn_parent = x;
885 		}
886 		goto out;
887 	}
888 	if (t->rn_left == tt)
889 		x = t->rn_right;
890 	else
891 		x = t->rn_left;
892 	p = t->rn_parent;
893 	if (p->rn_right == t)
894 		p->rn_right = x;
895 	else
896 		p->rn_left = x;
897 	x->rn_parent = p;
898 	/*
899 	 * Demote routes attached to us.
900 	 */
901 	if (t->rn_mklist) {
902 		if (x->rn_bit >= 0) {
903 			for (mp = &x->rn_mklist; (m = *mp);)
904 				mp = &m->rm_mklist;
905 			*mp = t->rn_mklist;
906 		} else {
907 			/* If there are any key,mask pairs in a sibling
908 			   duped-key chain, some subset will appear sorted
909 			   in the same order attached to our mklist */
910 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
911 				if (m == x->rn_mklist) {
912 					struct radix_mask *mm = m->rm_mklist;
913 					x->rn_mklist = 0;
914 					if (--(m->rm_refs) < 0)
915 						R_Free(m);
916 					m = mm;
917 				}
918 			if (m)
919 				log(LOG_ERR,
920 				    "rn_delete: Orphaned Mask %p at %p\n",
921 				    m, x);
922 		}
923 	}
924 	/*
925 	 * We may be holding an active internal node in the tree.
926 	 */
927 	x = tt + 1;
928 	if (t != x) {
929 #ifndef RN_DEBUG
930 		*t = *x;
931 #else
932 		b = t->rn_info;
933 		*t = *x;
934 		t->rn_info = b;
935 #endif
936 		t->rn_left->rn_parent = t;
937 		t->rn_right->rn_parent = t;
938 		p = x->rn_parent;
939 		if (p->rn_left == x)
940 			p->rn_left = t;
941 		else
942 			p->rn_right = t;
943 	}
944 out:
945 	tt->rn_flags &= ~RNF_ACTIVE;
946 	tt[1].rn_flags &= ~RNF_ACTIVE;
947 	return (tt);
948 }
949 
950 /*
951  * This is the same as rn_walktree() except for the parameters and the
952  * exit.
953  */
954 int
955 rn_walktree_from(struct radix_head *h, void *a, void *m,
956     walktree_f_t *f, void *w)
957 {
958 	int error;
959 	struct radix_node *base, *next;
960 	u_char *xa = (u_char *)a;
961 	u_char *xm = (u_char *)m;
962 	struct radix_node *rn, *last = NULL; /* shut up gcc */
963 	int stopping = 0;
964 	int lastb;
965 
966 	KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
967 
968 	/*
969 	 * rn_search_m is sort-of-open-coded here. We cannot use the
970 	 * function because we need to keep track of the last node seen.
971 	 */
972 	/* printf("about to search\n"); */
973 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
974 		last = rn;
975 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
976 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
977 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
978 			break;
979 		}
980 		if (rn->rn_bmask & xa[rn->rn_offset]) {
981 			rn = rn->rn_right;
982 		} else {
983 			rn = rn->rn_left;
984 		}
985 	}
986 	/* printf("done searching\n"); */
987 
988 	/*
989 	 * Two cases: either we stepped off the end of our mask,
990 	 * in which case last == rn, or we reached a leaf, in which
991 	 * case we want to start from the leaf.
992 	 */
993 	if (rn->rn_bit >= 0)
994 		rn = last;
995 	lastb = last->rn_bit;
996 
997 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
998 
999 	/*
1000 	 * This gets complicated because we may delete the node
1001 	 * while applying the function f to it, so we need to calculate
1002 	 * the successor node in advance.
1003 	 */
1004 	while (rn->rn_bit >= 0)
1005 		rn = rn->rn_left;
1006 
1007 	while (!stopping) {
1008 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1009 		base = rn;
1010 		/* If at right child go back up, otherwise, go right */
1011 		while (rn->rn_parent->rn_right == rn
1012 		       && !(rn->rn_flags & RNF_ROOT)) {
1013 			rn = rn->rn_parent;
1014 
1015 			/* if went up beyond last, stop */
1016 			if (rn->rn_bit <= lastb) {
1017 				stopping = 1;
1018 				/* printf("up too far\n"); */
1019 				/*
1020 				 * XXX we should jump to the 'Process leaves'
1021 				 * part, because the values of 'rn' and 'next'
1022 				 * we compute will not be used. Not a big deal
1023 				 * because this loop will terminate, but it is
1024 				 * inefficient and hard to understand!
1025 				 */
1026 			}
1027 		}
1028 
1029 		/*
1030 		 * At the top of the tree, no need to traverse the right
1031 		 * half, prevent the traversal of the entire tree in the
1032 		 * case of default route.
1033 		 */
1034 		if (rn->rn_parent->rn_flags & RNF_ROOT)
1035 			stopping = 1;
1036 
1037 		/* Find the next *leaf* since next node might vanish, too */
1038 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1039 			rn = rn->rn_left;
1040 		next = rn;
1041 		/* Process leaves */
1042 		while ((rn = base) != NULL) {
1043 			base = rn->rn_dupedkey;
1044 			/* printf("leaf %p\n", rn); */
1045 			if (!(rn->rn_flags & RNF_ROOT)
1046 			    && (error = (*f)(rn, w)))
1047 				return (error);
1048 		}
1049 		rn = next;
1050 
1051 		if (rn->rn_flags & RNF_ROOT) {
1052 			/* printf("root, stopping"); */
1053 			stopping = 1;
1054 		}
1055 	}
1056 	return (0);
1057 }
1058 
1059 int
1060 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
1061 {
1062 	int error;
1063 	struct radix_node *base, *next;
1064 	struct radix_node *rn = h->rnh_treetop;
1065 	/*
1066 	 * This gets complicated because we may delete the node
1067 	 * while applying the function f to it, so we need to calculate
1068 	 * the successor node in advance.
1069 	 */
1070 
1071 	/* First time through node, go left */
1072 	while (rn->rn_bit >= 0)
1073 		rn = rn->rn_left;
1074 	for (;;) {
1075 		base = rn;
1076 		/* If at right child go back up, otherwise, go right */
1077 		while (rn->rn_parent->rn_right == rn
1078 		       && (rn->rn_flags & RNF_ROOT) == 0)
1079 			rn = rn->rn_parent;
1080 		/* Find the next *leaf* since next node might vanish, too */
1081 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1082 			rn = rn->rn_left;
1083 		next = rn;
1084 		/* Process leaves */
1085 		while ((rn = base)) {
1086 			base = rn->rn_dupedkey;
1087 			if (!(rn->rn_flags & RNF_ROOT)
1088 			    && (error = (*f)(rn, w)))
1089 				return (error);
1090 		}
1091 		rn = next;
1092 		if (rn->rn_flags & RNF_ROOT)
1093 			return (0);
1094 	}
1095 	/* NOTREACHED */
1096 }
1097 
1098 /*
1099  * Initialize an empty tree. This has 3 nodes, which are passed
1100  * via base_nodes (in the order <left,root,right>) and are
1101  * marked RNF_ROOT so they cannot be freed.
1102  * The leaves have all-zero and all-one keys, with significant
1103  * bits starting at 'off'.
1104  */
1105 void
1106 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
1107 {
1108 	struct radix_node *t, *tt, *ttt;
1109 
1110 	t = rn_newpair(rn_zeros, off, base_nodes);
1111 	ttt = base_nodes + 2;
1112 	t->rn_right = ttt;
1113 	t->rn_parent = t;
1114 	tt = t->rn_left;	/* ... which in turn is base_nodes */
1115 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1116 	tt->rn_bit = -1 - off;
1117 	*ttt = *tt;
1118 	ttt->rn_key = rn_ones;
1119 
1120 	rh->rnh_treetop = t;
1121 }
1122 
1123 static void
1124 rn_detachhead_internal(struct radix_head *head)
1125 {
1126 
1127 	KASSERT((head != NULL),
1128 	    ("%s: head already freed", __func__));
1129 
1130 	/* Free <left,root,right> nodes. */
1131 	R_Free(head);
1132 }
1133 
1134 /* Functions used by 'struct radix_node_head' users */
1135 
1136 int
1137 rn_inithead(void **head, int off)
1138 {
1139 	struct radix_node_head *rnh;
1140 	struct radix_mask_head *rmh;
1141 
1142 	rnh = *head;
1143 	rmh = NULL;
1144 
1145 	if (*head != NULL)
1146 		return (1);
1147 
1148 	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1149 	R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
1150 	if (rnh == NULL || rmh == NULL) {
1151 		if (rnh != NULL)
1152 			R_Free(rnh);
1153 		if (rmh != NULL)
1154 			R_Free(rmh);
1155 		return (0);
1156 	}
1157 
1158 	/* Init trees */
1159 	rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
1160 	rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
1161 	*head = rnh;
1162 	rnh->rh.rnh_masks = rmh;
1163 
1164 	/* Finally, set base callbacks */
1165 	rnh->rnh_addaddr = rn_addroute;
1166 	rnh->rnh_deladdr = rn_delete;
1167 	rnh->rnh_matchaddr = rn_match;
1168 	rnh->rnh_lookup = rn_lookup;
1169 	rnh->rnh_walktree = rn_walktree;
1170 	rnh->rnh_walktree_from = rn_walktree_from;
1171 
1172 	return (1);
1173 }
1174 
1175 static int
1176 rn_freeentry(struct radix_node *rn, void *arg)
1177 {
1178 	struct radix_head * const rnh = arg;
1179 	struct radix_node *x;
1180 
1181 	x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1182 	if (x != NULL)
1183 		R_Free(x);
1184 	return (0);
1185 }
1186 
1187 int
1188 rn_detachhead(void **head)
1189 {
1190 	struct radix_node_head *rnh;
1191 
1192 	KASSERT((head != NULL && *head != NULL),
1193 	    ("%s: head already freed", __func__));
1194 
1195 	rnh = (struct radix_node_head *)(*head);
1196 
1197 	rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
1198 	rn_detachhead_internal(&rnh->rh.rnh_masks->head);
1199 	rn_detachhead_internal(&rnh->rh);
1200 
1201 	*head = NULL;
1202 
1203 	return (1);
1204 }
1205