xref: /freebsd/sys/net/rtsock.c (revision c1d255d3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_route.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_llatbl.h>
61 #include <net/if_types.h>
62 #include <net/netisr.h>
63 #include <net/raw_cb.h>
64 #include <net/route.h>
65 #include <net/route/route_ctl.h>
66 #include <net/route/route_var.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip_carp.h>
72 #ifdef INET6
73 #include <netinet6/in6_var.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/scope6_var.h>
76 #endif
77 #include <net/route/nhop.h>
78 
79 #ifdef COMPAT_FREEBSD32
80 #include <sys/mount.h>
81 #include <compat/freebsd32/freebsd32.h>
82 
83 struct if_msghdr32 {
84 	uint16_t ifm_msglen;
85 	uint8_t	ifm_version;
86 	uint8_t	ifm_type;
87 	int32_t	ifm_addrs;
88 	int32_t	ifm_flags;
89 	uint16_t ifm_index;
90 	uint16_t _ifm_spare1;
91 	struct	if_data ifm_data;
92 };
93 
94 struct if_msghdrl32 {
95 	uint16_t ifm_msglen;
96 	uint8_t	ifm_version;
97 	uint8_t	ifm_type;
98 	int32_t	ifm_addrs;
99 	int32_t	ifm_flags;
100 	uint16_t ifm_index;
101 	uint16_t _ifm_spare1;
102 	uint16_t ifm_len;
103 	uint16_t ifm_data_off;
104 	uint32_t _ifm_spare2;
105 	struct	if_data ifm_data;
106 };
107 
108 struct ifa_msghdrl32 {
109 	uint16_t ifam_msglen;
110 	uint8_t	ifam_version;
111 	uint8_t	ifam_type;
112 	int32_t	ifam_addrs;
113 	int32_t	ifam_flags;
114 	uint16_t ifam_index;
115 	uint16_t _ifam_spare1;
116 	uint16_t ifam_len;
117 	uint16_t ifam_data_off;
118 	int32_t	ifam_metric;
119 	struct	if_data ifam_data;
120 };
121 
122 #define SA_SIZE32(sa)						\
123     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
124 	sizeof(int)		:				\
125 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
126 
127 #endif /* COMPAT_FREEBSD32 */
128 
129 struct linear_buffer {
130 	char		*base;	/* Base allocated memory pointer */
131 	uint32_t	offset;	/* Currently used offset */
132 	uint32_t	size;	/* Total buffer size */
133 };
134 #define	SCRATCH_BUFFER_SIZE	1024
135 
136 #define	RTS_PID_PRINTF(_fmt, ...) \
137     printf("rtsock:%s(): PID %d: " _fmt "\n", __func__, curproc->p_pid, ## __VA_ARGS__)
138 
139 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
140 
141 /* NB: these are not modified */
142 static struct	sockaddr route_src = { 2, PF_ROUTE, };
143 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
144 
145 /* These are external hooks for CARP. */
146 int	(*carp_get_vhid_p)(struct ifaddr *);
147 
148 /*
149  * Used by rtsock/raw_input callback code to decide whether to filter the update
150  * notification to a socket bound to a particular FIB.
151  */
152 #define	RTS_FILTER_FIB	M_PROTO8
153 
154 typedef struct {
155 	int	ip_count;	/* attached w/ AF_INET */
156 	int	ip6_count;	/* attached w/ AF_INET6 */
157 	int	any_count;	/* total attached */
158 } route_cb_t;
159 VNET_DEFINE_STATIC(route_cb_t, route_cb);
160 #define	V_route_cb VNET(route_cb)
161 
162 struct mtx rtsock_mtx;
163 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
164 
165 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
166 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
167 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
168 
169 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
170 
171 struct walkarg {
172 	int	family;
173 	int	w_tmemsize;
174 	int	w_op, w_arg;
175 	caddr_t	w_tmem;
176 	struct sysctl_req *w_req;
177 	struct sockaddr *dst;
178 	struct sockaddr *mask;
179 };
180 
181 static void	rts_input(struct mbuf *m);
182 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
183 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
184 			struct walkarg *w, int *plen);
185 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
186 			struct rt_addrinfo *rtinfo);
187 static int	cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb);
188 static int	sysctl_dumpentry(struct rtentry *rt, void *vw);
189 static int	sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh,
190 			uint32_t weight, struct walkarg *w);
191 static int	sysctl_iflist(int af, struct walkarg *w);
192 static int	sysctl_ifmalist(int af, struct walkarg *w);
193 static int	route_output(struct mbuf *m, struct socket *so, ...);
194 static void	rt_getmetrics(const struct rtentry *rt,
195 			const struct nhop_object *nh, struct rt_metrics *out);
196 static void	rt_dispatch(struct mbuf *, sa_family_t);
197 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
198 			struct rt_msghdr *rtm, struct rib_cmd_info *rc);
199 static int	update_rtm_from_rc(struct rt_addrinfo *info,
200 			struct rt_msghdr **prtm, int alloc_len,
201 			struct rib_cmd_info *rc, struct nhop_object *nh);
202 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
203 			struct mbuf *m, sa_family_t saf, u_int fibnum,
204 			int rtm_errno);
205 static bool	can_export_rte(struct ucred *td_ucred, bool rt_is_host,
206 			const struct sockaddr *rt_dst);
207 
208 static struct netisr_handler rtsock_nh = {
209 	.nh_name = "rtsock",
210 	.nh_handler = rts_input,
211 	.nh_proto = NETISR_ROUTE,
212 	.nh_policy = NETISR_POLICY_SOURCE,
213 };
214 
215 static int
216 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
217 {
218 	int error, qlimit;
219 
220 	netisr_getqlimit(&rtsock_nh, &qlimit);
221 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
222         if (error || !req->newptr)
223                 return (error);
224 	if (qlimit < 1)
225 		return (EINVAL);
226 	return (netisr_setqlimit(&rtsock_nh, qlimit));
227 }
228 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
229     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
230     0, 0, sysctl_route_netisr_maxqlen, "I",
231     "maximum routing socket dispatch queue length");
232 
233 static void
234 vnet_rts_init(void)
235 {
236 	int tmp;
237 
238 	if (IS_DEFAULT_VNET(curvnet)) {
239 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
240 			rtsock_nh.nh_qlimit = tmp;
241 		netisr_register(&rtsock_nh);
242 	}
243 #ifdef VIMAGE
244 	 else
245 		netisr_register_vnet(&rtsock_nh);
246 #endif
247 }
248 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
249     vnet_rts_init, 0);
250 
251 #ifdef VIMAGE
252 static void
253 vnet_rts_uninit(void)
254 {
255 
256 	netisr_unregister_vnet(&rtsock_nh);
257 }
258 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
259     vnet_rts_uninit, 0);
260 #endif
261 
262 static int
263 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
264     struct rawcb *rp)
265 {
266 	int fibnum;
267 
268 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
269 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
270 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
271 
272 	/* No filtering requested. */
273 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
274 		return (0);
275 
276 	/* Check if it is a rts and the fib matches the one of the socket. */
277 	fibnum = M_GETFIB(m);
278 	if (proto->sp_family != PF_ROUTE ||
279 	    rp->rcb_socket == NULL ||
280 	    rp->rcb_socket->so_fibnum == fibnum)
281 		return (0);
282 
283 	/* Filtering requested and no match, the socket shall be skipped. */
284 	return (1);
285 }
286 
287 static void
288 rts_input(struct mbuf *m)
289 {
290 	struct sockproto route_proto;
291 	unsigned short *family;
292 	struct m_tag *tag;
293 
294 	route_proto.sp_family = PF_ROUTE;
295 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
296 	if (tag != NULL) {
297 		family = (unsigned short *)(tag + 1);
298 		route_proto.sp_protocol = *family;
299 		m_tag_delete(m, tag);
300 	} else
301 		route_proto.sp_protocol = 0;
302 
303 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
304 }
305 
306 /*
307  * It really doesn't make any sense at all for this code to share much
308  * with raw_usrreq.c, since its functionality is so restricted.  XXX
309  */
310 static void
311 rts_abort(struct socket *so)
312 {
313 
314 	raw_usrreqs.pru_abort(so);
315 }
316 
317 static void
318 rts_close(struct socket *so)
319 {
320 
321 	raw_usrreqs.pru_close(so);
322 }
323 
324 /* pru_accept is EOPNOTSUPP */
325 
326 static int
327 rts_attach(struct socket *so, int proto, struct thread *td)
328 {
329 	struct rawcb *rp;
330 	int error;
331 
332 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
333 
334 	/* XXX */
335 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
336 
337 	so->so_pcb = (caddr_t)rp;
338 	so->so_fibnum = td->td_proc->p_fibnum;
339 	error = raw_attach(so, proto);
340 	rp = sotorawcb(so);
341 	if (error) {
342 		so->so_pcb = NULL;
343 		free(rp, M_PCB);
344 		return error;
345 	}
346 	RTSOCK_LOCK();
347 	switch(rp->rcb_proto.sp_protocol) {
348 	case AF_INET:
349 		V_route_cb.ip_count++;
350 		break;
351 	case AF_INET6:
352 		V_route_cb.ip6_count++;
353 		break;
354 	}
355 	V_route_cb.any_count++;
356 	RTSOCK_UNLOCK();
357 	soisconnected(so);
358 	so->so_options |= SO_USELOOPBACK;
359 	return 0;
360 }
361 
362 static int
363 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
364 {
365 
366 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
367 }
368 
369 static int
370 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
371 {
372 
373 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
374 }
375 
376 /* pru_connect2 is EOPNOTSUPP */
377 /* pru_control is EOPNOTSUPP */
378 
379 static void
380 rts_detach(struct socket *so)
381 {
382 	struct rawcb *rp = sotorawcb(so);
383 
384 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
385 
386 	RTSOCK_LOCK();
387 	switch(rp->rcb_proto.sp_protocol) {
388 	case AF_INET:
389 		V_route_cb.ip_count--;
390 		break;
391 	case AF_INET6:
392 		V_route_cb.ip6_count--;
393 		break;
394 	}
395 	V_route_cb.any_count--;
396 	RTSOCK_UNLOCK();
397 	raw_usrreqs.pru_detach(so);
398 }
399 
400 static int
401 rts_disconnect(struct socket *so)
402 {
403 
404 	return (raw_usrreqs.pru_disconnect(so));
405 }
406 
407 /* pru_listen is EOPNOTSUPP */
408 
409 static int
410 rts_peeraddr(struct socket *so, struct sockaddr **nam)
411 {
412 
413 	return (raw_usrreqs.pru_peeraddr(so, nam));
414 }
415 
416 /* pru_rcvd is EOPNOTSUPP */
417 /* pru_rcvoob is EOPNOTSUPP */
418 
419 static int
420 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
421 	 struct mbuf *control, struct thread *td)
422 {
423 
424 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
425 }
426 
427 /* pru_sense is null */
428 
429 static int
430 rts_shutdown(struct socket *so)
431 {
432 
433 	return (raw_usrreqs.pru_shutdown(so));
434 }
435 
436 static int
437 rts_sockaddr(struct socket *so, struct sockaddr **nam)
438 {
439 
440 	return (raw_usrreqs.pru_sockaddr(so, nam));
441 }
442 
443 static struct pr_usrreqs route_usrreqs = {
444 	.pru_abort =		rts_abort,
445 	.pru_attach =		rts_attach,
446 	.pru_bind =		rts_bind,
447 	.pru_connect =		rts_connect,
448 	.pru_detach =		rts_detach,
449 	.pru_disconnect =	rts_disconnect,
450 	.pru_peeraddr =		rts_peeraddr,
451 	.pru_send =		rts_send,
452 	.pru_shutdown =		rts_shutdown,
453 	.pru_sockaddr =		rts_sockaddr,
454 	.pru_close =		rts_close,
455 };
456 
457 #ifndef _SOCKADDR_UNION_DEFINED
458 #define	_SOCKADDR_UNION_DEFINED
459 /*
460  * The union of all possible address formats we handle.
461  */
462 union sockaddr_union {
463 	struct sockaddr		sa;
464 	struct sockaddr_in	sin;
465 	struct sockaddr_in6	sin6;
466 };
467 #endif /* _SOCKADDR_UNION_DEFINED */
468 
469 static int
470 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
471     struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
472 {
473 #if defined(INET) || defined(INET6)
474 	struct epoch_tracker et;
475 #endif
476 
477 	/* First, see if the returned address is part of the jail. */
478 	if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
479 		info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
480 		return (0);
481 	}
482 
483 	switch (info->rti_info[RTAX_DST]->sa_family) {
484 #ifdef INET
485 	case AF_INET:
486 	{
487 		struct in_addr ia;
488 		struct ifaddr *ifa;
489 		int found;
490 
491 		found = 0;
492 		/*
493 		 * Try to find an address on the given outgoing interface
494 		 * that belongs to the jail.
495 		 */
496 		NET_EPOCH_ENTER(et);
497 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
498 			struct sockaddr *sa;
499 			sa = ifa->ifa_addr;
500 			if (sa->sa_family != AF_INET)
501 				continue;
502 			ia = ((struct sockaddr_in *)sa)->sin_addr;
503 			if (prison_check_ip4(cred, &ia) == 0) {
504 				found = 1;
505 				break;
506 			}
507 		}
508 		NET_EPOCH_EXIT(et);
509 		if (!found) {
510 			/*
511 			 * As a last resort return the 'default' jail address.
512 			 */
513 			ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
514 			    sin_addr;
515 			if (prison_get_ip4(cred, &ia) != 0)
516 				return (ESRCH);
517 		}
518 		bzero(&saun->sin, sizeof(struct sockaddr_in));
519 		saun->sin.sin_len = sizeof(struct sockaddr_in);
520 		saun->sin.sin_family = AF_INET;
521 		saun->sin.sin_addr.s_addr = ia.s_addr;
522 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
523 		break;
524 	}
525 #endif
526 #ifdef INET6
527 	case AF_INET6:
528 	{
529 		struct in6_addr ia6;
530 		struct ifaddr *ifa;
531 		int found;
532 
533 		found = 0;
534 		/*
535 		 * Try to find an address on the given outgoing interface
536 		 * that belongs to the jail.
537 		 */
538 		NET_EPOCH_ENTER(et);
539 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
540 			struct sockaddr *sa;
541 			sa = ifa->ifa_addr;
542 			if (sa->sa_family != AF_INET6)
543 				continue;
544 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
545 			    &ia6, sizeof(struct in6_addr));
546 			if (prison_check_ip6(cred, &ia6) == 0) {
547 				found = 1;
548 				break;
549 			}
550 		}
551 		NET_EPOCH_EXIT(et);
552 		if (!found) {
553 			/*
554 			 * As a last resort return the 'default' jail address.
555 			 */
556 			ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
557 			    sin6_addr;
558 			if (prison_get_ip6(cred, &ia6) != 0)
559 				return (ESRCH);
560 		}
561 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
562 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
563 		saun->sin6.sin6_family = AF_INET6;
564 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
565 		if (sa6_recoverscope(&saun->sin6) != 0)
566 			return (ESRCH);
567 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
568 		break;
569 	}
570 #endif
571 	default:
572 		return (ESRCH);
573 	}
574 	return (0);
575 }
576 
577 static int
578 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun)
579 {
580 	struct ifaddr *ifa;
581 	sa_family_t saf;
582 
583 	if (V_loif == NULL) {
584 		RTS_PID_PRINTF("Unable to add blackhole/reject nhop without loopback");
585 		return (ENOTSUP);
586 	}
587 	info->rti_ifp = V_loif;
588 
589 	saf = info->rti_info[RTAX_DST]->sa_family;
590 
591 	CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) {
592 		if (ifa->ifa_addr->sa_family == saf) {
593 			info->rti_ifa = ifa;
594 			break;
595 		}
596 	}
597 	if (info->rti_ifa == NULL)
598 		return (ENOTSUP);
599 
600 	bzero(saun, sizeof(union sockaddr_union));
601 	switch (saf) {
602 #ifdef INET
603 	case AF_INET:
604 		saun->sin.sin_family = AF_INET;
605 		saun->sin.sin_len = sizeof(struct sockaddr_in);
606 		saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
607 		break;
608 #endif
609 #ifdef INET6
610 	case AF_INET6:
611 		saun->sin6.sin6_family = AF_INET6;
612 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
613 		saun->sin6.sin6_addr = in6addr_loopback;
614 		break;
615 #endif
616 	default:
617 		return (ENOTSUP);
618 	}
619 	info->rti_info[RTAX_GATEWAY] = &saun->sa;
620 	info->rti_flags |= RTF_GATEWAY;
621 
622 	return (0);
623 }
624 
625 /*
626  * Fills in @info based on userland-provided @rtm message.
627  *
628  * Returns 0 on success.
629  */
630 static int
631 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum,
632     struct rt_addrinfo *info)
633 {
634 	int error;
635 	sa_family_t saf;
636 
637 	rtm->rtm_pid = curproc->p_pid;
638 	info->rti_addrs = rtm->rtm_addrs;
639 
640 	info->rti_mflags = rtm->rtm_inits;
641 	info->rti_rmx = &rtm->rtm_rmx;
642 
643 	/*
644 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
645 	 * link-local address because rtrequest requires addresses with
646 	 * embedded scope id.
647 	 */
648 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
649 		return (EINVAL);
650 
651 	info->rti_flags = rtm->rtm_flags;
652 	error = cleanup_xaddrs(info, lb);
653 	if (error != 0)
654 		return (error);
655 	saf = info->rti_info[RTAX_DST]->sa_family;
656 	/*
657 	 * Verify that the caller has the appropriate privilege; RTM_GET
658 	 * is the only operation the non-superuser is allowed.
659 	 */
660 	if (rtm->rtm_type != RTM_GET) {
661 		error = priv_check(curthread, PRIV_NET_ROUTE);
662 		if (error != 0)
663 			return (error);
664 	}
665 
666 	/*
667 	 * The given gateway address may be an interface address.
668 	 * For example, issuing a "route change" command on a route
669 	 * entry that was created from a tunnel, and the gateway
670 	 * address given is the local end point. In this case the
671 	 * RTF_GATEWAY flag must be cleared or the destination will
672 	 * not be reachable even though there is no error message.
673 	 */
674 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
675 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
676 		struct rt_addrinfo ginfo;
677 		struct sockaddr *gdst;
678 		struct sockaddr_storage ss;
679 
680 		bzero(&ginfo, sizeof(ginfo));
681 		bzero(&ss, sizeof(ss));
682 		ss.ss_len = sizeof(ss);
683 
684 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
685 		gdst = info->rti_info[RTAX_GATEWAY];
686 
687 		/*
688 		 * A host route through the loopback interface is
689 		 * installed for each interface adddress. In pre 8.0
690 		 * releases the interface address of a PPP link type
691 		 * is not reachable locally. This behavior is fixed as
692 		 * part of the new L2/L3 redesign and rewrite work. The
693 		 * signature of this interface address route is the
694 		 * AF_LINK sa_family type of the gateway, and the
695 		 * rt_ifp has the IFF_LOOPBACK flag set.
696 		 */
697 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
698 			if (ss.ss_family == AF_LINK &&
699 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
700 				info->rti_flags &= ~RTF_GATEWAY;
701 				info->rti_flags |= RTF_GWFLAG_COMPAT;
702 			}
703 			rib_free_info(&ginfo);
704 		}
705 	}
706 
707 	return (0);
708 }
709 
710 static struct nhop_object *
711 select_nhop(struct nhop_object *nh, const struct sockaddr *gw)
712 {
713 	if (!NH_IS_NHGRP(nh))
714 		return (nh);
715 #ifdef ROUTE_MPATH
716 	struct weightened_nhop *wn;
717 	uint32_t num_nhops;
718 	wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
719 	if (gw == NULL)
720 		return (wn[0].nh);
721 	for (int i = 0; i < num_nhops; i++) {
722 		if (match_nhop_gw(wn[i].nh, gw))
723 			return (wn[i].nh);
724 	}
725 #endif
726 	return (NULL);
727 }
728 
729 /*
730  * Handles RTM_GET message from routing socket, returning matching rt.
731  *
732  * Returns:
733  * 0 on success, with locked and referenced matching rt in @rt_nrt
734  * errno of failure
735  */
736 static int
737 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
738     struct rt_msghdr *rtm, struct rib_cmd_info *rc)
739 {
740 	RIB_RLOCK_TRACKER;
741 	struct rib_head *rnh;
742 	struct nhop_object *nh;
743 	sa_family_t saf;
744 
745 	saf = info->rti_info[RTAX_DST]->sa_family;
746 
747 	rnh = rt_tables_get_rnh(fibnum, saf);
748 	if (rnh == NULL)
749 		return (EAFNOSUPPORT);
750 
751 	RIB_RLOCK(rnh);
752 
753 	/*
754 	 * By (implicit) convention host route (one without netmask)
755 	 * means longest-prefix-match request and the route with netmask
756 	 * means exact-match lookup.
757 	 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128
758 	 * prefixes, use original data to check for the netmask presence.
759 	 */
760 	if ((rtm->rtm_addrs & RTA_NETMASK) == 0) {
761 		/*
762 		 * Provide longest prefix match for
763 		 * address lookup (no mask).
764 		 * 'route -n get addr'
765 		 */
766 		rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
767 		    info->rti_info[RTAX_DST], &rnh->head);
768 	} else
769 		rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
770 		    info->rti_info[RTAX_DST],
771 		    info->rti_info[RTAX_NETMASK], &rnh->head);
772 
773 	if (rc->rc_rt == NULL) {
774 		RIB_RUNLOCK(rnh);
775 		return (ESRCH);
776 	}
777 
778 	nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
779 	if (nh == NULL) {
780 		RIB_RUNLOCK(rnh);
781 		return (ESRCH);
782 	}
783 	/*
784 	 * If performing proxied L2 entry insertion, and
785 	 * the actual PPP host entry is found, perform
786 	 * another search to retrieve the prefix route of
787 	 * the local end point of the PPP link.
788 	 * TODO: move this logic to userland.
789 	 */
790 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
791 		struct sockaddr laddr;
792 
793 		if (nh->nh_ifp != NULL &&
794 		    nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
795 			struct ifaddr *ifa;
796 
797 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
798 					RT_ALL_FIBS);
799 			if (ifa != NULL)
800 				rt_maskedcopy(ifa->ifa_addr,
801 					      &laddr,
802 					      ifa->ifa_netmask);
803 		} else
804 			rt_maskedcopy(nh->nh_ifa->ifa_addr,
805 				      &laddr,
806 				      nh->nh_ifa->ifa_netmask);
807 		/*
808 		 * refactor rt and no lock operation necessary
809 		 */
810 		rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
811 		    &rnh->head);
812 		if (rc->rc_rt == NULL) {
813 			RIB_RUNLOCK(rnh);
814 			return (ESRCH);
815 		}
816 		nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
817 		if (nh == NULL) {
818 			RIB_RUNLOCK(rnh);
819 			return (ESRCH);
820 		}
821 	}
822 	rc->rc_nh_new = nh;
823 	rc->rc_nh_weight = rc->rc_rt->rt_weight;
824 	RIB_RUNLOCK(rnh);
825 
826 	return (0);
827 }
828 
829 static void
830 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask)
831 {
832 #ifdef INET
833 	if (family == AF_INET) {
834 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
835 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
836 
837 		bzero(dst4, sizeof(struct sockaddr_in));
838 		bzero(mask4, sizeof(struct sockaddr_in));
839 
840 		dst4->sin_family = AF_INET;
841 		dst4->sin_len = sizeof(struct sockaddr_in);
842 		mask4->sin_family = AF_INET;
843 		mask4->sin_len = sizeof(struct sockaddr_in);
844 	}
845 #endif
846 #ifdef INET6
847 	if (family == AF_INET6) {
848 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
849 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
850 
851 		bzero(dst6, sizeof(struct sockaddr_in6));
852 		bzero(mask6, sizeof(struct sockaddr_in6));
853 
854 		dst6->sin6_family = AF_INET6;
855 		dst6->sin6_len = sizeof(struct sockaddr_in6);
856 		mask6->sin6_family = AF_INET6;
857 		mask6->sin6_len = sizeof(struct sockaddr_in6);
858 	}
859 #endif
860 }
861 
862 static void
863 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst,
864     struct sockaddr *mask)
865 {
866 #ifdef INET
867 	if (dst->sa_family == AF_INET) {
868 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
869 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
870 		uint32_t scopeid = 0;
871 		rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr,
872 		    &scopeid);
873 		return;
874 	}
875 #endif
876 #ifdef INET6
877 	if (dst->sa_family == AF_INET6) {
878 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
879 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
880 		uint32_t scopeid = 0;
881 		rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr,
882 		    &mask6->sin6_addr, &scopeid);
883 		dst6->sin6_scope_id = scopeid;
884 		return;
885 	}
886 #endif
887 }
888 
889 static int
890 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm,
891     int alloc_len)
892 {
893 	struct rt_msghdr *rtm, *orig_rtm = NULL;
894 	struct walkarg w;
895 	int len;
896 
897 	rtm = *prtm;
898 	/* Check if we need to realloc storage */
899 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
900 	if (len > alloc_len) {
901 		struct rt_msghdr *tmp_rtm;
902 
903 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
904 		if (tmp_rtm == NULL)
905 			return (ENOBUFS);
906 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
907 		orig_rtm = rtm;
908 		rtm = tmp_rtm;
909 		alloc_len = len;
910 
911 		/*
912 		 * Delay freeing original rtm as info contains
913 		 * data referencing it.
914 		 */
915 	}
916 
917 	w.w_tmem = (caddr_t)rtm;
918 	w.w_tmemsize = alloc_len;
919 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
920 	rtm->rtm_addrs = info->rti_addrs;
921 
922 	if (orig_rtm != NULL)
923 		free(orig_rtm, M_TEMP);
924 	*prtm = rtm;
925 	return (0);
926 }
927 
928 
929 /*
930  * Update sockaddrs, flags, etc in @prtm based on @rc data.
931  * rtm can be reallocated.
932  *
933  * Returns 0 on success, along with pointer to (potentially reallocated)
934  *  rtm.
935  *
936  */
937 static int
938 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
939     int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
940 {
941 	union sockaddr_union saun;
942 	struct rt_msghdr *rtm;
943 	struct ifnet *ifp;
944 	int error;
945 
946 	rtm = *prtm;
947 	union sockaddr_union sa_dst, sa_mask;
948 	int family = info->rti_info[RTAX_DST]->sa_family;
949 	init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa);
950 	export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa);
951 
952 	info->rti_info[RTAX_DST] = &sa_dst.sa;
953 	info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa;
954 	info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
955 	info->rti_info[RTAX_GENMASK] = 0;
956 	ifp = nh->nh_ifp;
957 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
958 		if (ifp) {
959 			info->rti_info[RTAX_IFP] =
960 			    ifp->if_addr->ifa_addr;
961 			error = rtm_get_jailed(info, ifp, nh,
962 			    &saun, curthread->td_ucred);
963 			if (error != 0)
964 				return (error);
965 			if (ifp->if_flags & IFF_POINTOPOINT)
966 				info->rti_info[RTAX_BRD] =
967 				    nh->nh_ifa->ifa_dstaddr;
968 			rtm->rtm_index = ifp->if_index;
969 		} else {
970 			info->rti_info[RTAX_IFP] = NULL;
971 			info->rti_info[RTAX_IFA] = NULL;
972 		}
973 	} else if (ifp != NULL)
974 		rtm->rtm_index = ifp->if_index;
975 
976 	if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0)
977 		return (error);
978 
979 	rtm = *prtm;
980 	rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
981 	if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
982 		rtm->rtm_flags = RTF_GATEWAY |
983 			(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
984 	rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
985 	rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
986 
987 	return (0);
988 }
989 
990 #ifdef ROUTE_MPATH
991 static void
992 save_del_notification(struct rib_cmd_info *rc, void *_cbdata)
993 {
994 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
995 
996 	if (rc->rc_cmd == RTM_DELETE)
997 		*rc_new = *rc;
998 }
999 
1000 static void
1001 save_add_notification(struct rib_cmd_info *rc, void *_cbdata)
1002 {
1003 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
1004 
1005 	if (rc->rc_cmd == RTM_ADD)
1006 		*rc_new = *rc;
1007 }
1008 #endif
1009 
1010 #if defined(INET6) || defined(INET)
1011 static struct sockaddr *
1012 alloc_sockaddr_aligned(struct linear_buffer *lb, int len)
1013 {
1014 	len = roundup2(len, sizeof(uint64_t));
1015 	if (lb->offset + len > lb->size)
1016 		return (NULL);
1017 	struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset);
1018 	lb->offset += len;
1019 	return (sa);
1020 }
1021 #endif
1022 
1023 /*ARGSUSED*/
1024 static int
1025 route_output(struct mbuf *m, struct socket *so, ...)
1026 {
1027 	struct rt_msghdr *rtm = NULL;
1028 	struct rtentry *rt = NULL;
1029 	struct rt_addrinfo info;
1030 	struct epoch_tracker et;
1031 #ifdef INET6
1032 	struct sockaddr_storage ss;
1033 	struct sockaddr_in6 *sin6;
1034 	int i, rti_need_deembed = 0;
1035 #endif
1036 	int alloc_len = 0, len, error = 0, fibnum;
1037 	sa_family_t saf = AF_UNSPEC;
1038 	struct rib_cmd_info rc;
1039 	struct nhop_object *nh;
1040 
1041 	fibnum = so->so_fibnum;
1042 #define senderr(e) { error = e; goto flush;}
1043 	if (m == NULL || ((m->m_len < sizeof(long)) &&
1044 		       (m = m_pullup(m, sizeof(long))) == NULL))
1045 		return (ENOBUFS);
1046 	if ((m->m_flags & M_PKTHDR) == 0)
1047 		panic("route_output");
1048 	NET_EPOCH_ENTER(et);
1049 	len = m->m_pkthdr.len;
1050 	if (len < sizeof(*rtm) ||
1051 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
1052 		senderr(EINVAL);
1053 
1054 	/*
1055 	 * Most of current messages are in range 200-240 bytes,
1056 	 * minimize possible re-allocation on reply using larger size
1057 	 * buffer aligned on 1k boundaty.
1058 	 */
1059 	alloc_len = roundup2(len, 1024);
1060 	int total_len = alloc_len + SCRATCH_BUFFER_SIZE;
1061 	if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL)
1062 		senderr(ENOBUFS);
1063 
1064 	m_copydata(m, 0, len, (caddr_t)rtm);
1065 	bzero(&info, sizeof(info));
1066 	nh = NULL;
1067 	struct linear_buffer lb = {
1068 		.base = (char *)rtm + alloc_len,
1069 		.size = SCRATCH_BUFFER_SIZE,
1070 	};
1071 
1072 	if (rtm->rtm_version != RTM_VERSION) {
1073 		/* Do not touch message since format is unknown */
1074 		free(rtm, M_TEMP);
1075 		rtm = NULL;
1076 		senderr(EPROTONOSUPPORT);
1077 	}
1078 
1079 	/*
1080 	 * Starting from here, it is possible
1081 	 * to alter original message and insert
1082 	 * caller PID and error value.
1083 	 */
1084 
1085 	if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) {
1086 		senderr(error);
1087 	}
1088 	/* fill_addringo() embeds scope into IPv6 addresses */
1089 #ifdef INET6
1090 	rti_need_deembed = 1;
1091 #endif
1092 
1093 	saf = info.rti_info[RTAX_DST]->sa_family;
1094 
1095 	/* support for new ARP code */
1096 	if (rtm->rtm_flags & RTF_LLDATA) {
1097 		error = lla_rt_output(rtm, &info);
1098 		goto flush;
1099 	}
1100 
1101 	union sockaddr_union gw_saun;
1102 	int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT);
1103 	if (blackhole_flags != 0) {
1104 		if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT))
1105 			error = fill_blackholeinfo(&info, &gw_saun);
1106 		else
1107 			error = EINVAL;
1108 		if (error != 0)
1109 			senderr(error);
1110 	}
1111 
1112 	switch (rtm->rtm_type) {
1113 	case RTM_ADD:
1114 	case RTM_CHANGE:
1115 		if (rtm->rtm_type == RTM_ADD) {
1116 			if (info.rti_info[RTAX_GATEWAY] == NULL)
1117 				senderr(EINVAL);
1118 		}
1119 		error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
1120 		if (error == 0) {
1121 #ifdef ROUTE_MPATH
1122 			if (NH_IS_NHGRP(rc.rc_nh_new) ||
1123 			    (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) {
1124 				struct rib_cmd_info rc_simple = {};
1125 				rib_decompose_notification(&rc,
1126 				    save_add_notification, (void *)&rc_simple);
1127 				rc = rc_simple;
1128 			}
1129 #endif
1130 			nh = rc.rc_nh_new;
1131 			rtm->rtm_index = nh->nh_ifp->if_index;
1132 			rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh);
1133 		}
1134 		break;
1135 
1136 	case RTM_DELETE:
1137 		error = rib_action(fibnum, RTM_DELETE, &info, &rc);
1138 		if (error == 0) {
1139 #ifdef ROUTE_MPATH
1140 			if (NH_IS_NHGRP(rc.rc_nh_old) ||
1141 			    (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) {
1142 				struct rib_cmd_info rc_simple = {};
1143 				rib_decompose_notification(&rc,
1144 				    save_del_notification, (void *)&rc_simple);
1145 				rc = rc_simple;
1146 			}
1147 #endif
1148 			nh = rc.rc_nh_old;
1149 		}
1150 		break;
1151 
1152 	case RTM_GET:
1153 		error = handle_rtm_get(&info, fibnum, rtm, &rc);
1154 		if (error != 0)
1155 			senderr(error);
1156 		nh = rc.rc_nh_new;
1157 
1158 		if (!can_export_rte(curthread->td_ucred,
1159 		    info.rti_info[RTAX_NETMASK] == NULL,
1160 		    info.rti_info[RTAX_DST])) {
1161 			senderr(ESRCH);
1162 		}
1163 		break;
1164 
1165 	default:
1166 		senderr(EOPNOTSUPP);
1167 	}
1168 
1169 	if (error == 0) {
1170 		error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
1171 		/*
1172 		 * Note that some sockaddr pointers may have changed to
1173 		 * point to memory outsize @rtm. Some may be pointing
1174 		 * to the on-stack variables.
1175 		 * Given that, any pointer in @info CANNOT BE USED.
1176 		 */
1177 
1178 		/*
1179 		 * scopeid deembedding has been performed while
1180 		 * writing updated rtm in rtsock_msg_buffer().
1181 		 * With that in mind, skip deembedding procedure below.
1182 		 */
1183 #ifdef INET6
1184 		rti_need_deembed = 0;
1185 #endif
1186 	}
1187 
1188 flush:
1189 	NET_EPOCH_EXIT(et);
1190 	rt = NULL;
1191 
1192 #ifdef INET6
1193 	if (rtm != NULL) {
1194 		if (rti_need_deembed) {
1195 			/* sin6_scope_id is recovered before sending rtm. */
1196 			sin6 = (struct sockaddr_in6 *)&ss;
1197 			for (i = 0; i < RTAX_MAX; i++) {
1198 				if (info.rti_info[i] == NULL)
1199 					continue;
1200 				if (info.rti_info[i]->sa_family != AF_INET6)
1201 					continue;
1202 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1203 				if (sa6_recoverscope(sin6) == 0)
1204 					bcopy(sin6, info.rti_info[i],
1205 						    sizeof(*sin6));
1206 			}
1207 			if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) {
1208 				if (error != 0)
1209 					error = ENOBUFS;
1210 			}
1211 		}
1212 	}
1213 #endif
1214 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1215 
1216 	return (error);
1217 }
1218 
1219 /*
1220  * Sends the prepared reply message in @rtm to all rtsock clients.
1221  * Frees @m and @rtm.
1222  *
1223  */
1224 static void
1225 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1226     sa_family_t saf, u_int fibnum, int rtm_errno)
1227 {
1228 	struct rawcb *rp = NULL;
1229 
1230 	/*
1231 	 * Check to see if we don't want our own messages.
1232 	 */
1233 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1234 		if (V_route_cb.any_count <= 1) {
1235 			if (rtm != NULL)
1236 				free(rtm, M_TEMP);
1237 			m_freem(m);
1238 			return;
1239 		}
1240 		/* There is another listener, so construct message */
1241 		rp = sotorawcb(so);
1242 	}
1243 
1244 	if (rtm != NULL) {
1245 		if (rtm_errno!= 0)
1246 			rtm->rtm_errno = rtm_errno;
1247 		else
1248 			rtm->rtm_flags |= RTF_DONE;
1249 
1250 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1251 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1252 			m_freem(m);
1253 			m = NULL;
1254 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1255 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1256 
1257 		free(rtm, M_TEMP);
1258 	}
1259 	if (m != NULL) {
1260 		M_SETFIB(m, fibnum);
1261 		m->m_flags |= RTS_FILTER_FIB;
1262 		if (rp) {
1263 			/*
1264 			 * XXX insure we don't get a copy by
1265 			 * invalidating our protocol
1266 			 */
1267 			unsigned short family = rp->rcb_proto.sp_family;
1268 			rp->rcb_proto.sp_family = 0;
1269 			rt_dispatch(m, saf);
1270 			rp->rcb_proto.sp_family = family;
1271 		} else
1272 			rt_dispatch(m, saf);
1273 	}
1274 }
1275 
1276 static void
1277 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
1278     struct rt_metrics *out)
1279 {
1280 
1281 	bzero(out, sizeof(*out));
1282 	out->rmx_mtu = nh->nh_mtu;
1283 	out->rmx_weight = rt->rt_weight;
1284 	out->rmx_nhidx = nhop_get_idx(nh);
1285 	/* Kernel -> userland timebase conversion. */
1286 	out->rmx_expire = rt->rt_expire ?
1287 	    rt->rt_expire - time_uptime + time_second : 0;
1288 }
1289 
1290 /*
1291  * Extract the addresses of the passed sockaddrs.
1292  * Do a little sanity checking so as to avoid bad memory references.
1293  * This data is derived straight from userland.
1294  */
1295 static int
1296 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1297 {
1298 	struct sockaddr *sa;
1299 	int i;
1300 
1301 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1302 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1303 			continue;
1304 		sa = (struct sockaddr *)cp;
1305 		/*
1306 		 * It won't fit.
1307 		 */
1308 		if (cp + sa->sa_len > cplim)
1309 			return (EINVAL);
1310 		/*
1311 		 * there are no more.. quit now
1312 		 * If there are more bits, they are in error.
1313 		 * I've seen this. route(1) can evidently generate these.
1314 		 * This causes kernel to core dump.
1315 		 * for compatibility, If we see this, point to a safe address.
1316 		 */
1317 		if (sa->sa_len == 0) {
1318 			rtinfo->rti_info[i] = &sa_zero;
1319 			return (0); /* should be EINVAL but for compat */
1320 		}
1321 		/* accept it */
1322 #ifdef INET6
1323 		if (sa->sa_family == AF_INET6)
1324 			sa6_embedscope((struct sockaddr_in6 *)sa,
1325 			    V_ip6_use_defzone);
1326 #endif
1327 		rtinfo->rti_info[i] = sa;
1328 		cp += SA_SIZE(sa);
1329 	}
1330 	return (0);
1331 }
1332 
1333 #ifdef INET
1334 static inline void
1335 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr)
1336 {
1337 
1338 	const struct sockaddr_in nsin = {
1339 		.sin_family = AF_INET,
1340 		.sin_len = sizeof(struct sockaddr_in),
1341 		.sin_addr = addr,
1342 	};
1343 	*sin = nsin;
1344 }
1345 #endif
1346 
1347 #ifdef INET6
1348 static inline void
1349 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6,
1350     uint32_t scopeid)
1351 {
1352 
1353 	const struct sockaddr_in6 nsin6 = {
1354 		.sin6_family = AF_INET6,
1355 		.sin6_len = sizeof(struct sockaddr_in6),
1356 		.sin6_addr = *addr6,
1357 		.sin6_scope_id = scopeid,
1358 	};
1359 	*sin6 = nsin6;
1360 }
1361 #endif
1362 
1363 #if defined(INET6) || defined(INET)
1364 /*
1365  * Checks if gateway is suitable for lltable operations.
1366  * Lltable code requires AF_LINK gateway with ifindex
1367  *  and mac address specified.
1368  * Returns 0 on success.
1369  */
1370 static int
1371 cleanup_xaddrs_lladdr(struct rt_addrinfo *info)
1372 {
1373 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY];
1374 
1375 	if (sdl->sdl_family != AF_LINK)
1376 		return (EINVAL);
1377 
1378 	if (sdl->sdl_index == 0)
1379 		return (EINVAL);
1380 
1381 	if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len)
1382 		return (EINVAL);
1383 
1384 	return (0);
1385 }
1386 
1387 static int
1388 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb)
1389 {
1390 	struct sockaddr *gw = info->rti_info[RTAX_GATEWAY];
1391 	struct sockaddr *sa;
1392 
1393 	if (info->rti_flags & RTF_LLDATA)
1394 		return (cleanup_xaddrs_lladdr(info));
1395 
1396 	switch (gw->sa_family) {
1397 #ifdef INET
1398 	case AF_INET:
1399 		{
1400 			struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw;
1401 
1402 			/* Ensure reads do not go beyoud SA boundary */
1403 			if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) {
1404 				RTS_PID_PRINTF("gateway sin_len too small: %d", gw->sa_len);
1405 				return (EINVAL);
1406 			}
1407 			sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in));
1408 			if (sa == NULL)
1409 				return (ENOBUFS);
1410 			fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr);
1411 			info->rti_info[RTAX_GATEWAY] = sa;
1412 		}
1413 		break;
1414 #endif
1415 #ifdef INET6
1416 	case AF_INET6:
1417 		{
1418 			struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw;
1419 			if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) {
1420 				RTS_PID_PRINTF("gateway sin6_len too small: %d", gw->sa_len);
1421 				return (EINVAL);
1422 			}
1423 			fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0);
1424 			break;
1425 		}
1426 #endif
1427 	case AF_LINK:
1428 		{
1429 			struct sockaddr_dl *gw_sdl;
1430 
1431 			size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data);
1432 			gw_sdl = (struct sockaddr_dl *)gw;
1433 			if (gw_sdl->sdl_len < sdl_min_len) {
1434 				RTS_PID_PRINTF("gateway sdl_len too small: %d", gw_sdl->sdl_len);
1435 				return (EINVAL);
1436 			}
1437 			sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short));
1438 			if (sa == NULL)
1439 				return (ENOBUFS);
1440 
1441 			const struct sockaddr_dl_short sdl = {
1442 				.sdl_family = AF_LINK,
1443 				.sdl_len = sizeof(struct sockaddr_dl_short),
1444 				.sdl_index = gw_sdl->sdl_index,
1445 			};
1446 			*((struct sockaddr_dl_short *)sa) = sdl;
1447 			info->rti_info[RTAX_GATEWAY] = sa;
1448 			break;
1449 		}
1450 	}
1451 
1452 	return (0);
1453 }
1454 #endif
1455 
1456 static void
1457 remove_netmask(struct rt_addrinfo *info)
1458 {
1459 	info->rti_info[RTAX_NETMASK] = NULL;
1460 	info->rti_flags |= RTF_HOST;
1461 	info->rti_addrs &= ~RTA_NETMASK;
1462 }
1463 
1464 #ifdef INET
1465 static int
1466 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb)
1467 {
1468 	struct sockaddr_in *dst_sa, *mask_sa;
1469 	const int sa_len = sizeof(struct sockaddr_in);
1470 	struct in_addr dst, mask;
1471 
1472 	/* Check & fixup dst/netmask combination first */
1473 	dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST];
1474 	mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK];
1475 
1476 	/* Ensure reads do not go beyound the buffer size */
1477 	if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero))
1478 		return (EINVAL);
1479 
1480 	if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) {
1481 		/*
1482 		 * Some older routing software encode mask length into the
1483 		 * sin_len, thus resulting in "truncated" sockaddr.
1484 		 */
1485 		int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr);
1486 		if (len >= 0) {
1487 			mask.s_addr = 0;
1488 			if (len > sizeof(struct in_addr))
1489 				len = sizeof(struct in_addr);
1490 			memcpy(&mask, &mask_sa->sin_addr, len);
1491 		} else {
1492 			RTS_PID_PRINTF("prefix mask sin_len too small: %d", mask_sa->sin_len);
1493 			return (EINVAL);
1494 		}
1495 	} else
1496 		mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST;
1497 
1498 	dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr));
1499 
1500 	/* Construct new "clean" dst/mask sockaddresses */
1501 	if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1502 		return (ENOBUFS);
1503 	fill_sockaddr_inet(dst_sa, dst);
1504 	info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa;
1505 
1506 	if (mask.s_addr != INADDR_BROADCAST) {
1507 		if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1508 			return (ENOBUFS);
1509 		fill_sockaddr_inet(mask_sa, mask);
1510 		info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa;
1511 		info->rti_flags &= ~RTF_HOST;
1512 	} else
1513 		remove_netmask(info);
1514 
1515 	/* Check gateway */
1516 	if (info->rti_info[RTAX_GATEWAY] != NULL)
1517 		return (cleanup_xaddrs_gateway(info, lb));
1518 
1519 	return (0);
1520 }
1521 #endif
1522 
1523 #ifdef INET6
1524 static int
1525 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb)
1526 {
1527 	struct sockaddr *sa;
1528 	struct sockaddr_in6 *dst_sa, *mask_sa;
1529 	struct in6_addr mask, *dst;
1530 	const int sa_len = sizeof(struct sockaddr_in6);
1531 
1532 	/* Check & fixup dst/netmask combination first */
1533 	dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST];
1534 	mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK];
1535 
1536 	if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) {
1537 		RTS_PID_PRINTF("prefix dst sin6_len too small: %d", dst_sa->sin6_len);
1538 		return (EINVAL);
1539 	}
1540 
1541 	if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) {
1542 		/*
1543 		 * Some older routing software encode mask length into the
1544 		 * sin6_len, thus resulting in "truncated" sockaddr.
1545 		 */
1546 		int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr);
1547 		if (len >= 0) {
1548 			bzero(&mask, sizeof(mask));
1549 			if (len > sizeof(struct in6_addr))
1550 				len = sizeof(struct in6_addr);
1551 			memcpy(&mask, &mask_sa->sin6_addr, len);
1552 		} else {
1553 			RTS_PID_PRINTF("rtsock: prefix mask sin6_len too small: %d", mask_sa->sin6_len);
1554 			return (EINVAL);
1555 		}
1556 	} else
1557 		mask = mask_sa ? mask_sa->sin6_addr : in6mask128;
1558 
1559 	dst = &dst_sa->sin6_addr;
1560 	IN6_MASK_ADDR(dst, &mask);
1561 
1562 	if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1563 		return (ENOBUFS);
1564 	fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0);
1565 	info->rti_info[RTAX_DST] = sa;
1566 
1567 	if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) {
1568 		if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1569 			return (ENOBUFS);
1570 		fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0);
1571 		info->rti_info[RTAX_NETMASK] = sa;
1572 		info->rti_flags &= ~RTF_HOST;
1573 	} else
1574 		remove_netmask(info);
1575 
1576 	/* Check gateway */
1577 	if (info->rti_info[RTAX_GATEWAY] != NULL)
1578 		return (cleanup_xaddrs_gateway(info, lb));
1579 
1580 	return (0);
1581 }
1582 #endif
1583 
1584 static int
1585 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb)
1586 {
1587 	int error = EAFNOSUPPORT;
1588 
1589 	if (info->rti_info[RTAX_DST] == NULL)
1590 		return (EINVAL);
1591 
1592 	if (info->rti_flags & RTF_LLDATA) {
1593 		/*
1594 		 * arp(8)/ndp(8) sends RTA_NETMASK for the associated
1595 		 * prefix along with the actual address in RTA_DST.
1596 		 * Remove netmask to avoid unnecessary address masking.
1597 		 */
1598 		remove_netmask(info);
1599 	}
1600 
1601 	switch (info->rti_info[RTAX_DST]->sa_family) {
1602 #ifdef INET
1603 	case AF_INET:
1604 		error = cleanup_xaddrs_inet(info, lb);
1605 		break;
1606 #endif
1607 #ifdef INET6
1608 	case AF_INET6:
1609 		error = cleanup_xaddrs_inet6(info, lb);
1610 		break;
1611 #endif
1612 	}
1613 
1614 	return (error);
1615 }
1616 
1617 /*
1618  * Fill in @dmask with valid netmask leaving original @smask
1619  * intact. Mostly used with radix netmasks.
1620  */
1621 struct sockaddr *
1622 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
1623     struct sockaddr_storage *dmask)
1624 {
1625 	if (dst == NULL || smask == NULL)
1626 		return (NULL);
1627 
1628 	memset(dmask, 0, dst->sa_len);
1629 	memcpy(dmask, smask, smask->sa_len);
1630 	dmask->ss_len = dst->sa_len;
1631 	dmask->ss_family = dst->sa_family;
1632 
1633 	return ((struct sockaddr *)dmask);
1634 }
1635 
1636 /*
1637  * Writes information related to @rtinfo object to newly-allocated mbuf.
1638  * Assumes MCLBYTES is enough to construct any message.
1639  * Used for OS notifications of vaious events (if/ifa announces,etc)
1640  *
1641  * Returns allocated mbuf or NULL on failure.
1642  */
1643 static struct mbuf *
1644 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1645 {
1646 	struct sockaddr_storage ss;
1647 	struct rt_msghdr *rtm;
1648 	struct mbuf *m;
1649 	int i;
1650 	struct sockaddr *sa;
1651 #ifdef INET6
1652 	struct sockaddr_in6 *sin6;
1653 #endif
1654 	int len, dlen;
1655 
1656 	switch (type) {
1657 	case RTM_DELADDR:
1658 	case RTM_NEWADDR:
1659 		len = sizeof(struct ifa_msghdr);
1660 		break;
1661 
1662 	case RTM_DELMADDR:
1663 	case RTM_NEWMADDR:
1664 		len = sizeof(struct ifma_msghdr);
1665 		break;
1666 
1667 	case RTM_IFINFO:
1668 		len = sizeof(struct if_msghdr);
1669 		break;
1670 
1671 	case RTM_IFANNOUNCE:
1672 	case RTM_IEEE80211:
1673 		len = sizeof(struct if_announcemsghdr);
1674 		break;
1675 
1676 	default:
1677 		len = sizeof(struct rt_msghdr);
1678 	}
1679 
1680 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1681 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1682 	if (len > MHLEN)
1683 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1684 	else
1685 		m = m_gethdr(M_NOWAIT, MT_DATA);
1686 	if (m == NULL)
1687 		return (m);
1688 
1689 	m->m_pkthdr.len = m->m_len = len;
1690 	rtm = mtod(m, struct rt_msghdr *);
1691 	bzero((caddr_t)rtm, len);
1692 	for (i = 0; i < RTAX_MAX; i++) {
1693 		if ((sa = rtinfo->rti_info[i]) == NULL)
1694 			continue;
1695 		rtinfo->rti_addrs |= (1 << i);
1696 
1697 		dlen = SA_SIZE(sa);
1698 		KASSERT(dlen <= sizeof(ss),
1699 		    ("%s: sockaddr size overflow", __func__));
1700 		bzero(&ss, sizeof(ss));
1701 		bcopy(sa, &ss, sa->sa_len);
1702 		sa = (struct sockaddr *)&ss;
1703 #ifdef INET6
1704 		if (sa->sa_family == AF_INET6) {
1705 			sin6 = (struct sockaddr_in6 *)sa;
1706 			(void)sa6_recoverscope(sin6);
1707 		}
1708 #endif
1709 		m_copyback(m, len, dlen, (caddr_t)sa);
1710 		len += dlen;
1711 	}
1712 	if (m->m_pkthdr.len != len) {
1713 		m_freem(m);
1714 		return (NULL);
1715 	}
1716 	rtm->rtm_msglen = len;
1717 	rtm->rtm_version = RTM_VERSION;
1718 	rtm->rtm_type = type;
1719 	return (m);
1720 }
1721 
1722 /*
1723  * Writes information related to @rtinfo object to preallocated buffer.
1724  * Stores needed size in @plen. If @w is NULL, calculates size without
1725  * writing.
1726  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1727  *
1728  * Returns 0 on success.
1729  *
1730  */
1731 static int
1732 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1733 {
1734 	struct sockaddr_storage ss;
1735 	int len, buflen = 0, dlen, i;
1736 	caddr_t cp = NULL;
1737 	struct rt_msghdr *rtm = NULL;
1738 #ifdef INET6
1739 	struct sockaddr_in6 *sin6;
1740 #endif
1741 #ifdef COMPAT_FREEBSD32
1742 	bool compat32 = false;
1743 #endif
1744 
1745 	switch (type) {
1746 	case RTM_DELADDR:
1747 	case RTM_NEWADDR:
1748 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1749 #ifdef COMPAT_FREEBSD32
1750 			if (w->w_req->flags & SCTL_MASK32) {
1751 				len = sizeof(struct ifa_msghdrl32);
1752 				compat32 = true;
1753 			} else
1754 #endif
1755 				len = sizeof(struct ifa_msghdrl);
1756 		} else
1757 			len = sizeof(struct ifa_msghdr);
1758 		break;
1759 
1760 	case RTM_IFINFO:
1761 #ifdef COMPAT_FREEBSD32
1762 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1763 			if (w->w_op == NET_RT_IFLISTL)
1764 				len = sizeof(struct if_msghdrl32);
1765 			else
1766 				len = sizeof(struct if_msghdr32);
1767 			compat32 = true;
1768 			break;
1769 		}
1770 #endif
1771 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1772 			len = sizeof(struct if_msghdrl);
1773 		else
1774 			len = sizeof(struct if_msghdr);
1775 		break;
1776 
1777 	case RTM_NEWMADDR:
1778 		len = sizeof(struct ifma_msghdr);
1779 		break;
1780 
1781 	default:
1782 		len = sizeof(struct rt_msghdr);
1783 	}
1784 
1785 	if (w != NULL) {
1786 		rtm = (struct rt_msghdr *)w->w_tmem;
1787 		buflen = w->w_tmemsize - len;
1788 		cp = (caddr_t)w->w_tmem + len;
1789 	}
1790 
1791 	rtinfo->rti_addrs = 0;
1792 	for (i = 0; i < RTAX_MAX; i++) {
1793 		struct sockaddr *sa;
1794 
1795 		if ((sa = rtinfo->rti_info[i]) == NULL)
1796 			continue;
1797 		rtinfo->rti_addrs |= (1 << i);
1798 #ifdef COMPAT_FREEBSD32
1799 		if (compat32)
1800 			dlen = SA_SIZE32(sa);
1801 		else
1802 #endif
1803 			dlen = SA_SIZE(sa);
1804 		if (cp != NULL && buflen >= dlen) {
1805 			KASSERT(dlen <= sizeof(ss),
1806 			    ("%s: sockaddr size overflow", __func__));
1807 			bzero(&ss, sizeof(ss));
1808 			bcopy(sa, &ss, sa->sa_len);
1809 			sa = (struct sockaddr *)&ss;
1810 #ifdef INET6
1811 			if (sa->sa_family == AF_INET6) {
1812 				sin6 = (struct sockaddr_in6 *)sa;
1813 				(void)sa6_recoverscope(sin6);
1814 			}
1815 #endif
1816 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1817 			cp += dlen;
1818 			buflen -= dlen;
1819 		} else if (cp != NULL) {
1820 			/*
1821 			 * Buffer too small. Count needed size
1822 			 * and return with error.
1823 			 */
1824 			cp = NULL;
1825 		}
1826 
1827 		len += dlen;
1828 	}
1829 
1830 	if (cp != NULL) {
1831 		dlen = ALIGN(len) - len;
1832 		if (buflen < dlen)
1833 			cp = NULL;
1834 		else {
1835 			bzero(cp, dlen);
1836 			cp += dlen;
1837 			buflen -= dlen;
1838 		}
1839 	}
1840 	len = ALIGN(len);
1841 
1842 	if (cp != NULL) {
1843 		/* fill header iff buffer is large enough */
1844 		rtm->rtm_version = RTM_VERSION;
1845 		rtm->rtm_type = type;
1846 		rtm->rtm_msglen = len;
1847 	}
1848 
1849 	*plen = len;
1850 
1851 	if (w != NULL && cp == NULL)
1852 		return (ENOBUFS);
1853 
1854 	return (0);
1855 }
1856 
1857 /*
1858  * This routine is called to generate a message from the routing
1859  * socket indicating that a redirect has occurred, a routing lookup
1860  * has failed, or that a protocol has detected timeouts to a particular
1861  * destination.
1862  */
1863 void
1864 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1865     int fibnum)
1866 {
1867 	struct rt_msghdr *rtm;
1868 	struct mbuf *m;
1869 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1870 
1871 	if (V_route_cb.any_count == 0)
1872 		return;
1873 	m = rtsock_msg_mbuf(type, rtinfo);
1874 	if (m == NULL)
1875 		return;
1876 
1877 	if (fibnum != RT_ALL_FIBS) {
1878 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1879 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1880 		M_SETFIB(m, fibnum);
1881 		m->m_flags |= RTS_FILTER_FIB;
1882 	}
1883 
1884 	rtm = mtod(m, struct rt_msghdr *);
1885 	rtm->rtm_flags = RTF_DONE | flags;
1886 	rtm->rtm_errno = error;
1887 	rtm->rtm_addrs = rtinfo->rti_addrs;
1888 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1889 }
1890 
1891 void
1892 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1893 {
1894 
1895 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1896 }
1897 
1898 /*
1899  * This routine is called to generate a message from the routing
1900  * socket indicating that the status of a network interface has changed.
1901  */
1902 void
1903 rt_ifmsg(struct ifnet *ifp)
1904 {
1905 	struct if_msghdr *ifm;
1906 	struct mbuf *m;
1907 	struct rt_addrinfo info;
1908 
1909 	if (V_route_cb.any_count == 0)
1910 		return;
1911 	bzero((caddr_t)&info, sizeof(info));
1912 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1913 	if (m == NULL)
1914 		return;
1915 	ifm = mtod(m, struct if_msghdr *);
1916 	ifm->ifm_index = ifp->if_index;
1917 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1918 	if_data_copy(ifp, &ifm->ifm_data);
1919 	ifm->ifm_addrs = 0;
1920 	rt_dispatch(m, AF_UNSPEC);
1921 }
1922 
1923 /*
1924  * Announce interface address arrival/withdraw.
1925  * Please do not call directly, use rt_addrmsg().
1926  * Assume input data to be valid.
1927  * Returns 0 on success.
1928  */
1929 int
1930 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1931 {
1932 	struct rt_addrinfo info;
1933 	struct sockaddr *sa;
1934 	int ncmd;
1935 	struct mbuf *m;
1936 	struct ifa_msghdr *ifam;
1937 	struct ifnet *ifp = ifa->ifa_ifp;
1938 	struct sockaddr_storage ss;
1939 
1940 	if (V_route_cb.any_count == 0)
1941 		return (0);
1942 
1943 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1944 
1945 	bzero((caddr_t)&info, sizeof(info));
1946 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1947 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1948 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1949 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1950 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1951 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1952 		return (ENOBUFS);
1953 	ifam = mtod(m, struct ifa_msghdr *);
1954 	ifam->ifam_index = ifp->if_index;
1955 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1956 	ifam->ifam_flags = ifa->ifa_flags;
1957 	ifam->ifam_addrs = info.rti_addrs;
1958 
1959 	if (fibnum != RT_ALL_FIBS) {
1960 		M_SETFIB(m, fibnum);
1961 		m->m_flags |= RTS_FILTER_FIB;
1962 	}
1963 
1964 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1965 
1966 	return (0);
1967 }
1968 
1969 /*
1970  * Announce route addition/removal to rtsock based on @rt data.
1971  * Callers are advives to use rt_routemsg() instead of using this
1972  *  function directly.
1973  * Assume @rt data is consistent.
1974  *
1975  * Returns 0 on success.
1976  */
1977 int
1978 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh,
1979     int fibnum)
1980 {
1981 	union sockaddr_union dst, mask;
1982 	struct rt_addrinfo info;
1983 
1984 	if (V_route_cb.any_count == 0)
1985 		return (0);
1986 
1987 	int family = rt_get_family(rt);
1988 	init_sockaddrs_family(family, &dst.sa, &mask.sa);
1989 	export_rtaddrs(rt, &dst.sa, &mask.sa);
1990 
1991 	bzero((caddr_t)&info, sizeof(info));
1992 	info.rti_info[RTAX_DST] = &dst.sa;
1993 	info.rti_info[RTAX_NETMASK] = &mask.sa;
1994 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
1995 	info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
1996 	info.rti_ifp = nh->nh_ifp;
1997 
1998 	return (rtsock_routemsg_info(cmd, &info, fibnum));
1999 }
2000 
2001 int
2002 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
2003 {
2004 	struct rt_msghdr *rtm;
2005 	struct sockaddr *sa;
2006 	struct mbuf *m;
2007 
2008 	if (V_route_cb.any_count == 0)
2009 		return (0);
2010 
2011 	if (info->rti_flags & RTF_HOST)
2012 		info->rti_info[RTAX_NETMASK] = NULL;
2013 
2014 	m = rtsock_msg_mbuf(cmd, info);
2015 	if (m == NULL)
2016 		return (ENOBUFS);
2017 
2018 	if (fibnum != RT_ALL_FIBS) {
2019 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
2020 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
2021 		M_SETFIB(m, fibnum);
2022 		m->m_flags |= RTS_FILTER_FIB;
2023 	}
2024 
2025 	rtm = mtod(m, struct rt_msghdr *);
2026 	rtm->rtm_addrs = info->rti_addrs;
2027 	if (info->rti_ifp != NULL)
2028 		rtm->rtm_index = info->rti_ifp->if_index;
2029 	/* Add RTF_DONE to indicate command 'completion' required by API */
2030 	info->rti_flags |= RTF_DONE;
2031 	/* Reported routes has to be up */
2032 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
2033 		info->rti_flags |= RTF_UP;
2034 	rtm->rtm_flags = info->rti_flags;
2035 
2036 	sa = info->rti_info[RTAX_DST];
2037 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
2038 
2039 	return (0);
2040 }
2041 
2042 /*
2043  * This is the analogue to the rt_newaddrmsg which performs the same
2044  * function but for multicast group memberhips.  This is easier since
2045  * there is no route state to worry about.
2046  */
2047 void
2048 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
2049 {
2050 	struct rt_addrinfo info;
2051 	struct mbuf *m = NULL;
2052 	struct ifnet *ifp = ifma->ifma_ifp;
2053 	struct ifma_msghdr *ifmam;
2054 
2055 	if (V_route_cb.any_count == 0)
2056 		return;
2057 
2058 	bzero((caddr_t)&info, sizeof(info));
2059 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2060 	if (ifp && ifp->if_addr)
2061 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
2062 	else
2063 		info.rti_info[RTAX_IFP] = NULL;
2064 	/*
2065 	 * If a link-layer address is present, present it as a ``gateway''
2066 	 * (similarly to how ARP entries, e.g., are presented).
2067 	 */
2068 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
2069 	m = rtsock_msg_mbuf(cmd, &info);
2070 	if (m == NULL)
2071 		return;
2072 	ifmam = mtod(m, struct ifma_msghdr *);
2073 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
2074 	    __func__));
2075 	ifmam->ifmam_index = ifp->if_index;
2076 	ifmam->ifmam_addrs = info.rti_addrs;
2077 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
2078 }
2079 
2080 static struct mbuf *
2081 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
2082 	struct rt_addrinfo *info)
2083 {
2084 	struct if_announcemsghdr *ifan;
2085 	struct mbuf *m;
2086 
2087 	if (V_route_cb.any_count == 0)
2088 		return NULL;
2089 	bzero((caddr_t)info, sizeof(*info));
2090 	m = rtsock_msg_mbuf(type, info);
2091 	if (m != NULL) {
2092 		ifan = mtod(m, struct if_announcemsghdr *);
2093 		ifan->ifan_index = ifp->if_index;
2094 		strlcpy(ifan->ifan_name, ifp->if_xname,
2095 			sizeof(ifan->ifan_name));
2096 		ifan->ifan_what = what;
2097 	}
2098 	return m;
2099 }
2100 
2101 /*
2102  * This is called to generate routing socket messages indicating
2103  * IEEE80211 wireless events.
2104  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
2105  */
2106 void
2107 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
2108 {
2109 	struct mbuf *m;
2110 	struct rt_addrinfo info;
2111 
2112 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
2113 	if (m != NULL) {
2114 		/*
2115 		 * Append the ieee80211 data.  Try to stick it in the
2116 		 * mbuf containing the ifannounce msg; otherwise allocate
2117 		 * a new mbuf and append.
2118 		 *
2119 		 * NB: we assume m is a single mbuf.
2120 		 */
2121 		if (data_len > M_TRAILINGSPACE(m)) {
2122 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
2123 			if (n == NULL) {
2124 				m_freem(m);
2125 				return;
2126 			}
2127 			bcopy(data, mtod(n, void *), data_len);
2128 			n->m_len = data_len;
2129 			m->m_next = n;
2130 		} else if (data_len > 0) {
2131 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
2132 			m->m_len += data_len;
2133 		}
2134 		if (m->m_flags & M_PKTHDR)
2135 			m->m_pkthdr.len += data_len;
2136 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
2137 		rt_dispatch(m, AF_UNSPEC);
2138 	}
2139 }
2140 
2141 /*
2142  * This is called to generate routing socket messages indicating
2143  * network interface arrival and departure.
2144  */
2145 void
2146 rt_ifannouncemsg(struct ifnet *ifp, int what)
2147 {
2148 	struct mbuf *m;
2149 	struct rt_addrinfo info;
2150 
2151 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
2152 	if (m != NULL)
2153 		rt_dispatch(m, AF_UNSPEC);
2154 }
2155 
2156 static void
2157 rt_dispatch(struct mbuf *m, sa_family_t saf)
2158 {
2159 	struct m_tag *tag;
2160 
2161 	/*
2162 	 * Preserve the family from the sockaddr, if any, in an m_tag for
2163 	 * use when injecting the mbuf into the routing socket buffer from
2164 	 * the netisr.
2165 	 */
2166 	if (saf != AF_UNSPEC) {
2167 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
2168 		    M_NOWAIT);
2169 		if (tag == NULL) {
2170 			m_freem(m);
2171 			return;
2172 		}
2173 		*(unsigned short *)(tag + 1) = saf;
2174 		m_tag_prepend(m, tag);
2175 	}
2176 #ifdef VIMAGE
2177 	if (V_loif)
2178 		m->m_pkthdr.rcvif = V_loif;
2179 	else {
2180 		m_freem(m);
2181 		return;
2182 	}
2183 #endif
2184 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
2185 }
2186 
2187 /*
2188  * Checks if rte can be exported w.r.t jails/vnets.
2189  *
2190  * Returns true if it can, false otherwise.
2191  */
2192 static bool
2193 can_export_rte(struct ucred *td_ucred, bool rt_is_host,
2194     const struct sockaddr *rt_dst)
2195 {
2196 
2197 	if ((!rt_is_host) ? jailed_without_vnet(td_ucred)
2198 	    : prison_if(td_ucred, rt_dst) != 0)
2199 		return (false);
2200 	return (true);
2201 }
2202 
2203 
2204 /*
2205  * This is used in dumping the kernel table via sysctl().
2206  */
2207 static int
2208 sysctl_dumpentry(struct rtentry *rt, void *vw)
2209 {
2210 	struct walkarg *w = vw;
2211 	struct nhop_object *nh;
2212 	int error = 0;
2213 
2214 	NET_EPOCH_ASSERT();
2215 
2216 	export_rtaddrs(rt, w->dst, w->mask);
2217 	if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst))
2218 		return (0);
2219 	nh = rt_get_raw_nhop(rt);
2220 #ifdef ROUTE_MPATH
2221 	if (NH_IS_NHGRP(nh)) {
2222 		struct weightened_nhop *wn;
2223 		uint32_t num_nhops;
2224 		wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
2225 		for (int i = 0; i < num_nhops; i++) {
2226 			error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w);
2227 			if (error != 0)
2228 				return (error);
2229 		}
2230 	} else
2231 #endif
2232 		error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w);
2233 
2234 	return (0);
2235 }
2236 
2237 
2238 static int
2239 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight,
2240     struct walkarg *w)
2241 {
2242 	struct rt_addrinfo info;
2243 	int error = 0, size;
2244 	uint32_t rtflags;
2245 
2246 	rtflags = nhop_get_rtflags(nh);
2247 
2248 	if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg))
2249 		return (0);
2250 
2251 	bzero((caddr_t)&info, sizeof(info));
2252 	info.rti_info[RTAX_DST] = w->dst;
2253 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
2254 	info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask;
2255 	info.rti_info[RTAX_GENMASK] = 0;
2256 	if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
2257 		info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
2258 		info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
2259 		if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
2260 			info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
2261 	}
2262 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
2263 		return (error);
2264 	if (w->w_req && w->w_tmem) {
2265 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
2266 
2267 		bzero(&rtm->rtm_index,
2268 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
2269 
2270 		/*
2271 		 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags)
2272 		 * and RTF_UP (if entry is linked, which is always true here).
2273 		 * Given that, use nhop rtflags & add RTF_UP.
2274 		 */
2275 		rtm->rtm_flags = rtflags | RTF_UP;
2276 		if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
2277 			rtm->rtm_flags = RTF_GATEWAY |
2278 				(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
2279 		rt_getmetrics(rt, nh, &rtm->rtm_rmx);
2280 		rtm->rtm_rmx.rmx_weight = weight;
2281 		rtm->rtm_index = nh->nh_ifp->if_index;
2282 		rtm->rtm_addrs = info.rti_addrs;
2283 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
2284 		return (error);
2285 	}
2286 	return (error);
2287 }
2288 
2289 static int
2290 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
2291     struct rt_addrinfo *info, struct walkarg *w, int len)
2292 {
2293 	struct if_msghdrl *ifm;
2294 	struct if_data *ifd;
2295 
2296 	ifm = (struct if_msghdrl *)w->w_tmem;
2297 
2298 #ifdef COMPAT_FREEBSD32
2299 	if (w->w_req->flags & SCTL_MASK32) {
2300 		struct if_msghdrl32 *ifm32;
2301 
2302 		ifm32 = (struct if_msghdrl32 *)ifm;
2303 		ifm32->ifm_addrs = info->rti_addrs;
2304 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2305 		ifm32->ifm_index = ifp->if_index;
2306 		ifm32->_ifm_spare1 = 0;
2307 		ifm32->ifm_len = sizeof(*ifm32);
2308 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
2309 		ifm32->_ifm_spare2 = 0;
2310 		ifd = &ifm32->ifm_data;
2311 	} else
2312 #endif
2313 	{
2314 		ifm->ifm_addrs = info->rti_addrs;
2315 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2316 		ifm->ifm_index = ifp->if_index;
2317 		ifm->_ifm_spare1 = 0;
2318 		ifm->ifm_len = sizeof(*ifm);
2319 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
2320 		ifm->_ifm_spare2 = 0;
2321 		ifd = &ifm->ifm_data;
2322 	}
2323 
2324 	memcpy(ifd, src_ifd, sizeof(*ifd));
2325 
2326 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
2327 }
2328 
2329 static int
2330 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
2331     struct rt_addrinfo *info, struct walkarg *w, int len)
2332 {
2333 	struct if_msghdr *ifm;
2334 	struct if_data *ifd;
2335 
2336 	ifm = (struct if_msghdr *)w->w_tmem;
2337 
2338 #ifdef COMPAT_FREEBSD32
2339 	if (w->w_req->flags & SCTL_MASK32) {
2340 		struct if_msghdr32 *ifm32;
2341 
2342 		ifm32 = (struct if_msghdr32 *)ifm;
2343 		ifm32->ifm_addrs = info->rti_addrs;
2344 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2345 		ifm32->ifm_index = ifp->if_index;
2346 		ifm32->_ifm_spare1 = 0;
2347 		ifd = &ifm32->ifm_data;
2348 	} else
2349 #endif
2350 	{
2351 		ifm->ifm_addrs = info->rti_addrs;
2352 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2353 		ifm->ifm_index = ifp->if_index;
2354 		ifm->_ifm_spare1 = 0;
2355 		ifd = &ifm->ifm_data;
2356 	}
2357 
2358 	memcpy(ifd, src_ifd, sizeof(*ifd));
2359 
2360 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
2361 }
2362 
2363 static int
2364 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
2365     struct walkarg *w, int len)
2366 {
2367 	struct ifa_msghdrl *ifam;
2368 	struct if_data *ifd;
2369 
2370 	ifam = (struct ifa_msghdrl *)w->w_tmem;
2371 
2372 #ifdef COMPAT_FREEBSD32
2373 	if (w->w_req->flags & SCTL_MASK32) {
2374 		struct ifa_msghdrl32 *ifam32;
2375 
2376 		ifam32 = (struct ifa_msghdrl32 *)ifam;
2377 		ifam32->ifam_addrs = info->rti_addrs;
2378 		ifam32->ifam_flags = ifa->ifa_flags;
2379 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
2380 		ifam32->_ifam_spare1 = 0;
2381 		ifam32->ifam_len = sizeof(*ifam32);
2382 		ifam32->ifam_data_off =
2383 		    offsetof(struct ifa_msghdrl32, ifam_data);
2384 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
2385 		ifd = &ifam32->ifam_data;
2386 	} else
2387 #endif
2388 	{
2389 		ifam->ifam_addrs = info->rti_addrs;
2390 		ifam->ifam_flags = ifa->ifa_flags;
2391 		ifam->ifam_index = ifa->ifa_ifp->if_index;
2392 		ifam->_ifam_spare1 = 0;
2393 		ifam->ifam_len = sizeof(*ifam);
2394 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
2395 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2396 		ifd = &ifam->ifam_data;
2397 	}
2398 
2399 	bzero(ifd, sizeof(*ifd));
2400 	ifd->ifi_datalen = sizeof(struct if_data);
2401 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
2402 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
2403 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
2404 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
2405 
2406 	/* Fixup if_data carp(4) vhid. */
2407 	if (carp_get_vhid_p != NULL)
2408 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
2409 
2410 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2411 }
2412 
2413 static int
2414 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
2415     struct walkarg *w, int len)
2416 {
2417 	struct ifa_msghdr *ifam;
2418 
2419 	ifam = (struct ifa_msghdr *)w->w_tmem;
2420 	ifam->ifam_addrs = info->rti_addrs;
2421 	ifam->ifam_flags = ifa->ifa_flags;
2422 	ifam->ifam_index = ifa->ifa_ifp->if_index;
2423 	ifam->_ifam_spare1 = 0;
2424 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2425 
2426 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2427 }
2428 
2429 static int
2430 sysctl_iflist(int af, struct walkarg *w)
2431 {
2432 	struct ifnet *ifp;
2433 	struct ifaddr *ifa;
2434 	struct if_data ifd;
2435 	struct rt_addrinfo info;
2436 	int len, error = 0;
2437 	struct sockaddr_storage ss;
2438 
2439 	bzero((caddr_t)&info, sizeof(info));
2440 	bzero(&ifd, sizeof(ifd));
2441 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2442 		if (w->w_arg && w->w_arg != ifp->if_index)
2443 			continue;
2444 		if_data_copy(ifp, &ifd);
2445 		ifa = ifp->if_addr;
2446 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
2447 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
2448 		if (error != 0)
2449 			goto done;
2450 		info.rti_info[RTAX_IFP] = NULL;
2451 		if (w->w_req && w->w_tmem) {
2452 			if (w->w_op == NET_RT_IFLISTL)
2453 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
2454 				    len);
2455 			else
2456 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
2457 				    len);
2458 			if (error)
2459 				goto done;
2460 		}
2461 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
2462 			if (af && af != ifa->ifa_addr->sa_family)
2463 				continue;
2464 			if (prison_if(w->w_req->td->td_ucred,
2465 			    ifa->ifa_addr) != 0)
2466 				continue;
2467 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
2468 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
2469 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
2470 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
2471 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
2472 			if (error != 0)
2473 				goto done;
2474 			if (w->w_req && w->w_tmem) {
2475 				if (w->w_op == NET_RT_IFLISTL)
2476 					error = sysctl_iflist_ifaml(ifa, &info,
2477 					    w, len);
2478 				else
2479 					error = sysctl_iflist_ifam(ifa, &info,
2480 					    w, len);
2481 				if (error)
2482 					goto done;
2483 			}
2484 		}
2485 		info.rti_info[RTAX_IFA] = NULL;
2486 		info.rti_info[RTAX_NETMASK] = NULL;
2487 		info.rti_info[RTAX_BRD] = NULL;
2488 	}
2489 done:
2490 	return (error);
2491 }
2492 
2493 static int
2494 sysctl_ifmalist(int af, struct walkarg *w)
2495 {
2496 	struct rt_addrinfo info;
2497 	struct ifaddr *ifa;
2498 	struct ifmultiaddr *ifma;
2499 	struct ifnet *ifp;
2500 	int error, len;
2501 
2502 	NET_EPOCH_ASSERT();
2503 
2504 	error = 0;
2505 	bzero((caddr_t)&info, sizeof(info));
2506 
2507 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2508 		if (w->w_arg && w->w_arg != ifp->if_index)
2509 			continue;
2510 		ifa = ifp->if_addr;
2511 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
2512 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2513 			if (af && af != ifma->ifma_addr->sa_family)
2514 				continue;
2515 			if (prison_if(w->w_req->td->td_ucred,
2516 			    ifma->ifma_addr) != 0)
2517 				continue;
2518 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2519 			info.rti_info[RTAX_GATEWAY] =
2520 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
2521 			    ifma->ifma_lladdr : NULL;
2522 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
2523 			if (error != 0)
2524 				break;
2525 			if (w->w_req && w->w_tmem) {
2526 				struct ifma_msghdr *ifmam;
2527 
2528 				ifmam = (struct ifma_msghdr *)w->w_tmem;
2529 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2530 				ifmam->ifmam_flags = 0;
2531 				ifmam->ifmam_addrs = info.rti_addrs;
2532 				ifmam->_ifmam_spare1 = 0;
2533 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2534 				if (error != 0)
2535 					break;
2536 			}
2537 		}
2538 		if (error != 0)
2539 			break;
2540 	}
2541 	return (error);
2542 }
2543 
2544 static void
2545 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w)
2546 {
2547 	union sockaddr_union sa_dst, sa_mask;
2548 
2549 	w->family = family;
2550 	w->dst = (struct sockaddr *)&sa_dst;
2551 	w->mask = (struct sockaddr *)&sa_mask;
2552 
2553 	init_sockaddrs_family(family, w->dst, w->mask);
2554 
2555 	rib_walk(fibnum, family, false, sysctl_dumpentry, w);
2556 }
2557 
2558 static int
2559 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2560 {
2561 	struct epoch_tracker et;
2562 	int	*name = (int *)arg1;
2563 	u_int	namelen = arg2;
2564 	struct rib_head *rnh = NULL; /* silence compiler. */
2565 	int	i, lim, error = EINVAL;
2566 	int	fib = 0;
2567 	u_char	af;
2568 	struct	walkarg w;
2569 
2570 	if (namelen < 3)
2571 		return (EINVAL);
2572 
2573 	name++;
2574 	namelen--;
2575 	if (req->newptr)
2576 		return (EPERM);
2577 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) {
2578 		if (namelen == 3)
2579 			fib = req->td->td_proc->p_fibnum;
2580 		else if (namelen == 4)
2581 			fib = (name[3] == RT_ALL_FIBS) ?
2582 			    req->td->td_proc->p_fibnum : name[3];
2583 		else
2584 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2585 		if (fib < 0 || fib >= rt_numfibs)
2586 			return (EINVAL);
2587 	} else if (namelen != 3)
2588 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2589 	af = name[0];
2590 	if (af > AF_MAX)
2591 		return (EINVAL);
2592 	bzero(&w, sizeof(w));
2593 	w.w_op = name[1];
2594 	w.w_arg = name[2];
2595 	w.w_req = req;
2596 
2597 	error = sysctl_wire_old_buffer(req, 0);
2598 	if (error)
2599 		return (error);
2600 
2601 	/*
2602 	 * Allocate reply buffer in advance.
2603 	 * All rtsock messages has maximum length of u_short.
2604 	 */
2605 	w.w_tmemsize = 65536;
2606 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2607 
2608 	NET_EPOCH_ENTER(et);
2609 	switch (w.w_op) {
2610 	case NET_RT_DUMP:
2611 	case NET_RT_FLAGS:
2612 		if (af == 0) {			/* dump all tables */
2613 			i = 1;
2614 			lim = AF_MAX;
2615 		} else				/* dump only one table */
2616 			i = lim = af;
2617 
2618 		/*
2619 		 * take care of llinfo entries, the caller must
2620 		 * specify an AF
2621 		 */
2622 		if (w.w_op == NET_RT_FLAGS &&
2623 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2624 			if (af != 0)
2625 				error = lltable_sysctl_dumparp(af, w.w_req);
2626 			else
2627 				error = EINVAL;
2628 			break;
2629 		}
2630 		/*
2631 		 * take care of routing entries
2632 		 */
2633 		for (error = 0; error == 0 && i <= lim; i++) {
2634 			rnh = rt_tables_get_rnh(fib, i);
2635 			if (rnh != NULL) {
2636 				rtable_sysctl_dump(fib, i, &w);
2637 			} else if (af != 0)
2638 				error = EAFNOSUPPORT;
2639 		}
2640 		break;
2641 	case NET_RT_NHOP:
2642 	case NET_RT_NHGRP:
2643 		/* Allow dumping one specific af/fib at a time */
2644 		if (namelen < 4) {
2645 			error = EINVAL;
2646 			break;
2647 		}
2648 		fib = name[3];
2649 		if (fib < 0 || fib > rt_numfibs) {
2650 			error = EINVAL;
2651 			break;
2652 		}
2653 		rnh = rt_tables_get_rnh(fib, af);
2654 		if (rnh == NULL) {
2655 			error = EAFNOSUPPORT;
2656 			break;
2657 		}
2658 		if (w.w_op == NET_RT_NHOP)
2659 			error = nhops_dump_sysctl(rnh, w.w_req);
2660 		else
2661 #ifdef ROUTE_MPATH
2662 			error = nhgrp_dump_sysctl(rnh, w.w_req);
2663 #else
2664 			error = ENOTSUP;
2665 #endif
2666 		break;
2667 	case NET_RT_IFLIST:
2668 	case NET_RT_IFLISTL:
2669 		error = sysctl_iflist(af, &w);
2670 		break;
2671 
2672 	case NET_RT_IFMALIST:
2673 		error = sysctl_ifmalist(af, &w);
2674 		break;
2675 	}
2676 	NET_EPOCH_EXIT(et);
2677 
2678 	free(w.w_tmem, M_TEMP);
2679 	return (error);
2680 }
2681 
2682 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2683     sysctl_rtsock, "Return route tables and interface/address lists");
2684 
2685 /*
2686  * Definitions of protocols supported in the ROUTE domain.
2687  */
2688 
2689 static struct domain routedomain;		/* or at least forward */
2690 
2691 static struct protosw routesw[] = {
2692 {
2693 	.pr_type =		SOCK_RAW,
2694 	.pr_domain =		&routedomain,
2695 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2696 	.pr_output =		route_output,
2697 	.pr_ctlinput =		raw_ctlinput,
2698 	.pr_init =		raw_init,
2699 	.pr_usrreqs =		&route_usrreqs
2700 }
2701 };
2702 
2703 static struct domain routedomain = {
2704 	.dom_family =		PF_ROUTE,
2705 	.dom_name =		"route",
2706 	.dom_protosw =		routesw,
2707 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
2708 };
2709 
2710 VNET_DOMAIN_SET(route);
2711