xref: /freebsd/sys/net/radix.c (revision 5a2f4cbd)
1 /*-
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30  * $FreeBSD$
31  */
32 
33 /*
34  * Routines to build and maintain radix trees for routing lookups.
35  */
36 #include <sys/param.h>
37 #ifdef	_KERNEL
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/rwlock.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/syslog.h>
44 #include <net/radix.h>
45 #include "opt_mpath.h"
46 #ifdef RADIX_MPATH
47 #include <net/radix_mpath.h>
48 #endif
49 #else /* !_KERNEL */
50 #include <stdio.h>
51 #include <strings.h>
52 #include <stdlib.h>
53 #define log(x, arg...)	fprintf(stderr, ## arg)
54 #define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
55 #define min(a, b) ((a) < (b) ? (a) : (b) )
56 #include <net/radix.h>
57 #endif /* !_KERNEL */
58 
59 static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
60 		    walktree_f_t *f, void *w);
61 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
62 static struct radix_node
63 	 *rn_insert(void *, struct radix_node_head *, int *,
64 	     struct radix_node [2]),
65 	 *rn_newpair(void *, int, struct radix_node[2]),
66 	 *rn_search(void *, struct radix_node *),
67 	 *rn_search_m(void *, struct radix_node *, void *);
68 
69 static void rn_detachhead_internal(void **head);
70 static int rn_inithead_internal(void **head, int off);
71 
72 #define	RADIX_MAX_KEY_LEN	32
73 
74 static char rn_zeros[RADIX_MAX_KEY_LEN];
75 static char rn_ones[RADIX_MAX_KEY_LEN] = {
76 	-1, -1, -1, -1, -1, -1, -1, -1,
77 	-1, -1, -1, -1, -1, -1, -1, -1,
78 	-1, -1, -1, -1, -1, -1, -1, -1,
79 	-1, -1, -1, -1, -1, -1, -1, -1,
80 };
81 
82 
83 static int	rn_lexobetter(void *m_arg, void *n_arg);
84 static struct radix_mask *
85 		rn_new_radix_mask(struct radix_node *tt,
86 		    struct radix_mask *next);
87 static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
88 		    int skip);
89 
90 /*
91  * The data structure for the keys is a radix tree with one way
92  * branching removed.  The index rn_bit at an internal node n represents a bit
93  * position to be tested.  The tree is arranged so that all descendants
94  * of a node n have keys whose bits all agree up to position rn_bit - 1.
95  * (We say the index of n is rn_bit.)
96  *
97  * There is at least one descendant which has a one bit at position rn_bit,
98  * and at least one with a zero there.
99  *
100  * A route is determined by a pair of key and mask.  We require that the
101  * bit-wise logical and of the key and mask to be the key.
102  * We define the index of a route to associated with the mask to be
103  * the first bit number in the mask where 0 occurs (with bit number 0
104  * representing the highest order bit).
105  *
106  * We say a mask is normal if every bit is 0, past the index of the mask.
107  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
108  * and m is a normal mask, then the route applies to every descendant of n.
109  * If the index(m) < rn_bit, this implies the trailing last few bits of k
110  * before bit b are all 0, (and hence consequently true of every descendant
111  * of n), so the route applies to all descendants of the node as well.
112  *
113  * Similar logic shows that a non-normal mask m such that
114  * index(m) <= index(n) could potentially apply to many children of n.
115  * Thus, for each non-host route, we attach its mask to a list at an internal
116  * node as high in the tree as we can go.
117  *
118  * The present version of the code makes use of normal routes in short-
119  * circuiting an explict mask and compare operation when testing whether
120  * a key satisfies a normal route, and also in remembering the unique leaf
121  * that governs a subtree.
122  */
123 
124 /*
125  * Most of the functions in this code assume that the key/mask arguments
126  * are sockaddr-like structures, where the first byte is an u_char
127  * indicating the size of the entire structure.
128  *
129  * To make the assumption more explicit, we use the LEN() macro to access
130  * this field. It is safe to pass an expression with side effects
131  * to LEN() as the argument is evaluated only once.
132  * We cast the result to int as this is the dominant usage.
133  */
134 #define LEN(x) ( (int) (*(const u_char *)(x)) )
135 
136 /*
137  * XXX THIS NEEDS TO BE FIXED
138  * In the code, pointers to keys and masks are passed as either
139  * 'void *' (because callers use to pass pointers of various kinds), or
140  * 'caddr_t' (which is fine for pointer arithmetics, but not very
141  * clean when you dereference it to access data). Furthermore, caddr_t
142  * is really 'char *', while the natural type to operate on keys and
143  * masks would be 'u_char'. This mismatch require a lot of casts and
144  * intermediate variables to adapt types that clutter the code.
145  */
146 
147 /*
148  * Search a node in the tree matching the key.
149  */
150 static struct radix_node *
151 rn_search(void *v_arg, struct radix_node *head)
152 {
153 	struct radix_node *x;
154 	caddr_t v;
155 
156 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
157 		if (x->rn_bmask & v[x->rn_offset])
158 			x = x->rn_right;
159 		else
160 			x = x->rn_left;
161 	}
162 	return (x);
163 }
164 
165 /*
166  * Same as above, but with an additional mask.
167  * XXX note this function is used only once.
168  */
169 static struct radix_node *
170 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
171 {
172 	struct radix_node *x;
173 	caddr_t v = v_arg, m = m_arg;
174 
175 	for (x = head; x->rn_bit >= 0;) {
176 		if ((x->rn_bmask & m[x->rn_offset]) &&
177 		    (x->rn_bmask & v[x->rn_offset]))
178 			x = x->rn_right;
179 		else
180 			x = x->rn_left;
181 	}
182 	return (x);
183 }
184 
185 int
186 rn_refines(void *m_arg, void *n_arg)
187 {
188 	caddr_t m = m_arg, n = n_arg;
189 	caddr_t lim, lim2 = lim = n + LEN(n);
190 	int longer = LEN(n++) - LEN(m++);
191 	int masks_are_equal = 1;
192 
193 	if (longer > 0)
194 		lim -= longer;
195 	while (n < lim) {
196 		if (*n & ~(*m))
197 			return (0);
198 		if (*n++ != *m++)
199 			masks_are_equal = 0;
200 	}
201 	while (n < lim2)
202 		if (*n++)
203 			return (0);
204 	if (masks_are_equal && (longer < 0))
205 		for (lim2 = m - longer; m < lim2; )
206 			if (*m++)
207 				return (1);
208 	return (!masks_are_equal);
209 }
210 
211 /*
212  * Search for exact match in given @head.
213  * Assume host bits are cleared in @v_arg if @m_arg is not NULL
214  * Note that prefixes with /32 or /128 masks are treated differently
215  * from host routes.
216  */
217 struct radix_node *
218 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
219 {
220 	struct radix_node *x;
221 	caddr_t netmask;
222 
223 	if (m_arg != NULL) {
224 		/*
225 		 * Most common case: search exact prefix/mask
226 		 */
227 		x = rn_addmask(m_arg, head->rnh_masks, 1,
228 		    head->rnh_treetop->rn_offset);
229 		if (x == NULL)
230 			return (NULL);
231 		netmask = x->rn_key;
232 
233 		x = rn_match(v_arg, head);
234 
235 		while (x != NULL && x->rn_mask != netmask)
236 			x = x->rn_dupedkey;
237 
238 		return (x);
239 	}
240 
241 	/*
242 	 * Search for host address.
243 	 */
244 	if ((x = rn_match(v_arg, head)) == NULL)
245 		return (NULL);
246 
247 	/* Check if found key is the same */
248 	if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
249 		return (NULL);
250 
251 	/* Check if this is not host route */
252 	if (x->rn_mask != NULL)
253 		return (NULL);
254 
255 	return (x);
256 }
257 
258 static int
259 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
260 {
261 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
262 	char *cplim;
263 	int length = min(LEN(cp), LEN(cp2));
264 
265 	if (cp3 == NULL)
266 		cp3 = rn_ones;
267 	else
268 		length = min(length, LEN(cp3));
269 	cplim = cp + length; cp3 += skip; cp2 += skip;
270 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
271 		if ((*cp ^ *cp2) & *cp3)
272 			return (0);
273 	return (1);
274 }
275 
276 /*
277  * Search for longest-prefix match in given @head
278  */
279 struct radix_node *
280 rn_match(void *v_arg, struct radix_node_head *head)
281 {
282 	caddr_t v = v_arg;
283 	struct radix_node *t = head->rnh_treetop, *x;
284 	caddr_t cp = v, cp2;
285 	caddr_t cplim;
286 	struct radix_node *saved_t, *top = t;
287 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
288 	int test, b, rn_bit;
289 
290 	/*
291 	 * Open code rn_search(v, top) to avoid overhead of extra
292 	 * subroutine call.
293 	 */
294 	for (; t->rn_bit >= 0; ) {
295 		if (t->rn_bmask & cp[t->rn_offset])
296 			t = t->rn_right;
297 		else
298 			t = t->rn_left;
299 	}
300 	/*
301 	 * See if we match exactly as a host destination
302 	 * or at least learn how many bits match, for normal mask finesse.
303 	 *
304 	 * It doesn't hurt us to limit how many bytes to check
305 	 * to the length of the mask, since if it matches we had a genuine
306 	 * match and the leaf we have is the most specific one anyway;
307 	 * if it didn't match with a shorter length it would fail
308 	 * with a long one.  This wins big for class B&C netmasks which
309 	 * are probably the most common case...
310 	 */
311 	if (t->rn_mask)
312 		vlen = *(u_char *)t->rn_mask;
313 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
314 	for (; cp < cplim; cp++, cp2++)
315 		if (*cp != *cp2)
316 			goto on1;
317 	/*
318 	 * This extra grot is in case we are explicitly asked
319 	 * to look up the default.  Ugh!
320 	 *
321 	 * Never return the root node itself, it seems to cause a
322 	 * lot of confusion.
323 	 */
324 	if (t->rn_flags & RNF_ROOT)
325 		t = t->rn_dupedkey;
326 	return (t);
327 on1:
328 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
329 	for (b = 7; (test >>= 1) > 0;)
330 		b--;
331 	matched_off = cp - v;
332 	b += matched_off << 3;
333 	rn_bit = -1 - b;
334 	/*
335 	 * If there is a host route in a duped-key chain, it will be first.
336 	 */
337 	if ((saved_t = t)->rn_mask == 0)
338 		t = t->rn_dupedkey;
339 	for (; t; t = t->rn_dupedkey)
340 		/*
341 		 * Even if we don't match exactly as a host,
342 		 * we may match if the leaf we wound up at is
343 		 * a route to a net.
344 		 */
345 		if (t->rn_flags & RNF_NORMAL) {
346 			if (rn_bit <= t->rn_bit)
347 				return (t);
348 		} else if (rn_satisfies_leaf(v, t, matched_off))
349 				return (t);
350 	t = saved_t;
351 	/* start searching up the tree */
352 	do {
353 		struct radix_mask *m;
354 		t = t->rn_parent;
355 		m = t->rn_mklist;
356 		/*
357 		 * If non-contiguous masks ever become important
358 		 * we can restore the masking and open coding of
359 		 * the search and satisfaction test and put the
360 		 * calculation of "off" back before the "do".
361 		 */
362 		while (m) {
363 			if (m->rm_flags & RNF_NORMAL) {
364 				if (rn_bit <= m->rm_bit)
365 					return (m->rm_leaf);
366 			} else {
367 				off = min(t->rn_offset, matched_off);
368 				x = rn_search_m(v, t, m->rm_mask);
369 				while (x && x->rn_mask != m->rm_mask)
370 					x = x->rn_dupedkey;
371 				if (x && rn_satisfies_leaf(v, x, off))
372 					return (x);
373 			}
374 			m = m->rm_mklist;
375 		}
376 	} while (t != top);
377 	return (0);
378 }
379 
380 #ifdef RN_DEBUG
381 int	rn_nodenum;
382 struct	radix_node *rn_clist;
383 int	rn_saveinfo;
384 int	rn_debug =  1;
385 #endif
386 
387 /*
388  * Whenever we add a new leaf to the tree, we also add a parent node,
389  * so we allocate them as an array of two elements: the first one must be
390  * the leaf (see RNTORT() in route.c), the second one is the parent.
391  * This routine initializes the relevant fields of the nodes, so that
392  * the leaf is the left child of the parent node, and both nodes have
393  * (almost) all all fields filled as appropriate.
394  * (XXX some fields are left unset, see the '#if 0' section).
395  * The function returns a pointer to the parent node.
396  */
397 
398 static struct radix_node *
399 rn_newpair(void *v, int b, struct radix_node nodes[2])
400 {
401 	struct radix_node *tt = nodes, *t = tt + 1;
402 	t->rn_bit = b;
403 	t->rn_bmask = 0x80 >> (b & 7);
404 	t->rn_left = tt;
405 	t->rn_offset = b >> 3;
406 
407 #if 0  /* XXX perhaps we should fill these fields as well. */
408 	t->rn_parent = t->rn_right = NULL;
409 
410 	tt->rn_mask = NULL;
411 	tt->rn_dupedkey = NULL;
412 	tt->rn_bmask = 0;
413 #endif
414 	tt->rn_bit = -1;
415 	tt->rn_key = (caddr_t)v;
416 	tt->rn_parent = t;
417 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
418 	tt->rn_mklist = t->rn_mklist = 0;
419 #ifdef RN_DEBUG
420 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
421 	tt->rn_twin = t;
422 	tt->rn_ybro = rn_clist;
423 	rn_clist = tt;
424 #endif
425 	return (t);
426 }
427 
428 static struct radix_node *
429 rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
430     struct radix_node nodes[2])
431 {
432 	caddr_t v = v_arg;
433 	struct radix_node *top = head->rnh_treetop;
434 	int head_off = top->rn_offset, vlen = LEN(v);
435 	struct radix_node *t = rn_search(v_arg, top);
436 	caddr_t cp = v + head_off;
437 	int b;
438 	struct radix_node *p, *tt, *x;
439     	/*
440 	 * Find first bit at which v and t->rn_key differ
441 	 */
442 	caddr_t cp2 = t->rn_key + head_off;
443 	int cmp_res;
444 	caddr_t cplim = v + vlen;
445 
446 	while (cp < cplim)
447 		if (*cp2++ != *cp++)
448 			goto on1;
449 	*dupentry = 1;
450 	return (t);
451 on1:
452 	*dupentry = 0;
453 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
454 	for (b = (cp - v) << 3; cmp_res; b--)
455 		cmp_res >>= 1;
456 
457 	x = top;
458 	cp = v;
459 	do {
460 		p = x;
461 		if (cp[x->rn_offset] & x->rn_bmask)
462 			x = x->rn_right;
463 		else
464 			x = x->rn_left;
465 	} while (b > (unsigned) x->rn_bit);
466 				/* x->rn_bit < b && x->rn_bit >= 0 */
467 #ifdef RN_DEBUG
468 	if (rn_debug)
469 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
470 #endif
471 	t = rn_newpair(v_arg, b, nodes);
472 	tt = t->rn_left;
473 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
474 		p->rn_left = t;
475 	else
476 		p->rn_right = t;
477 	x->rn_parent = t;
478 	t->rn_parent = p; /* frees x, p as temp vars below */
479 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
480 		t->rn_right = x;
481 	} else {
482 		t->rn_right = tt;
483 		t->rn_left = x;
484 	}
485 #ifdef RN_DEBUG
486 	if (rn_debug)
487 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
488 #endif
489 	return (tt);
490 }
491 
492 struct radix_node *
493 rn_addmask(void *n_arg, struct radix_node_head *maskhead, int search, int skip)
494 {
495 	unsigned char *netmask = n_arg;
496 	unsigned char *cp, *cplim;
497 	struct radix_node *x;
498 	int b = 0, mlen, j;
499 	int maskduplicated, isnormal;
500 	struct radix_node *saved_x;
501 	unsigned char addmask_key[RADIX_MAX_KEY_LEN];
502 
503 	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
504 		mlen = RADIX_MAX_KEY_LEN;
505 	if (skip == 0)
506 		skip = 1;
507 	if (mlen <= skip)
508 		return (maskhead->rnh_nodes);
509 
510 	bzero(addmask_key, RADIX_MAX_KEY_LEN);
511 	if (skip > 1)
512 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
513 	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
514 	/*
515 	 * Trim trailing zeroes.
516 	 */
517 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
518 		cp--;
519 	mlen = cp - addmask_key;
520 	if (mlen <= skip)
521 		return (maskhead->rnh_nodes);
522 	*addmask_key = mlen;
523 	x = rn_search(addmask_key, maskhead->rnh_treetop);
524 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
525 		x = 0;
526 	if (x || search)
527 		return (x);
528 	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
529 	if ((saved_x = x) == 0)
530 		return (0);
531 	netmask = cp = (caddr_t)(x + 2);
532 	bcopy(addmask_key, cp, mlen);
533 	x = rn_insert(cp, maskhead, &maskduplicated, x);
534 	if (maskduplicated) {
535 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
536 		Free(saved_x);
537 		return (x);
538 	}
539 	/*
540 	 * Calculate index of mask, and check for normalcy.
541 	 * First find the first byte with a 0 bit, then if there are
542 	 * more bits left (remember we already trimmed the trailing 0's),
543 	 * the bits should be contiguous, otherwise we have got
544 	 * a non-contiguous mask.
545 	 */
546 #define	CONTIG(_c)	(((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
547 	cplim = netmask + mlen;
548 	isnormal = 1;
549 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
550 		cp++;
551 	if (cp != cplim) {
552 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
553 			b++;
554 		if (!CONTIG(*cp) || cp != (cplim - 1))
555 			isnormal = 0;
556 	}
557 	b += (cp - netmask) << 3;
558 	x->rn_bit = -1 - b;
559 	if (isnormal)
560 		x->rn_flags |= RNF_NORMAL;
561 	return (x);
562 }
563 
564 static int	/* XXX: arbitrary ordering for non-contiguous masks */
565 rn_lexobetter(void *m_arg, void *n_arg)
566 {
567 	u_char *mp = m_arg, *np = n_arg, *lim;
568 
569 	if (LEN(mp) > LEN(np))
570 		return (1);  /* not really, but need to check longer one first */
571 	if (LEN(mp) == LEN(np))
572 		for (lim = mp + LEN(mp); mp < lim;)
573 			if (*mp++ > *np++)
574 				return (1);
575 	return (0);
576 }
577 
578 static struct radix_mask *
579 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
580 {
581 	struct radix_mask *m;
582 
583 	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
584 	if (m == NULL) {
585 		log(LOG_ERR, "Failed to allocate route mask\n");
586 		return (0);
587 	}
588 	bzero(m, sizeof(*m));
589 	m->rm_bit = tt->rn_bit;
590 	m->rm_flags = tt->rn_flags;
591 	if (tt->rn_flags & RNF_NORMAL)
592 		m->rm_leaf = tt;
593 	else
594 		m->rm_mask = tt->rn_mask;
595 	m->rm_mklist = next;
596 	tt->rn_mklist = m;
597 	return (m);
598 }
599 
600 struct radix_node *
601 rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
602     struct radix_node treenodes[2])
603 {
604 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
605 	struct radix_node *t, *x = 0, *tt;
606 	struct radix_node *saved_tt, *top = head->rnh_treetop;
607 	short b = 0, b_leaf = 0;
608 	int keyduplicated;
609 	caddr_t mmask;
610 	struct radix_mask *m, **mp;
611 
612 	/*
613 	 * In dealing with non-contiguous masks, there may be
614 	 * many different routes which have the same mask.
615 	 * We will find it useful to have a unique pointer to
616 	 * the mask to speed avoiding duplicate references at
617 	 * nodes and possibly save time in calculating indices.
618 	 */
619 	if (netmask)  {
620 		x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset);
621 		if (x == NULL)
622 			return (0);
623 		b_leaf = x->rn_bit;
624 		b = -1 - x->rn_bit;
625 		netmask = x->rn_key;
626 	}
627 	/*
628 	 * Deal with duplicated keys: attach node to previous instance
629 	 */
630 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
631 	if (keyduplicated) {
632 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
633 #ifdef RADIX_MPATH
634 			/* permit multipath, if enabled for the family */
635 			if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
636 				/*
637 				 * go down to the end of multipaths, so that
638 				 * new entry goes into the end of rn_dupedkey
639 				 * chain.
640 				 */
641 				do {
642 					t = tt;
643 					tt = tt->rn_dupedkey;
644 				} while (tt && t->rn_mask == tt->rn_mask);
645 				break;
646 			}
647 #endif
648 			if (tt->rn_mask == netmask)
649 				return (0);
650 			if (netmask == 0 ||
651 			    (tt->rn_mask &&
652 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
653 			      || rn_refines(netmask, tt->rn_mask)
654 			      || rn_lexobetter(netmask, tt->rn_mask))))
655 				break;
656 		}
657 		/*
658 		 * If the mask is not duplicated, we wouldn't
659 		 * find it among possible duplicate key entries
660 		 * anyway, so the above test doesn't hurt.
661 		 *
662 		 * We sort the masks for a duplicated key the same way as
663 		 * in a masklist -- most specific to least specific.
664 		 * This may require the unfortunate nuisance of relocating
665 		 * the head of the list.
666 		 *
667 		 * We also reverse, or doubly link the list through the
668 		 * parent pointer.
669 		 */
670 		if (tt == saved_tt) {
671 			struct	radix_node *xx = x;
672 			/* link in at head of list */
673 			(tt = treenodes)->rn_dupedkey = t;
674 			tt->rn_flags = t->rn_flags;
675 			tt->rn_parent = x = t->rn_parent;
676 			t->rn_parent = tt;	 		/* parent */
677 			if (x->rn_left == t)
678 				x->rn_left = tt;
679 			else
680 				x->rn_right = tt;
681 			saved_tt = tt; x = xx;
682 		} else {
683 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
684 			t->rn_dupedkey = tt;
685 			tt->rn_parent = t;			/* parent */
686 			if (tt->rn_dupedkey)			/* parent */
687 				tt->rn_dupedkey->rn_parent = tt; /* parent */
688 		}
689 #ifdef RN_DEBUG
690 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
691 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
692 #endif
693 		tt->rn_key = (caddr_t) v;
694 		tt->rn_bit = -1;
695 		tt->rn_flags = RNF_ACTIVE;
696 	}
697 	/*
698 	 * Put mask in tree.
699 	 */
700 	if (netmask) {
701 		tt->rn_mask = netmask;
702 		tt->rn_bit = x->rn_bit;
703 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
704 	}
705 	t = saved_tt->rn_parent;
706 	if (keyduplicated)
707 		goto on2;
708 	b_leaf = -1 - t->rn_bit;
709 	if (t->rn_right == saved_tt)
710 		x = t->rn_left;
711 	else
712 		x = t->rn_right;
713 	/* Promote general routes from below */
714 	if (x->rn_bit < 0) {
715 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
716 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
717 			*mp = m = rn_new_radix_mask(x, 0);
718 			if (m)
719 				mp = &m->rm_mklist;
720 		}
721 	} else if (x->rn_mklist) {
722 		/*
723 		 * Skip over masks whose index is > that of new node
724 		 */
725 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
726 			if (m->rm_bit >= b_leaf)
727 				break;
728 		t->rn_mklist = m; *mp = 0;
729 	}
730 on2:
731 	/* Add new route to highest possible ancestor's list */
732 	if ((netmask == 0) || (b > t->rn_bit ))
733 		return (tt); /* can't lift at all */
734 	b_leaf = tt->rn_bit;
735 	do {
736 		x = t;
737 		t = t->rn_parent;
738 	} while (b <= t->rn_bit && x != top);
739 	/*
740 	 * Search through routes associated with node to
741 	 * insert new route according to index.
742 	 * Need same criteria as when sorting dupedkeys to avoid
743 	 * double loop on deletion.
744 	 */
745 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
746 		if (m->rm_bit < b_leaf)
747 			continue;
748 		if (m->rm_bit > b_leaf)
749 			break;
750 		if (m->rm_flags & RNF_NORMAL) {
751 			mmask = m->rm_leaf->rn_mask;
752 			if (tt->rn_flags & RNF_NORMAL) {
753 #if !defined(RADIX_MPATH)
754 			    log(LOG_ERR,
755 			        "Non-unique normal route, mask not entered\n");
756 #endif
757 				return (tt);
758 			}
759 		} else
760 			mmask = m->rm_mask;
761 		if (mmask == netmask) {
762 			m->rm_refs++;
763 			tt->rn_mklist = m;
764 			return (tt);
765 		}
766 		if (rn_refines(netmask, mmask)
767 		    || rn_lexobetter(netmask, mmask))
768 			break;
769 	}
770 	*mp = rn_new_radix_mask(tt, *mp);
771 	return (tt);
772 }
773 
774 struct radix_node *
775 rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
776 {
777 	struct radix_node *t, *p, *x, *tt;
778 	struct radix_mask *m, *saved_m, **mp;
779 	struct radix_node *dupedkey, *saved_tt, *top;
780 	caddr_t v, netmask;
781 	int b, head_off, vlen;
782 
783 	v = v_arg;
784 	netmask = netmask_arg;
785 	x = head->rnh_treetop;
786 	tt = rn_search(v, x);
787 	head_off = x->rn_offset;
788 	vlen =  LEN(v);
789 	saved_tt = tt;
790 	top = x;
791 	if (tt == 0 ||
792 	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
793 		return (0);
794 	/*
795 	 * Delete our route from mask lists.
796 	 */
797 	if (netmask) {
798 		x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
799 		if (x == NULL)
800 			return (0);
801 		netmask = x->rn_key;
802 		while (tt->rn_mask != netmask)
803 			if ((tt = tt->rn_dupedkey) == 0)
804 				return (0);
805 	}
806 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
807 		goto on1;
808 	if (tt->rn_flags & RNF_NORMAL) {
809 		if (m->rm_leaf != tt || m->rm_refs > 0) {
810 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
811 			return (0);  /* dangling ref could cause disaster */
812 		}
813 	} else {
814 		if (m->rm_mask != tt->rn_mask) {
815 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
816 			goto on1;
817 		}
818 		if (--m->rm_refs >= 0)
819 			goto on1;
820 	}
821 	b = -1 - tt->rn_bit;
822 	t = saved_tt->rn_parent;
823 	if (b > t->rn_bit)
824 		goto on1; /* Wasn't lifted at all */
825 	do {
826 		x = t;
827 		t = t->rn_parent;
828 	} while (b <= t->rn_bit && x != top);
829 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
830 		if (m == saved_m) {
831 			*mp = m->rm_mklist;
832 			Free(m);
833 			break;
834 		}
835 	if (m == 0) {
836 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
837 		if (tt->rn_flags & RNF_NORMAL)
838 			return (0); /* Dangling ref to us */
839 	}
840 on1:
841 	/*
842 	 * Eliminate us from tree
843 	 */
844 	if (tt->rn_flags & RNF_ROOT)
845 		return (0);
846 #ifdef RN_DEBUG
847 	/* Get us out of the creation list */
848 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
849 	if (t) t->rn_ybro = tt->rn_ybro;
850 #endif
851 	t = tt->rn_parent;
852 	dupedkey = saved_tt->rn_dupedkey;
853 	if (dupedkey) {
854 		/*
855 		 * Here, tt is the deletion target and
856 		 * saved_tt is the head of the dupekey chain.
857 		 */
858 		if (tt == saved_tt) {
859 			/* remove from head of chain */
860 			x = dupedkey; x->rn_parent = t;
861 			if (t->rn_left == tt)
862 				t->rn_left = x;
863 			else
864 				t->rn_right = x;
865 		} else {
866 			/* find node in front of tt on the chain */
867 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
868 				p = p->rn_dupedkey;
869 			if (p) {
870 				p->rn_dupedkey = tt->rn_dupedkey;
871 				if (tt->rn_dupedkey)		/* parent */
872 					tt->rn_dupedkey->rn_parent = p;
873 								/* parent */
874 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
875 		}
876 		t = tt + 1;
877 		if  (t->rn_flags & RNF_ACTIVE) {
878 #ifndef RN_DEBUG
879 			*++x = *t;
880 			p = t->rn_parent;
881 #else
882 			b = t->rn_info;
883 			*++x = *t;
884 			t->rn_info = b;
885 			p = t->rn_parent;
886 #endif
887 			if (p->rn_left == t)
888 				p->rn_left = x;
889 			else
890 				p->rn_right = x;
891 			x->rn_left->rn_parent = x;
892 			x->rn_right->rn_parent = x;
893 		}
894 		goto out;
895 	}
896 	if (t->rn_left == tt)
897 		x = t->rn_right;
898 	else
899 		x = t->rn_left;
900 	p = t->rn_parent;
901 	if (p->rn_right == t)
902 		p->rn_right = x;
903 	else
904 		p->rn_left = x;
905 	x->rn_parent = p;
906 	/*
907 	 * Demote routes attached to us.
908 	 */
909 	if (t->rn_mklist) {
910 		if (x->rn_bit >= 0) {
911 			for (mp = &x->rn_mklist; (m = *mp);)
912 				mp = &m->rm_mklist;
913 			*mp = t->rn_mklist;
914 		} else {
915 			/* If there are any key,mask pairs in a sibling
916 			   duped-key chain, some subset will appear sorted
917 			   in the same order attached to our mklist */
918 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
919 				if (m == x->rn_mklist) {
920 					struct radix_mask *mm = m->rm_mklist;
921 					x->rn_mklist = 0;
922 					if (--(m->rm_refs) < 0)
923 						Free(m);
924 					m = mm;
925 				}
926 			if (m)
927 				log(LOG_ERR,
928 				    "rn_delete: Orphaned Mask %p at %p\n",
929 				    m, x);
930 		}
931 	}
932 	/*
933 	 * We may be holding an active internal node in the tree.
934 	 */
935 	x = tt + 1;
936 	if (t != x) {
937 #ifndef RN_DEBUG
938 		*t = *x;
939 #else
940 		b = t->rn_info;
941 		*t = *x;
942 		t->rn_info = b;
943 #endif
944 		t->rn_left->rn_parent = t;
945 		t->rn_right->rn_parent = t;
946 		p = x->rn_parent;
947 		if (p->rn_left == x)
948 			p->rn_left = t;
949 		else
950 			p->rn_right = t;
951 	}
952 out:
953 	tt->rn_flags &= ~RNF_ACTIVE;
954 	tt[1].rn_flags &= ~RNF_ACTIVE;
955 	return (tt);
956 }
957 
958 /*
959  * This is the same as rn_walktree() except for the parameters and the
960  * exit.
961  */
962 static int
963 rn_walktree_from(struct radix_node_head *h, void *a, void *m,
964     walktree_f_t *f, void *w)
965 {
966 	int error;
967 	struct radix_node *base, *next;
968 	u_char *xa = (u_char *)a;
969 	u_char *xm = (u_char *)m;
970 	struct radix_node *rn, *last = NULL; /* shut up gcc */
971 	int stopping = 0;
972 	int lastb;
973 
974 	/*
975 	 * rn_search_m is sort-of-open-coded here. We cannot use the
976 	 * function because we need to keep track of the last node seen.
977 	 */
978 	/* printf("about to search\n"); */
979 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
980 		last = rn;
981 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
982 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
983 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
984 			break;
985 		}
986 		if (rn->rn_bmask & xa[rn->rn_offset]) {
987 			rn = rn->rn_right;
988 		} else {
989 			rn = rn->rn_left;
990 		}
991 	}
992 	/* printf("done searching\n"); */
993 
994 	/*
995 	 * Two cases: either we stepped off the end of our mask,
996 	 * in which case last == rn, or we reached a leaf, in which
997 	 * case we want to start from the last node we looked at.
998 	 * Either way, last is the node we want to start from.
999 	 */
1000 	rn = last;
1001 	lastb = rn->rn_bit;
1002 
1003 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
1004 
1005 	/*
1006 	 * This gets complicated because we may delete the node
1007 	 * while applying the function f to it, so we need to calculate
1008 	 * the successor node in advance.
1009 	 */
1010 	while (rn->rn_bit >= 0)
1011 		rn = rn->rn_left;
1012 
1013 	while (!stopping) {
1014 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1015 		base = rn;
1016 		/* If at right child go back up, otherwise, go right */
1017 		while (rn->rn_parent->rn_right == rn
1018 		       && !(rn->rn_flags & RNF_ROOT)) {
1019 			rn = rn->rn_parent;
1020 
1021 			/* if went up beyond last, stop */
1022 			if (rn->rn_bit <= lastb) {
1023 				stopping = 1;
1024 				/* printf("up too far\n"); */
1025 				/*
1026 				 * XXX we should jump to the 'Process leaves'
1027 				 * part, because the values of 'rn' and 'next'
1028 				 * we compute will not be used. Not a big deal
1029 				 * because this loop will terminate, but it is
1030 				 * inefficient and hard to understand!
1031 				 */
1032 			}
1033 		}
1034 
1035 		/*
1036 		 * At the top of the tree, no need to traverse the right
1037 		 * half, prevent the traversal of the entire tree in the
1038 		 * case of default route.
1039 		 */
1040 		if (rn->rn_parent->rn_flags & RNF_ROOT)
1041 			stopping = 1;
1042 
1043 		/* Find the next *leaf* since next node might vanish, too */
1044 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1045 			rn = rn->rn_left;
1046 		next = rn;
1047 		/* Process leaves */
1048 		while ((rn = base) != 0) {
1049 			base = rn->rn_dupedkey;
1050 			/* printf("leaf %p\n", rn); */
1051 			if (!(rn->rn_flags & RNF_ROOT)
1052 			    && (error = (*f)(rn, w)))
1053 				return (error);
1054 		}
1055 		rn = next;
1056 
1057 		if (rn->rn_flags & RNF_ROOT) {
1058 			/* printf("root, stopping"); */
1059 			stopping = 1;
1060 		}
1061 
1062 	}
1063 	return (0);
1064 }
1065 
1066 static int
1067 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1068 {
1069 	int error;
1070 	struct radix_node *base, *next;
1071 	struct radix_node *rn = h->rnh_treetop;
1072 	/*
1073 	 * This gets complicated because we may delete the node
1074 	 * while applying the function f to it, so we need to calculate
1075 	 * the successor node in advance.
1076 	 */
1077 
1078 	/* First time through node, go left */
1079 	while (rn->rn_bit >= 0)
1080 		rn = rn->rn_left;
1081 	for (;;) {
1082 		base = rn;
1083 		/* If at right child go back up, otherwise, go right */
1084 		while (rn->rn_parent->rn_right == rn
1085 		       && (rn->rn_flags & RNF_ROOT) == 0)
1086 			rn = rn->rn_parent;
1087 		/* Find the next *leaf* since next node might vanish, too */
1088 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1089 			rn = rn->rn_left;
1090 		next = rn;
1091 		/* Process leaves */
1092 		while ((rn = base)) {
1093 			base = rn->rn_dupedkey;
1094 			if (!(rn->rn_flags & RNF_ROOT)
1095 			    && (error = (*f)(rn, w)))
1096 				return (error);
1097 		}
1098 		rn = next;
1099 		if (rn->rn_flags & RNF_ROOT)
1100 			return (0);
1101 	}
1102 	/* NOTREACHED */
1103 }
1104 
1105 /*
1106  * Allocate and initialize an empty tree. This has 3 nodes, which are
1107  * part of the radix_node_head (in the order <left,root,right>) and are
1108  * marked RNF_ROOT so they cannot be freed.
1109  * The leaves have all-zero and all-one keys, with significant
1110  * bits starting at 'off'.
1111  * Return 1 on success, 0 on error.
1112  */
1113 static int
1114 rn_inithead_internal(void **head, int off)
1115 {
1116 	struct radix_node_head *rnh;
1117 	struct radix_node *t, *tt, *ttt;
1118 	if (*head)
1119 		return (1);
1120 	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1121 	if (rnh == 0)
1122 		return (0);
1123 #ifdef _KERNEL
1124 	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1125 #endif
1126 	*head = rnh;
1127 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1128 	ttt = rnh->rnh_nodes + 2;
1129 	t->rn_right = ttt;
1130 	t->rn_parent = t;
1131 	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1132 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1133 	tt->rn_bit = -1 - off;
1134 	*ttt = *tt;
1135 	ttt->rn_key = rn_ones;
1136 	rnh->rnh_addaddr = rn_addroute;
1137 	rnh->rnh_deladdr = rn_delete;
1138 	rnh->rnh_matchaddr = rn_match;
1139 	rnh->rnh_lookup = rn_lookup;
1140 	rnh->rnh_walktree = rn_walktree;
1141 	rnh->rnh_walktree_from = rn_walktree_from;
1142 	rnh->rnh_treetop = t;
1143 	return (1);
1144 }
1145 
1146 static void
1147 rn_detachhead_internal(void **head)
1148 {
1149 	struct radix_node_head *rnh;
1150 
1151 	KASSERT((head != NULL && *head != NULL),
1152 	    ("%s: head already freed", __func__));
1153 	rnh = *head;
1154 
1155 	/* Free <left,root,right> nodes. */
1156 	Free(rnh);
1157 
1158 	*head = NULL;
1159 }
1160 
1161 int
1162 rn_inithead(void **head, int off)
1163 {
1164 	struct radix_node_head *rnh;
1165 
1166 	if (*head != NULL)
1167 		return (1);
1168 
1169 	if (rn_inithead_internal(head, off) == 0)
1170 		return (0);
1171 
1172 	rnh = (struct radix_node_head *)(*head);
1173 
1174 	if (rn_inithead_internal((void **)&rnh->rnh_masks, 0) == 0) {
1175 		rn_detachhead_internal(head);
1176 		return (0);
1177 	}
1178 
1179 	return (1);
1180 }
1181 
1182 int
1183 rn_detachhead(void **head)
1184 {
1185 	struct radix_node_head *rnh;
1186 
1187 	KASSERT((head != NULL && *head != NULL),
1188 	    ("%s: head already freed", __func__));
1189 
1190 	rnh = *head;
1191 
1192 	rn_detachhead_internal((void **)&rnh->rnh_masks);
1193 	rn_detachhead_internal(head);
1194 	return (1);
1195 }
1196 
1197