xref: /freebsd/sys/net80211/ieee80211.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #include <net80211/ieee80211_ratectl.h>
57 #include <net80211/ieee80211_vht.h>
58 
59 #include <net/bpf.h>
60 
61 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
62 	[IEEE80211_MODE_AUTO]	  = "auto",
63 	[IEEE80211_MODE_11A]	  = "11a",
64 	[IEEE80211_MODE_11B]	  = "11b",
65 	[IEEE80211_MODE_11G]	  = "11g",
66 	[IEEE80211_MODE_FH]	  = "FH",
67 	[IEEE80211_MODE_TURBO_A]  = "turboA",
68 	[IEEE80211_MODE_TURBO_G]  = "turboG",
69 	[IEEE80211_MODE_STURBO_A] = "sturboA",
70 	[IEEE80211_MODE_HALF]	  = "half",
71 	[IEEE80211_MODE_QUARTER]  = "quarter",
72 	[IEEE80211_MODE_11NA]	  = "11na",
73 	[IEEE80211_MODE_11NG]	  = "11ng",
74 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
75 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
76 };
77 /* map ieee80211_opmode to the corresponding capability bit */
78 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
79 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
80 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
81 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
82 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
83 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
84 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
85 #ifdef IEEE80211_SUPPORT_MESH
86 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
87 #endif
88 };
89 
90 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
91 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
92 
93 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
94 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
97 static	int ieee80211_media_setup(struct ieee80211com *ic,
98 		struct ifmedia *media, int caps, int addsta,
99 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
100 static	int media_status(enum ieee80211_opmode,
101 		const struct ieee80211_channel *);
102 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
103 
104 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
105 
106 /*
107  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
108  */
109 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
110 static const struct ieee80211_rateset ieee80211_rateset_11a =
111 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
112 static const struct ieee80211_rateset ieee80211_rateset_half =
113 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
114 static const struct ieee80211_rateset ieee80211_rateset_quarter =
115 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
116 static const struct ieee80211_rateset ieee80211_rateset_11b =
117 	{ 4, { B(2), B(4), B(11), B(22) } };
118 /* NB: OFDM rates are handled specially based on mode */
119 static const struct ieee80211_rateset ieee80211_rateset_11g =
120 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
121 #undef B
122 
123 static int set_vht_extchan(struct ieee80211_channel *c);
124 
125 /*
126  * Fill in 802.11 available channel set, mark
127  * all available channels as active, and pick
128  * a default channel if not already specified.
129  */
130 void
131 ieee80211_chan_init(struct ieee80211com *ic)
132 {
133 #define	DEFAULTRATES(m, def) do { \
134 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
135 		ic->ic_sup_rates[m] = def; \
136 } while (0)
137 	struct ieee80211_channel *c;
138 	int i;
139 
140 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
141 		("invalid number of channels specified: %u", ic->ic_nchans));
142 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
143 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
144 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
145 	for (i = 0; i < ic->ic_nchans; i++) {
146 		c = &ic->ic_channels[i];
147 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
148 		/*
149 		 * Help drivers that work only with frequencies by filling
150 		 * in IEEE channel #'s if not already calculated.  Note this
151 		 * mimics similar work done in ieee80211_setregdomain when
152 		 * changing regulatory state.
153 		 */
154 		if (c->ic_ieee == 0)
155 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
156 
157 		/*
158 		 * Setup the HT40/VHT40 upper/lower bits.
159 		 * The VHT80 math is done elsewhere.
160 		 */
161 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
162 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
163 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
164 			    c->ic_flags);
165 
166 		/* Update VHT math */
167 		/*
168 		 * XXX VHT again, note that this assumes VHT80 channels
169 		 * are legit already
170 		 */
171 		set_vht_extchan(c);
172 
173 		/* default max tx power to max regulatory */
174 		if (c->ic_maxpower == 0)
175 			c->ic_maxpower = 2*c->ic_maxregpower;
176 		setbit(ic->ic_chan_avail, c->ic_ieee);
177 		/*
178 		 * Identify mode capabilities.
179 		 */
180 		if (IEEE80211_IS_CHAN_A(c))
181 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
182 		if (IEEE80211_IS_CHAN_B(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
184 		if (IEEE80211_IS_CHAN_ANYG(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
186 		if (IEEE80211_IS_CHAN_FHSS(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
188 		if (IEEE80211_IS_CHAN_108A(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
190 		if (IEEE80211_IS_CHAN_108G(c))
191 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
192 		if (IEEE80211_IS_CHAN_ST(c))
193 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
194 		if (IEEE80211_IS_CHAN_HALF(c))
195 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
196 		if (IEEE80211_IS_CHAN_QUARTER(c))
197 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
198 		if (IEEE80211_IS_CHAN_HTA(c))
199 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
200 		if (IEEE80211_IS_CHAN_HTG(c))
201 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
202 		if (IEEE80211_IS_CHAN_VHTA(c))
203 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
204 		if (IEEE80211_IS_CHAN_VHTG(c))
205 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
206 	}
207 	/* initialize candidate channels to all available */
208 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
209 		sizeof(ic->ic_chan_avail));
210 
211 	/* sort channel table to allow lookup optimizations */
212 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
213 
214 	/* invalidate any previous state */
215 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
216 	ic->ic_prevchan = NULL;
217 	ic->ic_csa_newchan = NULL;
218 	/* arbitrarily pick the first channel */
219 	ic->ic_curchan = &ic->ic_channels[0];
220 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
221 
222 	/* fillin well-known rate sets if driver has not specified */
223 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
224 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
225 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
226 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
228 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
230 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
231 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
232 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
233 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
235 
236 	/*
237 	 * Setup required information to fill the mcsset field, if driver did
238 	 * not. Assume a 2T2R setup for historic reasons.
239 	 */
240 	if (ic->ic_rxstream == 0)
241 		ic->ic_rxstream = 2;
242 	if (ic->ic_txstream == 0)
243 		ic->ic_txstream = 2;
244 
245 	ieee80211_init_suphtrates(ic);
246 
247 	/*
248 	 * Set auto mode to reset active channel state and any desired channel.
249 	 */
250 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
251 #undef DEFAULTRATES
252 }
253 
254 static void
255 null_update_mcast(struct ieee80211com *ic)
256 {
257 
258 	ic_printf(ic, "need multicast update callback\n");
259 }
260 
261 static void
262 null_update_promisc(struct ieee80211com *ic)
263 {
264 
265 	ic_printf(ic, "need promiscuous mode update callback\n");
266 }
267 
268 static void
269 null_update_chw(struct ieee80211com *ic)
270 {
271 
272 	ic_printf(ic, "%s: need callback\n", __func__);
273 }
274 
275 int
276 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
277 {
278 	va_list ap;
279 	int retval;
280 
281 	retval = printf("%s: ", ic->ic_name);
282 	va_start(ap, fmt);
283 	retval += vprintf(fmt, ap);
284 	va_end(ap);
285 	return (retval);
286 }
287 
288 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
289 static struct mtx ic_list_mtx;
290 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
291 
292 static int
293 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
294 {
295 	struct ieee80211com *ic;
296 	struct sbuf sb;
297 	char *sp;
298 	int error;
299 
300 	error = sysctl_wire_old_buffer(req, 0);
301 	if (error)
302 		return (error);
303 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
304 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
305 	sp = "";
306 	mtx_lock(&ic_list_mtx);
307 	LIST_FOREACH(ic, &ic_head, ic_next) {
308 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
309 		sp = " ";
310 	}
311 	mtx_unlock(&ic_list_mtx);
312 	error = sbuf_finish(&sb);
313 	sbuf_delete(&sb);
314 	return (error);
315 }
316 
317 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
318     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
319     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
320 
321 /*
322  * Attach/setup the common net80211 state.  Called by
323  * the driver on attach to prior to creating any vap's.
324  */
325 void
326 ieee80211_ifattach(struct ieee80211com *ic)
327 {
328 
329 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
330 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
331 	TAILQ_INIT(&ic->ic_vaps);
332 
333 	/* Create a taskqueue for all state changes */
334 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
335 	    taskqueue_thread_enqueue, &ic->ic_tq);
336 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
337 	    ic->ic_name);
338 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
339 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
340 	/*
341 	 * Fill in 802.11 available channel set, mark all
342 	 * available channels as active, and pick a default
343 	 * channel if not already specified.
344 	 */
345 	ieee80211_chan_init(ic);
346 
347 	ic->ic_update_mcast = null_update_mcast;
348 	ic->ic_update_promisc = null_update_promisc;
349 	ic->ic_update_chw = null_update_chw;
350 
351 	ic->ic_hash_key = arc4random();
352 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
353 	ic->ic_lintval = ic->ic_bintval;
354 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
355 
356 	ieee80211_crypto_attach(ic);
357 	ieee80211_node_attach(ic);
358 	ieee80211_power_attach(ic);
359 	ieee80211_proto_attach(ic);
360 #ifdef IEEE80211_SUPPORT_SUPERG
361 	ieee80211_superg_attach(ic);
362 #endif
363 	ieee80211_ht_attach(ic);
364 	ieee80211_vht_attach(ic);
365 	ieee80211_scan_attach(ic);
366 	ieee80211_regdomain_attach(ic);
367 	ieee80211_dfs_attach(ic);
368 
369 	ieee80211_sysctl_attach(ic);
370 
371 	mtx_lock(&ic_list_mtx);
372 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
373 	mtx_unlock(&ic_list_mtx);
374 }
375 
376 /*
377  * Detach net80211 state on device detach.  Tear down
378  * all vap's and reclaim all common state prior to the
379  * device state going away.  Note we may call back into
380  * driver; it must be prepared for this.
381  */
382 void
383 ieee80211_ifdetach(struct ieee80211com *ic)
384 {
385 	struct ieee80211vap *vap;
386 
387 	mtx_lock(&ic_list_mtx);
388 	LIST_REMOVE(ic, ic_next);
389 	mtx_unlock(&ic_list_mtx);
390 
391 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
392 
393 	/*
394 	 * The VAP is responsible for setting and clearing
395 	 * the VIMAGE context.
396 	 */
397 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
398 		ieee80211_vap_destroy(vap);
399 	ieee80211_waitfor_parent(ic);
400 
401 	ieee80211_sysctl_detach(ic);
402 	ieee80211_dfs_detach(ic);
403 	ieee80211_regdomain_detach(ic);
404 	ieee80211_scan_detach(ic);
405 #ifdef IEEE80211_SUPPORT_SUPERG
406 	ieee80211_superg_detach(ic);
407 #endif
408 	ieee80211_vht_detach(ic);
409 	ieee80211_ht_detach(ic);
410 	/* NB: must be called before ieee80211_node_detach */
411 	ieee80211_proto_detach(ic);
412 	ieee80211_crypto_detach(ic);
413 	ieee80211_power_detach(ic);
414 	ieee80211_node_detach(ic);
415 
416 	counter_u64_free(ic->ic_ierrors);
417 	counter_u64_free(ic->ic_oerrors);
418 
419 	taskqueue_free(ic->ic_tq);
420 	IEEE80211_TX_LOCK_DESTROY(ic);
421 	IEEE80211_LOCK_DESTROY(ic);
422 }
423 
424 struct ieee80211com *
425 ieee80211_find_com(const char *name)
426 {
427 	struct ieee80211com *ic;
428 
429 	mtx_lock(&ic_list_mtx);
430 	LIST_FOREACH(ic, &ic_head, ic_next)
431 		if (strcmp(ic->ic_name, name) == 0)
432 			break;
433 	mtx_unlock(&ic_list_mtx);
434 
435 	return (ic);
436 }
437 
438 void
439 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
440 {
441 	struct ieee80211com *ic;
442 
443 	mtx_lock(&ic_list_mtx);
444 	LIST_FOREACH(ic, &ic_head, ic_next)
445 		(*f)(arg, ic);
446 	mtx_unlock(&ic_list_mtx);
447 }
448 
449 /*
450  * Default reset method for use with the ioctl support.  This
451  * method is invoked after any state change in the 802.11
452  * layer that should be propagated to the hardware but not
453  * require re-initialization of the 802.11 state machine (e.g
454  * rescanning for an ap).  We always return ENETRESET which
455  * should cause the driver to re-initialize the device. Drivers
456  * can override this method to implement more optimized support.
457  */
458 static int
459 default_reset(struct ieee80211vap *vap, u_long cmd)
460 {
461 	return ENETRESET;
462 }
463 
464 /*
465  * Default for updating the VAP default TX key index.
466  *
467  * Drivers that support TX offload as well as hardware encryption offload
468  * may need to be informed of key index changes separate from the key
469  * update.
470  */
471 static void
472 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
473 {
474 
475 	/* XXX assert validity */
476 	/* XXX assert we're in a key update block */
477 	vap->iv_def_txkey = kid;
478 }
479 
480 /*
481  * Add underlying device errors to vap errors.
482  */
483 static uint64_t
484 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
485 {
486 	struct ieee80211vap *vap = ifp->if_softc;
487 	struct ieee80211com *ic = vap->iv_ic;
488 	uint64_t rv;
489 
490 	rv = if_get_counter_default(ifp, cnt);
491 	switch (cnt) {
492 	case IFCOUNTER_OERRORS:
493 		rv += counter_u64_fetch(ic->ic_oerrors);
494 		break;
495 	case IFCOUNTER_IERRORS:
496 		rv += counter_u64_fetch(ic->ic_ierrors);
497 		break;
498 	default:
499 		break;
500 	}
501 
502 	return (rv);
503 }
504 
505 /*
506  * Prepare a vap for use.  Drivers use this call to
507  * setup net80211 state in new vap's prior attaching
508  * them with ieee80211_vap_attach (below).
509  */
510 int
511 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
512     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
513     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
514 {
515 	struct ifnet *ifp;
516 
517 	ifp = if_alloc(IFT_ETHER);
518 	if (ifp == NULL) {
519 		ic_printf(ic, "%s: unable to allocate ifnet\n",
520 		    __func__);
521 		return ENOMEM;
522 	}
523 	if_initname(ifp, name, unit);
524 	ifp->if_softc = vap;			/* back pointer */
525 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
526 	ifp->if_transmit = ieee80211_vap_transmit;
527 	ifp->if_qflush = ieee80211_vap_qflush;
528 	ifp->if_ioctl = ieee80211_ioctl;
529 	ifp->if_init = ieee80211_init;
530 	ifp->if_get_counter = ieee80211_get_counter;
531 
532 	vap->iv_ifp = ifp;
533 	vap->iv_ic = ic;
534 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
535 	vap->iv_flags_ext = ic->ic_flags_ext;
536 	vap->iv_flags_ven = ic->ic_flags_ven;
537 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
538 
539 	/* 11n capabilities - XXX methodize */
540 	vap->iv_htcaps = ic->ic_htcaps;
541 	vap->iv_htextcaps = ic->ic_htextcaps;
542 
543 	/* 11ac capabilities - XXX methodize */
544 	vap->iv_vhtcaps = ic->ic_vhtcaps;
545 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
546 
547 	vap->iv_opmode = opmode;
548 	vap->iv_caps |= ieee80211_opcap[opmode];
549 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
550 	switch (opmode) {
551 	case IEEE80211_M_WDS:
552 		/*
553 		 * WDS links must specify the bssid of the far end.
554 		 * For legacy operation this is a static relationship.
555 		 * For non-legacy operation the station must associate
556 		 * and be authorized to pass traffic.  Plumbing the
557 		 * vap to the proper node happens when the vap
558 		 * transitions to RUN state.
559 		 */
560 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
561 		vap->iv_flags |= IEEE80211_F_DESBSSID;
562 		if (flags & IEEE80211_CLONE_WDSLEGACY)
563 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
564 		break;
565 #ifdef IEEE80211_SUPPORT_TDMA
566 	case IEEE80211_M_AHDEMO:
567 		if (flags & IEEE80211_CLONE_TDMA) {
568 			/* NB: checked before clone operation allowed */
569 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
570 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
571 			/*
572 			 * Propagate TDMA capability to mark vap; this
573 			 * cannot be removed and is used to distinguish
574 			 * regular ahdemo operation from ahdemo+tdma.
575 			 */
576 			vap->iv_caps |= IEEE80211_C_TDMA;
577 		}
578 		break;
579 #endif
580 	default:
581 		break;
582 	}
583 	/* auto-enable s/w beacon miss support */
584 	if (flags & IEEE80211_CLONE_NOBEACONS)
585 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
586 	/* auto-generated or user supplied MAC address */
587 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
588 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
589 	/*
590 	 * Enable various functionality by default if we're
591 	 * capable; the driver can override us if it knows better.
592 	 */
593 	if (vap->iv_caps & IEEE80211_C_WME)
594 		vap->iv_flags |= IEEE80211_F_WME;
595 	if (vap->iv_caps & IEEE80211_C_BURST)
596 		vap->iv_flags |= IEEE80211_F_BURST;
597 	/* NB: bg scanning only makes sense for station mode right now */
598 	if (vap->iv_opmode == IEEE80211_M_STA &&
599 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
600 		vap->iv_flags |= IEEE80211_F_BGSCAN;
601 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
602 	/* NB: DFS support only makes sense for ap mode right now */
603 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
604 	    (vap->iv_caps & IEEE80211_C_DFS))
605 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
606 
607 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
608 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
609 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
610 	/*
611 	 * Install a default reset method for the ioctl support;
612 	 * the driver can override this.
613 	 */
614 	vap->iv_reset = default_reset;
615 
616 	/*
617 	 * Install a default crypto key update method, the driver
618 	 * can override this.
619 	 */
620 	vap->iv_update_deftxkey = default_update_deftxkey;
621 
622 	ieee80211_sysctl_vattach(vap);
623 	ieee80211_crypto_vattach(vap);
624 	ieee80211_node_vattach(vap);
625 	ieee80211_power_vattach(vap);
626 	ieee80211_proto_vattach(vap);
627 #ifdef IEEE80211_SUPPORT_SUPERG
628 	ieee80211_superg_vattach(vap);
629 #endif
630 	ieee80211_ht_vattach(vap);
631 	ieee80211_vht_vattach(vap);
632 	ieee80211_scan_vattach(vap);
633 	ieee80211_regdomain_vattach(vap);
634 	ieee80211_radiotap_vattach(vap);
635 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
636 
637 	return 0;
638 }
639 
640 /*
641  * Activate a vap.  State should have been prepared with a
642  * call to ieee80211_vap_setup and by the driver.  On return
643  * from this call the vap is ready for use.
644  */
645 int
646 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
647     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
648 {
649 	struct ifnet *ifp = vap->iv_ifp;
650 	struct ieee80211com *ic = vap->iv_ic;
651 	struct ifmediareq imr;
652 	int maxrate;
653 
654 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
655 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
656 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
657 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
658 
659 	/*
660 	 * Do late attach work that cannot happen until after
661 	 * the driver has had a chance to override defaults.
662 	 */
663 	ieee80211_node_latevattach(vap);
664 	ieee80211_power_latevattach(vap);
665 
666 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
667 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
668 	ieee80211_media_status(ifp, &imr);
669 	/* NB: strip explicit mode; we're actually in autoselect */
670 	ifmedia_set(&vap->iv_media,
671 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
672 	if (maxrate)
673 		ifp->if_baudrate = IF_Mbps(maxrate);
674 
675 	ether_ifattach(ifp, macaddr);
676 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
677 	/* hook output method setup by ether_ifattach */
678 	vap->iv_output = ifp->if_output;
679 	ifp->if_output = ieee80211_output;
680 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
681 
682 	IEEE80211_LOCK(ic);
683 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
684 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
685 #ifdef IEEE80211_SUPPORT_SUPERG
686 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
687 #endif
688 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
689 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
690 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
691 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
692 
693 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
694 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
695 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
696 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
697 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
698 	IEEE80211_UNLOCK(ic);
699 
700 	return 1;
701 }
702 
703 /*
704  * Tear down vap state and reclaim the ifnet.
705  * The driver is assumed to have prepared for
706  * this; e.g. by turning off interrupts for the
707  * underlying device.
708  */
709 void
710 ieee80211_vap_detach(struct ieee80211vap *vap)
711 {
712 	struct ieee80211com *ic = vap->iv_ic;
713 	struct ifnet *ifp = vap->iv_ifp;
714 
715 	CURVNET_SET(ifp->if_vnet);
716 
717 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
718 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
719 
720 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
721 	ether_ifdetach(ifp);
722 
723 	ieee80211_stop(vap);
724 
725 	/*
726 	 * Flush any deferred vap tasks.
727 	 */
728 	ieee80211_draintask(ic, &vap->iv_nstate_task);
729 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
730 	ieee80211_draintask(ic, &vap->iv_wme_task);
731 	ieee80211_draintask(ic, &ic->ic_parent_task);
732 
733 	/* XXX band-aid until ifnet handles this for us */
734 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
735 
736 	IEEE80211_LOCK(ic);
737 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
738 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
739 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
740 #ifdef IEEE80211_SUPPORT_SUPERG
741 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
742 #endif
743 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
744 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
745 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
746 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
747 
748 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
749 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
750 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
751 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
752 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
753 
754 	/* NB: this handles the bpfdetach done below */
755 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
756 	if (vap->iv_ifflags & IFF_PROMISC)
757 		ieee80211_promisc(vap, false);
758 	if (vap->iv_ifflags & IFF_ALLMULTI)
759 		ieee80211_allmulti(vap, false);
760 	IEEE80211_UNLOCK(ic);
761 
762 	ifmedia_removeall(&vap->iv_media);
763 
764 	ieee80211_radiotap_vdetach(vap);
765 	ieee80211_regdomain_vdetach(vap);
766 	ieee80211_scan_vdetach(vap);
767 #ifdef IEEE80211_SUPPORT_SUPERG
768 	ieee80211_superg_vdetach(vap);
769 #endif
770 	ieee80211_vht_vdetach(vap);
771 	ieee80211_ht_vdetach(vap);
772 	/* NB: must be before ieee80211_node_vdetach */
773 	ieee80211_proto_vdetach(vap);
774 	ieee80211_crypto_vdetach(vap);
775 	ieee80211_power_vdetach(vap);
776 	ieee80211_node_vdetach(vap);
777 	ieee80211_sysctl_vdetach(vap);
778 
779 	if_free(ifp);
780 
781 	CURVNET_RESTORE();
782 }
783 
784 /*
785  * Count number of vaps in promisc, and issue promisc on
786  * parent respectively.
787  */
788 void
789 ieee80211_promisc(struct ieee80211vap *vap, bool on)
790 {
791 	struct ieee80211com *ic = vap->iv_ic;
792 
793 	IEEE80211_LOCK_ASSERT(ic);
794 
795 	if (on) {
796 		if (++ic->ic_promisc == 1)
797 			ieee80211_runtask(ic, &ic->ic_promisc_task);
798 	} else {
799 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
800 		    __func__, ic));
801 		if (--ic->ic_promisc == 0)
802 			ieee80211_runtask(ic, &ic->ic_promisc_task);
803 	}
804 }
805 
806 /*
807  * Count number of vaps in allmulti, and issue allmulti on
808  * parent respectively.
809  */
810 void
811 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
812 {
813 	struct ieee80211com *ic = vap->iv_ic;
814 
815 	IEEE80211_LOCK_ASSERT(ic);
816 
817 	if (on) {
818 		if (++ic->ic_allmulti == 1)
819 			ieee80211_runtask(ic, &ic->ic_mcast_task);
820 	} else {
821 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
822 		    __func__, ic));
823 		if (--ic->ic_allmulti == 0)
824 			ieee80211_runtask(ic, &ic->ic_mcast_task);
825 	}
826 }
827 
828 /*
829  * Synchronize flag bit state in the com structure
830  * according to the state of all vap's.  This is used,
831  * for example, to handle state changes via ioctls.
832  */
833 static void
834 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
835 {
836 	struct ieee80211vap *vap;
837 	int bit;
838 
839 	IEEE80211_LOCK_ASSERT(ic);
840 
841 	bit = 0;
842 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
843 		if (vap->iv_flags & flag) {
844 			bit = 1;
845 			break;
846 		}
847 	if (bit)
848 		ic->ic_flags |= flag;
849 	else
850 		ic->ic_flags &= ~flag;
851 }
852 
853 void
854 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
855 {
856 	struct ieee80211com *ic = vap->iv_ic;
857 
858 	IEEE80211_LOCK(ic);
859 	if (flag < 0) {
860 		flag = -flag;
861 		vap->iv_flags &= ~flag;
862 	} else
863 		vap->iv_flags |= flag;
864 	ieee80211_syncflag_locked(ic, flag);
865 	IEEE80211_UNLOCK(ic);
866 }
867 
868 /*
869  * Synchronize flags_ht bit state in the com structure
870  * according to the state of all vap's.  This is used,
871  * for example, to handle state changes via ioctls.
872  */
873 static void
874 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
875 {
876 	struct ieee80211vap *vap;
877 	int bit;
878 
879 	IEEE80211_LOCK_ASSERT(ic);
880 
881 	bit = 0;
882 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
883 		if (vap->iv_flags_ht & flag) {
884 			bit = 1;
885 			break;
886 		}
887 	if (bit)
888 		ic->ic_flags_ht |= flag;
889 	else
890 		ic->ic_flags_ht &= ~flag;
891 }
892 
893 void
894 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
895 {
896 	struct ieee80211com *ic = vap->iv_ic;
897 
898 	IEEE80211_LOCK(ic);
899 	if (flag < 0) {
900 		flag = -flag;
901 		vap->iv_flags_ht &= ~flag;
902 	} else
903 		vap->iv_flags_ht |= flag;
904 	ieee80211_syncflag_ht_locked(ic, flag);
905 	IEEE80211_UNLOCK(ic);
906 }
907 
908 /*
909  * Synchronize flags_vht bit state in the com structure
910  * according to the state of all vap's.  This is used,
911  * for example, to handle state changes via ioctls.
912  */
913 static void
914 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
915 {
916 	struct ieee80211vap *vap;
917 	int bit;
918 
919 	IEEE80211_LOCK_ASSERT(ic);
920 
921 	bit = 0;
922 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
923 		if (vap->iv_flags_vht & flag) {
924 			bit = 1;
925 			break;
926 		}
927 	if (bit)
928 		ic->ic_flags_vht |= flag;
929 	else
930 		ic->ic_flags_vht &= ~flag;
931 }
932 
933 void
934 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
935 {
936 	struct ieee80211com *ic = vap->iv_ic;
937 
938 	IEEE80211_LOCK(ic);
939 	if (flag < 0) {
940 		flag = -flag;
941 		vap->iv_flags_vht &= ~flag;
942 	} else
943 		vap->iv_flags_vht |= flag;
944 	ieee80211_syncflag_vht_locked(ic, flag);
945 	IEEE80211_UNLOCK(ic);
946 }
947 
948 /*
949  * Synchronize flags_ext bit state in the com structure
950  * according to the state of all vap's.  This is used,
951  * for example, to handle state changes via ioctls.
952  */
953 static void
954 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
955 {
956 	struct ieee80211vap *vap;
957 	int bit;
958 
959 	IEEE80211_LOCK_ASSERT(ic);
960 
961 	bit = 0;
962 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
963 		if (vap->iv_flags_ext & flag) {
964 			bit = 1;
965 			break;
966 		}
967 	if (bit)
968 		ic->ic_flags_ext |= flag;
969 	else
970 		ic->ic_flags_ext &= ~flag;
971 }
972 
973 void
974 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
975 {
976 	struct ieee80211com *ic = vap->iv_ic;
977 
978 	IEEE80211_LOCK(ic);
979 	if (flag < 0) {
980 		flag = -flag;
981 		vap->iv_flags_ext &= ~flag;
982 	} else
983 		vap->iv_flags_ext |= flag;
984 	ieee80211_syncflag_ext_locked(ic, flag);
985 	IEEE80211_UNLOCK(ic);
986 }
987 
988 static __inline int
989 mapgsm(u_int freq, u_int flags)
990 {
991 	freq *= 10;
992 	if (flags & IEEE80211_CHAN_QUARTER)
993 		freq += 5;
994 	else if (flags & IEEE80211_CHAN_HALF)
995 		freq += 10;
996 	else
997 		freq += 20;
998 	/* NB: there is no 907/20 wide but leave room */
999 	return (freq - 906*10) / 5;
1000 }
1001 
1002 static __inline int
1003 mappsb(u_int freq, u_int flags)
1004 {
1005 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1006 }
1007 
1008 /*
1009  * Convert MHz frequency to IEEE channel number.
1010  */
1011 int
1012 ieee80211_mhz2ieee(u_int freq, u_int flags)
1013 {
1014 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1015 	if (flags & IEEE80211_CHAN_GSM)
1016 		return mapgsm(freq, flags);
1017 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1018 		if (freq == 2484)
1019 			return 14;
1020 		if (freq < 2484)
1021 			return ((int) freq - 2407) / 5;
1022 		else
1023 			return 15 + ((freq - 2512) / 20);
1024 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1025 		if (freq <= 5000) {
1026 			/* XXX check regdomain? */
1027 			if (IS_FREQ_IN_PSB(freq))
1028 				return mappsb(freq, flags);
1029 			return (freq - 4000) / 5;
1030 		} else
1031 			return (freq - 5000) / 5;
1032 	} else {				/* either, guess */
1033 		if (freq == 2484)
1034 			return 14;
1035 		if (freq < 2484) {
1036 			if (907 <= freq && freq <= 922)
1037 				return mapgsm(freq, flags);
1038 			return ((int) freq - 2407) / 5;
1039 		}
1040 		if (freq < 5000) {
1041 			if (IS_FREQ_IN_PSB(freq))
1042 				return mappsb(freq, flags);
1043 			else if (freq > 4900)
1044 				return (freq - 4000) / 5;
1045 			else
1046 				return 15 + ((freq - 2512) / 20);
1047 		}
1048 		return (freq - 5000) / 5;
1049 	}
1050 #undef IS_FREQ_IN_PSB
1051 }
1052 
1053 /*
1054  * Convert channel to IEEE channel number.
1055  */
1056 int
1057 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1058 {
1059 	if (c == NULL) {
1060 		ic_printf(ic, "invalid channel (NULL)\n");
1061 		return 0;		/* XXX */
1062 	}
1063 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1064 }
1065 
1066 /*
1067  * Convert IEEE channel number to MHz frequency.
1068  */
1069 u_int
1070 ieee80211_ieee2mhz(u_int chan, u_int flags)
1071 {
1072 	if (flags & IEEE80211_CHAN_GSM)
1073 		return 907 + 5 * (chan / 10);
1074 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1075 		if (chan == 14)
1076 			return 2484;
1077 		if (chan < 14)
1078 			return 2407 + chan*5;
1079 		else
1080 			return 2512 + ((chan-15)*20);
1081 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1082 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1083 			chan -= 37;
1084 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1085 		}
1086 		return 5000 + (chan*5);
1087 	} else {				/* either, guess */
1088 		/* XXX can't distinguish PSB+GSM channels */
1089 		if (chan == 14)
1090 			return 2484;
1091 		if (chan < 14)			/* 0-13 */
1092 			return 2407 + chan*5;
1093 		if (chan < 27)			/* 15-26 */
1094 			return 2512 + ((chan-15)*20);
1095 		return 5000 + (chan*5);
1096 	}
1097 }
1098 
1099 static __inline void
1100 set_extchan(struct ieee80211_channel *c)
1101 {
1102 
1103 	/*
1104 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1105 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1106 	 */
1107 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1108 		c->ic_extieee = c->ic_ieee + 4;
1109 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1110 		c->ic_extieee = c->ic_ieee - 4;
1111 	else
1112 		c->ic_extieee = 0;
1113 }
1114 
1115 /*
1116  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1117  *
1118  * This for now uses a hard-coded list of 80MHz wide channels.
1119  *
1120  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1121  * wide channel we've already decided upon.
1122  *
1123  * For VHT80 and VHT160, there are only a small number of fixed
1124  * 80/160MHz wide channels, so we just use those.
1125  *
1126  * This is all likely very very wrong - both the regulatory code
1127  * and this code needs to ensure that all four channels are
1128  * available and valid before the VHT80 (and eight for VHT160) channel
1129  * is created.
1130  */
1131 
1132 struct vht_chan_range {
1133 	uint16_t freq_start;
1134 	uint16_t freq_end;
1135 };
1136 
1137 struct vht_chan_range vht80_chan_ranges[] = {
1138 	{ 5170, 5250 },
1139 	{ 5250, 5330 },
1140 	{ 5490, 5570 },
1141 	{ 5570, 5650 },
1142 	{ 5650, 5730 },
1143 	{ 5735, 5815 },
1144 	{ 0, 0, }
1145 };
1146 
1147 static int
1148 set_vht_extchan(struct ieee80211_channel *c)
1149 {
1150 	int i;
1151 
1152 	if (! IEEE80211_IS_CHAN_VHT(c)) {
1153 		return (0);
1154 	}
1155 
1156 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1157 		c->ic_vht_ch_freq1 = c->ic_ieee;
1158 		return (1);
1159 	}
1160 
1161 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1162 		if (IEEE80211_IS_CHAN_HT40U(c))
1163 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1164 		else if (IEEE80211_IS_CHAN_HT40D(c))
1165 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1166 		else
1167 			return (0);
1168 		return (1);
1169 	}
1170 
1171 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1172 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1173 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1174 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1175 				int midpoint;
1176 
1177 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1178 				c->ic_vht_ch_freq1 =
1179 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1180 				c->ic_vht_ch_freq2 = 0;
1181 #if 0
1182 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1183 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1184 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1185 #endif
1186 				return (1);
1187 			}
1188 		}
1189 		return (0);
1190 	}
1191 
1192 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1193 	    __func__,
1194 	    c->ic_ieee,
1195 	    c->ic_flags);
1196 
1197 	return (0);
1198 }
1199 
1200 /*
1201  * Return whether the current channel could possibly be a part of
1202  * a VHT80 channel.
1203  *
1204  * This doesn't check that the whole range is in the allowed list
1205  * according to regulatory.
1206  */
1207 static int
1208 is_vht80_valid_freq(uint16_t freq)
1209 {
1210 	int i;
1211 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1212 		if (freq >= vht80_chan_ranges[i].freq_start &&
1213 		    freq < vht80_chan_ranges[i].freq_end)
1214 			return (1);
1215 	}
1216 	return (0);
1217 }
1218 
1219 static int
1220 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1221     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1222 {
1223 	struct ieee80211_channel *c;
1224 
1225 	if (*nchans >= maxchans)
1226 		return (ENOBUFS);
1227 
1228 #if 0
1229 	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1230 	    __func__,
1231 	    *nchans,
1232 	    ieee,
1233 	    freq,
1234 	    flags);
1235 #endif
1236 
1237 	c = &chans[(*nchans)++];
1238 	c->ic_ieee = ieee;
1239 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1240 	c->ic_maxregpower = maxregpower;
1241 	c->ic_maxpower = 2 * maxregpower;
1242 	c->ic_flags = flags;
1243 	c->ic_vht_ch_freq1 = 0;
1244 	c->ic_vht_ch_freq2 = 0;
1245 	set_extchan(c);
1246 	set_vht_extchan(c);
1247 
1248 	return (0);
1249 }
1250 
1251 static int
1252 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1253     uint32_t flags)
1254 {
1255 	struct ieee80211_channel *c;
1256 
1257 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1258 
1259 	if (*nchans >= maxchans)
1260 		return (ENOBUFS);
1261 
1262 #if 0
1263 	printf("%s: %d: flags=0x%08x\n",
1264 	    __func__,
1265 	    *nchans,
1266 	    flags);
1267 #endif
1268 
1269 	c = &chans[(*nchans)++];
1270 	c[0] = c[-1];
1271 	c->ic_flags = flags;
1272 	c->ic_vht_ch_freq1 = 0;
1273 	c->ic_vht_ch_freq2 = 0;
1274 	set_extchan(c);
1275 	set_vht_extchan(c);
1276 
1277 	return (0);
1278 }
1279 
1280 /*
1281  * XXX VHT-2GHz
1282  */
1283 static void
1284 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1285 {
1286 	int nmodes;
1287 
1288 	nmodes = 0;
1289 	if (isset(bands, IEEE80211_MODE_11B))
1290 		flags[nmodes++] = IEEE80211_CHAN_B;
1291 	if (isset(bands, IEEE80211_MODE_11G))
1292 		flags[nmodes++] = IEEE80211_CHAN_G;
1293 	if (isset(bands, IEEE80211_MODE_11NG))
1294 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1295 	if (ht40) {
1296 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1297 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1298 	}
1299 	flags[nmodes] = 0;
1300 }
1301 
1302 static void
1303 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1304 {
1305 	int nmodes;
1306 
1307 	/*
1308 	 * the addchan_list function seems to expect the flags array to
1309 	 * be in channel width order, so the VHT bits are interspersed
1310 	 * as appropriate to maintain said order.
1311 	 *
1312 	 * It also assumes HT40U is before HT40D.
1313 	 */
1314 	nmodes = 0;
1315 
1316 	/* 20MHz */
1317 	if (isset(bands, IEEE80211_MODE_11A))
1318 		flags[nmodes++] = IEEE80211_CHAN_A;
1319 	if (isset(bands, IEEE80211_MODE_11NA))
1320 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1321 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1322 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1323 		    IEEE80211_CHAN_VHT20;
1324 	}
1325 
1326 	/* 40MHz */
1327 	if (ht40) {
1328 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1329 	}
1330 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1331 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U
1332 		    | IEEE80211_CHAN_VHT40U;
1333 	}
1334 	if (ht40) {
1335 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1336 	}
1337 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1338 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D
1339 		    | IEEE80211_CHAN_VHT40D;
1340 	}
1341 
1342 	/* 80MHz */
1343 	if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1344 		flags[nmodes++] = IEEE80211_CHAN_A |
1345 		    IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80;
1346 		flags[nmodes++] = IEEE80211_CHAN_A |
1347 		    IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80;
1348 	}
1349 
1350 	/* XXX VHT80+80 */
1351 	/* XXX VHT160 */
1352 	flags[nmodes] = 0;
1353 }
1354 
1355 static void
1356 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1357 {
1358 
1359 	flags[0] = 0;
1360 	if (isset(bands, IEEE80211_MODE_11A) ||
1361 	    isset(bands, IEEE80211_MODE_11NA) ||
1362 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1363 		if (isset(bands, IEEE80211_MODE_11B) ||
1364 		    isset(bands, IEEE80211_MODE_11G) ||
1365 		    isset(bands, IEEE80211_MODE_11NG) ||
1366 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1367 			return;
1368 
1369 		getflags_5ghz(bands, flags, ht40, vht80);
1370 	} else
1371 		getflags_2ghz(bands, flags, ht40);
1372 }
1373 
1374 /*
1375  * Add one 20 MHz channel into specified channel list.
1376  */
1377 /* XXX VHT */
1378 int
1379 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1380     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1381     uint32_t chan_flags, const uint8_t bands[])
1382 {
1383 	uint32_t flags[IEEE80211_MODE_MAX];
1384 	int i, error;
1385 
1386 	getflags(bands, flags, 0, 0);
1387 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1388 
1389 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1390 	    flags[0] | chan_flags);
1391 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1392 		error = copychan_prev(chans, maxchans, nchans,
1393 		    flags[i] | chan_flags);
1394 	}
1395 
1396 	return (error);
1397 }
1398 
1399 static struct ieee80211_channel *
1400 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1401     uint32_t flags)
1402 {
1403 	struct ieee80211_channel *c;
1404 	int i;
1405 
1406 	flags &= IEEE80211_CHAN_ALLTURBO;
1407 	/* brute force search */
1408 	for (i = 0; i < nchans; i++) {
1409 		c = &chans[i];
1410 		if (c->ic_freq == freq &&
1411 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1412 			return c;
1413 	}
1414 	return NULL;
1415 }
1416 
1417 /*
1418  * Add 40 MHz channel pair into specified channel list.
1419  */
1420 /* XXX VHT */
1421 int
1422 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1423     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1424 {
1425 	struct ieee80211_channel *cent, *extc;
1426 	uint16_t freq;
1427 	int error;
1428 
1429 	freq = ieee80211_ieee2mhz(ieee, flags);
1430 
1431 	/*
1432 	 * Each entry defines an HT40 channel pair; find the
1433 	 * center channel, then the extension channel above.
1434 	 */
1435 	flags |= IEEE80211_CHAN_HT20;
1436 	cent = findchannel(chans, *nchans, freq, flags);
1437 	if (cent == NULL)
1438 		return (EINVAL);
1439 
1440 	extc = findchannel(chans, *nchans, freq + 20, flags);
1441 	if (extc == NULL)
1442 		return (ENOENT);
1443 
1444 	flags &= ~IEEE80211_CHAN_HT;
1445 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1446 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1447 	if (error != 0)
1448 		return (error);
1449 
1450 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1451 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1452 
1453 	return (error);
1454 }
1455 
1456 /*
1457  * Fetch the center frequency for the primary channel.
1458  */
1459 uint32_t
1460 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1461 {
1462 
1463 	return (c->ic_freq);
1464 }
1465 
1466 /*
1467  * Fetch the center frequency for the primary BAND channel.
1468  *
1469  * For 5, 10, 20MHz channels it'll be the normally configured channel
1470  * frequency.
1471  *
1472  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1473  * wide channel, not the centre of the primary channel (that's ic_freq).
1474  *
1475  * For 80+80MHz channels this will be the centre of the primary
1476  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1477  */
1478 uint32_t
1479 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1480 {
1481 
1482 	/*
1483 	 * VHT - use the pre-calculated centre frequency
1484 	 * of the given channel.
1485 	 */
1486 	if (IEEE80211_IS_CHAN_VHT(c))
1487 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1488 
1489 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1490 		return (c->ic_freq + 10);
1491 	}
1492 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1493 		return (c->ic_freq - 10);
1494 	}
1495 
1496 	return (c->ic_freq);
1497 }
1498 
1499 /*
1500  * For now, no 80+80 support; it will likely always return 0.
1501  */
1502 uint32_t
1503 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1504 {
1505 
1506 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1507 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1508 
1509 	return (0);
1510 }
1511 
1512 /*
1513  * Adds channels into specified channel list (ieee[] array must be sorted).
1514  * Channels are already sorted.
1515  */
1516 static int
1517 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1518     const uint8_t ieee[], int nieee, uint32_t flags[])
1519 {
1520 	uint16_t freq;
1521 	int i, j, error;
1522 	int is_vht;
1523 
1524 	for (i = 0; i < nieee; i++) {
1525 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1526 		for (j = 0; flags[j] != 0; j++) {
1527 			/*
1528 			 * Notes:
1529 			 * + HT40 and VHT40 channels occur together, so
1530 			 *   we need to be careful that we actually allow that.
1531 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1532 			 *   make sure it's not skipped because of the overlap
1533 			 *   check used for (V)HT40.
1534 			 */
1535 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1536 
1537 			/*
1538 			 * Test for VHT80.
1539 			 * XXX This is all very broken right now.
1540 			 * What we /should/ do is:
1541 			 *
1542 			 * + check that the frequency is in the list of
1543 			 *   allowed VHT80 ranges; and
1544 			 * + the other 3 channels in the list are actually
1545 			 *   also available.
1546 			 */
1547 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1548 				if (! is_vht80_valid_freq(freq))
1549 					continue;
1550 
1551 			/*
1552 			 * Test for (V)HT40.
1553 			 *
1554 			 * This is also a fall through from VHT80; as we only
1555 			 * allow a VHT80 channel if the VHT40 combination is
1556 			 * also valid.  If the VHT40 form is not valid then
1557 			 * we certainly can't do VHT80..
1558 			 */
1559 			if (flags[j] & IEEE80211_CHAN_HT40D)
1560 				/*
1561 				 * Can't have a "lower" channel if we are the
1562 				 * first channel.
1563 				 *
1564 				 * Can't have a "lower" channel if it's below/
1565 				 * within 20MHz of the first channel.
1566 				 *
1567 				 * Can't have a "lower" channel if the channel
1568 				 * below it is not 20MHz away.
1569 				 */
1570 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1571 				    freq - 20 !=
1572 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1573 					continue;
1574 			if (flags[j] & IEEE80211_CHAN_HT40U)
1575 				/*
1576 				 * Can't have an "upper" channel if we are
1577 				 * the last channel.
1578 				 *
1579 				 * Can't have an "upper" channel be above the
1580 				 * last channel in the list.
1581 				 *
1582 				 * Can't have an "upper" channel if the next
1583 				 * channel according to the math isn't 20MHz
1584 				 * away.  (Likely for channel 13/14.)
1585 				 */
1586 				if (i == nieee - 1 ||
1587 				    ieee[i] + 4 > ieee[nieee - 1] ||
1588 				    freq + 20 !=
1589 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1590 					continue;
1591 
1592 			if (j == 0) {
1593 				error = addchan(chans, maxchans, nchans,
1594 				    ieee[i], freq, 0, flags[j]);
1595 			} else {
1596 				error = copychan_prev(chans, maxchans, nchans,
1597 				    flags[j]);
1598 			}
1599 			if (error != 0)
1600 				return (error);
1601 		}
1602 	}
1603 
1604 	return (0);
1605 }
1606 
1607 int
1608 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1609     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1610     int ht40)
1611 {
1612 	uint32_t flags[IEEE80211_MODE_MAX];
1613 
1614 	/* XXX no VHT for now */
1615 	getflags_2ghz(bands, flags, ht40);
1616 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1617 
1618 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1619 }
1620 
1621 int
1622 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1623     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1624     int ht40)
1625 {
1626 	uint32_t flags[IEEE80211_MODE_MAX];
1627 	int vht80 = 0;
1628 
1629 	/*
1630 	 * For now, assume VHT == VHT80 support as a minimum.
1631 	 */
1632 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ))
1633 		vht80 = 1;
1634 
1635 	getflags_5ghz(bands, flags, ht40, vht80);
1636 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1637 
1638 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1639 }
1640 
1641 /*
1642  * Locate a channel given a frequency+flags.  We cache
1643  * the previous lookup to optimize switching between two
1644  * channels--as happens with dynamic turbo.
1645  */
1646 struct ieee80211_channel *
1647 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1648 {
1649 	struct ieee80211_channel *c;
1650 
1651 	flags &= IEEE80211_CHAN_ALLTURBO;
1652 	c = ic->ic_prevchan;
1653 	if (c != NULL && c->ic_freq == freq &&
1654 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1655 		return c;
1656 	/* brute force search */
1657 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1658 }
1659 
1660 /*
1661  * Locate a channel given a channel number+flags.  We cache
1662  * the previous lookup to optimize switching between two
1663  * channels--as happens with dynamic turbo.
1664  */
1665 struct ieee80211_channel *
1666 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1667 {
1668 	struct ieee80211_channel *c;
1669 	int i;
1670 
1671 	flags &= IEEE80211_CHAN_ALLTURBO;
1672 	c = ic->ic_prevchan;
1673 	if (c != NULL && c->ic_ieee == ieee &&
1674 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1675 		return c;
1676 	/* brute force search */
1677 	for (i = 0; i < ic->ic_nchans; i++) {
1678 		c = &ic->ic_channels[i];
1679 		if (c->ic_ieee == ieee &&
1680 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1681 			return c;
1682 	}
1683 	return NULL;
1684 }
1685 
1686 /*
1687  * Lookup a channel suitable for the given rx status.
1688  *
1689  * This is used to find a channel for a frame (eg beacon, probe
1690  * response) based purely on the received PHY information.
1691  *
1692  * For now it tries to do it based on R_FREQ / R_IEEE.
1693  * This is enough for 11bg and 11a (and thus 11ng/11na)
1694  * but it will not be enough for GSM, PSB channels and the
1695  * like.  It also doesn't know about legacy-turbog and
1696  * legacy-turbo modes, which some offload NICs actually
1697  * support in weird ways.
1698  *
1699  * Takes the ic and rxstatus; returns the channel or NULL
1700  * if not found.
1701  *
1702  * XXX TODO: Add support for that when the need arises.
1703  */
1704 struct ieee80211_channel *
1705 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1706     const struct ieee80211_rx_stats *rxs)
1707 {
1708 	struct ieee80211com *ic = vap->iv_ic;
1709 	uint32_t flags;
1710 	struct ieee80211_channel *c;
1711 
1712 	if (rxs == NULL)
1713 		return (NULL);
1714 
1715 	/*
1716 	 * Strictly speaking we only use freq for now,
1717 	 * however later on we may wish to just store
1718 	 * the ieee for verification.
1719 	 */
1720 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1721 		return (NULL);
1722 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1723 		return (NULL);
1724 
1725 	/*
1726 	 * If the rx status contains a valid ieee/freq, then
1727 	 * ensure we populate the correct channel information
1728 	 * in rxchan before passing it up to the scan infrastructure.
1729 	 * Offload NICs will pass up beacons from all channels
1730 	 * during background scans.
1731 	 */
1732 
1733 	/* Determine a band */
1734 	/* XXX should be done by the driver? */
1735 	if (rxs->c_freq < 3000) {
1736 		flags = IEEE80211_CHAN_G;
1737 	} else {
1738 		flags = IEEE80211_CHAN_A;
1739 	}
1740 
1741 	/* Channel lookup */
1742 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1743 
1744 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1745 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1746 	    __func__,
1747 	    (int) rxs->c_freq,
1748 	    (int) rxs->c_ieee,
1749 	    flags,
1750 	    c);
1751 
1752 	return (c);
1753 }
1754 
1755 static void
1756 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1757 {
1758 #define	ADD(_ic, _s, _o) \
1759 	ifmedia_add(media, \
1760 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1761 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1762 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1763 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1764 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1765 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1766 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1767 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1768 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1769 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1770 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1771 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1772 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1773 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1774 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1775 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1776 	};
1777 	u_int mopt;
1778 
1779 	mopt = mopts[mode];
1780 	if (addsta)
1781 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1782 	if (caps & IEEE80211_C_IBSS)
1783 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1784 	if (caps & IEEE80211_C_HOSTAP)
1785 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1786 	if (caps & IEEE80211_C_AHDEMO)
1787 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1788 	if (caps & IEEE80211_C_MONITOR)
1789 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1790 	if (caps & IEEE80211_C_WDS)
1791 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1792 	if (caps & IEEE80211_C_MBSS)
1793 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1794 #undef ADD
1795 }
1796 
1797 /*
1798  * Setup the media data structures according to the channel and
1799  * rate tables.
1800  */
1801 static int
1802 ieee80211_media_setup(struct ieee80211com *ic,
1803 	struct ifmedia *media, int caps, int addsta,
1804 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1805 {
1806 	int i, j, rate, maxrate, mword, r;
1807 	enum ieee80211_phymode mode;
1808 	const struct ieee80211_rateset *rs;
1809 	struct ieee80211_rateset allrates;
1810 
1811 	/*
1812 	 * Fill in media characteristics.
1813 	 */
1814 	ifmedia_init(media, 0, media_change, media_stat);
1815 	maxrate = 0;
1816 	/*
1817 	 * Add media for legacy operating modes.
1818 	 */
1819 	memset(&allrates, 0, sizeof(allrates));
1820 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1821 		if (isclr(ic->ic_modecaps, mode))
1822 			continue;
1823 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1824 		if (mode == IEEE80211_MODE_AUTO)
1825 			continue;
1826 		rs = &ic->ic_sup_rates[mode];
1827 		for (i = 0; i < rs->rs_nrates; i++) {
1828 			rate = rs->rs_rates[i];
1829 			mword = ieee80211_rate2media(ic, rate, mode);
1830 			if (mword == 0)
1831 				continue;
1832 			addmedia(media, caps, addsta, mode, mword);
1833 			/*
1834 			 * Add legacy rate to the collection of all rates.
1835 			 */
1836 			r = rate & IEEE80211_RATE_VAL;
1837 			for (j = 0; j < allrates.rs_nrates; j++)
1838 				if (allrates.rs_rates[j] == r)
1839 					break;
1840 			if (j == allrates.rs_nrates) {
1841 				/* unique, add to the set */
1842 				allrates.rs_rates[j] = r;
1843 				allrates.rs_nrates++;
1844 			}
1845 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1846 			if (rate > maxrate)
1847 				maxrate = rate;
1848 		}
1849 	}
1850 	for (i = 0; i < allrates.rs_nrates; i++) {
1851 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1852 				IEEE80211_MODE_AUTO);
1853 		if (mword == 0)
1854 			continue;
1855 		/* NB: remove media options from mword */
1856 		addmedia(media, caps, addsta,
1857 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1858 	}
1859 	/*
1860 	 * Add HT/11n media.  Note that we do not have enough
1861 	 * bits in the media subtype to express the MCS so we
1862 	 * use a "placeholder" media subtype and any fixed MCS
1863 	 * must be specified with a different mechanism.
1864 	 */
1865 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1866 		if (isclr(ic->ic_modecaps, mode))
1867 			continue;
1868 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1869 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1870 	}
1871 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1872 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1873 		addmedia(media, caps, addsta,
1874 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1875 		i = ic->ic_txstream * 8 - 1;
1876 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1877 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1878 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1879 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1880 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1881 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1882 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1883 		else
1884 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1885 		if (rate > maxrate)
1886 			maxrate = rate;
1887 	}
1888 
1889 	/*
1890 	 * Add VHT media.
1891 	 */
1892 	for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) {
1893 		if (isclr(ic->ic_modecaps, mode))
1894 			continue;
1895 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1896 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1897 
1898 		/* XXX TODO: VHT maxrate */
1899 	}
1900 
1901 	return maxrate;
1902 }
1903 
1904 /* XXX inline or eliminate? */
1905 const struct ieee80211_rateset *
1906 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1907 {
1908 	/* XXX does this work for 11ng basic rates? */
1909 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1910 }
1911 
1912 /* XXX inline or eliminate? */
1913 const struct ieee80211_htrateset *
1914 ieee80211_get_suphtrates(struct ieee80211com *ic,
1915     const struct ieee80211_channel *c)
1916 {
1917 	return &ic->ic_sup_htrates;
1918 }
1919 
1920 void
1921 ieee80211_announce(struct ieee80211com *ic)
1922 {
1923 	int i, rate, mword;
1924 	enum ieee80211_phymode mode;
1925 	const struct ieee80211_rateset *rs;
1926 
1927 	/* NB: skip AUTO since it has no rates */
1928 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1929 		if (isclr(ic->ic_modecaps, mode))
1930 			continue;
1931 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1932 		rs = &ic->ic_sup_rates[mode];
1933 		for (i = 0; i < rs->rs_nrates; i++) {
1934 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1935 			if (mword == 0)
1936 				continue;
1937 			rate = ieee80211_media2rate(mword);
1938 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1939 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1940 		}
1941 		printf("\n");
1942 	}
1943 	ieee80211_ht_announce(ic);
1944 	ieee80211_vht_announce(ic);
1945 }
1946 
1947 void
1948 ieee80211_announce_channels(struct ieee80211com *ic)
1949 {
1950 	const struct ieee80211_channel *c;
1951 	char type;
1952 	int i, cw;
1953 
1954 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1955 	for (i = 0; i < ic->ic_nchans; i++) {
1956 		c = &ic->ic_channels[i];
1957 		if (IEEE80211_IS_CHAN_ST(c))
1958 			type = 'S';
1959 		else if (IEEE80211_IS_CHAN_108A(c))
1960 			type = 'T';
1961 		else if (IEEE80211_IS_CHAN_108G(c))
1962 			type = 'G';
1963 		else if (IEEE80211_IS_CHAN_HT(c))
1964 			type = 'n';
1965 		else if (IEEE80211_IS_CHAN_A(c))
1966 			type = 'a';
1967 		else if (IEEE80211_IS_CHAN_ANYG(c))
1968 			type = 'g';
1969 		else if (IEEE80211_IS_CHAN_B(c))
1970 			type = 'b';
1971 		else
1972 			type = 'f';
1973 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1974 			cw = 40;
1975 		else if (IEEE80211_IS_CHAN_HALF(c))
1976 			cw = 10;
1977 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1978 			cw = 5;
1979 		else
1980 			cw = 20;
1981 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1982 			, c->ic_ieee, c->ic_freq, type
1983 			, cw
1984 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1985 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1986 			, c->ic_maxregpower
1987 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1988 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1989 		);
1990 	}
1991 }
1992 
1993 static int
1994 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1995 {
1996 	switch (IFM_MODE(ime->ifm_media)) {
1997 	case IFM_IEEE80211_11A:
1998 		*mode = IEEE80211_MODE_11A;
1999 		break;
2000 	case IFM_IEEE80211_11B:
2001 		*mode = IEEE80211_MODE_11B;
2002 		break;
2003 	case IFM_IEEE80211_11G:
2004 		*mode = IEEE80211_MODE_11G;
2005 		break;
2006 	case IFM_IEEE80211_FH:
2007 		*mode = IEEE80211_MODE_FH;
2008 		break;
2009 	case IFM_IEEE80211_11NA:
2010 		*mode = IEEE80211_MODE_11NA;
2011 		break;
2012 	case IFM_IEEE80211_11NG:
2013 		*mode = IEEE80211_MODE_11NG;
2014 		break;
2015 	case IFM_AUTO:
2016 		*mode = IEEE80211_MODE_AUTO;
2017 		break;
2018 	default:
2019 		return 0;
2020 	}
2021 	/*
2022 	 * Turbo mode is an ``option''.
2023 	 * XXX does not apply to AUTO
2024 	 */
2025 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2026 		if (*mode == IEEE80211_MODE_11A) {
2027 			if (flags & IEEE80211_F_TURBOP)
2028 				*mode = IEEE80211_MODE_TURBO_A;
2029 			else
2030 				*mode = IEEE80211_MODE_STURBO_A;
2031 		} else if (*mode == IEEE80211_MODE_11G)
2032 			*mode = IEEE80211_MODE_TURBO_G;
2033 		else
2034 			return 0;
2035 	}
2036 	/* XXX HT40 +/- */
2037 	return 1;
2038 }
2039 
2040 /*
2041  * Handle a media change request on the vap interface.
2042  */
2043 int
2044 ieee80211_media_change(struct ifnet *ifp)
2045 {
2046 	struct ieee80211vap *vap = ifp->if_softc;
2047 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2048 	uint16_t newmode;
2049 
2050 	if (!media2mode(ime, vap->iv_flags, &newmode))
2051 		return EINVAL;
2052 	if (vap->iv_des_mode != newmode) {
2053 		vap->iv_des_mode = newmode;
2054 		/* XXX kick state machine if up+running */
2055 	}
2056 	return 0;
2057 }
2058 
2059 /*
2060  * Common code to calculate the media status word
2061  * from the operating mode and channel state.
2062  */
2063 static int
2064 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2065 {
2066 	int status;
2067 
2068 	status = IFM_IEEE80211;
2069 	switch (opmode) {
2070 	case IEEE80211_M_STA:
2071 		break;
2072 	case IEEE80211_M_IBSS:
2073 		status |= IFM_IEEE80211_ADHOC;
2074 		break;
2075 	case IEEE80211_M_HOSTAP:
2076 		status |= IFM_IEEE80211_HOSTAP;
2077 		break;
2078 	case IEEE80211_M_MONITOR:
2079 		status |= IFM_IEEE80211_MONITOR;
2080 		break;
2081 	case IEEE80211_M_AHDEMO:
2082 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2083 		break;
2084 	case IEEE80211_M_WDS:
2085 		status |= IFM_IEEE80211_WDS;
2086 		break;
2087 	case IEEE80211_M_MBSS:
2088 		status |= IFM_IEEE80211_MBSS;
2089 		break;
2090 	}
2091 	if (IEEE80211_IS_CHAN_HTA(chan)) {
2092 		status |= IFM_IEEE80211_11NA;
2093 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2094 		status |= IFM_IEEE80211_11NG;
2095 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2096 		status |= IFM_IEEE80211_11A;
2097 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2098 		status |= IFM_IEEE80211_11B;
2099 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2100 		status |= IFM_IEEE80211_11G;
2101 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2102 		status |= IFM_IEEE80211_FH;
2103 	}
2104 	/* XXX else complain? */
2105 
2106 	if (IEEE80211_IS_CHAN_TURBO(chan))
2107 		status |= IFM_IEEE80211_TURBO;
2108 #if 0
2109 	if (IEEE80211_IS_CHAN_HT20(chan))
2110 		status |= IFM_IEEE80211_HT20;
2111 	if (IEEE80211_IS_CHAN_HT40(chan))
2112 		status |= IFM_IEEE80211_HT40;
2113 #endif
2114 	return status;
2115 }
2116 
2117 void
2118 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2119 {
2120 	struct ieee80211vap *vap = ifp->if_softc;
2121 	struct ieee80211com *ic = vap->iv_ic;
2122 	enum ieee80211_phymode mode;
2123 
2124 	imr->ifm_status = IFM_AVALID;
2125 	/*
2126 	 * NB: use the current channel's mode to lock down a xmit
2127 	 * rate only when running; otherwise we may have a mismatch
2128 	 * in which case the rate will not be convertible.
2129 	 */
2130 	if (vap->iv_state == IEEE80211_S_RUN ||
2131 	    vap->iv_state == IEEE80211_S_SLEEP) {
2132 		imr->ifm_status |= IFM_ACTIVE;
2133 		mode = ieee80211_chan2mode(ic->ic_curchan);
2134 	} else
2135 		mode = IEEE80211_MODE_AUTO;
2136 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2137 	/*
2138 	 * Calculate a current rate if possible.
2139 	 */
2140 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2141 		/*
2142 		 * A fixed rate is set, report that.
2143 		 */
2144 		imr->ifm_active |= ieee80211_rate2media(ic,
2145 			vap->iv_txparms[mode].ucastrate, mode);
2146 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2147 		/*
2148 		 * In station mode report the current transmit rate.
2149 		 */
2150 		imr->ifm_active |= ieee80211_rate2media(ic,
2151 			vap->iv_bss->ni_txrate, mode);
2152 	} else
2153 		imr->ifm_active |= IFM_AUTO;
2154 	if (imr->ifm_status & IFM_ACTIVE)
2155 		imr->ifm_current = imr->ifm_active;
2156 }
2157 
2158 /*
2159  * Set the current phy mode and recalculate the active channel
2160  * set based on the available channels for this mode.  Also
2161  * select a new default/current channel if the current one is
2162  * inappropriate for this mode.
2163  */
2164 int
2165 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2166 {
2167 	/*
2168 	 * Adjust basic rates in 11b/11g supported rate set.
2169 	 * Note that if operating on a hal/quarter rate channel
2170 	 * this is a noop as those rates sets are different
2171 	 * and used instead.
2172 	 */
2173 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2174 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2175 
2176 	ic->ic_curmode = mode;
2177 	ieee80211_reset_erp(ic);	/* reset ERP state */
2178 
2179 	return 0;
2180 }
2181 
2182 /*
2183  * Return the phy mode for with the specified channel.
2184  */
2185 enum ieee80211_phymode
2186 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2187 {
2188 
2189 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2190 		return IEEE80211_MODE_VHT_2GHZ;
2191 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2192 		return IEEE80211_MODE_VHT_5GHZ;
2193 	else if (IEEE80211_IS_CHAN_HTA(chan))
2194 		return IEEE80211_MODE_11NA;
2195 	else if (IEEE80211_IS_CHAN_HTG(chan))
2196 		return IEEE80211_MODE_11NG;
2197 	else if (IEEE80211_IS_CHAN_108G(chan))
2198 		return IEEE80211_MODE_TURBO_G;
2199 	else if (IEEE80211_IS_CHAN_ST(chan))
2200 		return IEEE80211_MODE_STURBO_A;
2201 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2202 		return IEEE80211_MODE_TURBO_A;
2203 	else if (IEEE80211_IS_CHAN_HALF(chan))
2204 		return IEEE80211_MODE_HALF;
2205 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2206 		return IEEE80211_MODE_QUARTER;
2207 	else if (IEEE80211_IS_CHAN_A(chan))
2208 		return IEEE80211_MODE_11A;
2209 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2210 		return IEEE80211_MODE_11G;
2211 	else if (IEEE80211_IS_CHAN_B(chan))
2212 		return IEEE80211_MODE_11B;
2213 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2214 		return IEEE80211_MODE_FH;
2215 
2216 	/* NB: should not get here */
2217 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2218 		__func__, chan->ic_freq, chan->ic_flags);
2219 	return IEEE80211_MODE_11B;
2220 }
2221 
2222 struct ratemedia {
2223 	u_int	match;	/* rate + mode */
2224 	u_int	media;	/* if_media rate */
2225 };
2226 
2227 static int
2228 findmedia(const struct ratemedia rates[], int n, u_int match)
2229 {
2230 	int i;
2231 
2232 	for (i = 0; i < n; i++)
2233 		if (rates[i].match == match)
2234 			return rates[i].media;
2235 	return IFM_AUTO;
2236 }
2237 
2238 /*
2239  * Convert IEEE80211 rate value to ifmedia subtype.
2240  * Rate is either a legacy rate in units of 0.5Mbps
2241  * or an MCS index.
2242  */
2243 int
2244 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2245 {
2246 	static const struct ratemedia rates[] = {
2247 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2248 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2249 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2250 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2251 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2252 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2253 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2254 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2255 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2256 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2257 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2258 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2259 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2260 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2261 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2262 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2263 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2264 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2265 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2266 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2267 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2268 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2269 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2270 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2271 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2272 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2273 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2274 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2275 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2276 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2277 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2278 	};
2279 	static const struct ratemedia htrates[] = {
2280 		{   0, IFM_IEEE80211_MCS },
2281 		{   1, IFM_IEEE80211_MCS },
2282 		{   2, IFM_IEEE80211_MCS },
2283 		{   3, IFM_IEEE80211_MCS },
2284 		{   4, IFM_IEEE80211_MCS },
2285 		{   5, IFM_IEEE80211_MCS },
2286 		{   6, IFM_IEEE80211_MCS },
2287 		{   7, IFM_IEEE80211_MCS },
2288 		{   8, IFM_IEEE80211_MCS },
2289 		{   9, IFM_IEEE80211_MCS },
2290 		{  10, IFM_IEEE80211_MCS },
2291 		{  11, IFM_IEEE80211_MCS },
2292 		{  12, IFM_IEEE80211_MCS },
2293 		{  13, IFM_IEEE80211_MCS },
2294 		{  14, IFM_IEEE80211_MCS },
2295 		{  15, IFM_IEEE80211_MCS },
2296 		{  16, IFM_IEEE80211_MCS },
2297 		{  17, IFM_IEEE80211_MCS },
2298 		{  18, IFM_IEEE80211_MCS },
2299 		{  19, IFM_IEEE80211_MCS },
2300 		{  20, IFM_IEEE80211_MCS },
2301 		{  21, IFM_IEEE80211_MCS },
2302 		{  22, IFM_IEEE80211_MCS },
2303 		{  23, IFM_IEEE80211_MCS },
2304 		{  24, IFM_IEEE80211_MCS },
2305 		{  25, IFM_IEEE80211_MCS },
2306 		{  26, IFM_IEEE80211_MCS },
2307 		{  27, IFM_IEEE80211_MCS },
2308 		{  28, IFM_IEEE80211_MCS },
2309 		{  29, IFM_IEEE80211_MCS },
2310 		{  30, IFM_IEEE80211_MCS },
2311 		{  31, IFM_IEEE80211_MCS },
2312 		{  32, IFM_IEEE80211_MCS },
2313 		{  33, IFM_IEEE80211_MCS },
2314 		{  34, IFM_IEEE80211_MCS },
2315 		{  35, IFM_IEEE80211_MCS },
2316 		{  36, IFM_IEEE80211_MCS },
2317 		{  37, IFM_IEEE80211_MCS },
2318 		{  38, IFM_IEEE80211_MCS },
2319 		{  39, IFM_IEEE80211_MCS },
2320 		{  40, IFM_IEEE80211_MCS },
2321 		{  41, IFM_IEEE80211_MCS },
2322 		{  42, IFM_IEEE80211_MCS },
2323 		{  43, IFM_IEEE80211_MCS },
2324 		{  44, IFM_IEEE80211_MCS },
2325 		{  45, IFM_IEEE80211_MCS },
2326 		{  46, IFM_IEEE80211_MCS },
2327 		{  47, IFM_IEEE80211_MCS },
2328 		{  48, IFM_IEEE80211_MCS },
2329 		{  49, IFM_IEEE80211_MCS },
2330 		{  50, IFM_IEEE80211_MCS },
2331 		{  51, IFM_IEEE80211_MCS },
2332 		{  52, IFM_IEEE80211_MCS },
2333 		{  53, IFM_IEEE80211_MCS },
2334 		{  54, IFM_IEEE80211_MCS },
2335 		{  55, IFM_IEEE80211_MCS },
2336 		{  56, IFM_IEEE80211_MCS },
2337 		{  57, IFM_IEEE80211_MCS },
2338 		{  58, IFM_IEEE80211_MCS },
2339 		{  59, IFM_IEEE80211_MCS },
2340 		{  60, IFM_IEEE80211_MCS },
2341 		{  61, IFM_IEEE80211_MCS },
2342 		{  62, IFM_IEEE80211_MCS },
2343 		{  63, IFM_IEEE80211_MCS },
2344 		{  64, IFM_IEEE80211_MCS },
2345 		{  65, IFM_IEEE80211_MCS },
2346 		{  66, IFM_IEEE80211_MCS },
2347 		{  67, IFM_IEEE80211_MCS },
2348 		{  68, IFM_IEEE80211_MCS },
2349 		{  69, IFM_IEEE80211_MCS },
2350 		{  70, IFM_IEEE80211_MCS },
2351 		{  71, IFM_IEEE80211_MCS },
2352 		{  72, IFM_IEEE80211_MCS },
2353 		{  73, IFM_IEEE80211_MCS },
2354 		{  74, IFM_IEEE80211_MCS },
2355 		{  75, IFM_IEEE80211_MCS },
2356 		{  76, IFM_IEEE80211_MCS },
2357 	};
2358 	int m;
2359 
2360 	/*
2361 	 * Check 11n rates first for match as an MCS.
2362 	 */
2363 	if (mode == IEEE80211_MODE_11NA) {
2364 		if (rate & IEEE80211_RATE_MCS) {
2365 			rate &= ~IEEE80211_RATE_MCS;
2366 			m = findmedia(htrates, nitems(htrates), rate);
2367 			if (m != IFM_AUTO)
2368 				return m | IFM_IEEE80211_11NA;
2369 		}
2370 	} else if (mode == IEEE80211_MODE_11NG) {
2371 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2372 		if (rate & IEEE80211_RATE_MCS) {
2373 			rate &= ~IEEE80211_RATE_MCS;
2374 			m = findmedia(htrates, nitems(htrates), rate);
2375 			if (m != IFM_AUTO)
2376 				return m | IFM_IEEE80211_11NG;
2377 		}
2378 	}
2379 	rate &= IEEE80211_RATE_VAL;
2380 	switch (mode) {
2381 	case IEEE80211_MODE_11A:
2382 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2383 	case IEEE80211_MODE_QUARTER:
2384 	case IEEE80211_MODE_11NA:
2385 	case IEEE80211_MODE_TURBO_A:
2386 	case IEEE80211_MODE_STURBO_A:
2387 		return findmedia(rates, nitems(rates),
2388 		    rate | IFM_IEEE80211_11A);
2389 	case IEEE80211_MODE_11B:
2390 		return findmedia(rates, nitems(rates),
2391 		    rate | IFM_IEEE80211_11B);
2392 	case IEEE80211_MODE_FH:
2393 		return findmedia(rates, nitems(rates),
2394 		    rate | IFM_IEEE80211_FH);
2395 	case IEEE80211_MODE_AUTO:
2396 		/* NB: ic may be NULL for some drivers */
2397 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2398 			return findmedia(rates, nitems(rates),
2399 			    rate | IFM_IEEE80211_FH);
2400 		/* NB: hack, 11g matches both 11b+11a rates */
2401 		/* fall thru... */
2402 	case IEEE80211_MODE_11G:
2403 	case IEEE80211_MODE_11NG:
2404 	case IEEE80211_MODE_TURBO_G:
2405 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2406 	case IEEE80211_MODE_VHT_2GHZ:
2407 	case IEEE80211_MODE_VHT_5GHZ:
2408 		/* XXX TODO: need to figure out mapping for VHT rates */
2409 		return IFM_AUTO;
2410 	}
2411 	return IFM_AUTO;
2412 }
2413 
2414 int
2415 ieee80211_media2rate(int mword)
2416 {
2417 	static const int ieeerates[] = {
2418 		-1,		/* IFM_AUTO */
2419 		0,		/* IFM_MANUAL */
2420 		0,		/* IFM_NONE */
2421 		2,		/* IFM_IEEE80211_FH1 */
2422 		4,		/* IFM_IEEE80211_FH2 */
2423 		2,		/* IFM_IEEE80211_DS1 */
2424 		4,		/* IFM_IEEE80211_DS2 */
2425 		11,		/* IFM_IEEE80211_DS5 */
2426 		22,		/* IFM_IEEE80211_DS11 */
2427 		44,		/* IFM_IEEE80211_DS22 */
2428 		12,		/* IFM_IEEE80211_OFDM6 */
2429 		18,		/* IFM_IEEE80211_OFDM9 */
2430 		24,		/* IFM_IEEE80211_OFDM12 */
2431 		36,		/* IFM_IEEE80211_OFDM18 */
2432 		48,		/* IFM_IEEE80211_OFDM24 */
2433 		72,		/* IFM_IEEE80211_OFDM36 */
2434 		96,		/* IFM_IEEE80211_OFDM48 */
2435 		108,		/* IFM_IEEE80211_OFDM54 */
2436 		144,		/* IFM_IEEE80211_OFDM72 */
2437 		0,		/* IFM_IEEE80211_DS354k */
2438 		0,		/* IFM_IEEE80211_DS512k */
2439 		6,		/* IFM_IEEE80211_OFDM3 */
2440 		9,		/* IFM_IEEE80211_OFDM4 */
2441 		54,		/* IFM_IEEE80211_OFDM27 */
2442 		-1,		/* IFM_IEEE80211_MCS */
2443 		-1,		/* IFM_IEEE80211_VHT */
2444 	};
2445 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2446 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2447 }
2448 
2449 /*
2450  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2451  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2452  */
2453 #define	mix(a, b, c)							\
2454 do {									\
2455 	a -= b; a -= c; a ^= (c >> 13);					\
2456 	b -= c; b -= a; b ^= (a << 8);					\
2457 	c -= a; c -= b; c ^= (b >> 13);					\
2458 	a -= b; a -= c; a ^= (c >> 12);					\
2459 	b -= c; b -= a; b ^= (a << 16);					\
2460 	c -= a; c -= b; c ^= (b >> 5);					\
2461 	a -= b; a -= c; a ^= (c >> 3);					\
2462 	b -= c; b -= a; b ^= (a << 10);					\
2463 	c -= a; c -= b; c ^= (b >> 15);					\
2464 } while (/*CONSTCOND*/0)
2465 
2466 uint32_t
2467 ieee80211_mac_hash(const struct ieee80211com *ic,
2468 	const uint8_t addr[IEEE80211_ADDR_LEN])
2469 {
2470 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2471 
2472 	b += addr[5] << 8;
2473 	b += addr[4];
2474 	a += addr[3] << 24;
2475 	a += addr[2] << 16;
2476 	a += addr[1] << 8;
2477 	a += addr[0];
2478 
2479 	mix(a, b, c);
2480 
2481 	return c;
2482 }
2483 #undef mix
2484 
2485 char
2486 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2487 {
2488 	if (IEEE80211_IS_CHAN_ST(c))
2489 		return 'S';
2490 	if (IEEE80211_IS_CHAN_108A(c))
2491 		return 'T';
2492 	if (IEEE80211_IS_CHAN_108G(c))
2493 		return 'G';
2494 	if (IEEE80211_IS_CHAN_VHT(c))
2495 		return 'v';
2496 	if (IEEE80211_IS_CHAN_HT(c))
2497 		return 'n';
2498 	if (IEEE80211_IS_CHAN_A(c))
2499 		return 'a';
2500 	if (IEEE80211_IS_CHAN_ANYG(c))
2501 		return 'g';
2502 	if (IEEE80211_IS_CHAN_B(c))
2503 		return 'b';
2504 	return 'f';
2505 }
2506