xref: /freebsd/sys/net/radix.c (revision e28a4053)
1 /*-
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30  * $FreeBSD$
31  */
32 
33 /*
34  * Routines to build and maintain radix trees for routing lookups.
35  */
36 #include <sys/param.h>
37 #ifdef	_KERNEL
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/rwlock.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/syslog.h>
44 #include <net/radix.h>
45 #include "opt_mpath.h"
46 #ifdef RADIX_MPATH
47 #include <net/radix_mpath.h>
48 #endif
49 #else /* !_KERNEL */
50 #include <stdio.h>
51 #include <strings.h>
52 #include <stdlib.h>
53 #define log(x, arg...)	fprintf(stderr, ## arg)
54 #define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
55 #define min(a, b) ((a) < (b) ? (a) : (b) )
56 #include <net/radix.h>
57 #endif /* !_KERNEL */
58 
59 static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
60 		    walktree_f_t *f, void *w);
61 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
62 static struct radix_node
63 	 *rn_insert(void *, struct radix_node_head *, int *,
64 	     struct radix_node [2]),
65 	 *rn_newpair(void *, int, struct radix_node[2]),
66 	 *rn_search(void *, struct radix_node *),
67 	 *rn_search_m(void *, struct radix_node *, void *);
68 
69 static int	max_keylen;
70 static struct radix_mask *rn_mkfreelist;
71 static struct radix_node_head *mask_rnhead;
72 /*
73  * Work area -- the following point to 3 buffers of size max_keylen,
74  * allocated in this order in a block of memory malloc'ed by rn_init.
75  * rn_zeros, rn_ones are set in rn_init and used in readonly afterwards.
76  * addmask_key is used in rn_addmask in rw mode and not thread-safe.
77  */
78 static char *rn_zeros, *rn_ones, *addmask_key;
79 
80 #define MKGet(m) {						\
81 	if (rn_mkfreelist) {					\
82 		m = rn_mkfreelist;				\
83 		rn_mkfreelist = (m)->rm_mklist;			\
84 	} else							\
85 		R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); }
86 
87 #define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);}
88 
89 #define rn_masktop (mask_rnhead->rnh_treetop)
90 
91 static int	rn_lexobetter(void *m_arg, void *n_arg);
92 static struct radix_mask *
93 		rn_new_radix_mask(struct radix_node *tt,
94 		    struct radix_mask *next);
95 static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
96 		    int skip);
97 
98 /*
99  * The data structure for the keys is a radix tree with one way
100  * branching removed.  The index rn_bit at an internal node n represents a bit
101  * position to be tested.  The tree is arranged so that all descendants
102  * of a node n have keys whose bits all agree up to position rn_bit - 1.
103  * (We say the index of n is rn_bit.)
104  *
105  * There is at least one descendant which has a one bit at position rn_bit,
106  * and at least one with a zero there.
107  *
108  * A route is determined by a pair of key and mask.  We require that the
109  * bit-wise logical and of the key and mask to be the key.
110  * We define the index of a route to associated with the mask to be
111  * the first bit number in the mask where 0 occurs (with bit number 0
112  * representing the highest order bit).
113  *
114  * We say a mask is normal if every bit is 0, past the index of the mask.
115  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
116  * and m is a normal mask, then the route applies to every descendant of n.
117  * If the index(m) < rn_bit, this implies the trailing last few bits of k
118  * before bit b are all 0, (and hence consequently true of every descendant
119  * of n), so the route applies to all descendants of the node as well.
120  *
121  * Similar logic shows that a non-normal mask m such that
122  * index(m) <= index(n) could potentially apply to many children of n.
123  * Thus, for each non-host route, we attach its mask to a list at an internal
124  * node as high in the tree as we can go.
125  *
126  * The present version of the code makes use of normal routes in short-
127  * circuiting an explict mask and compare operation when testing whether
128  * a key satisfies a normal route, and also in remembering the unique leaf
129  * that governs a subtree.
130  */
131 
132 /*
133  * Most of the functions in this code assume that the key/mask arguments
134  * are sockaddr-like structures, where the first byte is an u_char
135  * indicating the size of the entire structure.
136  *
137  * To make the assumption more explicit, we use the LEN() macro to access
138  * this field. It is safe to pass an expression with side effects
139  * to LEN() as the argument is evaluated only once.
140  * We cast the result to int as this is the dominant usage.
141  */
142 #define LEN(x) ( (int) (*(const u_char *)(x)) )
143 
144 /*
145  * XXX THIS NEEDS TO BE FIXED
146  * In the code, pointers to keys and masks are passed as either
147  * 'void *' (because callers use to pass pointers of various kinds), or
148  * 'caddr_t' (which is fine for pointer arithmetics, but not very
149  * clean when you dereference it to access data). Furthermore, caddr_t
150  * is really 'char *', while the natural type to operate on keys and
151  * masks would be 'u_char'. This mismatch require a lot of casts and
152  * intermediate variables to adapt types that clutter the code.
153  */
154 
155 /*
156  * Search a node in the tree matching the key.
157  */
158 static struct radix_node *
159 rn_search(v_arg, head)
160 	void *v_arg;
161 	struct radix_node *head;
162 {
163 	register struct radix_node *x;
164 	register caddr_t v;
165 
166 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
167 		if (x->rn_bmask & v[x->rn_offset])
168 			x = x->rn_right;
169 		else
170 			x = x->rn_left;
171 	}
172 	return (x);
173 }
174 
175 /*
176  * Same as above, but with an additional mask.
177  * XXX note this function is used only once.
178  */
179 static struct radix_node *
180 rn_search_m(v_arg, head, m_arg)
181 	struct radix_node *head;
182 	void *v_arg, *m_arg;
183 {
184 	register struct radix_node *x;
185 	register caddr_t v = v_arg, m = m_arg;
186 
187 	for (x = head; x->rn_bit >= 0;) {
188 		if ((x->rn_bmask & m[x->rn_offset]) &&
189 		    (x->rn_bmask & v[x->rn_offset]))
190 			x = x->rn_right;
191 		else
192 			x = x->rn_left;
193 	}
194 	return x;
195 }
196 
197 int
198 rn_refines(m_arg, n_arg)
199 	void *m_arg, *n_arg;
200 {
201 	register caddr_t m = m_arg, n = n_arg;
202 	register caddr_t lim, lim2 = lim = n + LEN(n);
203 	int longer = LEN(n++) - LEN(m++);
204 	int masks_are_equal = 1;
205 
206 	if (longer > 0)
207 		lim -= longer;
208 	while (n < lim) {
209 		if (*n & ~(*m))
210 			return 0;
211 		if (*n++ != *m++)
212 			masks_are_equal = 0;
213 	}
214 	while (n < lim2)
215 		if (*n++)
216 			return 0;
217 	if (masks_are_equal && (longer < 0))
218 		for (lim2 = m - longer; m < lim2; )
219 			if (*m++)
220 				return 1;
221 	return (!masks_are_equal);
222 }
223 
224 struct radix_node *
225 rn_lookup(v_arg, m_arg, head)
226 	void *v_arg, *m_arg;
227 	struct radix_node_head *head;
228 {
229 	register struct radix_node *x;
230 	caddr_t netmask = 0;
231 
232 	if (m_arg) {
233 		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
234 		if (x == 0)
235 			return (0);
236 		netmask = x->rn_key;
237 	}
238 	x = rn_match(v_arg, head);
239 	if (x && netmask) {
240 		while (x && x->rn_mask != netmask)
241 			x = x->rn_dupedkey;
242 	}
243 	return x;
244 }
245 
246 static int
247 rn_satisfies_leaf(trial, leaf, skip)
248 	char *trial;
249 	register struct radix_node *leaf;
250 	int skip;
251 {
252 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
253 	char *cplim;
254 	int length = min(LEN(cp), LEN(cp2));
255 
256 	if (cp3 == NULL)
257 		cp3 = rn_ones;
258 	else
259 		length = min(length, LEN(cp3));
260 	cplim = cp + length; cp3 += skip; cp2 += skip;
261 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
262 		if ((*cp ^ *cp2) & *cp3)
263 			return 0;
264 	return 1;
265 }
266 
267 struct radix_node *
268 rn_match(v_arg, head)
269 	void *v_arg;
270 	struct radix_node_head *head;
271 {
272 	caddr_t v = v_arg;
273 	register struct radix_node *t = head->rnh_treetop, *x;
274 	register caddr_t cp = v, cp2;
275 	caddr_t cplim;
276 	struct radix_node *saved_t, *top = t;
277 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
278 	register int test, b, rn_bit;
279 
280 	/*
281 	 * Open code rn_search(v, top) to avoid overhead of extra
282 	 * subroutine call.
283 	 */
284 	for (; t->rn_bit >= 0; ) {
285 		if (t->rn_bmask & cp[t->rn_offset])
286 			t = t->rn_right;
287 		else
288 			t = t->rn_left;
289 	}
290 	/*
291 	 * See if we match exactly as a host destination
292 	 * or at least learn how many bits match, for normal mask finesse.
293 	 *
294 	 * It doesn't hurt us to limit how many bytes to check
295 	 * to the length of the mask, since if it matches we had a genuine
296 	 * match and the leaf we have is the most specific one anyway;
297 	 * if it didn't match with a shorter length it would fail
298 	 * with a long one.  This wins big for class B&C netmasks which
299 	 * are probably the most common case...
300 	 */
301 	if (t->rn_mask)
302 		vlen = *(u_char *)t->rn_mask;
303 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
304 	for (; cp < cplim; cp++, cp2++)
305 		if (*cp != *cp2)
306 			goto on1;
307 	/*
308 	 * This extra grot is in case we are explicitly asked
309 	 * to look up the default.  Ugh!
310 	 *
311 	 * Never return the root node itself, it seems to cause a
312 	 * lot of confusion.
313 	 */
314 	if (t->rn_flags & RNF_ROOT)
315 		t = t->rn_dupedkey;
316 	return t;
317 on1:
318 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
319 	for (b = 7; (test >>= 1) > 0;)
320 		b--;
321 	matched_off = cp - v;
322 	b += matched_off << 3;
323 	rn_bit = -1 - b;
324 	/*
325 	 * If there is a host route in a duped-key chain, it will be first.
326 	 */
327 	if ((saved_t = t)->rn_mask == 0)
328 		t = t->rn_dupedkey;
329 	for (; t; t = t->rn_dupedkey)
330 		/*
331 		 * Even if we don't match exactly as a host,
332 		 * we may match if the leaf we wound up at is
333 		 * a route to a net.
334 		 */
335 		if (t->rn_flags & RNF_NORMAL) {
336 			if (rn_bit <= t->rn_bit)
337 				return t;
338 		} else if (rn_satisfies_leaf(v, t, matched_off))
339 				return t;
340 	t = saved_t;
341 	/* start searching up the tree */
342 	do {
343 		register struct radix_mask *m;
344 		t = t->rn_parent;
345 		m = t->rn_mklist;
346 		/*
347 		 * If non-contiguous masks ever become important
348 		 * we can restore the masking and open coding of
349 		 * the search and satisfaction test and put the
350 		 * calculation of "off" back before the "do".
351 		 */
352 		while (m) {
353 			if (m->rm_flags & RNF_NORMAL) {
354 				if (rn_bit <= m->rm_bit)
355 					return (m->rm_leaf);
356 			} else {
357 				off = min(t->rn_offset, matched_off);
358 				x = rn_search_m(v, t, m->rm_mask);
359 				while (x && x->rn_mask != m->rm_mask)
360 					x = x->rn_dupedkey;
361 				if (x && rn_satisfies_leaf(v, x, off))
362 					return x;
363 			}
364 			m = m->rm_mklist;
365 		}
366 	} while (t != top);
367 	return 0;
368 }
369 
370 #ifdef RN_DEBUG
371 int	rn_nodenum;
372 struct	radix_node *rn_clist;
373 int	rn_saveinfo;
374 int	rn_debug =  1;
375 #endif
376 
377 /*
378  * Whenever we add a new leaf to the tree, we also add a parent node,
379  * so we allocate them as an array of two elements: the first one must be
380  * the leaf (see RNTORT() in route.c), the second one is the parent.
381  * This routine initializes the relevant fields of the nodes, so that
382  * the leaf is the left child of the parent node, and both nodes have
383  * (almost) all all fields filled as appropriate.
384  * (XXX some fields are left unset, see the '#if 0' section).
385  * The function returns a pointer to the parent node.
386  */
387 
388 static struct radix_node *
389 rn_newpair(v, b, nodes)
390 	void *v;
391 	int b;
392 	struct radix_node nodes[2];
393 {
394 	register struct radix_node *tt = nodes, *t = tt + 1;
395 	t->rn_bit = b;
396 	t->rn_bmask = 0x80 >> (b & 7);
397 	t->rn_left = tt;
398 	t->rn_offset = b >> 3;
399 
400 #if 0  /* XXX perhaps we should fill these fields as well. */
401 	t->rn_parent = t->rn_right = NULL;
402 
403 	tt->rn_mask = NULL;
404 	tt->rn_dupedkey = NULL;
405 	tt->rn_bmask = 0;
406 #endif
407 	tt->rn_bit = -1;
408 	tt->rn_key = (caddr_t)v;
409 	tt->rn_parent = t;
410 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
411 	tt->rn_mklist = t->rn_mklist = 0;
412 #ifdef RN_DEBUG
413 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
414 	tt->rn_twin = t;
415 	tt->rn_ybro = rn_clist;
416 	rn_clist = tt;
417 #endif
418 	return t;
419 }
420 
421 static struct radix_node *
422 rn_insert(v_arg, head, dupentry, nodes)
423 	void *v_arg;
424 	struct radix_node_head *head;
425 	int *dupentry;
426 	struct radix_node nodes[2];
427 {
428 	caddr_t v = v_arg;
429 	struct radix_node *top = head->rnh_treetop;
430 	int head_off = top->rn_offset, vlen = LEN(v);
431 	register struct radix_node *t = rn_search(v_arg, top);
432 	register caddr_t cp = v + head_off;
433 	register int b;
434 	struct radix_node *tt;
435     	/*
436 	 * Find first bit at which v and t->rn_key differ
437 	 */
438     {
439 	register caddr_t cp2 = t->rn_key + head_off;
440 	register int cmp_res;
441 	caddr_t cplim = v + vlen;
442 
443 	while (cp < cplim)
444 		if (*cp2++ != *cp++)
445 			goto on1;
446 	*dupentry = 1;
447 	return t;
448 on1:
449 	*dupentry = 0;
450 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
451 	for (b = (cp - v) << 3; cmp_res; b--)
452 		cmp_res >>= 1;
453     }
454     {
455 	register struct radix_node *p, *x = top;
456 	cp = v;
457 	do {
458 		p = x;
459 		if (cp[x->rn_offset] & x->rn_bmask)
460 			x = x->rn_right;
461 		else
462 			x = x->rn_left;
463 	} while (b > (unsigned) x->rn_bit);
464 				/* x->rn_bit < b && x->rn_bit >= 0 */
465 #ifdef RN_DEBUG
466 	if (rn_debug)
467 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
468 #endif
469 	t = rn_newpair(v_arg, b, nodes);
470 	tt = t->rn_left;
471 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
472 		p->rn_left = t;
473 	else
474 		p->rn_right = t;
475 	x->rn_parent = t;
476 	t->rn_parent = p; /* frees x, p as temp vars below */
477 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
478 		t->rn_right = x;
479 	} else {
480 		t->rn_right = tt;
481 		t->rn_left = x;
482 	}
483 #ifdef RN_DEBUG
484 	if (rn_debug)
485 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
486 #endif
487     }
488 	return (tt);
489 }
490 
491 struct radix_node *
492 rn_addmask(n_arg, search, skip)
493 	int search, skip;
494 	void *n_arg;
495 {
496 	caddr_t netmask = (caddr_t)n_arg;
497 	register struct radix_node *x;
498 	register caddr_t cp, cplim;
499 	register int b = 0, mlen, j;
500 	int maskduplicated, m0, isnormal;
501 	struct radix_node *saved_x;
502 	static int last_zeroed = 0;
503 
504 	if ((mlen = LEN(netmask)) > max_keylen)
505 		mlen = max_keylen;
506 	if (skip == 0)
507 		skip = 1;
508 	if (mlen <= skip)
509 		return (mask_rnhead->rnh_nodes);
510 	if (skip > 1)
511 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
512 	if ((m0 = mlen) > skip)
513 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
514 	/*
515 	 * Trim trailing zeroes.
516 	 */
517 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
518 		cp--;
519 	mlen = cp - addmask_key;
520 	if (mlen <= skip) {
521 		if (m0 >= last_zeroed)
522 			last_zeroed = mlen;
523 		return (mask_rnhead->rnh_nodes);
524 	}
525 	if (m0 < last_zeroed)
526 		bzero(addmask_key + m0, last_zeroed - m0);
527 	*addmask_key = last_zeroed = mlen;
528 	x = rn_search(addmask_key, rn_masktop);
529 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
530 		x = 0;
531 	if (x || search)
532 		return (x);
533 	R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
534 	if ((saved_x = x) == 0)
535 		return (0);
536 	netmask = cp = (caddr_t)(x + 2);
537 	bcopy(addmask_key, cp, mlen);
538 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
539 	if (maskduplicated) {
540 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
541 		Free(saved_x);
542 		return (x);
543 	}
544 	/*
545 	 * Calculate index of mask, and check for normalcy.
546 	 * First find the first byte with a 0 bit, then if there are
547 	 * more bits left (remember we already trimmed the trailing 0's),
548 	 * the pattern must be one of those in normal_chars[], or we have
549 	 * a non-contiguous mask.
550 	 */
551 	cplim = netmask + mlen;
552 	isnormal = 1;
553 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
554 		cp++;
555 	if (cp != cplim) {
556 		static char normal_chars[] = {
557 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
558 
559 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
560 			b++;
561 		if (*cp != normal_chars[b] || cp != (cplim - 1))
562 			isnormal = 0;
563 	}
564 	b += (cp - netmask) << 3;
565 	x->rn_bit = -1 - b;
566 	if (isnormal)
567 		x->rn_flags |= RNF_NORMAL;
568 	return (x);
569 }
570 
571 static int	/* XXX: arbitrary ordering for non-contiguous masks */
572 rn_lexobetter(m_arg, n_arg)
573 	void *m_arg, *n_arg;
574 {
575 	register u_char *mp = m_arg, *np = n_arg, *lim;
576 
577 	if (LEN(mp) > LEN(np))
578 		return 1;  /* not really, but need to check longer one first */
579 	if (LEN(mp) == LEN(np))
580 		for (lim = mp + LEN(mp); mp < lim;)
581 			if (*mp++ > *np++)
582 				return 1;
583 	return 0;
584 }
585 
586 static struct radix_mask *
587 rn_new_radix_mask(tt, next)
588 	register struct radix_node *tt;
589 	register struct radix_mask *next;
590 {
591 	register struct radix_mask *m;
592 
593 	MKGet(m);
594 	if (m == 0) {
595 		log(LOG_ERR, "Mask for route not entered\n");
596 		return (0);
597 	}
598 	bzero(m, sizeof *m);
599 	m->rm_bit = tt->rn_bit;
600 	m->rm_flags = tt->rn_flags;
601 	if (tt->rn_flags & RNF_NORMAL)
602 		m->rm_leaf = tt;
603 	else
604 		m->rm_mask = tt->rn_mask;
605 	m->rm_mklist = next;
606 	tt->rn_mklist = m;
607 	return m;
608 }
609 
610 struct radix_node *
611 rn_addroute(v_arg, n_arg, head, treenodes)
612 	void *v_arg, *n_arg;
613 	struct radix_node_head *head;
614 	struct radix_node treenodes[2];
615 {
616 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
617 	register struct radix_node *t, *x = 0, *tt;
618 	struct radix_node *saved_tt, *top = head->rnh_treetop;
619 	short b = 0, b_leaf = 0;
620 	int keyduplicated;
621 	caddr_t mmask;
622 	struct radix_mask *m, **mp;
623 
624 	/*
625 	 * In dealing with non-contiguous masks, there may be
626 	 * many different routes which have the same mask.
627 	 * We will find it useful to have a unique pointer to
628 	 * the mask to speed avoiding duplicate references at
629 	 * nodes and possibly save time in calculating indices.
630 	 */
631 	if (netmask)  {
632 		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
633 			return (0);
634 		b_leaf = x->rn_bit;
635 		b = -1 - x->rn_bit;
636 		netmask = x->rn_key;
637 	}
638 	/*
639 	 * Deal with duplicated keys: attach node to previous instance
640 	 */
641 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
642 	if (keyduplicated) {
643 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
644 #ifdef RADIX_MPATH
645 			/* permit multipath, if enabled for the family */
646 			if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
647 				/*
648 				 * go down to the end of multipaths, so that
649 				 * new entry goes into the end of rn_dupedkey
650 				 * chain.
651 				 */
652 				do {
653 					t = tt;
654 					tt = tt->rn_dupedkey;
655 				} while (tt && t->rn_mask == tt->rn_mask);
656 				break;
657 			}
658 #endif
659 			if (tt->rn_mask == netmask)
660 				return (0);
661 			if (netmask == 0 ||
662 			    (tt->rn_mask &&
663 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
664 			      || rn_refines(netmask, tt->rn_mask)
665 			      || rn_lexobetter(netmask, tt->rn_mask))))
666 				break;
667 		}
668 		/*
669 		 * If the mask is not duplicated, we wouldn't
670 		 * find it among possible duplicate key entries
671 		 * anyway, so the above test doesn't hurt.
672 		 *
673 		 * We sort the masks for a duplicated key the same way as
674 		 * in a masklist -- most specific to least specific.
675 		 * This may require the unfortunate nuisance of relocating
676 		 * the head of the list.
677 		 *
678 		 * We also reverse, or doubly link the list through the
679 		 * parent pointer.
680 		 */
681 		if (tt == saved_tt) {
682 			struct	radix_node *xx = x;
683 			/* link in at head of list */
684 			(tt = treenodes)->rn_dupedkey = t;
685 			tt->rn_flags = t->rn_flags;
686 			tt->rn_parent = x = t->rn_parent;
687 			t->rn_parent = tt;	 		/* parent */
688 			if (x->rn_left == t)
689 				x->rn_left = tt;
690 			else
691 				x->rn_right = tt;
692 			saved_tt = tt; x = xx;
693 		} else {
694 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
695 			t->rn_dupedkey = tt;
696 			tt->rn_parent = t;			/* parent */
697 			if (tt->rn_dupedkey)			/* parent */
698 				tt->rn_dupedkey->rn_parent = tt; /* parent */
699 		}
700 #ifdef RN_DEBUG
701 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
702 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
703 #endif
704 		tt->rn_key = (caddr_t) v;
705 		tt->rn_bit = -1;
706 		tt->rn_flags = RNF_ACTIVE;
707 	}
708 	/*
709 	 * Put mask in tree.
710 	 */
711 	if (netmask) {
712 		tt->rn_mask = netmask;
713 		tt->rn_bit = x->rn_bit;
714 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
715 	}
716 	t = saved_tt->rn_parent;
717 	if (keyduplicated)
718 		goto on2;
719 	b_leaf = -1 - t->rn_bit;
720 	if (t->rn_right == saved_tt)
721 		x = t->rn_left;
722 	else
723 		x = t->rn_right;
724 	/* Promote general routes from below */
725 	if (x->rn_bit < 0) {
726 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
727 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
728 			*mp = m = rn_new_radix_mask(x, 0);
729 			if (m)
730 				mp = &m->rm_mklist;
731 		}
732 	} else if (x->rn_mklist) {
733 		/*
734 		 * Skip over masks whose index is > that of new node
735 		 */
736 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
737 			if (m->rm_bit >= b_leaf)
738 				break;
739 		t->rn_mklist = m; *mp = 0;
740 	}
741 on2:
742 	/* Add new route to highest possible ancestor's list */
743 	if ((netmask == 0) || (b > t->rn_bit ))
744 		return tt; /* can't lift at all */
745 	b_leaf = tt->rn_bit;
746 	do {
747 		x = t;
748 		t = t->rn_parent;
749 	} while (b <= t->rn_bit && x != top);
750 	/*
751 	 * Search through routes associated with node to
752 	 * insert new route according to index.
753 	 * Need same criteria as when sorting dupedkeys to avoid
754 	 * double loop on deletion.
755 	 */
756 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
757 		if (m->rm_bit < b_leaf)
758 			continue;
759 		if (m->rm_bit > b_leaf)
760 			break;
761 		if (m->rm_flags & RNF_NORMAL) {
762 			mmask = m->rm_leaf->rn_mask;
763 			if (tt->rn_flags & RNF_NORMAL) {
764 #if !defined(RADIX_MPATH)
765 			    log(LOG_ERR,
766 			        "Non-unique normal route, mask not entered\n");
767 #endif
768 				return tt;
769 			}
770 		} else
771 			mmask = m->rm_mask;
772 		if (mmask == netmask) {
773 			m->rm_refs++;
774 			tt->rn_mklist = m;
775 			return tt;
776 		}
777 		if (rn_refines(netmask, mmask)
778 		    || rn_lexobetter(netmask, mmask))
779 			break;
780 	}
781 	*mp = rn_new_radix_mask(tt, *mp);
782 	return tt;
783 }
784 
785 struct radix_node *
786 rn_delete(v_arg, netmask_arg, head)
787 	void *v_arg, *netmask_arg;
788 	struct radix_node_head *head;
789 {
790 	register struct radix_node *t, *p, *x, *tt;
791 	struct radix_mask *m, *saved_m, **mp;
792 	struct radix_node *dupedkey, *saved_tt, *top;
793 	caddr_t v, netmask;
794 	int b, head_off, vlen;
795 
796 	v = v_arg;
797 	netmask = netmask_arg;
798 	x = head->rnh_treetop;
799 	tt = rn_search(v, x);
800 	head_off = x->rn_offset;
801 	vlen =  LEN(v);
802 	saved_tt = tt;
803 	top = x;
804 	if (tt == 0 ||
805 	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
806 		return (0);
807 	/*
808 	 * Delete our route from mask lists.
809 	 */
810 	if (netmask) {
811 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
812 			return (0);
813 		netmask = x->rn_key;
814 		while (tt->rn_mask != netmask)
815 			if ((tt = tt->rn_dupedkey) == 0)
816 				return (0);
817 	}
818 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
819 		goto on1;
820 	if (tt->rn_flags & RNF_NORMAL) {
821 		if (m->rm_leaf != tt || m->rm_refs > 0) {
822 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
823 			return 0;  /* dangling ref could cause disaster */
824 		}
825 	} else {
826 		if (m->rm_mask != tt->rn_mask) {
827 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
828 			goto on1;
829 		}
830 		if (--m->rm_refs >= 0)
831 			goto on1;
832 	}
833 	b = -1 - tt->rn_bit;
834 	t = saved_tt->rn_parent;
835 	if (b > t->rn_bit)
836 		goto on1; /* Wasn't lifted at all */
837 	do {
838 		x = t;
839 		t = t->rn_parent;
840 	} while (b <= t->rn_bit && x != top);
841 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
842 		if (m == saved_m) {
843 			*mp = m->rm_mklist;
844 			MKFree(m);
845 			break;
846 		}
847 	if (m == 0) {
848 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
849 		if (tt->rn_flags & RNF_NORMAL)
850 			return (0); /* Dangling ref to us */
851 	}
852 on1:
853 	/*
854 	 * Eliminate us from tree
855 	 */
856 	if (tt->rn_flags & RNF_ROOT)
857 		return (0);
858 #ifdef RN_DEBUG
859 	/* Get us out of the creation list */
860 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
861 	if (t) t->rn_ybro = tt->rn_ybro;
862 #endif
863 	t = tt->rn_parent;
864 	dupedkey = saved_tt->rn_dupedkey;
865 	if (dupedkey) {
866 		/*
867 		 * Here, tt is the deletion target and
868 		 * saved_tt is the head of the dupekey chain.
869 		 */
870 		if (tt == saved_tt) {
871 			/* remove from head of chain */
872 			x = dupedkey; x->rn_parent = t;
873 			if (t->rn_left == tt)
874 				t->rn_left = x;
875 			else
876 				t->rn_right = x;
877 		} else {
878 			/* find node in front of tt on the chain */
879 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
880 				p = p->rn_dupedkey;
881 			if (p) {
882 				p->rn_dupedkey = tt->rn_dupedkey;
883 				if (tt->rn_dupedkey)		/* parent */
884 					tt->rn_dupedkey->rn_parent = p;
885 								/* parent */
886 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
887 		}
888 		t = tt + 1;
889 		if  (t->rn_flags & RNF_ACTIVE) {
890 #ifndef RN_DEBUG
891 			*++x = *t;
892 			p = t->rn_parent;
893 #else
894 			b = t->rn_info;
895 			*++x = *t;
896 			t->rn_info = b;
897 			p = t->rn_parent;
898 #endif
899 			if (p->rn_left == t)
900 				p->rn_left = x;
901 			else
902 				p->rn_right = x;
903 			x->rn_left->rn_parent = x;
904 			x->rn_right->rn_parent = x;
905 		}
906 		goto out;
907 	}
908 	if (t->rn_left == tt)
909 		x = t->rn_right;
910 	else
911 		x = t->rn_left;
912 	p = t->rn_parent;
913 	if (p->rn_right == t)
914 		p->rn_right = x;
915 	else
916 		p->rn_left = x;
917 	x->rn_parent = p;
918 	/*
919 	 * Demote routes attached to us.
920 	 */
921 	if (t->rn_mklist) {
922 		if (x->rn_bit >= 0) {
923 			for (mp = &x->rn_mklist; (m = *mp);)
924 				mp = &m->rm_mklist;
925 			*mp = t->rn_mklist;
926 		} else {
927 			/* If there are any key,mask pairs in a sibling
928 			   duped-key chain, some subset will appear sorted
929 			   in the same order attached to our mklist */
930 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
931 				if (m == x->rn_mklist) {
932 					struct radix_mask *mm = m->rm_mklist;
933 					x->rn_mklist = 0;
934 					if (--(m->rm_refs) < 0)
935 						MKFree(m);
936 					m = mm;
937 				}
938 			if (m)
939 				log(LOG_ERR,
940 				    "rn_delete: Orphaned Mask %p at %p\n",
941 				    m, x);
942 		}
943 	}
944 	/*
945 	 * We may be holding an active internal node in the tree.
946 	 */
947 	x = tt + 1;
948 	if (t != x) {
949 #ifndef RN_DEBUG
950 		*t = *x;
951 #else
952 		b = t->rn_info;
953 		*t = *x;
954 		t->rn_info = b;
955 #endif
956 		t->rn_left->rn_parent = t;
957 		t->rn_right->rn_parent = t;
958 		p = x->rn_parent;
959 		if (p->rn_left == x)
960 			p->rn_left = t;
961 		else
962 			p->rn_right = t;
963 	}
964 out:
965 	tt->rn_flags &= ~RNF_ACTIVE;
966 	tt[1].rn_flags &= ~RNF_ACTIVE;
967 	return (tt);
968 }
969 
970 /*
971  * This is the same as rn_walktree() except for the parameters and the
972  * exit.
973  */
974 static int
975 rn_walktree_from(h, a, m, f, w)
976 	struct radix_node_head *h;
977 	void *a, *m;
978 	walktree_f_t *f;
979 	void *w;
980 {
981 	int error;
982 	struct radix_node *base, *next;
983 	u_char *xa = (u_char *)a;
984 	u_char *xm = (u_char *)m;
985 	register struct radix_node *rn, *last = 0 /* shut up gcc */;
986 	int stopping = 0;
987 	int lastb;
988 
989 	/*
990 	 * rn_search_m is sort-of-open-coded here. We cannot use the
991 	 * function because we need to keep track of the last node seen.
992 	 */
993 	/* printf("about to search\n"); */
994 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
995 		last = rn;
996 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
997 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
998 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
999 			break;
1000 		}
1001 		if (rn->rn_bmask & xa[rn->rn_offset]) {
1002 			rn = rn->rn_right;
1003 		} else {
1004 			rn = rn->rn_left;
1005 		}
1006 	}
1007 	/* printf("done searching\n"); */
1008 
1009 	/*
1010 	 * Two cases: either we stepped off the end of our mask,
1011 	 * in which case last == rn, or we reached a leaf, in which
1012 	 * case we want to start from the last node we looked at.
1013 	 * Either way, last is the node we want to start from.
1014 	 */
1015 	rn = last;
1016 	lastb = rn->rn_bit;
1017 
1018 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
1019 
1020 	/*
1021 	 * This gets complicated because we may delete the node
1022 	 * while applying the function f to it, so we need to calculate
1023 	 * the successor node in advance.
1024 	 */
1025 	while (rn->rn_bit >= 0)
1026 		rn = rn->rn_left;
1027 
1028 	while (!stopping) {
1029 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1030 		base = rn;
1031 		/* If at right child go back up, otherwise, go right */
1032 		while (rn->rn_parent->rn_right == rn
1033 		       && !(rn->rn_flags & RNF_ROOT)) {
1034 			rn = rn->rn_parent;
1035 
1036 			/* if went up beyond last, stop */
1037 			if (rn->rn_bit <= lastb) {
1038 				stopping = 1;
1039 				/* printf("up too far\n"); */
1040 				/*
1041 				 * XXX we should jump to the 'Process leaves'
1042 				 * part, because the values of 'rn' and 'next'
1043 				 * we compute will not be used. Not a big deal
1044 				 * because this loop will terminate, but it is
1045 				 * inefficient and hard to understand!
1046 				 */
1047 			}
1048 		}
1049 
1050 		/*
1051 		 * At the top of the tree, no need to traverse the right
1052 		 * half, prevent the traversal of the entire tree in the
1053 		 * case of default route.
1054 		 */
1055 		if (rn->rn_parent->rn_flags & RNF_ROOT)
1056 			stopping = 1;
1057 
1058 		/* Find the next *leaf* since next node might vanish, too */
1059 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1060 			rn = rn->rn_left;
1061 		next = rn;
1062 		/* Process leaves */
1063 		while ((rn = base) != 0) {
1064 			base = rn->rn_dupedkey;
1065 			/* printf("leaf %p\n", rn); */
1066 			if (!(rn->rn_flags & RNF_ROOT)
1067 			    && (error = (*f)(rn, w)))
1068 				return (error);
1069 		}
1070 		rn = next;
1071 
1072 		if (rn->rn_flags & RNF_ROOT) {
1073 			/* printf("root, stopping"); */
1074 			stopping = 1;
1075 		}
1076 
1077 	}
1078 	return 0;
1079 }
1080 
1081 static int
1082 rn_walktree(h, f, w)
1083 	struct radix_node_head *h;
1084 	walktree_f_t *f;
1085 	void *w;
1086 {
1087 	int error;
1088 	struct radix_node *base, *next;
1089 	register struct radix_node *rn = h->rnh_treetop;
1090 	/*
1091 	 * This gets complicated because we may delete the node
1092 	 * while applying the function f to it, so we need to calculate
1093 	 * the successor node in advance.
1094 	 */
1095 
1096 	/* First time through node, go left */
1097 	while (rn->rn_bit >= 0)
1098 		rn = rn->rn_left;
1099 	for (;;) {
1100 		base = rn;
1101 		/* If at right child go back up, otherwise, go right */
1102 		while (rn->rn_parent->rn_right == rn
1103 		       && (rn->rn_flags & RNF_ROOT) == 0)
1104 			rn = rn->rn_parent;
1105 		/* Find the next *leaf* since next node might vanish, too */
1106 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1107 			rn = rn->rn_left;
1108 		next = rn;
1109 		/* Process leaves */
1110 		while ((rn = base)) {
1111 			base = rn->rn_dupedkey;
1112 			if (!(rn->rn_flags & RNF_ROOT)
1113 			    && (error = (*f)(rn, w)))
1114 				return (error);
1115 		}
1116 		rn = next;
1117 		if (rn->rn_flags & RNF_ROOT)
1118 			return (0);
1119 	}
1120 	/* NOTREACHED */
1121 }
1122 
1123 /*
1124  * Allocate and initialize an empty tree. This has 3 nodes, which are
1125  * part of the radix_node_head (in the order <left,root,right>) and are
1126  * marked RNF_ROOT so they cannot be freed.
1127  * The leaves have all-zero and all-one keys, with significant
1128  * bits starting at 'off'.
1129  * Return 1 on success, 0 on error.
1130  */
1131 int
1132 rn_inithead(head, off)
1133 	void **head;
1134 	int off;
1135 {
1136 	register struct radix_node_head *rnh;
1137 	register struct radix_node *t, *tt, *ttt;
1138 	if (*head)
1139 		return (1);
1140 	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1141 	if (rnh == 0)
1142 		return (0);
1143 #ifdef _KERNEL
1144 	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1145 #endif
1146 	*head = rnh;
1147 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1148 	ttt = rnh->rnh_nodes + 2;
1149 	t->rn_right = ttt;
1150 	t->rn_parent = t;
1151 	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1152 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1153 	tt->rn_bit = -1 - off;
1154 	*ttt = *tt;
1155 	ttt->rn_key = rn_ones;
1156 	rnh->rnh_addaddr = rn_addroute;
1157 	rnh->rnh_deladdr = rn_delete;
1158 	rnh->rnh_matchaddr = rn_match;
1159 	rnh->rnh_lookup = rn_lookup;
1160 	rnh->rnh_walktree = rn_walktree;
1161 	rnh->rnh_walktree_from = rn_walktree_from;
1162 	rnh->rnh_treetop = t;
1163 	return (1);
1164 }
1165 
1166 int
1167 rn_detachhead(void **head)
1168 {
1169 	struct radix_node_head *rnh;
1170 
1171 	KASSERT((head != NULL && *head != NULL),
1172 	    ("%s: head already freed", __func__));
1173 	rnh = *head;
1174 
1175 	/* Free <left,root,right> nodes. */
1176 	Free(rnh);
1177 
1178 	*head = NULL;
1179 	return (1);
1180 }
1181 
1182 void
1183 rn_init(int maxk)
1184 {
1185 	char *cp, *cplim;
1186 
1187 	max_keylen = maxk;
1188 	if (max_keylen == 0) {
1189 		log(LOG_ERR,
1190 		    "rn_init: radix functions require max_keylen be set\n");
1191 		return;
1192 	}
1193 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1194 	if (rn_zeros == NULL)
1195 		panic("rn_init");
1196 	bzero(rn_zeros, 3 * max_keylen);
1197 	rn_ones = cp = rn_zeros + max_keylen;
1198 	addmask_key = cplim = rn_ones + max_keylen;
1199 	while (cp < cplim)
1200 		*cp++ = -1;
1201 	if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1202 		panic("rn_init 2");
1203 }
1204