xref: /freebsd/sys/net/rtsock.c (revision 78ae60b4)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 #include "opt_ddb.h"
32 #include "opt_route.h"
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 
36 #include <sys/param.h>
37 #include <sys/jail.h>
38 #include <sys/kernel.h>
39 #include <sys/eventhandler.h>
40 #include <sys/domain.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/rwlock.h>
49 #include <sys/signalvar.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/if_private.h>
58 #include <net/if_dl.h>
59 #include <net/if_llatbl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62 #include <net/route.h>
63 #include <net/route/route_ctl.h>
64 #include <net/route/route_var.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/if_ether.h>
69 #include <netinet/ip_carp.h>
70 #ifdef INET6
71 #include <netinet6/in6_var.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #endif
75 #include <net/route/nhop.h>
76 
77 #define	DEBUG_MOD_NAME	rtsock
78 #define	DEBUG_MAX_LEVEL	LOG_DEBUG
79 #include <net/route/route_debug.h>
80 _DECLARE_DEBUG(LOG_INFO);
81 
82 #ifdef COMPAT_FREEBSD32
83 #include <sys/mount.h>
84 #include <compat/freebsd32/freebsd32.h>
85 
86 struct if_msghdr32 {
87 	uint16_t ifm_msglen;
88 	uint8_t	ifm_version;
89 	uint8_t	ifm_type;
90 	int32_t	ifm_addrs;
91 	int32_t	ifm_flags;
92 	uint16_t ifm_index;
93 	uint16_t _ifm_spare1;
94 	struct	if_data ifm_data;
95 };
96 
97 struct if_msghdrl32 {
98 	uint16_t ifm_msglen;
99 	uint8_t	ifm_version;
100 	uint8_t	ifm_type;
101 	int32_t	ifm_addrs;
102 	int32_t	ifm_flags;
103 	uint16_t ifm_index;
104 	uint16_t _ifm_spare1;
105 	uint16_t ifm_len;
106 	uint16_t ifm_data_off;
107 	uint32_t _ifm_spare2;
108 	struct	if_data ifm_data;
109 };
110 
111 struct ifa_msghdrl32 {
112 	uint16_t ifam_msglen;
113 	uint8_t	ifam_version;
114 	uint8_t	ifam_type;
115 	int32_t	ifam_addrs;
116 	int32_t	ifam_flags;
117 	uint16_t ifam_index;
118 	uint16_t _ifam_spare1;
119 	uint16_t ifam_len;
120 	uint16_t ifam_data_off;
121 	int32_t	ifam_metric;
122 	struct	if_data ifam_data;
123 };
124 
125 #define SA_SIZE32(sa)						\
126     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
127 	sizeof(int)		:				\
128 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
129 
130 #endif /* COMPAT_FREEBSD32 */
131 
132 struct linear_buffer {
133 	char		*base;	/* Base allocated memory pointer */
134 	uint32_t	offset;	/* Currently used offset */
135 	uint32_t	size;	/* Total buffer size */
136 };
137 #define	SCRATCH_BUFFER_SIZE	1024
138 
139 #define	RTS_PID_LOG(_l, _fmt, ...)	RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, ## __VA_ARGS__)
140 
141 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
142 
143 /* NB: these are not modified */
144 static struct	sockaddr route_src = { 2, PF_ROUTE, };
145 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
146 
147 /* These are external hooks for CARP. */
148 int	(*carp_get_vhid_p)(struct ifaddr *);
149 
150 /*
151  * Used by rtsock callback code to decide whether to filter the update
152  * notification to a socket bound to a particular FIB.
153  */
154 #define	RTS_FILTER_FIB	M_PROTO8
155 /*
156  * Used to store address family of the notification.
157  */
158 #define	m_rtsock_family	m_pkthdr.PH_loc.eight[0]
159 
160 struct rcb {
161 	LIST_ENTRY(rcb) list;
162 	struct socket	*rcb_socket;
163 	sa_family_t	rcb_family;
164 };
165 
166 typedef struct {
167 	LIST_HEAD(, rcb)	cblist;
168 	int	ip_count;	/* attached w/ AF_INET */
169 	int	ip6_count;	/* attached w/ AF_INET6 */
170 	int	any_count;	/* total attached */
171 } route_cb_t;
172 VNET_DEFINE_STATIC(route_cb_t, route_cb);
173 #define	V_route_cb VNET(route_cb)
174 
175 struct mtx rtsock_mtx;
176 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
177 
178 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
179 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
180 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
181 
182 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
183 
184 struct walkarg {
185 	int	family;
186 	int	w_tmemsize;
187 	int	w_op, w_arg;
188 	caddr_t	w_tmem;
189 	struct sysctl_req *w_req;
190 	struct sockaddr *dst;
191 	struct sockaddr *mask;
192 };
193 
194 static void	rts_input(struct mbuf *m);
195 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
196 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
197 			struct walkarg *w, int *plen);
198 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
199 			struct rt_addrinfo *rtinfo);
200 static int	cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb);
201 static int	sysctl_dumpentry(struct rtentry *rt, void *vw);
202 static int	sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh,
203 			uint32_t weight, struct walkarg *w);
204 static int	sysctl_iflist(int af, struct walkarg *w);
205 static int	sysctl_ifmalist(int af, struct walkarg *w);
206 static void	rt_getmetrics(const struct rtentry *rt,
207 			const struct nhop_object *nh, struct rt_metrics *out);
208 static void	rt_dispatch(struct mbuf *, sa_family_t);
209 static void	rt_ifannouncemsg(struct ifnet *ifp, int what);
210 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
211 			struct rt_msghdr *rtm, struct rib_cmd_info *rc);
212 static int	update_rtm_from_rc(struct rt_addrinfo *info,
213 			struct rt_msghdr **prtm, int alloc_len,
214 			struct rib_cmd_info *rc, struct nhop_object *nh);
215 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
216 			struct mbuf *m, sa_family_t saf, u_int fibnum,
217 			int rtm_errno);
218 static void	rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc);
219 static void	rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask);
220 
221 static struct netisr_handler rtsock_nh = {
222 	.nh_name = "rtsock",
223 	.nh_handler = rts_input,
224 	.nh_proto = NETISR_ROUTE,
225 	.nh_policy = NETISR_POLICY_SOURCE,
226 };
227 
228 static int
229 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
230 {
231 	int error, qlimit;
232 
233 	netisr_getqlimit(&rtsock_nh, &qlimit);
234 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
235         if (error || !req->newptr)
236                 return (error);
237 	if (qlimit < 1)
238 		return (EINVAL);
239 	return (netisr_setqlimit(&rtsock_nh, qlimit));
240 }
241 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
242     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
243     0, 0, sysctl_route_netisr_maxqlen, "I",
244     "maximum routing socket dispatch queue length");
245 
246 static void
247 vnet_rts_init(void)
248 {
249 	int tmp;
250 
251 	if (IS_DEFAULT_VNET(curvnet)) {
252 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
253 			rtsock_nh.nh_qlimit = tmp;
254 		netisr_register(&rtsock_nh);
255 	}
256 #ifdef VIMAGE
257 	 else
258 		netisr_register_vnet(&rtsock_nh);
259 #endif
260 }
261 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
262     vnet_rts_init, 0);
263 
264 #ifdef VIMAGE
265 static void
266 vnet_rts_uninit(void)
267 {
268 
269 	netisr_unregister_vnet(&rtsock_nh);
270 }
271 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
272     vnet_rts_uninit, 0);
273 #endif
274 
275 static void
276 report_route_event(const struct rib_cmd_info *rc, void *_cbdata)
277 {
278 	uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata;
279 	struct nhop_object *nh;
280 
281 	nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new;
282 	rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum);
283 }
284 
285 static void
286 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc)
287 {
288 #ifdef ROUTE_MPATH
289 	if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) ||
290 	    (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) {
291 		rib_decompose_notification(rc, report_route_event,
292 		    (void *)(uintptr_t)fibnum);
293 	} else
294 #endif
295 		report_route_event(rc, (void *)(uintptr_t)fibnum);
296 }
297 static struct rtbridge rtsbridge = {
298 	.route_f = rts_handle_route_event,
299 	.ifmsg_f = rtsock_ifmsg,
300 };
301 static struct rtbridge *rtsbridge_orig_p;
302 
303 static void
304 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc)
305 {
306 	netlink_callback_p->route_f(fibnum, rc);
307 }
308 
309 static void
310 rtsock_init(void)
311 {
312 	rtsbridge_orig_p = rtsock_callback_p;
313 	rtsock_callback_p = &rtsbridge;
314 }
315 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL);
316 
317 static void
318 rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp)
319 {
320 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
321 }
322 EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0);
323 
324 static void
325 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp)
326 {
327 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
328 }
329 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0);
330 
331 static void
332 rts_append_data(struct socket *so, struct mbuf *m)
333 {
334 
335 	if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) {
336 		soroverflow(so);
337 		m_freem(m);
338 	} else
339 		sorwakeup(so);
340 }
341 
342 static void
343 rts_input(struct mbuf *m)
344 {
345 	struct rcb *rcb;
346 	struct socket *last;
347 
348 	last = NULL;
349 	RTSOCK_LOCK();
350 	LIST_FOREACH(rcb, &V_route_cb.cblist, list) {
351 		if (rcb->rcb_family != AF_UNSPEC &&
352 		    rcb->rcb_family != m->m_rtsock_family)
353 			continue;
354 		if ((m->m_flags & RTS_FILTER_FIB) &&
355 		    M_GETFIB(m) != rcb->rcb_socket->so_fibnum)
356 			continue;
357 		if (last != NULL) {
358 			struct mbuf *n;
359 
360 			n = m_copym(m, 0, M_COPYALL, M_NOWAIT);
361 			if (n != NULL)
362 				rts_append_data(last, n);
363 		}
364 		last = rcb->rcb_socket;
365 	}
366 	if (last != NULL)
367 		rts_append_data(last, m);
368 	else
369 		m_freem(m);
370 	RTSOCK_UNLOCK();
371 }
372 
373 static void
374 rts_close(struct socket *so)
375 {
376 
377 	soisdisconnected(so);
378 }
379 
380 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
381     "Routing socket infrastructure");
382 static u_long rts_sendspace = 8192;
383 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0,
384     "Default routing socket send space");
385 static u_long rts_recvspace = 8192;
386 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0,
387     "Default routing socket receive space");
388 
389 static int
390 rts_attach(struct socket *so, int proto, struct thread *td)
391 {
392 	struct rcb *rcb;
393 	int error;
394 
395 	error = soreserve(so, rts_sendspace, rts_recvspace);
396 	if (error)
397 		return (error);
398 
399 	rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK);
400 	rcb->rcb_socket = so;
401 	rcb->rcb_family = proto;
402 
403 	so->so_pcb = rcb;
404 	so->so_fibnum = td->td_proc->p_fibnum;
405 	so->so_options |= SO_USELOOPBACK;
406 
407 	RTSOCK_LOCK();
408 	LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list);
409 	switch (proto) {
410 	case AF_INET:
411 		V_route_cb.ip_count++;
412 		break;
413 	case AF_INET6:
414 		V_route_cb.ip6_count++;
415 		break;
416 	}
417 	V_route_cb.any_count++;
418 	RTSOCK_UNLOCK();
419 	soisconnected(so);
420 
421 	return (0);
422 }
423 
424 static void
425 rts_detach(struct socket *so)
426 {
427 	struct rcb *rcb = so->so_pcb;
428 
429 	RTSOCK_LOCK();
430 	LIST_REMOVE(rcb, list);
431 	switch(rcb->rcb_family) {
432 	case AF_INET:
433 		V_route_cb.ip_count--;
434 		break;
435 	case AF_INET6:
436 		V_route_cb.ip6_count--;
437 		break;
438 	}
439 	V_route_cb.any_count--;
440 	RTSOCK_UNLOCK();
441 	free(rcb, M_PCB);
442 	so->so_pcb = NULL;
443 }
444 
445 static int
446 rts_disconnect(struct socket *so)
447 {
448 
449 	return (ENOTCONN);
450 }
451 
452 static int
453 rts_shutdown(struct socket *so, enum shutdown_how how)
454 {
455 	/*
456 	 * Note: route socket marks itself as connected through its lifetime.
457 	 */
458 	switch (how) {
459 	case SHUT_RD:
460 		socantrcvmore(so);
461 		sbrelease(so, SO_RCV);
462 		break;
463 	case SHUT_RDWR:
464 		socantrcvmore(so);
465 		sbrelease(so, SO_RCV);
466 		/* FALLTHROUGH */
467 	case SHUT_WR:
468 		socantsendmore(so);
469 	}
470 
471 	return (0);
472 }
473 
474 #ifndef _SOCKADDR_UNION_DEFINED
475 #define	_SOCKADDR_UNION_DEFINED
476 /*
477  * The union of all possible address formats we handle.
478  */
479 union sockaddr_union {
480 	struct sockaddr		sa;
481 	struct sockaddr_in	sin;
482 	struct sockaddr_in6	sin6;
483 };
484 #endif /* _SOCKADDR_UNION_DEFINED */
485 
486 static int
487 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
488     struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
489 {
490 #if defined(INET) || defined(INET6)
491 	struct epoch_tracker et;
492 #endif
493 
494 	/* First, see if the returned address is part of the jail. */
495 	if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
496 		info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
497 		return (0);
498 	}
499 
500 	switch (info->rti_info[RTAX_DST]->sa_family) {
501 #ifdef INET
502 	case AF_INET:
503 	{
504 		struct in_addr ia;
505 		struct ifaddr *ifa;
506 		int found;
507 
508 		found = 0;
509 		/*
510 		 * Try to find an address on the given outgoing interface
511 		 * that belongs to the jail.
512 		 */
513 		NET_EPOCH_ENTER(et);
514 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
515 			struct sockaddr *sa;
516 			sa = ifa->ifa_addr;
517 			if (sa->sa_family != AF_INET)
518 				continue;
519 			ia = ((struct sockaddr_in *)sa)->sin_addr;
520 			if (prison_check_ip4(cred, &ia) == 0) {
521 				found = 1;
522 				break;
523 			}
524 		}
525 		NET_EPOCH_EXIT(et);
526 		if (!found) {
527 			/*
528 			 * As a last resort return the 'default' jail address.
529 			 */
530 			ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
531 			    sin_addr;
532 			if (prison_get_ip4(cred, &ia) != 0)
533 				return (ESRCH);
534 		}
535 		bzero(&saun->sin, sizeof(struct sockaddr_in));
536 		saun->sin.sin_len = sizeof(struct sockaddr_in);
537 		saun->sin.sin_family = AF_INET;
538 		saun->sin.sin_addr.s_addr = ia.s_addr;
539 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
540 		break;
541 	}
542 #endif
543 #ifdef INET6
544 	case AF_INET6:
545 	{
546 		struct in6_addr ia6;
547 		struct ifaddr *ifa;
548 		int found;
549 
550 		found = 0;
551 		/*
552 		 * Try to find an address on the given outgoing interface
553 		 * that belongs to the jail.
554 		 */
555 		NET_EPOCH_ENTER(et);
556 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
557 			struct sockaddr *sa;
558 			sa = ifa->ifa_addr;
559 			if (sa->sa_family != AF_INET6)
560 				continue;
561 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
562 			    &ia6, sizeof(struct in6_addr));
563 			if (prison_check_ip6(cred, &ia6) == 0) {
564 				found = 1;
565 				break;
566 			}
567 		}
568 		NET_EPOCH_EXIT(et);
569 		if (!found) {
570 			/*
571 			 * As a last resort return the 'default' jail address.
572 			 */
573 			ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
574 			    sin6_addr;
575 			if (prison_get_ip6(cred, &ia6) != 0)
576 				return (ESRCH);
577 		}
578 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
579 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
580 		saun->sin6.sin6_family = AF_INET6;
581 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
582 		if (sa6_recoverscope(&saun->sin6) != 0)
583 			return (ESRCH);
584 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
585 		break;
586 	}
587 #endif
588 	default:
589 		return (ESRCH);
590 	}
591 	return (0);
592 }
593 
594 static int
595 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun)
596 {
597 	struct ifaddr *ifa;
598 	sa_family_t saf;
599 
600 	if (V_loif == NULL) {
601 		RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback");
602 		return (ENOTSUP);
603 	}
604 	info->rti_ifp = V_loif;
605 
606 	saf = info->rti_info[RTAX_DST]->sa_family;
607 
608 	CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) {
609 		if (ifa->ifa_addr->sa_family == saf) {
610 			info->rti_ifa = ifa;
611 			break;
612 		}
613 	}
614 	if (info->rti_ifa == NULL) {
615 		RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop");
616 		return (ENOTSUP);
617 	}
618 
619 	bzero(saun, sizeof(union sockaddr_union));
620 	switch (saf) {
621 #ifdef INET
622 	case AF_INET:
623 		saun->sin.sin_family = AF_INET;
624 		saun->sin.sin_len = sizeof(struct sockaddr_in);
625 		saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
626 		break;
627 #endif
628 #ifdef INET6
629 	case AF_INET6:
630 		saun->sin6.sin6_family = AF_INET6;
631 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
632 		saun->sin6.sin6_addr = in6addr_loopback;
633 		break;
634 #endif
635 	default:
636 		RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf);
637 		return (ENOTSUP);
638 	}
639 	info->rti_info[RTAX_GATEWAY] = &saun->sa;
640 	info->rti_flags |= RTF_GATEWAY;
641 
642 	return (0);
643 }
644 
645 /*
646  * Fills in @info based on userland-provided @rtm message.
647  *
648  * Returns 0 on success.
649  */
650 static int
651 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum,
652     struct rt_addrinfo *info)
653 {
654 	int error;
655 
656 	rtm->rtm_pid = curproc->p_pid;
657 	info->rti_addrs = rtm->rtm_addrs;
658 
659 	info->rti_mflags = rtm->rtm_inits;
660 	info->rti_rmx = &rtm->rtm_rmx;
661 
662 	/*
663 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
664 	 * link-local address because rtrequest requires addresses with
665 	 * embedded scope id.
666 	 */
667 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
668 		return (EINVAL);
669 
670 	info->rti_flags = rtm->rtm_flags;
671 	error = cleanup_xaddrs(info, lb);
672 	if (error != 0)
673 		return (error);
674 	/*
675 	 * Verify that the caller has the appropriate privilege; RTM_GET
676 	 * is the only operation the non-superuser is allowed.
677 	 */
678 	if (rtm->rtm_type != RTM_GET) {
679 		error = priv_check(curthread, PRIV_NET_ROUTE);
680 		if (error != 0)
681 			return (error);
682 	}
683 
684 	/*
685 	 * The given gateway address may be an interface address.
686 	 * For example, issuing a "route change" command on a route
687 	 * entry that was created from a tunnel, and the gateway
688 	 * address given is the local end point. In this case the
689 	 * RTF_GATEWAY flag must be cleared or the destination will
690 	 * not be reachable even though there is no error message.
691 	 */
692 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
693 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
694 		struct nhop_object *nh;
695 
696 		/*
697 		 * A host route through the loopback interface is
698 		 * installed for each interface adddress. In pre 8.0
699 		 * releases the interface address of a PPP link type
700 		 * is not reachable locally. This behavior is fixed as
701 		 * part of the new L2/L3 redesign and rewrite work. The
702 		 * signature of this interface address route is the
703 		 * AF_LINK sa_family type of the gateway, and the
704 		 * rt_ifp has the IFF_LOOPBACK flag set.
705 		 */
706 		nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0);
707 		if (nh != NULL && nh->gw_sa.sa_family == AF_LINK &&
708 		    nh->nh_ifp->if_flags & IFF_LOOPBACK) {
709 				info->rti_flags &= ~RTF_GATEWAY;
710 				info->rti_flags |= RTF_GWFLAG_COMPAT;
711 		}
712 	}
713 
714 	return (0);
715 }
716 
717 static struct nhop_object *
718 select_nhop(struct nhop_object *nh, const struct sockaddr *gw)
719 {
720 	if (!NH_IS_NHGRP(nh))
721 		return (nh);
722 #ifdef ROUTE_MPATH
723 	const struct weightened_nhop *wn;
724 	uint32_t num_nhops;
725 	wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
726 	if (gw == NULL)
727 		return (wn[0].nh);
728 	for (int i = 0; i < num_nhops; i++) {
729 		if (match_nhop_gw(wn[i].nh, gw))
730 			return (wn[i].nh);
731 	}
732 #endif
733 	return (NULL);
734 }
735 
736 /*
737  * Handles RTM_GET message from routing socket, returning matching rt.
738  *
739  * Returns:
740  * 0 on success, with locked and referenced matching rt in @rt_nrt
741  * errno of failure
742  */
743 static int
744 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
745     struct rt_msghdr *rtm, struct rib_cmd_info *rc)
746 {
747 	RIB_RLOCK_TRACKER;
748 	struct rib_head *rnh;
749 	struct nhop_object *nh;
750 	sa_family_t saf;
751 
752 	saf = info->rti_info[RTAX_DST]->sa_family;
753 
754 	rnh = rt_tables_get_rnh(fibnum, saf);
755 	if (rnh == NULL)
756 		return (EAFNOSUPPORT);
757 
758 	RIB_RLOCK(rnh);
759 
760 	/*
761 	 * By (implicit) convention host route (one without netmask)
762 	 * means longest-prefix-match request and the route with netmask
763 	 * means exact-match lookup.
764 	 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128
765 	 * prefixes, use original data to check for the netmask presence.
766 	 */
767 	if ((rtm->rtm_addrs & RTA_NETMASK) == 0) {
768 		/*
769 		 * Provide longest prefix match for
770 		 * address lookup (no mask).
771 		 * 'route -n get addr'
772 		 */
773 		rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
774 		    info->rti_info[RTAX_DST], &rnh->head);
775 	} else
776 		rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
777 		    info->rti_info[RTAX_DST],
778 		    info->rti_info[RTAX_NETMASK], &rnh->head);
779 
780 	if (rc->rc_rt == NULL) {
781 		RIB_RUNLOCK(rnh);
782 		return (ESRCH);
783 	}
784 
785 	nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
786 	if (nh == NULL) {
787 		RIB_RUNLOCK(rnh);
788 		return (ESRCH);
789 	}
790 	/*
791 	 * If performing proxied L2 entry insertion, and
792 	 * the actual PPP host entry is found, perform
793 	 * another search to retrieve the prefix route of
794 	 * the local end point of the PPP link.
795 	 * TODO: move this logic to userland.
796 	 */
797 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
798 		struct sockaddr_storage laddr;
799 
800 		if (nh->nh_ifp != NULL &&
801 		    nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
802 			struct ifaddr *ifa;
803 
804 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
805 					RT_ALL_FIBS);
806 			if (ifa != NULL)
807 				rt_maskedcopy(ifa->ifa_addr,
808 					      (struct sockaddr *)&laddr,
809 					      ifa->ifa_netmask);
810 		} else
811 			rt_maskedcopy(nh->nh_ifa->ifa_addr,
812 				      (struct sockaddr *)&laddr,
813 				      nh->nh_ifa->ifa_netmask);
814 		/*
815 		 * refactor rt and no lock operation necessary
816 		 */
817 		rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(
818 		    (struct sockaddr *)&laddr, &rnh->head);
819 		if (rc->rc_rt == NULL) {
820 			RIB_RUNLOCK(rnh);
821 			return (ESRCH);
822 		}
823 		nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
824 		if (nh == NULL) {
825 			RIB_RUNLOCK(rnh);
826 			return (ESRCH);
827 		}
828 	}
829 	rc->rc_nh_new = nh;
830 	rc->rc_nh_weight = rc->rc_rt->rt_weight;
831 	RIB_RUNLOCK(rnh);
832 
833 	return (0);
834 }
835 
836 static void
837 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask)
838 {
839 #ifdef INET
840 	if (family == AF_INET) {
841 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
842 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
843 
844 		bzero(dst4, sizeof(struct sockaddr_in));
845 		bzero(mask4, sizeof(struct sockaddr_in));
846 
847 		dst4->sin_family = AF_INET;
848 		dst4->sin_len = sizeof(struct sockaddr_in);
849 		mask4->sin_family = AF_INET;
850 		mask4->sin_len = sizeof(struct sockaddr_in);
851 	}
852 #endif
853 #ifdef INET6
854 	if (family == AF_INET6) {
855 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
856 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
857 
858 		bzero(dst6, sizeof(struct sockaddr_in6));
859 		bzero(mask6, sizeof(struct sockaddr_in6));
860 
861 		dst6->sin6_family = AF_INET6;
862 		dst6->sin6_len = sizeof(struct sockaddr_in6);
863 		mask6->sin6_family = AF_INET6;
864 		mask6->sin6_len = sizeof(struct sockaddr_in6);
865 	}
866 #endif
867 }
868 
869 static void
870 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst,
871     struct sockaddr *mask)
872 {
873 #ifdef INET
874 	if (dst->sa_family == AF_INET) {
875 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
876 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
877 		uint32_t scopeid = 0;
878 		rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr,
879 		    &scopeid);
880 		return;
881 	}
882 #endif
883 #ifdef INET6
884 	if (dst->sa_family == AF_INET6) {
885 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
886 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
887 		uint32_t scopeid = 0;
888 		rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr,
889 		    &mask6->sin6_addr, &scopeid);
890 		dst6->sin6_scope_id = scopeid;
891 		return;
892 	}
893 #endif
894 }
895 
896 static int
897 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm,
898     int alloc_len)
899 {
900 	struct rt_msghdr *rtm, *orig_rtm = NULL;
901 	struct walkarg w;
902 	int len;
903 
904 	rtm = *prtm;
905 	/* Check if we need to realloc storage */
906 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
907 	if (len > alloc_len) {
908 		struct rt_msghdr *tmp_rtm;
909 
910 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
911 		if (tmp_rtm == NULL)
912 			return (ENOBUFS);
913 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
914 		orig_rtm = rtm;
915 		rtm = tmp_rtm;
916 		alloc_len = len;
917 
918 		/*
919 		 * Delay freeing original rtm as info contains
920 		 * data referencing it.
921 		 */
922 	}
923 
924 	w.w_tmem = (caddr_t)rtm;
925 	w.w_tmemsize = alloc_len;
926 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
927 	rtm->rtm_addrs = info->rti_addrs;
928 
929 	if (orig_rtm != NULL)
930 		free(orig_rtm, M_TEMP);
931 	*prtm = rtm;
932 	return (0);
933 }
934 
935 
936 /*
937  * Update sockaddrs, flags, etc in @prtm based on @rc data.
938  * rtm can be reallocated.
939  *
940  * Returns 0 on success, along with pointer to (potentially reallocated)
941  *  rtm.
942  *
943  */
944 static int
945 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
946     int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
947 {
948 	union sockaddr_union saun;
949 	struct rt_msghdr *rtm;
950 	struct ifnet *ifp;
951 	int error;
952 
953 	rtm = *prtm;
954 	union sockaddr_union sa_dst, sa_mask;
955 	int family = info->rti_info[RTAX_DST]->sa_family;
956 	init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa);
957 	export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa);
958 
959 	info->rti_info[RTAX_DST] = &sa_dst.sa;
960 	info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa;
961 	info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
962 	info->rti_info[RTAX_GENMASK] = 0;
963 	ifp = nh->nh_ifp;
964 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
965 		if (ifp) {
966 			info->rti_info[RTAX_IFP] =
967 			    ifp->if_addr->ifa_addr;
968 			error = rtm_get_jailed(info, ifp, nh,
969 			    &saun, curthread->td_ucred);
970 			if (error != 0)
971 				return (error);
972 			if (ifp->if_flags & IFF_POINTOPOINT)
973 				info->rti_info[RTAX_BRD] =
974 				    nh->nh_ifa->ifa_dstaddr;
975 			rtm->rtm_index = ifp->if_index;
976 		} else {
977 			info->rti_info[RTAX_IFP] = NULL;
978 			info->rti_info[RTAX_IFA] = NULL;
979 		}
980 	} else if (ifp != NULL)
981 		rtm->rtm_index = ifp->if_index;
982 
983 	if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0)
984 		return (error);
985 
986 	rtm = *prtm;
987 	rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
988 	if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
989 		rtm->rtm_flags = RTF_GATEWAY |
990 			(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
991 	rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
992 	rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
993 
994 	return (0);
995 }
996 
997 #ifdef ROUTE_MPATH
998 static void
999 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata)
1000 {
1001 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
1002 
1003 	if (rc->rc_cmd == RTM_DELETE)
1004 		*rc_new = *rc;
1005 }
1006 
1007 static void
1008 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata)
1009 {
1010 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
1011 
1012 	if (rc->rc_cmd == RTM_ADD)
1013 		*rc_new = *rc;
1014 }
1015 #endif
1016 
1017 #if defined(INET6) || defined(INET)
1018 static struct sockaddr *
1019 alloc_sockaddr_aligned(struct linear_buffer *lb, int len)
1020 {
1021 	len = roundup2(len, sizeof(uint64_t));
1022 	if (lb->offset + len > lb->size)
1023 		return (NULL);
1024 	struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset);
1025 	lb->offset += len;
1026 	return (sa);
1027 }
1028 #endif
1029 
1030 static int
1031 rts_send(struct socket *so, int flags, struct mbuf *m,
1032     struct sockaddr *nam, struct mbuf *control, struct thread *td)
1033 {
1034 	struct rt_msghdr *rtm = NULL;
1035 	struct rt_addrinfo info;
1036 	struct epoch_tracker et;
1037 #ifdef INET6
1038 	struct sockaddr_storage ss;
1039 	struct sockaddr_in6 *sin6;
1040 	int i, rti_need_deembed = 0;
1041 #endif
1042 	int alloc_len = 0, len, error = 0, fibnum;
1043 	sa_family_t saf = AF_UNSPEC;
1044 	struct rib_cmd_info rc;
1045 	struct nhop_object *nh;
1046 
1047 	if ((flags & PRUS_OOB) || control != NULL) {
1048 		m_freem(m);
1049 		if (control != NULL)
1050 			m_freem(control);
1051 		return (EOPNOTSUPP);
1052 	}
1053 
1054 	fibnum = so->so_fibnum;
1055 #define senderr(e) { error = e; goto flush;}
1056 	if (m == NULL || ((m->m_len < sizeof(long)) &&
1057 		       (m = m_pullup(m, sizeof(long))) == NULL))
1058 		return (ENOBUFS);
1059 	if ((m->m_flags & M_PKTHDR) == 0)
1060 		panic("route_output");
1061 	NET_EPOCH_ENTER(et);
1062 	len = m->m_pkthdr.len;
1063 	if (len < sizeof(*rtm) ||
1064 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
1065 		senderr(EINVAL);
1066 
1067 	/*
1068 	 * Most of current messages are in range 200-240 bytes,
1069 	 * minimize possible re-allocation on reply using larger size
1070 	 * buffer aligned on 1k boundaty.
1071 	 */
1072 	alloc_len = roundup2(len, 1024);
1073 	int total_len = alloc_len + SCRATCH_BUFFER_SIZE;
1074 	if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL)
1075 		senderr(ENOBUFS);
1076 
1077 	m_copydata(m, 0, len, (caddr_t)rtm);
1078 	bzero(&info, sizeof(info));
1079 	nh = NULL;
1080 	struct linear_buffer lb = {
1081 		.base = (char *)rtm + alloc_len,
1082 		.size = SCRATCH_BUFFER_SIZE,
1083 	};
1084 
1085 	if (rtm->rtm_version != RTM_VERSION) {
1086 		/* Do not touch message since format is unknown */
1087 		free(rtm, M_TEMP);
1088 		rtm = NULL;
1089 		senderr(EPROTONOSUPPORT);
1090 	}
1091 
1092 	/*
1093 	 * Starting from here, it is possible
1094 	 * to alter original message and insert
1095 	 * caller PID and error value.
1096 	 */
1097 
1098 	if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) {
1099 		senderr(error);
1100 	}
1101 	/* fill_addringo() embeds scope into IPv6 addresses */
1102 #ifdef INET6
1103 	rti_need_deembed = 1;
1104 #endif
1105 
1106 	saf = info.rti_info[RTAX_DST]->sa_family;
1107 
1108 	/* support for new ARP code */
1109 	if (rtm->rtm_flags & RTF_LLDATA) {
1110 		error = lla_rt_output(rtm, &info);
1111 		goto flush;
1112 	}
1113 
1114 	union sockaddr_union gw_saun;
1115 	int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT);
1116 	if (blackhole_flags != 0) {
1117 		if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT))
1118 			error = fill_blackholeinfo(&info, &gw_saun);
1119 		else {
1120 			RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied");
1121 			error = EINVAL;
1122 		}
1123 		if (error != 0)
1124 			senderr(error);
1125 	}
1126 
1127 	switch (rtm->rtm_type) {
1128 	case RTM_ADD:
1129 	case RTM_CHANGE:
1130 		if (rtm->rtm_type == RTM_ADD) {
1131 			if (info.rti_info[RTAX_GATEWAY] == NULL) {
1132 				RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway");
1133 				senderr(EINVAL);
1134 			}
1135 		}
1136 		error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
1137 		if (error == 0) {
1138 			rtsock_notify_event(fibnum, &rc);
1139 #ifdef ROUTE_MPATH
1140 			if (NH_IS_NHGRP(rc.rc_nh_new) ||
1141 			    (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) {
1142 				struct rib_cmd_info rc_simple = {};
1143 				rib_decompose_notification(&rc,
1144 				    save_add_notification, (void *)&rc_simple);
1145 				rc = rc_simple;
1146 			}
1147 #endif
1148 			/* nh MAY be empty if RTM_CHANGE request is no-op */
1149 			nh = rc.rc_nh_new;
1150 			if (nh != NULL) {
1151 				rtm->rtm_index = nh->nh_ifp->if_index;
1152 				rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh);
1153 			}
1154 		}
1155 		break;
1156 
1157 	case RTM_DELETE:
1158 		error = rib_action(fibnum, RTM_DELETE, &info, &rc);
1159 		if (error == 0) {
1160 			rtsock_notify_event(fibnum, &rc);
1161 #ifdef ROUTE_MPATH
1162 			if (NH_IS_NHGRP(rc.rc_nh_old) ||
1163 			    (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) {
1164 				struct rib_cmd_info rc_simple = {};
1165 				rib_decompose_notification(&rc,
1166 				    save_del_notification, (void *)&rc_simple);
1167 				rc = rc_simple;
1168 			}
1169 #endif
1170 			nh = rc.rc_nh_old;
1171 		}
1172 		break;
1173 
1174 	case RTM_GET:
1175 		error = handle_rtm_get(&info, fibnum, rtm, &rc);
1176 		if (error != 0)
1177 			senderr(error);
1178 		nh = rc.rc_nh_new;
1179 
1180 		if (!rt_is_exportable(rc.rc_rt, curthread->td_ucred))
1181 			senderr(ESRCH);
1182 		break;
1183 
1184 	default:
1185 		senderr(EOPNOTSUPP);
1186 	}
1187 
1188 	if (error == 0 && nh != NULL) {
1189 		error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
1190 		/*
1191 		 * Note that some sockaddr pointers may have changed to
1192 		 * point to memory outsize @rtm. Some may be pointing
1193 		 * to the on-stack variables.
1194 		 * Given that, any pointer in @info CANNOT BE USED.
1195 		 */
1196 
1197 		/*
1198 		 * scopeid deembedding has been performed while
1199 		 * writing updated rtm in rtsock_msg_buffer().
1200 		 * With that in mind, skip deembedding procedure below.
1201 		 */
1202 #ifdef INET6
1203 		rti_need_deembed = 0;
1204 #endif
1205 	}
1206 
1207 flush:
1208 	NET_EPOCH_EXIT(et);
1209 
1210 #ifdef INET6
1211 	if (rtm != NULL) {
1212 		if (rti_need_deembed) {
1213 			/* sin6_scope_id is recovered before sending rtm. */
1214 			sin6 = (struct sockaddr_in6 *)&ss;
1215 			for (i = 0; i < RTAX_MAX; i++) {
1216 				if (info.rti_info[i] == NULL)
1217 					continue;
1218 				if (info.rti_info[i]->sa_family != AF_INET6)
1219 					continue;
1220 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1221 				if (sa6_recoverscope(sin6) == 0)
1222 					bcopy(sin6, info.rti_info[i],
1223 						    sizeof(*sin6));
1224 			}
1225 			if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) {
1226 				if (error != 0)
1227 					error = ENOBUFS;
1228 			}
1229 		}
1230 	}
1231 #endif
1232 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1233 
1234 	return (error);
1235 }
1236 
1237 /*
1238  * Sends the prepared reply message in @rtm to all rtsock clients.
1239  * Frees @m and @rtm.
1240  *
1241  */
1242 static void
1243 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1244     sa_family_t saf, u_int fibnum, int rtm_errno)
1245 {
1246 	struct rcb *rcb = NULL;
1247 
1248 	/*
1249 	 * Check to see if we don't want our own messages.
1250 	 */
1251 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1252 		if (V_route_cb.any_count <= 1) {
1253 			if (rtm != NULL)
1254 				free(rtm, M_TEMP);
1255 			m_freem(m);
1256 			return;
1257 		}
1258 		/* There is another listener, so construct message */
1259 		rcb = so->so_pcb;
1260 	}
1261 
1262 	if (rtm != NULL) {
1263 		if (rtm_errno!= 0)
1264 			rtm->rtm_errno = rtm_errno;
1265 		else
1266 			rtm->rtm_flags |= RTF_DONE;
1267 
1268 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1269 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1270 			m_freem(m);
1271 			m = NULL;
1272 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1273 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1274 
1275 		free(rtm, M_TEMP);
1276 	}
1277 	if (m != NULL) {
1278 		M_SETFIB(m, fibnum);
1279 		m->m_flags |= RTS_FILTER_FIB;
1280 		if (rcb) {
1281 			/*
1282 			 * XXX insure we don't get a copy by
1283 			 * invalidating our protocol
1284 			 */
1285 			sa_family_t family = rcb->rcb_family;
1286 			rcb->rcb_family = AF_UNSPEC;
1287 			rt_dispatch(m, saf);
1288 			rcb->rcb_family = family;
1289 		} else
1290 			rt_dispatch(m, saf);
1291 	}
1292 }
1293 
1294 static void
1295 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
1296     struct rt_metrics *out)
1297 {
1298 
1299 	bzero(out, sizeof(*out));
1300 	out->rmx_mtu = nh->nh_mtu;
1301 	out->rmx_weight = rt->rt_weight;
1302 	out->rmx_nhidx = nhop_get_idx(nh);
1303 	/* Kernel -> userland timebase conversion. */
1304 	out->rmx_expire = nhop_get_expire(nh) ?
1305 	    nhop_get_expire(nh) - time_uptime + time_second : 0;
1306 }
1307 
1308 /*
1309  * Extract the addresses of the passed sockaddrs.
1310  * Do a little sanity checking so as to avoid bad memory references.
1311  * This data is derived straight from userland.
1312  */
1313 static int
1314 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1315 {
1316 	struct sockaddr *sa;
1317 	int i;
1318 
1319 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1320 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1321 			continue;
1322 		sa = (struct sockaddr *)cp;
1323 		/*
1324 		 * It won't fit.
1325 		 */
1326 		if (cp + sa->sa_len > cplim) {
1327 			RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i);
1328 			return (EINVAL);
1329 		}
1330 		/*
1331 		 * there are no more.. quit now
1332 		 * If there are more bits, they are in error.
1333 		 * I've seen this. route(1) can evidently generate these.
1334 		 * This causes kernel to core dump.
1335 		 * for compatibility, If we see this, point to a safe address.
1336 		 */
1337 		if (sa->sa_len == 0) {
1338 			rtinfo->rti_info[i] = &sa_zero;
1339 			return (0); /* should be EINVAL but for compat */
1340 		}
1341 		/* accept it */
1342 #ifdef INET6
1343 		if (sa->sa_family == AF_INET6)
1344 			sa6_embedscope((struct sockaddr_in6 *)sa,
1345 			    V_ip6_use_defzone);
1346 #endif
1347 		rtinfo->rti_info[i] = sa;
1348 		cp += SA_SIZE(sa);
1349 	}
1350 	return (0);
1351 }
1352 
1353 #ifdef INET
1354 static inline void
1355 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr)
1356 {
1357 
1358 	const struct sockaddr_in nsin = {
1359 		.sin_family = AF_INET,
1360 		.sin_len = sizeof(struct sockaddr_in),
1361 		.sin_addr = addr,
1362 	};
1363 	*sin = nsin;
1364 }
1365 #endif
1366 
1367 #ifdef INET6
1368 static inline void
1369 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6,
1370     uint32_t scopeid)
1371 {
1372 
1373 	const struct sockaddr_in6 nsin6 = {
1374 		.sin6_family = AF_INET6,
1375 		.sin6_len = sizeof(struct sockaddr_in6),
1376 		.sin6_addr = *addr6,
1377 		.sin6_scope_id = scopeid,
1378 	};
1379 	*sin6 = nsin6;
1380 }
1381 #endif
1382 
1383 #if defined(INET6) || defined(INET)
1384 /*
1385  * Checks if gateway is suitable for lltable operations.
1386  * Lltable code requires AF_LINK gateway with ifindex
1387  *  and mac address specified.
1388  * Returns 0 on success.
1389  */
1390 static int
1391 cleanup_xaddrs_lladdr(struct rt_addrinfo *info)
1392 {
1393 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY];
1394 
1395 	if (sdl->sdl_family != AF_LINK)
1396 		return (EINVAL);
1397 
1398 	if (sdl->sdl_index == 0) {
1399 		RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex");
1400 		return (EINVAL);
1401 	}
1402 
1403 	if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) {
1404 		RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large");
1405 		return (EINVAL);
1406 	}
1407 
1408 	return (0);
1409 }
1410 
1411 static int
1412 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb)
1413 {
1414 	struct sockaddr *gw = info->rti_info[RTAX_GATEWAY];
1415 	struct sockaddr *sa;
1416 
1417 	if (info->rti_flags & RTF_LLDATA)
1418 		return (cleanup_xaddrs_lladdr(info));
1419 
1420 	switch (gw->sa_family) {
1421 #ifdef INET
1422 	case AF_INET:
1423 		{
1424 			struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw;
1425 
1426 			/* Ensure reads do not go beyoud SA boundary */
1427 			if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) {
1428 				RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d",
1429 				    gw->sa_len);
1430 				return (EINVAL);
1431 			}
1432 			sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in));
1433 			if (sa == NULL)
1434 				return (ENOBUFS);
1435 			fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr);
1436 			info->rti_info[RTAX_GATEWAY] = sa;
1437 		}
1438 		break;
1439 #endif
1440 #ifdef INET6
1441 	case AF_INET6:
1442 		{
1443 			struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw;
1444 			if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) {
1445 				RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d",
1446 				    gw->sa_len);
1447 				return (EINVAL);
1448 			}
1449 			fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0);
1450 			break;
1451 		}
1452 #endif
1453 	case AF_LINK:
1454 		{
1455 			struct sockaddr_dl *gw_sdl;
1456 
1457 			size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data);
1458 			gw_sdl = (struct sockaddr_dl *)gw;
1459 			if (gw_sdl->sdl_len < sdl_min_len) {
1460 				RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d",
1461 				    gw_sdl->sdl_len);
1462 				return (EINVAL);
1463 			}
1464 			sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short));
1465 			if (sa == NULL)
1466 				return (ENOBUFS);
1467 
1468 			const struct sockaddr_dl_short sdl = {
1469 				.sdl_family = AF_LINK,
1470 				.sdl_len = sizeof(struct sockaddr_dl_short),
1471 				.sdl_index = gw_sdl->sdl_index,
1472 			};
1473 			*((struct sockaddr_dl_short *)sa) = sdl;
1474 			info->rti_info[RTAX_GATEWAY] = sa;
1475 			break;
1476 		}
1477 	}
1478 
1479 	return (0);
1480 }
1481 #endif
1482 
1483 static void
1484 remove_netmask(struct rt_addrinfo *info)
1485 {
1486 	info->rti_info[RTAX_NETMASK] = NULL;
1487 	info->rti_flags |= RTF_HOST;
1488 	info->rti_addrs &= ~RTA_NETMASK;
1489 }
1490 
1491 #ifdef INET
1492 static int
1493 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb)
1494 {
1495 	struct sockaddr_in *dst_sa, *mask_sa;
1496 	const int sa_len = sizeof(struct sockaddr_in);
1497 	struct in_addr dst, mask;
1498 
1499 	/* Check & fixup dst/netmask combination first */
1500 	dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST];
1501 	mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK];
1502 
1503 	/* Ensure reads do not go beyound the buffer size */
1504 	if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) {
1505 		RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d",
1506 		    dst_sa->sin_len);
1507 		return (EINVAL);
1508 	}
1509 
1510 	if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) {
1511 		/*
1512 		 * Some older routing software encode mask length into the
1513 		 * sin_len, thus resulting in "truncated" sockaddr.
1514 		 */
1515 		int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr);
1516 		if (len >= 0) {
1517 			mask.s_addr = 0;
1518 			if (len > sizeof(struct in_addr))
1519 				len = sizeof(struct in_addr);
1520 			memcpy(&mask, &mask_sa->sin_addr, len);
1521 		} else {
1522 			RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d",
1523 			    mask_sa->sin_len);
1524 			return (EINVAL);
1525 		}
1526 	} else
1527 		mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST;
1528 
1529 	dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr));
1530 
1531 	/* Construct new "clean" dst/mask sockaddresses */
1532 	if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1533 		return (ENOBUFS);
1534 	fill_sockaddr_inet(dst_sa, dst);
1535 	info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa;
1536 
1537 	if (mask.s_addr != INADDR_BROADCAST) {
1538 		if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1539 			return (ENOBUFS);
1540 		fill_sockaddr_inet(mask_sa, mask);
1541 		info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa;
1542 		info->rti_flags &= ~RTF_HOST;
1543 	} else
1544 		remove_netmask(info);
1545 
1546 	/* Check gateway */
1547 	if (info->rti_info[RTAX_GATEWAY] != NULL)
1548 		return (cleanup_xaddrs_gateway(info, lb));
1549 
1550 	return (0);
1551 }
1552 #endif
1553 
1554 #ifdef INET6
1555 static int
1556 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb)
1557 {
1558 	struct sockaddr *sa;
1559 	struct sockaddr_in6 *dst_sa, *mask_sa;
1560 	struct in6_addr mask, *dst;
1561 	const int sa_len = sizeof(struct sockaddr_in6);
1562 
1563 	/* Check & fixup dst/netmask combination first */
1564 	dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST];
1565 	mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK];
1566 
1567 	if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) {
1568 		RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d",
1569 		    dst_sa->sin6_len);
1570 		return (EINVAL);
1571 	}
1572 
1573 	if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) {
1574 		/*
1575 		 * Some older routing software encode mask length into the
1576 		 * sin6_len, thus resulting in "truncated" sockaddr.
1577 		 */
1578 		int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr);
1579 		if (len >= 0) {
1580 			bzero(&mask, sizeof(mask));
1581 			if (len > sizeof(struct in6_addr))
1582 				len = sizeof(struct in6_addr);
1583 			memcpy(&mask, &mask_sa->sin6_addr, len);
1584 		} else {
1585 			RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d",
1586 			    mask_sa->sin6_len);
1587 			return (EINVAL);
1588 		}
1589 	} else
1590 		mask = mask_sa ? mask_sa->sin6_addr : in6mask128;
1591 
1592 	dst = &dst_sa->sin6_addr;
1593 	IN6_MASK_ADDR(dst, &mask);
1594 
1595 	if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1596 		return (ENOBUFS);
1597 	fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0);
1598 	info->rti_info[RTAX_DST] = sa;
1599 
1600 	if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) {
1601 		if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1602 			return (ENOBUFS);
1603 		fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0);
1604 		info->rti_info[RTAX_NETMASK] = sa;
1605 		info->rti_flags &= ~RTF_HOST;
1606 	} else
1607 		remove_netmask(info);
1608 
1609 	/* Check gateway */
1610 	if (info->rti_info[RTAX_GATEWAY] != NULL)
1611 		return (cleanup_xaddrs_gateway(info, lb));
1612 
1613 	return (0);
1614 }
1615 #endif
1616 
1617 static int
1618 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb)
1619 {
1620 	int error = EAFNOSUPPORT;
1621 
1622 	if (info->rti_info[RTAX_DST] == NULL) {
1623 		RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set");
1624 		return (EINVAL);
1625 	}
1626 
1627 	if (info->rti_flags & RTF_LLDATA) {
1628 		/*
1629 		 * arp(8)/ndp(8) sends RTA_NETMASK for the associated
1630 		 * prefix along with the actual address in RTA_DST.
1631 		 * Remove netmask to avoid unnecessary address masking.
1632 		 */
1633 		remove_netmask(info);
1634 	}
1635 
1636 	switch (info->rti_info[RTAX_DST]->sa_family) {
1637 #ifdef INET
1638 	case AF_INET:
1639 		error = cleanup_xaddrs_inet(info, lb);
1640 		break;
1641 #endif
1642 #ifdef INET6
1643 	case AF_INET6:
1644 		error = cleanup_xaddrs_inet6(info, lb);
1645 		break;
1646 #endif
1647 	}
1648 
1649 	return (error);
1650 }
1651 
1652 /*
1653  * Fill in @dmask with valid netmask leaving original @smask
1654  * intact. Mostly used with radix netmasks.
1655  */
1656 struct sockaddr *
1657 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
1658     struct sockaddr_storage *dmask)
1659 {
1660 	if (dst == NULL || smask == NULL)
1661 		return (NULL);
1662 
1663 	memset(dmask, 0, dst->sa_len);
1664 	memcpy(dmask, smask, smask->sa_len);
1665 	dmask->ss_len = dst->sa_len;
1666 	dmask->ss_family = dst->sa_family;
1667 
1668 	return ((struct sockaddr *)dmask);
1669 }
1670 
1671 /*
1672  * Writes information related to @rtinfo object to newly-allocated mbuf.
1673  * Assumes MCLBYTES is enough to construct any message.
1674  * Used for OS notifications of vaious events (if/ifa announces,etc)
1675  *
1676  * Returns allocated mbuf or NULL on failure.
1677  */
1678 static struct mbuf *
1679 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1680 {
1681 	struct sockaddr_storage ss;
1682 	struct rt_msghdr *rtm;
1683 	struct mbuf *m;
1684 	int i;
1685 	struct sockaddr *sa;
1686 #ifdef INET6
1687 	struct sockaddr_in6 *sin6;
1688 #endif
1689 	int len, dlen;
1690 
1691 	switch (type) {
1692 	case RTM_DELADDR:
1693 	case RTM_NEWADDR:
1694 		len = sizeof(struct ifa_msghdr);
1695 		break;
1696 
1697 	case RTM_DELMADDR:
1698 	case RTM_NEWMADDR:
1699 		len = sizeof(struct ifma_msghdr);
1700 		break;
1701 
1702 	case RTM_IFINFO:
1703 		len = sizeof(struct if_msghdr);
1704 		break;
1705 
1706 	case RTM_IFANNOUNCE:
1707 	case RTM_IEEE80211:
1708 		len = sizeof(struct if_announcemsghdr);
1709 		break;
1710 
1711 	default:
1712 		len = sizeof(struct rt_msghdr);
1713 	}
1714 
1715 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1716 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1717 	if (len > MHLEN)
1718 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1719 	else
1720 		m = m_gethdr(M_NOWAIT, MT_DATA);
1721 	if (m == NULL)
1722 		return (m);
1723 
1724 	m->m_pkthdr.len = m->m_len = len;
1725 	rtm = mtod(m, struct rt_msghdr *);
1726 	bzero((caddr_t)rtm, len);
1727 	for (i = 0; i < RTAX_MAX; i++) {
1728 		if ((sa = rtinfo->rti_info[i]) == NULL)
1729 			continue;
1730 		rtinfo->rti_addrs |= (1 << i);
1731 
1732 		dlen = SA_SIZE(sa);
1733 		KASSERT(dlen <= sizeof(ss),
1734 		    ("%s: sockaddr size overflow", __func__));
1735 		bzero(&ss, sizeof(ss));
1736 		bcopy(sa, &ss, sa->sa_len);
1737 		sa = (struct sockaddr *)&ss;
1738 #ifdef INET6
1739 		if (sa->sa_family == AF_INET6) {
1740 			sin6 = (struct sockaddr_in6 *)sa;
1741 			(void)sa6_recoverscope(sin6);
1742 		}
1743 #endif
1744 		m_copyback(m, len, dlen, (caddr_t)sa);
1745 		len += dlen;
1746 	}
1747 	if (m->m_pkthdr.len != len) {
1748 		m_freem(m);
1749 		return (NULL);
1750 	}
1751 	rtm->rtm_msglen = len;
1752 	rtm->rtm_version = RTM_VERSION;
1753 	rtm->rtm_type = type;
1754 	return (m);
1755 }
1756 
1757 /*
1758  * Writes information related to @rtinfo object to preallocated buffer.
1759  * Stores needed size in @plen. If @w is NULL, calculates size without
1760  * writing.
1761  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1762  *
1763  * Returns 0 on success.
1764  *
1765  */
1766 static int
1767 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1768 {
1769 	struct sockaddr_storage ss;
1770 	int len, buflen = 0, dlen, i;
1771 	caddr_t cp = NULL;
1772 	struct rt_msghdr *rtm = NULL;
1773 #ifdef INET6
1774 	struct sockaddr_in6 *sin6;
1775 #endif
1776 #ifdef COMPAT_FREEBSD32
1777 	bool compat32 = false;
1778 #endif
1779 
1780 	switch (type) {
1781 	case RTM_DELADDR:
1782 	case RTM_NEWADDR:
1783 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1784 #ifdef COMPAT_FREEBSD32
1785 			if (w->w_req->flags & SCTL_MASK32) {
1786 				len = sizeof(struct ifa_msghdrl32);
1787 				compat32 = true;
1788 			} else
1789 #endif
1790 				len = sizeof(struct ifa_msghdrl);
1791 		} else
1792 			len = sizeof(struct ifa_msghdr);
1793 		break;
1794 
1795 	case RTM_IFINFO:
1796 #ifdef COMPAT_FREEBSD32
1797 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1798 			if (w->w_op == NET_RT_IFLISTL)
1799 				len = sizeof(struct if_msghdrl32);
1800 			else
1801 				len = sizeof(struct if_msghdr32);
1802 			compat32 = true;
1803 			break;
1804 		}
1805 #endif
1806 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1807 			len = sizeof(struct if_msghdrl);
1808 		else
1809 			len = sizeof(struct if_msghdr);
1810 		break;
1811 
1812 	case RTM_NEWMADDR:
1813 		len = sizeof(struct ifma_msghdr);
1814 		break;
1815 
1816 	default:
1817 		len = sizeof(struct rt_msghdr);
1818 	}
1819 
1820 	if (w != NULL) {
1821 		rtm = (struct rt_msghdr *)w->w_tmem;
1822 		buflen = w->w_tmemsize - len;
1823 		cp = (caddr_t)w->w_tmem + len;
1824 	}
1825 
1826 	rtinfo->rti_addrs = 0;
1827 	for (i = 0; i < RTAX_MAX; i++) {
1828 		struct sockaddr *sa;
1829 
1830 		if ((sa = rtinfo->rti_info[i]) == NULL)
1831 			continue;
1832 		rtinfo->rti_addrs |= (1 << i);
1833 #ifdef COMPAT_FREEBSD32
1834 		if (compat32)
1835 			dlen = SA_SIZE32(sa);
1836 		else
1837 #endif
1838 			dlen = SA_SIZE(sa);
1839 		if (cp != NULL && buflen >= dlen) {
1840 			KASSERT(dlen <= sizeof(ss),
1841 			    ("%s: sockaddr size overflow", __func__));
1842 			bzero(&ss, sizeof(ss));
1843 			bcopy(sa, &ss, sa->sa_len);
1844 			sa = (struct sockaddr *)&ss;
1845 #ifdef INET6
1846 			if (sa->sa_family == AF_INET6) {
1847 				sin6 = (struct sockaddr_in6 *)sa;
1848 				(void)sa6_recoverscope(sin6);
1849 			}
1850 #endif
1851 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1852 			cp += dlen;
1853 			buflen -= dlen;
1854 		} else if (cp != NULL) {
1855 			/*
1856 			 * Buffer too small. Count needed size
1857 			 * and return with error.
1858 			 */
1859 			cp = NULL;
1860 		}
1861 
1862 		len += dlen;
1863 	}
1864 
1865 	if (cp != NULL) {
1866 		dlen = ALIGN(len) - len;
1867 		if (buflen < dlen)
1868 			cp = NULL;
1869 		else {
1870 			bzero(cp, dlen);
1871 			cp += dlen;
1872 			buflen -= dlen;
1873 		}
1874 	}
1875 	len = ALIGN(len);
1876 
1877 	if (cp != NULL) {
1878 		/* fill header iff buffer is large enough */
1879 		rtm->rtm_version = RTM_VERSION;
1880 		rtm->rtm_type = type;
1881 		rtm->rtm_msglen = len;
1882 	}
1883 
1884 	*plen = len;
1885 
1886 	if (w != NULL && cp == NULL)
1887 		return (ENOBUFS);
1888 
1889 	return (0);
1890 }
1891 
1892 /*
1893  * This routine is called to generate a message from the routing
1894  * socket indicating that a redirect has occurred, a routing lookup
1895  * has failed, or that a protocol has detected timeouts to a particular
1896  * destination.
1897  */
1898 void
1899 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1900     int fibnum)
1901 {
1902 	struct rt_msghdr *rtm;
1903 	struct mbuf *m;
1904 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1905 
1906 	if (V_route_cb.any_count == 0)
1907 		return;
1908 	m = rtsock_msg_mbuf(type, rtinfo);
1909 	if (m == NULL)
1910 		return;
1911 
1912 	if (fibnum != RT_ALL_FIBS) {
1913 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1914 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1915 		M_SETFIB(m, fibnum);
1916 		m->m_flags |= RTS_FILTER_FIB;
1917 	}
1918 
1919 	rtm = mtod(m, struct rt_msghdr *);
1920 	rtm->rtm_flags = RTF_DONE | flags;
1921 	rtm->rtm_errno = error;
1922 	rtm->rtm_addrs = rtinfo->rti_addrs;
1923 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1924 }
1925 
1926 void
1927 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1928 {
1929 
1930 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1931 }
1932 
1933 /*
1934  * This routine is called to generate a message from the routing
1935  * socket indicating that the status of a network interface has changed.
1936  */
1937 static void
1938 rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask __unused)
1939 {
1940 	struct if_msghdr *ifm;
1941 	struct mbuf *m;
1942 	struct rt_addrinfo info;
1943 
1944 	if (V_route_cb.any_count == 0)
1945 		return;
1946 	bzero((caddr_t)&info, sizeof(info));
1947 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1948 	if (m == NULL)
1949 		return;
1950 	ifm = mtod(m, struct if_msghdr *);
1951 	ifm->ifm_index = ifp->if_index;
1952 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1953 	if_data_copy(ifp, &ifm->ifm_data);
1954 	ifm->ifm_addrs = 0;
1955 	rt_dispatch(m, AF_UNSPEC);
1956 }
1957 
1958 /*
1959  * Announce interface address arrival/withdraw.
1960  * Please do not call directly, use rt_addrmsg().
1961  * Assume input data to be valid.
1962  * Returns 0 on success.
1963  */
1964 int
1965 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1966 {
1967 	struct rt_addrinfo info;
1968 	struct sockaddr *sa;
1969 	int ncmd;
1970 	struct mbuf *m;
1971 	struct ifa_msghdr *ifam;
1972 	struct ifnet *ifp = ifa->ifa_ifp;
1973 	struct sockaddr_storage ss;
1974 
1975 	if (V_route_cb.any_count == 0)
1976 		return (0);
1977 
1978 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1979 
1980 	bzero((caddr_t)&info, sizeof(info));
1981 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1982 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1983 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1984 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1985 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1986 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1987 		return (ENOBUFS);
1988 	ifam = mtod(m, struct ifa_msghdr *);
1989 	ifam->ifam_index = ifp->if_index;
1990 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1991 	ifam->ifam_flags = ifa->ifa_flags;
1992 	ifam->ifam_addrs = info.rti_addrs;
1993 
1994 	if (fibnum != RT_ALL_FIBS) {
1995 		M_SETFIB(m, fibnum);
1996 		m->m_flags |= RTS_FILTER_FIB;
1997 	}
1998 
1999 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
2000 
2001 	return (0);
2002 }
2003 
2004 /*
2005  * Announce route addition/removal to rtsock based on @rt data.
2006  * Callers are advives to use rt_routemsg() instead of using this
2007  *  function directly.
2008  * Assume @rt data is consistent.
2009  *
2010  * Returns 0 on success.
2011  */
2012 int
2013 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh,
2014     int fibnum)
2015 {
2016 	union sockaddr_union dst, mask;
2017 	struct rt_addrinfo info;
2018 
2019 	if (V_route_cb.any_count == 0)
2020 		return (0);
2021 
2022 	int family = rt_get_family(rt);
2023 	init_sockaddrs_family(family, &dst.sa, &mask.sa);
2024 	export_rtaddrs(rt, &dst.sa, &mask.sa);
2025 
2026 	bzero((caddr_t)&info, sizeof(info));
2027 	info.rti_info[RTAX_DST] = &dst.sa;
2028 	info.rti_info[RTAX_NETMASK] = &mask.sa;
2029 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
2030 	info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
2031 	info.rti_ifp = nh->nh_ifp;
2032 
2033 	return (rtsock_routemsg_info(cmd, &info, fibnum));
2034 }
2035 
2036 int
2037 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
2038 {
2039 	struct rt_msghdr *rtm;
2040 	struct sockaddr *sa;
2041 	struct mbuf *m;
2042 
2043 	if (V_route_cb.any_count == 0)
2044 		return (0);
2045 
2046 	if (info->rti_flags & RTF_HOST)
2047 		info->rti_info[RTAX_NETMASK] = NULL;
2048 
2049 	m = rtsock_msg_mbuf(cmd, info);
2050 	if (m == NULL)
2051 		return (ENOBUFS);
2052 
2053 	if (fibnum != RT_ALL_FIBS) {
2054 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
2055 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
2056 		M_SETFIB(m, fibnum);
2057 		m->m_flags |= RTS_FILTER_FIB;
2058 	}
2059 
2060 	rtm = mtod(m, struct rt_msghdr *);
2061 	rtm->rtm_addrs = info->rti_addrs;
2062 	if (info->rti_ifp != NULL)
2063 		rtm->rtm_index = info->rti_ifp->if_index;
2064 	/* Add RTF_DONE to indicate command 'completion' required by API */
2065 	info->rti_flags |= RTF_DONE;
2066 	/* Reported routes has to be up */
2067 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
2068 		info->rti_flags |= RTF_UP;
2069 	rtm->rtm_flags = info->rti_flags;
2070 
2071 	sa = info->rti_info[RTAX_DST];
2072 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
2073 
2074 	return (0);
2075 }
2076 
2077 /*
2078  * This is the analogue to the rt_newaddrmsg which performs the same
2079  * function but for multicast group memberhips.  This is easier since
2080  * there is no route state to worry about.
2081  */
2082 void
2083 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
2084 {
2085 	struct rt_addrinfo info;
2086 	struct mbuf *m = NULL;
2087 	struct ifnet *ifp = ifma->ifma_ifp;
2088 	struct ifma_msghdr *ifmam;
2089 
2090 	if (V_route_cb.any_count == 0)
2091 		return;
2092 
2093 	bzero((caddr_t)&info, sizeof(info));
2094 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2095 	if (ifp && ifp->if_addr)
2096 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
2097 	else
2098 		info.rti_info[RTAX_IFP] = NULL;
2099 	/*
2100 	 * If a link-layer address is present, present it as a ``gateway''
2101 	 * (similarly to how ARP entries, e.g., are presented).
2102 	 */
2103 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
2104 	m = rtsock_msg_mbuf(cmd, &info);
2105 	if (m == NULL)
2106 		return;
2107 	ifmam = mtod(m, struct ifma_msghdr *);
2108 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
2109 	    __func__));
2110 	ifmam->ifmam_index = ifp->if_index;
2111 	ifmam->ifmam_addrs = info.rti_addrs;
2112 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
2113 }
2114 
2115 static struct mbuf *
2116 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
2117 	struct rt_addrinfo *info)
2118 {
2119 	struct if_announcemsghdr *ifan;
2120 	struct mbuf *m;
2121 
2122 	if (V_route_cb.any_count == 0)
2123 		return NULL;
2124 	bzero((caddr_t)info, sizeof(*info));
2125 	m = rtsock_msg_mbuf(type, info);
2126 	if (m != NULL) {
2127 		ifan = mtod(m, struct if_announcemsghdr *);
2128 		ifan->ifan_index = ifp->if_index;
2129 		strlcpy(ifan->ifan_name, ifp->if_xname,
2130 			sizeof(ifan->ifan_name));
2131 		ifan->ifan_what = what;
2132 	}
2133 	return m;
2134 }
2135 
2136 /*
2137  * This is called to generate routing socket messages indicating
2138  * IEEE80211 wireless events.
2139  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
2140  */
2141 void
2142 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
2143 {
2144 	struct mbuf *m;
2145 	struct rt_addrinfo info;
2146 
2147 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
2148 	if (m != NULL) {
2149 		/*
2150 		 * Append the ieee80211 data.  Try to stick it in the
2151 		 * mbuf containing the ifannounce msg; otherwise allocate
2152 		 * a new mbuf and append.
2153 		 *
2154 		 * NB: we assume m is a single mbuf.
2155 		 */
2156 		if (data_len > M_TRAILINGSPACE(m)) {
2157 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
2158 			if (n == NULL) {
2159 				m_freem(m);
2160 				return;
2161 			}
2162 			bcopy(data, mtod(n, void *), data_len);
2163 			n->m_len = data_len;
2164 			m->m_next = n;
2165 		} else if (data_len > 0) {
2166 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
2167 			m->m_len += data_len;
2168 		}
2169 		if (m->m_flags & M_PKTHDR)
2170 			m->m_pkthdr.len += data_len;
2171 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
2172 		rt_dispatch(m, AF_UNSPEC);
2173 	}
2174 }
2175 
2176 /*
2177  * This is called to generate routing socket messages indicating
2178  * network interface arrival and departure.
2179  */
2180 static void
2181 rt_ifannouncemsg(struct ifnet *ifp, int what)
2182 {
2183 	struct mbuf *m;
2184 	struct rt_addrinfo info;
2185 
2186 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
2187 	if (m != NULL)
2188 		rt_dispatch(m, AF_UNSPEC);
2189 }
2190 
2191 static void
2192 rt_dispatch(struct mbuf *m, sa_family_t saf)
2193 {
2194 
2195 	M_ASSERTPKTHDR(m);
2196 
2197 	m->m_rtsock_family = saf;
2198 	if (V_loif)
2199 		m->m_pkthdr.rcvif = V_loif;
2200 	else {
2201 		m_freem(m);
2202 		return;
2203 	}
2204 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
2205 }
2206 
2207 /*
2208  * This is used in dumping the kernel table via sysctl().
2209  */
2210 static int
2211 sysctl_dumpentry(struct rtentry *rt, void *vw)
2212 {
2213 	struct walkarg *w = vw;
2214 	struct nhop_object *nh;
2215 
2216 	NET_EPOCH_ASSERT();
2217 
2218 	if (!rt_is_exportable(rt, w->w_req->td->td_ucred))
2219 		return (0);
2220 
2221 	export_rtaddrs(rt, w->dst, w->mask);
2222 	nh = rt_get_raw_nhop(rt);
2223 #ifdef ROUTE_MPATH
2224 	if (NH_IS_NHGRP(nh)) {
2225 		const struct weightened_nhop *wn;
2226 		uint32_t num_nhops;
2227 		int error;
2228 		wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
2229 		for (int i = 0; i < num_nhops; i++) {
2230 			error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w);
2231 			if (error != 0)
2232 				return (error);
2233 		}
2234 	} else
2235 #endif
2236 		sysctl_dumpnhop(rt, nh, rt->rt_weight, w);
2237 
2238 	return (0);
2239 }
2240 
2241 
2242 static int
2243 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight,
2244     struct walkarg *w)
2245 {
2246 	struct rt_addrinfo info;
2247 	int error = 0, size;
2248 	uint32_t rtflags;
2249 
2250 	rtflags = nhop_get_rtflags(nh);
2251 
2252 	if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg))
2253 		return (0);
2254 
2255 	bzero((caddr_t)&info, sizeof(info));
2256 	info.rti_info[RTAX_DST] = w->dst;
2257 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
2258 	info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask;
2259 	info.rti_info[RTAX_GENMASK] = 0;
2260 	if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
2261 		info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
2262 		info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
2263 		if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
2264 			info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
2265 	}
2266 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
2267 		return (error);
2268 	if (w->w_req && w->w_tmem) {
2269 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
2270 
2271 		bzero(&rtm->rtm_index,
2272 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
2273 
2274 		/*
2275 		 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags)
2276 		 * and RTF_UP (if entry is linked, which is always true here).
2277 		 * Given that, use nhop rtflags & add RTF_UP.
2278 		 */
2279 		rtm->rtm_flags = rtflags | RTF_UP;
2280 		if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
2281 			rtm->rtm_flags = RTF_GATEWAY |
2282 				(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
2283 		rt_getmetrics(rt, nh, &rtm->rtm_rmx);
2284 		rtm->rtm_rmx.rmx_weight = weight;
2285 		rtm->rtm_index = nh->nh_ifp->if_index;
2286 		rtm->rtm_addrs = info.rti_addrs;
2287 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
2288 		return (error);
2289 	}
2290 	return (error);
2291 }
2292 
2293 static int
2294 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
2295     struct rt_addrinfo *info, struct walkarg *w, int len)
2296 {
2297 	struct if_msghdrl *ifm;
2298 	struct if_data *ifd;
2299 
2300 	ifm = (struct if_msghdrl *)w->w_tmem;
2301 
2302 #ifdef COMPAT_FREEBSD32
2303 	if (w->w_req->flags & SCTL_MASK32) {
2304 		struct if_msghdrl32 *ifm32;
2305 
2306 		ifm32 = (struct if_msghdrl32 *)ifm;
2307 		ifm32->ifm_addrs = info->rti_addrs;
2308 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2309 		ifm32->ifm_index = ifp->if_index;
2310 		ifm32->_ifm_spare1 = 0;
2311 		ifm32->ifm_len = sizeof(*ifm32);
2312 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
2313 		ifm32->_ifm_spare2 = 0;
2314 		ifd = &ifm32->ifm_data;
2315 	} else
2316 #endif
2317 	{
2318 		ifm->ifm_addrs = info->rti_addrs;
2319 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2320 		ifm->ifm_index = ifp->if_index;
2321 		ifm->_ifm_spare1 = 0;
2322 		ifm->ifm_len = sizeof(*ifm);
2323 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
2324 		ifm->_ifm_spare2 = 0;
2325 		ifd = &ifm->ifm_data;
2326 	}
2327 
2328 	memcpy(ifd, src_ifd, sizeof(*ifd));
2329 
2330 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
2331 }
2332 
2333 static int
2334 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
2335     struct rt_addrinfo *info, struct walkarg *w, int len)
2336 {
2337 	struct if_msghdr *ifm;
2338 	struct if_data *ifd;
2339 
2340 	ifm = (struct if_msghdr *)w->w_tmem;
2341 
2342 #ifdef COMPAT_FREEBSD32
2343 	if (w->w_req->flags & SCTL_MASK32) {
2344 		struct if_msghdr32 *ifm32;
2345 
2346 		ifm32 = (struct if_msghdr32 *)ifm;
2347 		ifm32->ifm_addrs = info->rti_addrs;
2348 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2349 		ifm32->ifm_index = ifp->if_index;
2350 		ifm32->_ifm_spare1 = 0;
2351 		ifd = &ifm32->ifm_data;
2352 	} else
2353 #endif
2354 	{
2355 		ifm->ifm_addrs = info->rti_addrs;
2356 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2357 		ifm->ifm_index = ifp->if_index;
2358 		ifm->_ifm_spare1 = 0;
2359 		ifd = &ifm->ifm_data;
2360 	}
2361 
2362 	memcpy(ifd, src_ifd, sizeof(*ifd));
2363 
2364 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
2365 }
2366 
2367 static int
2368 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
2369     struct walkarg *w, int len)
2370 {
2371 	struct ifa_msghdrl *ifam;
2372 	struct if_data *ifd;
2373 
2374 	ifam = (struct ifa_msghdrl *)w->w_tmem;
2375 
2376 #ifdef COMPAT_FREEBSD32
2377 	if (w->w_req->flags & SCTL_MASK32) {
2378 		struct ifa_msghdrl32 *ifam32;
2379 
2380 		ifam32 = (struct ifa_msghdrl32 *)ifam;
2381 		ifam32->ifam_addrs = info->rti_addrs;
2382 		ifam32->ifam_flags = ifa->ifa_flags;
2383 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
2384 		ifam32->_ifam_spare1 = 0;
2385 		ifam32->ifam_len = sizeof(*ifam32);
2386 		ifam32->ifam_data_off =
2387 		    offsetof(struct ifa_msghdrl32, ifam_data);
2388 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
2389 		ifd = &ifam32->ifam_data;
2390 	} else
2391 #endif
2392 	{
2393 		ifam->ifam_addrs = info->rti_addrs;
2394 		ifam->ifam_flags = ifa->ifa_flags;
2395 		ifam->ifam_index = ifa->ifa_ifp->if_index;
2396 		ifam->_ifam_spare1 = 0;
2397 		ifam->ifam_len = sizeof(*ifam);
2398 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
2399 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2400 		ifd = &ifam->ifam_data;
2401 	}
2402 
2403 	bzero(ifd, sizeof(*ifd));
2404 	ifd->ifi_datalen = sizeof(struct if_data);
2405 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
2406 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
2407 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
2408 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
2409 
2410 	/* Fixup if_data carp(4) vhid. */
2411 	if (carp_get_vhid_p != NULL)
2412 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
2413 
2414 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2415 }
2416 
2417 static int
2418 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
2419     struct walkarg *w, int len)
2420 {
2421 	struct ifa_msghdr *ifam;
2422 
2423 	ifam = (struct ifa_msghdr *)w->w_tmem;
2424 	ifam->ifam_addrs = info->rti_addrs;
2425 	ifam->ifam_flags = ifa->ifa_flags;
2426 	ifam->ifam_index = ifa->ifa_ifp->if_index;
2427 	ifam->_ifam_spare1 = 0;
2428 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2429 
2430 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2431 }
2432 
2433 static int
2434 sysctl_iflist(int af, struct walkarg *w)
2435 {
2436 	struct ifnet *ifp;
2437 	struct ifaddr *ifa;
2438 	struct if_data ifd;
2439 	struct rt_addrinfo info;
2440 	int len, error = 0;
2441 	struct sockaddr_storage ss;
2442 
2443 	bzero((caddr_t)&info, sizeof(info));
2444 	bzero(&ifd, sizeof(ifd));
2445 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2446 		if (w->w_arg && w->w_arg != ifp->if_index)
2447 			continue;
2448 		if_data_copy(ifp, &ifd);
2449 		ifa = ifp->if_addr;
2450 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
2451 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
2452 		if (error != 0)
2453 			goto done;
2454 		info.rti_info[RTAX_IFP] = NULL;
2455 		if (w->w_req && w->w_tmem) {
2456 			if (w->w_op == NET_RT_IFLISTL)
2457 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
2458 				    len);
2459 			else
2460 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
2461 				    len);
2462 			if (error)
2463 				goto done;
2464 		}
2465 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
2466 			if (af && af != ifa->ifa_addr->sa_family)
2467 				continue;
2468 			if (prison_if(w->w_req->td->td_ucred,
2469 			    ifa->ifa_addr) != 0)
2470 				continue;
2471 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
2472 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
2473 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
2474 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
2475 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
2476 			if (error != 0)
2477 				goto done;
2478 			if (w->w_req && w->w_tmem) {
2479 				if (w->w_op == NET_RT_IFLISTL)
2480 					error = sysctl_iflist_ifaml(ifa, &info,
2481 					    w, len);
2482 				else
2483 					error = sysctl_iflist_ifam(ifa, &info,
2484 					    w, len);
2485 				if (error)
2486 					goto done;
2487 			}
2488 		}
2489 		info.rti_info[RTAX_IFA] = NULL;
2490 		info.rti_info[RTAX_NETMASK] = NULL;
2491 		info.rti_info[RTAX_BRD] = NULL;
2492 	}
2493 done:
2494 	return (error);
2495 }
2496 
2497 static int
2498 sysctl_ifmalist(int af, struct walkarg *w)
2499 {
2500 	struct rt_addrinfo info;
2501 	struct ifaddr *ifa;
2502 	struct ifmultiaddr *ifma;
2503 	struct ifnet *ifp;
2504 	int error, len;
2505 
2506 	NET_EPOCH_ASSERT();
2507 
2508 	error = 0;
2509 	bzero((caddr_t)&info, sizeof(info));
2510 
2511 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2512 		if (w->w_arg && w->w_arg != ifp->if_index)
2513 			continue;
2514 		ifa = ifp->if_addr;
2515 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
2516 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2517 			if (af && af != ifma->ifma_addr->sa_family)
2518 				continue;
2519 			if (prison_if(w->w_req->td->td_ucred,
2520 			    ifma->ifma_addr) != 0)
2521 				continue;
2522 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2523 			info.rti_info[RTAX_GATEWAY] =
2524 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
2525 			    ifma->ifma_lladdr : NULL;
2526 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
2527 			if (error != 0)
2528 				break;
2529 			if (w->w_req && w->w_tmem) {
2530 				struct ifma_msghdr *ifmam;
2531 
2532 				ifmam = (struct ifma_msghdr *)w->w_tmem;
2533 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2534 				ifmam->ifmam_flags = 0;
2535 				ifmam->ifmam_addrs = info.rti_addrs;
2536 				ifmam->_ifmam_spare1 = 0;
2537 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2538 				if (error != 0)
2539 					break;
2540 			}
2541 		}
2542 		if (error != 0)
2543 			break;
2544 	}
2545 	return (error);
2546 }
2547 
2548 static void
2549 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w)
2550 {
2551 	union sockaddr_union sa_dst, sa_mask;
2552 
2553 	w->family = family;
2554 	w->dst = (struct sockaddr *)&sa_dst;
2555 	w->mask = (struct sockaddr *)&sa_mask;
2556 
2557 	init_sockaddrs_family(family, w->dst, w->mask);
2558 
2559 	rib_walk(fibnum, family, false, sysctl_dumpentry, w);
2560 }
2561 
2562 static int
2563 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2564 {
2565 	struct epoch_tracker et;
2566 	int	*name = (int *)arg1;
2567 	u_int	namelen = arg2;
2568 	struct rib_head *rnh = NULL; /* silence compiler. */
2569 	int	i, lim, error = EINVAL;
2570 	int	fib = 0;
2571 	u_char	af;
2572 	struct	walkarg w;
2573 
2574 	if (namelen < 3)
2575 		return (EINVAL);
2576 
2577 	name++;
2578 	namelen--;
2579 	if (req->newptr)
2580 		return (EPERM);
2581 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) {
2582 		if (namelen == 3)
2583 			fib = req->td->td_proc->p_fibnum;
2584 		else if (namelen == 4)
2585 			fib = (name[3] == RT_ALL_FIBS) ?
2586 			    req->td->td_proc->p_fibnum : name[3];
2587 		else
2588 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2589 		if (fib < 0 || fib >= rt_numfibs)
2590 			return (EINVAL);
2591 	} else if (namelen != 3)
2592 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2593 	af = name[0];
2594 	if (af > AF_MAX)
2595 		return (EINVAL);
2596 	bzero(&w, sizeof(w));
2597 	w.w_op = name[1];
2598 	w.w_arg = name[2];
2599 	w.w_req = req;
2600 
2601 	error = sysctl_wire_old_buffer(req, 0);
2602 	if (error)
2603 		return (error);
2604 
2605 	/*
2606 	 * Allocate reply buffer in advance.
2607 	 * All rtsock messages has maximum length of u_short.
2608 	 */
2609 	w.w_tmemsize = 65536;
2610 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2611 
2612 	NET_EPOCH_ENTER(et);
2613 	switch (w.w_op) {
2614 	case NET_RT_DUMP:
2615 	case NET_RT_FLAGS:
2616 		if (af == 0) {			/* dump all tables */
2617 			i = 1;
2618 			lim = AF_MAX;
2619 		} else				/* dump only one table */
2620 			i = lim = af;
2621 
2622 		/*
2623 		 * take care of llinfo entries, the caller must
2624 		 * specify an AF
2625 		 */
2626 		if (w.w_op == NET_RT_FLAGS &&
2627 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2628 			if (af != 0)
2629 				error = lltable_sysctl_dumparp(af, w.w_req);
2630 			else
2631 				error = EINVAL;
2632 			break;
2633 		}
2634 		/*
2635 		 * take care of routing entries
2636 		 */
2637 		for (error = 0; error == 0 && i <= lim; i++) {
2638 			rnh = rt_tables_get_rnh(fib, i);
2639 			if (rnh != NULL) {
2640 				rtable_sysctl_dump(fib, i, &w);
2641 			} else if (af != 0)
2642 				error = EAFNOSUPPORT;
2643 		}
2644 		break;
2645 	case NET_RT_NHOP:
2646 	case NET_RT_NHGRP:
2647 		/* Allow dumping one specific af/fib at a time */
2648 		if (namelen < 4) {
2649 			error = EINVAL;
2650 			break;
2651 		}
2652 		fib = name[3];
2653 		if (fib < 0 || fib > rt_numfibs) {
2654 			error = EINVAL;
2655 			break;
2656 		}
2657 		rnh = rt_tables_get_rnh(fib, af);
2658 		if (rnh == NULL) {
2659 			error = EAFNOSUPPORT;
2660 			break;
2661 		}
2662 		if (w.w_op == NET_RT_NHOP)
2663 			error = nhops_dump_sysctl(rnh, w.w_req);
2664 		else
2665 #ifdef ROUTE_MPATH
2666 			error = nhgrp_dump_sysctl(rnh, w.w_req);
2667 #else
2668 			error = ENOTSUP;
2669 #endif
2670 		break;
2671 	case NET_RT_IFLIST:
2672 	case NET_RT_IFLISTL:
2673 		error = sysctl_iflist(af, &w);
2674 		break;
2675 
2676 	case NET_RT_IFMALIST:
2677 		error = sysctl_ifmalist(af, &w);
2678 		break;
2679 	}
2680 	NET_EPOCH_EXIT(et);
2681 
2682 	free(w.w_tmem, M_TEMP);
2683 	return (error);
2684 }
2685 
2686 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2687     sysctl_rtsock, "Return route tables and interface/address lists");
2688 
2689 /*
2690  * Definitions of protocols supported in the ROUTE domain.
2691  */
2692 
2693 static struct domain routedomain;		/* or at least forward */
2694 
2695 static struct protosw routesw = {
2696 	.pr_type =		SOCK_RAW,
2697 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2698 	.pr_abort =		rts_close,
2699 	.pr_attach =		rts_attach,
2700 	.pr_detach =		rts_detach,
2701 	.pr_send =		rts_send,
2702 	.pr_shutdown =		rts_shutdown,
2703 	.pr_disconnect =	rts_disconnect,
2704 	.pr_close =		rts_close,
2705 };
2706 
2707 static struct domain routedomain = {
2708 	.dom_family =		PF_ROUTE,
2709 	.dom_name =		"route",
2710 	.dom_nprotosw =		1,
2711 	.dom_protosw =		{ &routesw },
2712 };
2713 
2714 DOMAIN_SET(route);
2715