xref: /freebsd/sys/net/radix.c (revision 7bd6fde3)
1 /*-
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30  * $FreeBSD$
31  */
32 
33 /*
34  * Routines to build and maintain radix trees for routing lookups.
35  */
36 #ifndef _RADIX_H_
37 #include <sys/param.h>
38 #ifdef	_KERNEL
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/domain.h>
44 #else
45 #include <stdlib.h>
46 #endif
47 #include <sys/syslog.h>
48 #include <net/radix.h>
49 #endif
50 
51 static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
52 		    walktree_f_t *f, void *w);
53 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
54 static struct radix_node
55 	 *rn_insert(void *, struct radix_node_head *, int *,
56 	     struct radix_node [2]),
57 	 *rn_newpair(void *, int, struct radix_node[2]),
58 	 *rn_search(void *, struct radix_node *),
59 	 *rn_search_m(void *, struct radix_node *, void *);
60 
61 static int	max_keylen;
62 static struct radix_mask *rn_mkfreelist;
63 static struct radix_node_head *mask_rnhead;
64 /*
65  * Work area -- the following point to 3 buffers of size max_keylen,
66  * allocated in this order in a block of memory malloc'ed by rn_init.
67  */
68 static char *rn_zeros, *rn_ones, *addmask_key;
69 
70 #define MKGet(m) {						\
71 	if (rn_mkfreelist) {					\
72 		m = rn_mkfreelist;				\
73 		rn_mkfreelist = (m)->rm_mklist;			\
74 	} else							\
75 		R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); }
76 
77 #define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);}
78 
79 #define rn_masktop (mask_rnhead->rnh_treetop)
80 
81 static int	rn_lexobetter(void *m_arg, void *n_arg);
82 static struct radix_mask *
83 		rn_new_radix_mask(struct radix_node *tt,
84 		    struct radix_mask *next);
85 static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
86 		    int skip);
87 
88 /*
89  * The data structure for the keys is a radix tree with one way
90  * branching removed.  The index rn_bit at an internal node n represents a bit
91  * position to be tested.  The tree is arranged so that all descendants
92  * of a node n have keys whose bits all agree up to position rn_bit - 1.
93  * (We say the index of n is rn_bit.)
94  *
95  * There is at least one descendant which has a one bit at position rn_bit,
96  * and at least one with a zero there.
97  *
98  * A route is determined by a pair of key and mask.  We require that the
99  * bit-wise logical and of the key and mask to be the key.
100  * We define the index of a route to associated with the mask to be
101  * the first bit number in the mask where 0 occurs (with bit number 0
102  * representing the highest order bit).
103  *
104  * We say a mask is normal if every bit is 0, past the index of the mask.
105  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
106  * and m is a normal mask, then the route applies to every descendant of n.
107  * If the index(m) < rn_bit, this implies the trailing last few bits of k
108  * before bit b are all 0, (and hence consequently true of every descendant
109  * of n), so the route applies to all descendants of the node as well.
110  *
111  * Similar logic shows that a non-normal mask m such that
112  * index(m) <= index(n) could potentially apply to many children of n.
113  * Thus, for each non-host route, we attach its mask to a list at an internal
114  * node as high in the tree as we can go.
115  *
116  * The present version of the code makes use of normal routes in short-
117  * circuiting an explict mask and compare operation when testing whether
118  * a key satisfies a normal route, and also in remembering the unique leaf
119  * that governs a subtree.
120  */
121 
122 /*
123  * Most of the functions in this code assume that the key/mask arguments
124  * are sockaddr-like structures, where the first byte is an u_char
125  * indicating the size of the entire structure.
126  *
127  * To make the assumption more explicit, we use the LEN() macro to access
128  * this field. It is safe to pass an expression with side effects
129  * to LEN() as the argument is evaluated only once.
130  */
131 #define LEN(x) (*(const u_char *)(x))
132 
133 /*
134  * XXX THIS NEEDS TO BE FIXED
135  * In the code, pointers to keys and masks are passed as either
136  * 'void *' (because callers use to pass pointers of various kinds), or
137  * 'caddr_t' (which is fine for pointer arithmetics, but not very
138  * clean when you dereference it to access data). Furthermore, caddr_t
139  * is really 'char *', while the natural type to operate on keys and
140  * masks would be 'u_char'. This mismatch require a lot of casts and
141  * intermediate variables to adapt types that clutter the code.
142  */
143 
144 /*
145  * Search a node in the tree matching the key.
146  */
147 static struct radix_node *
148 rn_search(v_arg, head)
149 	void *v_arg;
150 	struct radix_node *head;
151 {
152 	register struct radix_node *x;
153 	register caddr_t v;
154 
155 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
156 		if (x->rn_bmask & v[x->rn_offset])
157 			x = x->rn_right;
158 		else
159 			x = x->rn_left;
160 	}
161 	return (x);
162 }
163 
164 /*
165  * Same as above, but with an additional mask.
166  * XXX note this function is used only once.
167  */
168 static struct radix_node *
169 rn_search_m(v_arg, head, m_arg)
170 	struct radix_node *head;
171 	void *v_arg, *m_arg;
172 {
173 	register struct radix_node *x;
174 	register caddr_t v = v_arg, m = m_arg;
175 
176 	for (x = head; x->rn_bit >= 0;) {
177 		if ((x->rn_bmask & m[x->rn_offset]) &&
178 		    (x->rn_bmask & v[x->rn_offset]))
179 			x = x->rn_right;
180 		else
181 			x = x->rn_left;
182 	}
183 	return x;
184 }
185 
186 int
187 rn_refines(m_arg, n_arg)
188 	void *m_arg, *n_arg;
189 {
190 	register caddr_t m = m_arg, n = n_arg;
191 	register caddr_t lim, lim2 = lim = n + LEN(n);
192 	int longer = LEN(n++) - (int)LEN(m++);
193 	int masks_are_equal = 1;
194 
195 	if (longer > 0)
196 		lim -= longer;
197 	while (n < lim) {
198 		if (*n & ~(*m))
199 			return 0;
200 		if (*n++ != *m++)
201 			masks_are_equal = 0;
202 	}
203 	while (n < lim2)
204 		if (*n++)
205 			return 0;
206 	if (masks_are_equal && (longer < 0))
207 		for (lim2 = m - longer; m < lim2; )
208 			if (*m++)
209 				return 1;
210 	return (!masks_are_equal);
211 }
212 
213 struct radix_node *
214 rn_lookup(v_arg, m_arg, head)
215 	void *v_arg, *m_arg;
216 	struct radix_node_head *head;
217 {
218 	register struct radix_node *x;
219 	caddr_t netmask = 0;
220 
221 	if (m_arg) {
222 		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
223 		if (x == 0)
224 			return (0);
225 		netmask = x->rn_key;
226 	}
227 	x = rn_match(v_arg, head);
228 	if (x && netmask) {
229 		while (x && x->rn_mask != netmask)
230 			x = x->rn_dupedkey;
231 	}
232 	return x;
233 }
234 
235 static int
236 rn_satisfies_leaf(trial, leaf, skip)
237 	char *trial;
238 	register struct radix_node *leaf;
239 	int skip;
240 {
241 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
242 	char *cplim;
243 	int length = min(LEN(cp), LEN(cp2));
244 
245 	if (cp3 == 0)
246 		cp3 = rn_ones;
247 	else
248 		length = min(length, *(u_char *)cp3);
249 	cplim = cp + length; cp3 += skip; cp2 += skip;
250 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
251 		if ((*cp ^ *cp2) & *cp3)
252 			return 0;
253 	return 1;
254 }
255 
256 struct radix_node *
257 rn_match(v_arg, head)
258 	void *v_arg;
259 	struct radix_node_head *head;
260 {
261 	caddr_t v = v_arg;
262 	register struct radix_node *t = head->rnh_treetop, *x;
263 	register caddr_t cp = v, cp2;
264 	caddr_t cplim;
265 	struct radix_node *saved_t, *top = t;
266 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
267 	register int test, b, rn_bit;
268 
269 	/*
270 	 * Open code rn_search(v, top) to avoid overhead of extra
271 	 * subroutine call.
272 	 */
273 	for (; t->rn_bit >= 0; ) {
274 		if (t->rn_bmask & cp[t->rn_offset])
275 			t = t->rn_right;
276 		else
277 			t = t->rn_left;
278 	}
279 	/*
280 	 * See if we match exactly as a host destination
281 	 * or at least learn how many bits match, for normal mask finesse.
282 	 *
283 	 * It doesn't hurt us to limit how many bytes to check
284 	 * to the length of the mask, since if it matches we had a genuine
285 	 * match and the leaf we have is the most specific one anyway;
286 	 * if it didn't match with a shorter length it would fail
287 	 * with a long one.  This wins big for class B&C netmasks which
288 	 * are probably the most common case...
289 	 */
290 	if (t->rn_mask)
291 		vlen = *(u_char *)t->rn_mask;
292 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
293 	for (; cp < cplim; cp++, cp2++)
294 		if (*cp != *cp2)
295 			goto on1;
296 	/*
297 	 * This extra grot is in case we are explicitly asked
298 	 * to look up the default.  Ugh!
299 	 *
300 	 * Never return the root node itself, it seems to cause a
301 	 * lot of confusion.
302 	 */
303 	if (t->rn_flags & RNF_ROOT)
304 		t = t->rn_dupedkey;
305 	return t;
306 on1:
307 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
308 	for (b = 7; (test >>= 1) > 0;)
309 		b--;
310 	matched_off = cp - v;
311 	b += matched_off << 3;
312 	rn_bit = -1 - b;
313 	/*
314 	 * If there is a host route in a duped-key chain, it will be first.
315 	 */
316 	if ((saved_t = t)->rn_mask == 0)
317 		t = t->rn_dupedkey;
318 	for (; t; t = t->rn_dupedkey)
319 		/*
320 		 * Even if we don't match exactly as a host,
321 		 * we may match if the leaf we wound up at is
322 		 * a route to a net.
323 		 */
324 		if (t->rn_flags & RNF_NORMAL) {
325 			if (rn_bit <= t->rn_bit)
326 				return t;
327 		} else if (rn_satisfies_leaf(v, t, matched_off))
328 				return t;
329 	t = saved_t;
330 	/* start searching up the tree */
331 	do {
332 		register struct radix_mask *m;
333 		t = t->rn_parent;
334 		m = t->rn_mklist;
335 		/*
336 		 * If non-contiguous masks ever become important
337 		 * we can restore the masking and open coding of
338 		 * the search and satisfaction test and put the
339 		 * calculation of "off" back before the "do".
340 		 */
341 		while (m) {
342 			if (m->rm_flags & RNF_NORMAL) {
343 				if (rn_bit <= m->rm_bit)
344 					return (m->rm_leaf);
345 			} else {
346 				off = min(t->rn_offset, matched_off);
347 				x = rn_search_m(v, t, m->rm_mask);
348 				while (x && x->rn_mask != m->rm_mask)
349 					x = x->rn_dupedkey;
350 				if (x && rn_satisfies_leaf(v, x, off))
351 					return x;
352 			}
353 			m = m->rm_mklist;
354 		}
355 	} while (t != top);
356 	return 0;
357 }
358 
359 #ifdef RN_DEBUG
360 int	rn_nodenum;
361 struct	radix_node *rn_clist;
362 int	rn_saveinfo;
363 int	rn_debug =  1;
364 #endif
365 
366 /*
367  * Whenever we add a new leaf to the tree, we also add a parent node,
368  * so we allocate them as an array of two elements: the first one must be
369  * the leaf (see RNTORT() in route.c), the second one is the parent.
370  * This routine initializes the relevant fields of the nodes, so that
371  * the leaf is the left child of the parent node, and both nodes have
372  * (almost) all all fields filled as appropriate.
373  * (XXX some fields are left unset, see the '#if 0' section).
374  * The function returns a pointer to the parent node.
375  */
376 
377 static struct radix_node *
378 rn_newpair(v, b, nodes)
379 	void *v;
380 	int b;
381 	struct radix_node nodes[2];
382 {
383 	register struct radix_node *tt = nodes, *t = tt + 1;
384 	t->rn_bit = b;
385 	t->rn_bmask = 0x80 >> (b & 7);
386 	t->rn_left = tt;
387 	t->rn_offset = b >> 3;
388 
389 #if 0  /* XXX perhaps we should fill these fields as well. */
390 	t->rn_parent = t->rn_right = NULL;
391 
392 	tt->rn_mask = NULL;
393 	tt->rn_dupedkey = NULL;
394 	tt->rn_bmask = 0;
395 #endif
396 	tt->rn_bit = -1;
397 	tt->rn_key = (caddr_t)v;
398 	tt->rn_parent = t;
399 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
400 	tt->rn_mklist = t->rn_mklist = 0;
401 #ifdef RN_DEBUG
402 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
403 	tt->rn_twin = t;
404 	tt->rn_ybro = rn_clist;
405 	rn_clist = tt;
406 #endif
407 	return t;
408 }
409 
410 static struct radix_node *
411 rn_insert(v_arg, head, dupentry, nodes)
412 	void *v_arg;
413 	struct radix_node_head *head;
414 	int *dupentry;
415 	struct radix_node nodes[2];
416 {
417 	caddr_t v = v_arg;
418 	struct radix_node *top = head->rnh_treetop;
419 	int head_off = top->rn_offset, vlen = (int)LEN(v);
420 	register struct radix_node *t = rn_search(v_arg, top);
421 	register caddr_t cp = v + head_off;
422 	register int b;
423 	struct radix_node *tt;
424     	/*
425 	 * Find first bit at which v and t->rn_key differ
426 	 */
427     {
428 	register caddr_t cp2 = t->rn_key + head_off;
429 	register int cmp_res;
430 	caddr_t cplim = v + vlen;
431 
432 	while (cp < cplim)
433 		if (*cp2++ != *cp++)
434 			goto on1;
435 	*dupentry = 1;
436 	return t;
437 on1:
438 	*dupentry = 0;
439 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
440 	for (b = (cp - v) << 3; cmp_res; b--)
441 		cmp_res >>= 1;
442     }
443     {
444 	register struct radix_node *p, *x = top;
445 	cp = v;
446 	do {
447 		p = x;
448 		if (cp[x->rn_offset] & x->rn_bmask)
449 			x = x->rn_right;
450 		else
451 			x = x->rn_left;
452 	} while (b > (unsigned) x->rn_bit);
453 				/* x->rn_bit < b && x->rn_bit >= 0 */
454 #ifdef RN_DEBUG
455 	if (rn_debug)
456 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
457 #endif
458 	t = rn_newpair(v_arg, b, nodes);
459 	tt = t->rn_left;
460 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
461 		p->rn_left = t;
462 	else
463 		p->rn_right = t;
464 	x->rn_parent = t;
465 	t->rn_parent = p; /* frees x, p as temp vars below */
466 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
467 		t->rn_right = x;
468 	} else {
469 		t->rn_right = tt;
470 		t->rn_left = x;
471 	}
472 #ifdef RN_DEBUG
473 	if (rn_debug)
474 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
475 #endif
476     }
477 	return (tt);
478 }
479 
480 struct radix_node *
481 rn_addmask(n_arg, search, skip)
482 	int search, skip;
483 	void *n_arg;
484 {
485 	caddr_t netmask = (caddr_t)n_arg;
486 	register struct radix_node *x;
487 	register caddr_t cp, cplim;
488 	register int b = 0, mlen, j;
489 	int maskduplicated, m0, isnormal;
490 	struct radix_node *saved_x;
491 	static int last_zeroed = 0;
492 
493 	if ((mlen = LEN(netmask)) > max_keylen)
494 		mlen = max_keylen;
495 	if (skip == 0)
496 		skip = 1;
497 	if (mlen <= skip)
498 		return (mask_rnhead->rnh_nodes);
499 	if (skip > 1)
500 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
501 	if ((m0 = mlen) > skip)
502 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
503 	/*
504 	 * Trim trailing zeroes.
505 	 */
506 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
507 		cp--;
508 	mlen = cp - addmask_key;
509 	if (mlen <= skip) {
510 		if (m0 >= last_zeroed)
511 			last_zeroed = mlen;
512 		return (mask_rnhead->rnh_nodes);
513 	}
514 	if (m0 < last_zeroed)
515 		bzero(addmask_key + m0, last_zeroed - m0);
516 	*addmask_key = last_zeroed = mlen;
517 	x = rn_search(addmask_key, rn_masktop);
518 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
519 		x = 0;
520 	if (x || search)
521 		return (x);
522 	R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
523 	if ((saved_x = x) == 0)
524 		return (0);
525 	netmask = cp = (caddr_t)(x + 2);
526 	bcopy(addmask_key, cp, mlen);
527 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
528 	if (maskduplicated) {
529 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
530 		Free(saved_x);
531 		return (x);
532 	}
533 	/*
534 	 * Calculate index of mask, and check for normalcy.
535 	 * First find the first byte with a 0 bit, then if there are
536 	 * more bits left (remember we already trimmed the trailing 0's),
537 	 * the pattern must be one of those in normal_chars[], or we have
538 	 * a non-contiguous mask.
539 	 */
540 	cplim = netmask + mlen;
541 	isnormal = 1;
542 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
543 		cp++;
544 	if (cp != cplim) {
545 		static char normal_chars[] = {
546 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
547 
548 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
549 			b++;
550 		if (*cp != normal_chars[b] || cp != (cplim - 1))
551 			isnormal = 0;
552 	}
553 	b += (cp - netmask) << 3;
554 	x->rn_bit = -1 - b;
555 	if (isnormal)
556 		x->rn_flags |= RNF_NORMAL;
557 	return (x);
558 }
559 
560 static int	/* XXX: arbitrary ordering for non-contiguous masks */
561 rn_lexobetter(m_arg, n_arg)
562 	void *m_arg, *n_arg;
563 {
564 	register u_char *mp = m_arg, *np = n_arg, *lim;
565 
566 	if (LEN(mp) > LEN(np))
567 		return 1;  /* not really, but need to check longer one first */
568 	if (LEN(mp) == LEN(np))
569 		for (lim = mp + LEN(mp); mp < lim;)
570 			if (*mp++ > *np++)
571 				return 1;
572 	return 0;
573 }
574 
575 static struct radix_mask *
576 rn_new_radix_mask(tt, next)
577 	register struct radix_node *tt;
578 	register struct radix_mask *next;
579 {
580 	register struct radix_mask *m;
581 
582 	MKGet(m);
583 	if (m == 0) {
584 		log(LOG_ERR, "Mask for route not entered\n");
585 		return (0);
586 	}
587 	bzero(m, sizeof *m);
588 	m->rm_bit = tt->rn_bit;
589 	m->rm_flags = tt->rn_flags;
590 	if (tt->rn_flags & RNF_NORMAL)
591 		m->rm_leaf = tt;
592 	else
593 		m->rm_mask = tt->rn_mask;
594 	m->rm_mklist = next;
595 	tt->rn_mklist = m;
596 	return m;
597 }
598 
599 struct radix_node *
600 rn_addroute(v_arg, n_arg, head, treenodes)
601 	void *v_arg, *n_arg;
602 	struct radix_node_head *head;
603 	struct radix_node treenodes[2];
604 {
605 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
606 	register struct radix_node *t, *x = 0, *tt;
607 	struct radix_node *saved_tt, *top = head->rnh_treetop;
608 	short b = 0, b_leaf = 0;
609 	int keyduplicated;
610 	caddr_t mmask;
611 	struct radix_mask *m, **mp;
612 
613 	/*
614 	 * In dealing with non-contiguous masks, there may be
615 	 * many different routes which have the same mask.
616 	 * We will find it useful to have a unique pointer to
617 	 * the mask to speed avoiding duplicate references at
618 	 * nodes and possibly save time in calculating indices.
619 	 */
620 	if (netmask)  {
621 		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
622 			return (0);
623 		b_leaf = x->rn_bit;
624 		b = -1 - x->rn_bit;
625 		netmask = x->rn_key;
626 	}
627 	/*
628 	 * Deal with duplicated keys: attach node to previous instance
629 	 */
630 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
631 	if (keyduplicated) {
632 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
633 			if (tt->rn_mask == netmask)
634 				return (0);
635 			if (netmask == 0 ||
636 			    (tt->rn_mask &&
637 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
638 			      || rn_refines(netmask, tt->rn_mask)
639 			      || rn_lexobetter(netmask, tt->rn_mask))))
640 				break;
641 		}
642 		/*
643 		 * If the mask is not duplicated, we wouldn't
644 		 * find it among possible duplicate key entries
645 		 * anyway, so the above test doesn't hurt.
646 		 *
647 		 * We sort the masks for a duplicated key the same way as
648 		 * in a masklist -- most specific to least specific.
649 		 * This may require the unfortunate nuisance of relocating
650 		 * the head of the list.
651 		 *
652 		 * We also reverse, or doubly link the list through the
653 		 * parent pointer.
654 		 */
655 		if (tt == saved_tt) {
656 			struct	radix_node *xx = x;
657 			/* link in at head of list */
658 			(tt = treenodes)->rn_dupedkey = t;
659 			tt->rn_flags = t->rn_flags;
660 			tt->rn_parent = x = t->rn_parent;
661 			t->rn_parent = tt;	 		/* parent */
662 			if (x->rn_left == t)
663 				x->rn_left = tt;
664 			else
665 				x->rn_right = tt;
666 			saved_tt = tt; x = xx;
667 		} else {
668 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
669 			t->rn_dupedkey = tt;
670 			tt->rn_parent = t;			/* parent */
671 			if (tt->rn_dupedkey)			/* parent */
672 				tt->rn_dupedkey->rn_parent = tt; /* parent */
673 		}
674 #ifdef RN_DEBUG
675 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
676 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
677 #endif
678 		tt->rn_key = (caddr_t) v;
679 		tt->rn_bit = -1;
680 		tt->rn_flags = RNF_ACTIVE;
681 	}
682 	/*
683 	 * Put mask in tree.
684 	 */
685 	if (netmask) {
686 		tt->rn_mask = netmask;
687 		tt->rn_bit = x->rn_bit;
688 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
689 	}
690 	t = saved_tt->rn_parent;
691 	if (keyduplicated)
692 		goto on2;
693 	b_leaf = -1 - t->rn_bit;
694 	if (t->rn_right == saved_tt)
695 		x = t->rn_left;
696 	else
697 		x = t->rn_right;
698 	/* Promote general routes from below */
699 	if (x->rn_bit < 0) {
700 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
701 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
702 			*mp = m = rn_new_radix_mask(x, 0);
703 			if (m)
704 				mp = &m->rm_mklist;
705 		}
706 	} else if (x->rn_mklist) {
707 		/*
708 		 * Skip over masks whose index is > that of new node
709 		 */
710 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
711 			if (m->rm_bit >= b_leaf)
712 				break;
713 		t->rn_mklist = m; *mp = 0;
714 	}
715 on2:
716 	/* Add new route to highest possible ancestor's list */
717 	if ((netmask == 0) || (b > t->rn_bit ))
718 		return tt; /* can't lift at all */
719 	b_leaf = tt->rn_bit;
720 	do {
721 		x = t;
722 		t = t->rn_parent;
723 	} while (b <= t->rn_bit && x != top);
724 	/*
725 	 * Search through routes associated with node to
726 	 * insert new route according to index.
727 	 * Need same criteria as when sorting dupedkeys to avoid
728 	 * double loop on deletion.
729 	 */
730 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
731 		if (m->rm_bit < b_leaf)
732 			continue;
733 		if (m->rm_bit > b_leaf)
734 			break;
735 		if (m->rm_flags & RNF_NORMAL) {
736 			mmask = m->rm_leaf->rn_mask;
737 			if (tt->rn_flags & RNF_NORMAL) {
738 			    log(LOG_ERR,
739 			        "Non-unique normal route, mask not entered\n");
740 				return tt;
741 			}
742 		} else
743 			mmask = m->rm_mask;
744 		if (mmask == netmask) {
745 			m->rm_refs++;
746 			tt->rn_mklist = m;
747 			return tt;
748 		}
749 		if (rn_refines(netmask, mmask)
750 		    || rn_lexobetter(netmask, mmask))
751 			break;
752 	}
753 	*mp = rn_new_radix_mask(tt, *mp);
754 	return tt;
755 }
756 
757 struct radix_node *
758 rn_delete(v_arg, netmask_arg, head)
759 	void *v_arg, *netmask_arg;
760 	struct radix_node_head *head;
761 {
762 	register struct radix_node *t, *p, *x, *tt;
763 	struct radix_mask *m, *saved_m, **mp;
764 	struct radix_node *dupedkey, *saved_tt, *top;
765 	caddr_t v, netmask;
766 	int b, head_off, vlen;
767 
768 	v = v_arg;
769 	netmask = netmask_arg;
770 	x = head->rnh_treetop;
771 	tt = rn_search(v, x);
772 	head_off = x->rn_offset;
773 	vlen =  LEN(v);
774 	saved_tt = tt;
775 	top = x;
776 	if (tt == 0 ||
777 	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
778 		return (0);
779 	/*
780 	 * Delete our route from mask lists.
781 	 */
782 	if (netmask) {
783 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
784 			return (0);
785 		netmask = x->rn_key;
786 		while (tt->rn_mask != netmask)
787 			if ((tt = tt->rn_dupedkey) == 0)
788 				return (0);
789 	}
790 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
791 		goto on1;
792 	if (tt->rn_flags & RNF_NORMAL) {
793 		if (m->rm_leaf != tt || m->rm_refs > 0) {
794 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
795 			return 0;  /* dangling ref could cause disaster */
796 		}
797 	} else {
798 		if (m->rm_mask != tt->rn_mask) {
799 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
800 			goto on1;
801 		}
802 		if (--m->rm_refs >= 0)
803 			goto on1;
804 	}
805 	b = -1 - tt->rn_bit;
806 	t = saved_tt->rn_parent;
807 	if (b > t->rn_bit)
808 		goto on1; /* Wasn't lifted at all */
809 	do {
810 		x = t;
811 		t = t->rn_parent;
812 	} while (b <= t->rn_bit && x != top);
813 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
814 		if (m == saved_m) {
815 			*mp = m->rm_mklist;
816 			MKFree(m);
817 			break;
818 		}
819 	if (m == 0) {
820 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
821 		if (tt->rn_flags & RNF_NORMAL)
822 			return (0); /* Dangling ref to us */
823 	}
824 on1:
825 	/*
826 	 * Eliminate us from tree
827 	 */
828 	if (tt->rn_flags & RNF_ROOT)
829 		return (0);
830 #ifdef RN_DEBUG
831 	/* Get us out of the creation list */
832 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
833 	if (t) t->rn_ybro = tt->rn_ybro;
834 #endif
835 	t = tt->rn_parent;
836 	dupedkey = saved_tt->rn_dupedkey;
837 	if (dupedkey) {
838 		/*
839 		 * Here, tt is the deletion target and
840 		 * saved_tt is the head of the dupekey chain.
841 		 */
842 		if (tt == saved_tt) {
843 			/* remove from head of chain */
844 			x = dupedkey; x->rn_parent = t;
845 			if (t->rn_left == tt)
846 				t->rn_left = x;
847 			else
848 				t->rn_right = x;
849 		} else {
850 			/* find node in front of tt on the chain */
851 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
852 				p = p->rn_dupedkey;
853 			if (p) {
854 				p->rn_dupedkey = tt->rn_dupedkey;
855 				if (tt->rn_dupedkey)		/* parent */
856 					tt->rn_dupedkey->rn_parent = p;
857 								/* parent */
858 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
859 		}
860 		t = tt + 1;
861 		if  (t->rn_flags & RNF_ACTIVE) {
862 #ifndef RN_DEBUG
863 			*++x = *t;
864 			p = t->rn_parent;
865 #else
866 			b = t->rn_info;
867 			*++x = *t;
868 			t->rn_info = b;
869 			p = t->rn_parent;
870 #endif
871 			if (p->rn_left == t)
872 				p->rn_left = x;
873 			else
874 				p->rn_right = x;
875 			x->rn_left->rn_parent = x;
876 			x->rn_right->rn_parent = x;
877 		}
878 		goto out;
879 	}
880 	if (t->rn_left == tt)
881 		x = t->rn_right;
882 	else
883 		x = t->rn_left;
884 	p = t->rn_parent;
885 	if (p->rn_right == t)
886 		p->rn_right = x;
887 	else
888 		p->rn_left = x;
889 	x->rn_parent = p;
890 	/*
891 	 * Demote routes attached to us.
892 	 */
893 	if (t->rn_mklist) {
894 		if (x->rn_bit >= 0) {
895 			for (mp = &x->rn_mklist; (m = *mp);)
896 				mp = &m->rm_mklist;
897 			*mp = t->rn_mklist;
898 		} else {
899 			/* If there are any key,mask pairs in a sibling
900 			   duped-key chain, some subset will appear sorted
901 			   in the same order attached to our mklist */
902 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
903 				if (m == x->rn_mklist) {
904 					struct radix_mask *mm = m->rm_mklist;
905 					x->rn_mklist = 0;
906 					if (--(m->rm_refs) < 0)
907 						MKFree(m);
908 					m = mm;
909 				}
910 			if (m)
911 				log(LOG_ERR,
912 				    "rn_delete: Orphaned Mask %p at %p\n",
913 				    (void *)m, (void *)x);
914 		}
915 	}
916 	/*
917 	 * We may be holding an active internal node in the tree.
918 	 */
919 	x = tt + 1;
920 	if (t != x) {
921 #ifndef RN_DEBUG
922 		*t = *x;
923 #else
924 		b = t->rn_info;
925 		*t = *x;
926 		t->rn_info = b;
927 #endif
928 		t->rn_left->rn_parent = t;
929 		t->rn_right->rn_parent = t;
930 		p = x->rn_parent;
931 		if (p->rn_left == x)
932 			p->rn_left = t;
933 		else
934 			p->rn_right = t;
935 	}
936 out:
937 	tt->rn_flags &= ~RNF_ACTIVE;
938 	tt[1].rn_flags &= ~RNF_ACTIVE;
939 	return (tt);
940 }
941 
942 /*
943  * This is the same as rn_walktree() except for the parameters and the
944  * exit.
945  */
946 static int
947 rn_walktree_from(h, a, m, f, w)
948 	struct radix_node_head *h;
949 	void *a, *m;
950 	walktree_f_t *f;
951 	void *w;
952 {
953 	int error;
954 	struct radix_node *base, *next;
955 	u_char *xa = (u_char *)a;
956 	u_char *xm = (u_char *)m;
957 	register struct radix_node *rn, *last = 0 /* shut up gcc */;
958 	int stopping = 0;
959 	int lastb;
960 
961 	/*
962 	 * rn_search_m is sort-of-open-coded here. We cannot use the
963 	 * function because we need to keep track of the last node seen.
964 	 */
965 	/* printf("about to search\n"); */
966 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
967 		last = rn;
968 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
969 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
970 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
971 			break;
972 		}
973 		if (rn->rn_bmask & xa[rn->rn_offset]) {
974 			rn = rn->rn_right;
975 		} else {
976 			rn = rn->rn_left;
977 		}
978 	}
979 	/* printf("done searching\n"); */
980 
981 	/*
982 	 * Two cases: either we stepped off the end of our mask,
983 	 * in which case last == rn, or we reached a leaf, in which
984 	 * case we want to start from the last node we looked at.
985 	 * Either way, last is the node we want to start from.
986 	 */
987 	rn = last;
988 	lastb = rn->rn_bit;
989 
990 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
991 
992 	/*
993 	 * This gets complicated because we may delete the node
994 	 * while applying the function f to it, so we need to calculate
995 	 * the successor node in advance.
996 	 */
997 	while (rn->rn_bit >= 0)
998 		rn = rn->rn_left;
999 
1000 	while (!stopping) {
1001 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1002 		base = rn;
1003 		/* If at right child go back up, otherwise, go right */
1004 		while (rn->rn_parent->rn_right == rn
1005 		       && !(rn->rn_flags & RNF_ROOT)) {
1006 			rn = rn->rn_parent;
1007 
1008 			/* if went up beyond last, stop */
1009 			if (rn->rn_bit <= lastb) {
1010 				stopping = 1;
1011 				/* printf("up too far\n"); */
1012 				/*
1013 				 * XXX we should jump to the 'Process leaves'
1014 				 * part, because the values of 'rn' and 'next'
1015 				 * we compute will not be used. Not a big deal
1016 				 * because this loop will terminate, but it is
1017 				 * inefficient and hard to understand!
1018 				 */
1019 			}
1020 		}
1021 
1022 		/*
1023 		 * At the top of the tree, no need to traverse the right
1024 		 * half, prevent the traversal of the entire tree in the
1025 		 * case of default route.
1026 		 */
1027 		if (rn->rn_parent->rn_flags & RNF_ROOT)
1028 			stopping = 1;
1029 
1030 		/* Find the next *leaf* since next node might vanish, too */
1031 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1032 			rn = rn->rn_left;
1033 		next = rn;
1034 		/* Process leaves */
1035 		while ((rn = base) != 0) {
1036 			base = rn->rn_dupedkey;
1037 			/* printf("leaf %p\n", rn); */
1038 			if (!(rn->rn_flags & RNF_ROOT)
1039 			    && (error = (*f)(rn, w)))
1040 				return (error);
1041 		}
1042 		rn = next;
1043 
1044 		if (rn->rn_flags & RNF_ROOT) {
1045 			/* printf("root, stopping"); */
1046 			stopping = 1;
1047 		}
1048 
1049 	}
1050 	return 0;
1051 }
1052 
1053 static int
1054 rn_walktree(h, f, w)
1055 	struct radix_node_head *h;
1056 	walktree_f_t *f;
1057 	void *w;
1058 {
1059 	int error;
1060 	struct radix_node *base, *next;
1061 	register struct radix_node *rn = h->rnh_treetop;
1062 	/*
1063 	 * This gets complicated because we may delete the node
1064 	 * while applying the function f to it, so we need to calculate
1065 	 * the successor node in advance.
1066 	 */
1067 	/* First time through node, go left */
1068 	while (rn->rn_bit >= 0)
1069 		rn = rn->rn_left;
1070 	for (;;) {
1071 		base = rn;
1072 		/* If at right child go back up, otherwise, go right */
1073 		while (rn->rn_parent->rn_right == rn
1074 		       && (rn->rn_flags & RNF_ROOT) == 0)
1075 			rn = rn->rn_parent;
1076 		/* Find the next *leaf* since next node might vanish, too */
1077 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1078 			rn = rn->rn_left;
1079 		next = rn;
1080 		/* Process leaves */
1081 		while ((rn = base)) {
1082 			base = rn->rn_dupedkey;
1083 			if (!(rn->rn_flags & RNF_ROOT)
1084 			    && (error = (*f)(rn, w)))
1085 				return (error);
1086 		}
1087 		rn = next;
1088 		if (rn->rn_flags & RNF_ROOT)
1089 			return (0);
1090 	}
1091 	/* NOTREACHED */
1092 }
1093 
1094 /*
1095  * Allocate and initialize an empty tree. This has 3 nodes, which are
1096  * part of the radix_node_head (in the order <left,root,right>) and are
1097  * marked RNF_ROOT so they cannot be freed.
1098  * The leaves have all-zero and all-one keys, with significant
1099  * bits starting at 'off'.
1100  * Return 1 on success, 0 on error.
1101  */
1102 int
1103 rn_inithead(head, off)
1104 	void **head;
1105 	int off;
1106 {
1107 	register struct radix_node_head *rnh;
1108 	register struct radix_node *t, *tt, *ttt;
1109 	if (*head)
1110 		return (1);
1111 	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1112 	if (rnh == 0)
1113 		return (0);
1114 #ifdef _KERNEL
1115 	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1116 #endif
1117 	*head = rnh;
1118 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1119 	ttt = rnh->rnh_nodes + 2;
1120 	t->rn_right = ttt;
1121 	t->rn_parent = t;
1122 	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1123 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1124 	tt->rn_bit = -1 - off;
1125 	*ttt = *tt;
1126 	ttt->rn_key = rn_ones;
1127 	rnh->rnh_addaddr = rn_addroute;
1128 	rnh->rnh_deladdr = rn_delete;
1129 	rnh->rnh_matchaddr = rn_match;
1130 	rnh->rnh_lookup = rn_lookup;
1131 	rnh->rnh_walktree = rn_walktree;
1132 	rnh->rnh_walktree_from = rn_walktree_from;
1133 	rnh->rnh_treetop = t;
1134 	return (1);
1135 }
1136 
1137 void
1138 rn_init()
1139 {
1140 	char *cp, *cplim;
1141 #ifdef _KERNEL
1142 	struct domain *dom;
1143 
1144 	for (dom = domains; dom; dom = dom->dom_next)
1145 		if (dom->dom_maxrtkey > max_keylen)
1146 			max_keylen = dom->dom_maxrtkey;
1147 #endif
1148 	if (max_keylen == 0) {
1149 		log(LOG_ERR,
1150 		    "rn_init: radix functions require max_keylen be set\n");
1151 		return;
1152 	}
1153 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1154 	if (rn_zeros == NULL)
1155 		panic("rn_init");
1156 	bzero(rn_zeros, 3 * max_keylen);
1157 	rn_ones = cp = rn_zeros + max_keylen;
1158 	addmask_key = cplim = rn_ones + max_keylen;
1159 	while (cp < cplim)
1160 		*cp++ = -1;
1161 	if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1162 		panic("rn_init 2");
1163 }
1164