xref: /freebsd/sys/net80211/ieee80211.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * IEEE 802.11 generic handler
34  */
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/socket.h>
42 #include <sys/sbuf.h>
43 
44 #include <machine/stdarg.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #include <net80211/ieee80211_ratectl.h>
59 #include <net80211/ieee80211_vht.h>
60 
61 #include <net/bpf.h>
62 
63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
64 	[IEEE80211_MODE_AUTO]	  = "auto",
65 	[IEEE80211_MODE_11A]	  = "11a",
66 	[IEEE80211_MODE_11B]	  = "11b",
67 	[IEEE80211_MODE_11G]	  = "11g",
68 	[IEEE80211_MODE_FH]	  = "FH",
69 	[IEEE80211_MODE_TURBO_A]  = "turboA",
70 	[IEEE80211_MODE_TURBO_G]  = "turboG",
71 	[IEEE80211_MODE_STURBO_A] = "sturboA",
72 	[IEEE80211_MODE_HALF]	  = "half",
73 	[IEEE80211_MODE_QUARTER]  = "quarter",
74 	[IEEE80211_MODE_11NA]	  = "11na",
75 	[IEEE80211_MODE_11NG]	  = "11ng",
76 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
77 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
78 };
79 /* map ieee80211_opmode to the corresponding capability bit */
80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
81 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
82 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
83 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
84 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
85 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
86 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
87 #ifdef IEEE80211_SUPPORT_MESH
88 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
89 #endif
90 };
91 
92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
93 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
94 
95 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
98 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
99 static	int ieee80211_media_setup(struct ieee80211com *ic,
100 		struct ifmedia *media, int caps, int addsta,
101 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
102 static	int media_status(enum ieee80211_opmode,
103 		const struct ieee80211_channel *);
104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
105 
106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
107 
108 /*
109  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
110  */
111 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
112 static const struct ieee80211_rateset ieee80211_rateset_11a =
113 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
114 static const struct ieee80211_rateset ieee80211_rateset_half =
115 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
117 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
118 static const struct ieee80211_rateset ieee80211_rateset_11b =
119 	{ 4, { B(2), B(4), B(11), B(22) } };
120 /* NB: OFDM rates are handled specially based on mode */
121 static const struct ieee80211_rateset ieee80211_rateset_11g =
122 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
123 #undef B
124 
125 static int set_vht_extchan(struct ieee80211_channel *c);
126 
127 /*
128  * Fill in 802.11 available channel set, mark
129  * all available channels as active, and pick
130  * a default channel if not already specified.
131  */
132 void
133 ieee80211_chan_init(struct ieee80211com *ic)
134 {
135 #define	DEFAULTRATES(m, def) do { \
136 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
137 		ic->ic_sup_rates[m] = def; \
138 } while (0)
139 	struct ieee80211_channel *c;
140 	int i;
141 
142 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
143 		("invalid number of channels specified: %u", ic->ic_nchans));
144 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
145 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
146 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
147 	for (i = 0; i < ic->ic_nchans; i++) {
148 		c = &ic->ic_channels[i];
149 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
150 		/*
151 		 * Help drivers that work only with frequencies by filling
152 		 * in IEEE channel #'s if not already calculated.  Note this
153 		 * mimics similar work done in ieee80211_setregdomain when
154 		 * changing regulatory state.
155 		 */
156 		if (c->ic_ieee == 0)
157 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
158 
159 		/*
160 		 * Setup the HT40/VHT40 upper/lower bits.
161 		 * The VHT80 math is done elsewhere.
162 		 */
163 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
164 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
165 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
166 			    c->ic_flags);
167 
168 		/* Update VHT math */
169 		/*
170 		 * XXX VHT again, note that this assumes VHT80 channels
171 		 * are legit already
172 		 */
173 		set_vht_extchan(c);
174 
175 		/* default max tx power to max regulatory */
176 		if (c->ic_maxpower == 0)
177 			c->ic_maxpower = 2*c->ic_maxregpower;
178 		setbit(ic->ic_chan_avail, c->ic_ieee);
179 		/*
180 		 * Identify mode capabilities.
181 		 */
182 		if (IEEE80211_IS_CHAN_A(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
184 		if (IEEE80211_IS_CHAN_B(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
186 		if (IEEE80211_IS_CHAN_ANYG(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
188 		if (IEEE80211_IS_CHAN_FHSS(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
190 		if (IEEE80211_IS_CHAN_108A(c))
191 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
192 		if (IEEE80211_IS_CHAN_108G(c))
193 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
194 		if (IEEE80211_IS_CHAN_ST(c))
195 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
196 		if (IEEE80211_IS_CHAN_HALF(c))
197 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
198 		if (IEEE80211_IS_CHAN_QUARTER(c))
199 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
200 		if (IEEE80211_IS_CHAN_HTA(c))
201 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
202 		if (IEEE80211_IS_CHAN_HTG(c))
203 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
204 		if (IEEE80211_IS_CHAN_VHTA(c))
205 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
206 		if (IEEE80211_IS_CHAN_VHTG(c))
207 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
208 	}
209 	/* initialize candidate channels to all available */
210 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
211 		sizeof(ic->ic_chan_avail));
212 
213 	/* sort channel table to allow lookup optimizations */
214 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
215 
216 	/* invalidate any previous state */
217 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
218 	ic->ic_prevchan = NULL;
219 	ic->ic_csa_newchan = NULL;
220 	/* arbitrarily pick the first channel */
221 	ic->ic_curchan = &ic->ic_channels[0];
222 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
223 
224 	/* fillin well-known rate sets if driver has not specified */
225 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
226 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
227 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
230 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
231 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
232 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
233 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
234 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
236 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
237 
238 	/*
239 	 * Setup required information to fill the mcsset field, if driver did
240 	 * not. Assume a 2T2R setup for historic reasons.
241 	 */
242 	if (ic->ic_rxstream == 0)
243 		ic->ic_rxstream = 2;
244 	if (ic->ic_txstream == 0)
245 		ic->ic_txstream = 2;
246 
247 	ieee80211_init_suphtrates(ic);
248 
249 	/*
250 	 * Set auto mode to reset active channel state and any desired channel.
251 	 */
252 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
253 #undef DEFAULTRATES
254 }
255 
256 static void
257 null_update_mcast(struct ieee80211com *ic)
258 {
259 
260 	ic_printf(ic, "need multicast update callback\n");
261 }
262 
263 static void
264 null_update_promisc(struct ieee80211com *ic)
265 {
266 
267 	ic_printf(ic, "need promiscuous mode update callback\n");
268 }
269 
270 static void
271 null_update_chw(struct ieee80211com *ic)
272 {
273 
274 	ic_printf(ic, "%s: need callback\n", __func__);
275 }
276 
277 int
278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
279 {
280 	va_list ap;
281 	int retval;
282 
283 	retval = printf("%s: ", ic->ic_name);
284 	va_start(ap, fmt);
285 	retval += vprintf(fmt, ap);
286 	va_end(ap);
287 	return (retval);
288 }
289 
290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
291 static struct mtx ic_list_mtx;
292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
293 
294 static int
295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
296 {
297 	struct ieee80211com *ic;
298 	struct sbuf sb;
299 	char *sp;
300 	int error;
301 
302 	error = sysctl_wire_old_buffer(req, 0);
303 	if (error)
304 		return (error);
305 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
306 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
307 	sp = "";
308 	mtx_lock(&ic_list_mtx);
309 	LIST_FOREACH(ic, &ic_head, ic_next) {
310 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
311 		sp = " ";
312 	}
313 	mtx_unlock(&ic_list_mtx);
314 	error = sbuf_finish(&sb);
315 	sbuf_delete(&sb);
316 	return (error);
317 }
318 
319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
321     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
322 
323 /*
324  * Attach/setup the common net80211 state.  Called by
325  * the driver on attach to prior to creating any vap's.
326  */
327 void
328 ieee80211_ifattach(struct ieee80211com *ic)
329 {
330 
331 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
332 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
333 	TAILQ_INIT(&ic->ic_vaps);
334 
335 	/* Create a taskqueue for all state changes */
336 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 struct ieee80211com *
438 ieee80211_find_com(const char *name)
439 {
440 	struct ieee80211com *ic;
441 
442 	mtx_lock(&ic_list_mtx);
443 	LIST_FOREACH(ic, &ic_head, ic_next)
444 		if (strcmp(ic->ic_name, name) == 0)
445 			break;
446 	mtx_unlock(&ic_list_mtx);
447 
448 	return (ic);
449 }
450 
451 void
452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
453 {
454 	struct ieee80211com *ic;
455 
456 	mtx_lock(&ic_list_mtx);
457 	LIST_FOREACH(ic, &ic_head, ic_next)
458 		(*f)(arg, ic);
459 	mtx_unlock(&ic_list_mtx);
460 }
461 
462 /*
463  * Default reset method for use with the ioctl support.  This
464  * method is invoked after any state change in the 802.11
465  * layer that should be propagated to the hardware but not
466  * require re-initialization of the 802.11 state machine (e.g
467  * rescanning for an ap).  We always return ENETRESET which
468  * should cause the driver to re-initialize the device. Drivers
469  * can override this method to implement more optimized support.
470  */
471 static int
472 default_reset(struct ieee80211vap *vap, u_long cmd)
473 {
474 	return ENETRESET;
475 }
476 
477 /*
478  * Default for updating the VAP default TX key index.
479  *
480  * Drivers that support TX offload as well as hardware encryption offload
481  * may need to be informed of key index changes separate from the key
482  * update.
483  */
484 static void
485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
486 {
487 
488 	/* XXX assert validity */
489 	/* XXX assert we're in a key update block */
490 	vap->iv_def_txkey = kid;
491 }
492 
493 /*
494  * Add underlying device errors to vap errors.
495  */
496 static uint64_t
497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
498 {
499 	struct ieee80211vap *vap = ifp->if_softc;
500 	struct ieee80211com *ic = vap->iv_ic;
501 	uint64_t rv;
502 
503 	rv = if_get_counter_default(ifp, cnt);
504 	switch (cnt) {
505 	case IFCOUNTER_OERRORS:
506 		rv += counter_u64_fetch(ic->ic_oerrors);
507 		break;
508 	case IFCOUNTER_IERRORS:
509 		rv += counter_u64_fetch(ic->ic_ierrors);
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	return (rv);
516 }
517 
518 /*
519  * Prepare a vap for use.  Drivers use this call to
520  * setup net80211 state in new vap's prior attaching
521  * them with ieee80211_vap_attach (below).
522  */
523 int
524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
525     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
526     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
527 {
528 	struct ifnet *ifp;
529 
530 	ifp = if_alloc(IFT_ETHER);
531 	if (ifp == NULL) {
532 		ic_printf(ic, "%s: unable to allocate ifnet\n",
533 		    __func__);
534 		return ENOMEM;
535 	}
536 	if_initname(ifp, name, unit);
537 	ifp->if_softc = vap;			/* back pointer */
538 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
539 	ifp->if_transmit = ieee80211_vap_transmit;
540 	ifp->if_qflush = ieee80211_vap_qflush;
541 	ifp->if_ioctl = ieee80211_ioctl;
542 	ifp->if_init = ieee80211_init;
543 	ifp->if_get_counter = ieee80211_get_counter;
544 
545 	vap->iv_ifp = ifp;
546 	vap->iv_ic = ic;
547 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
548 	vap->iv_flags_ext = ic->ic_flags_ext;
549 	vap->iv_flags_ven = ic->ic_flags_ven;
550 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
551 
552 	/* 11n capabilities - XXX methodize */
553 	vap->iv_htcaps = ic->ic_htcaps;
554 	vap->iv_htextcaps = ic->ic_htextcaps;
555 
556 	/* 11ac capabilities - XXX methodize */
557 	vap->iv_vhtcaps = ic->ic_vhtcaps;
558 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
559 
560 	vap->iv_opmode = opmode;
561 	vap->iv_caps |= ieee80211_opcap[opmode];
562 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
563 	switch (opmode) {
564 	case IEEE80211_M_WDS:
565 		/*
566 		 * WDS links must specify the bssid of the far end.
567 		 * For legacy operation this is a static relationship.
568 		 * For non-legacy operation the station must associate
569 		 * and be authorized to pass traffic.  Plumbing the
570 		 * vap to the proper node happens when the vap
571 		 * transitions to RUN state.
572 		 */
573 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
574 		vap->iv_flags |= IEEE80211_F_DESBSSID;
575 		if (flags & IEEE80211_CLONE_WDSLEGACY)
576 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
577 		break;
578 #ifdef IEEE80211_SUPPORT_TDMA
579 	case IEEE80211_M_AHDEMO:
580 		if (flags & IEEE80211_CLONE_TDMA) {
581 			/* NB: checked before clone operation allowed */
582 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
583 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
584 			/*
585 			 * Propagate TDMA capability to mark vap; this
586 			 * cannot be removed and is used to distinguish
587 			 * regular ahdemo operation from ahdemo+tdma.
588 			 */
589 			vap->iv_caps |= IEEE80211_C_TDMA;
590 		}
591 		break;
592 #endif
593 	default:
594 		break;
595 	}
596 	/* auto-enable s/w beacon miss support */
597 	if (flags & IEEE80211_CLONE_NOBEACONS)
598 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
599 	/* auto-generated or user supplied MAC address */
600 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
601 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
602 	/*
603 	 * Enable various functionality by default if we're
604 	 * capable; the driver can override us if it knows better.
605 	 */
606 	if (vap->iv_caps & IEEE80211_C_WME)
607 		vap->iv_flags |= IEEE80211_F_WME;
608 	if (vap->iv_caps & IEEE80211_C_BURST)
609 		vap->iv_flags |= IEEE80211_F_BURST;
610 	/* NB: bg scanning only makes sense for station mode right now */
611 	if (vap->iv_opmode == IEEE80211_M_STA &&
612 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
613 		vap->iv_flags |= IEEE80211_F_BGSCAN;
614 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
615 	/* NB: DFS support only makes sense for ap mode right now */
616 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
617 	    (vap->iv_caps & IEEE80211_C_DFS))
618 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
619 	/* NB: only flip on U-APSD for hostap/sta for now */
620 	if ((vap->iv_opmode == IEEE80211_M_STA)
621 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
622 		if (vap->iv_caps & IEEE80211_C_UAPSD)
623 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
624 	}
625 
626 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
627 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
628 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
629 	/*
630 	 * Install a default reset method for the ioctl support;
631 	 * the driver can override this.
632 	 */
633 	vap->iv_reset = default_reset;
634 
635 	/*
636 	 * Install a default crypto key update method, the driver
637 	 * can override this.
638 	 */
639 	vap->iv_update_deftxkey = default_update_deftxkey;
640 
641 	ieee80211_sysctl_vattach(vap);
642 	ieee80211_crypto_vattach(vap);
643 	ieee80211_node_vattach(vap);
644 	ieee80211_power_vattach(vap);
645 	ieee80211_proto_vattach(vap);
646 #ifdef IEEE80211_SUPPORT_SUPERG
647 	ieee80211_superg_vattach(vap);
648 #endif
649 	ieee80211_ht_vattach(vap);
650 	ieee80211_vht_vattach(vap);
651 	ieee80211_scan_vattach(vap);
652 	ieee80211_regdomain_vattach(vap);
653 	ieee80211_radiotap_vattach(vap);
654 	ieee80211_vap_reset_erp(vap);
655 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
656 
657 	return 0;
658 }
659 
660 /*
661  * Activate a vap.  State should have been prepared with a
662  * call to ieee80211_vap_setup and by the driver.  On return
663  * from this call the vap is ready for use.
664  */
665 int
666 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
667     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
668 {
669 	struct ifnet *ifp = vap->iv_ifp;
670 	struct ieee80211com *ic = vap->iv_ic;
671 	struct ifmediareq imr;
672 	int maxrate;
673 
674 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
675 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
676 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
677 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
678 
679 	/*
680 	 * Do late attach work that cannot happen until after
681 	 * the driver has had a chance to override defaults.
682 	 */
683 	ieee80211_node_latevattach(vap);
684 	ieee80211_power_latevattach(vap);
685 
686 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
687 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
688 	ieee80211_media_status(ifp, &imr);
689 	/* NB: strip explicit mode; we're actually in autoselect */
690 	ifmedia_set(&vap->iv_media,
691 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
692 	if (maxrate)
693 		ifp->if_baudrate = IF_Mbps(maxrate);
694 
695 	ether_ifattach(ifp, macaddr);
696 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
697 	/* hook output method setup by ether_ifattach */
698 	vap->iv_output = ifp->if_output;
699 	ifp->if_output = ieee80211_output;
700 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
701 
702 	IEEE80211_LOCK(ic);
703 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
704 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
705 #ifdef IEEE80211_SUPPORT_SUPERG
706 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
707 #endif
708 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
709 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
710 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
711 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
712 
713 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
714 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
715 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
716 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
717 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
718 	IEEE80211_UNLOCK(ic);
719 
720 	return 1;
721 }
722 
723 /*
724  * Tear down vap state and reclaim the ifnet.
725  * The driver is assumed to have prepared for
726  * this; e.g. by turning off interrupts for the
727  * underlying device.
728  */
729 void
730 ieee80211_vap_detach(struct ieee80211vap *vap)
731 {
732 	struct ieee80211com *ic = vap->iv_ic;
733 	struct ifnet *ifp = vap->iv_ifp;
734 
735 	CURVNET_SET(ifp->if_vnet);
736 
737 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
738 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
739 
740 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
741 	ether_ifdetach(ifp);
742 
743 	ieee80211_stop(vap);
744 
745 	/*
746 	 * Flush any deferred vap tasks.
747 	 */
748 	ieee80211_draintask(ic, &vap->iv_nstate_task);
749 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
750 	ieee80211_draintask(ic, &vap->iv_wme_task);
751 	ieee80211_draintask(ic, &ic->ic_parent_task);
752 
753 	/* XXX band-aid until ifnet handles this for us */
754 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
755 
756 	IEEE80211_LOCK(ic);
757 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
758 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
759 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
760 #ifdef IEEE80211_SUPPORT_SUPERG
761 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
762 #endif
763 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
764 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
765 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
766 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
767 
768 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
769 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
770 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
771 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
772 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
773 
774 	/* NB: this handles the bpfdetach done below */
775 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
776 	if (vap->iv_ifflags & IFF_PROMISC)
777 		ieee80211_promisc(vap, false);
778 	if (vap->iv_ifflags & IFF_ALLMULTI)
779 		ieee80211_allmulti(vap, false);
780 	IEEE80211_UNLOCK(ic);
781 
782 	ifmedia_removeall(&vap->iv_media);
783 
784 	ieee80211_radiotap_vdetach(vap);
785 	ieee80211_regdomain_vdetach(vap);
786 	ieee80211_scan_vdetach(vap);
787 #ifdef IEEE80211_SUPPORT_SUPERG
788 	ieee80211_superg_vdetach(vap);
789 #endif
790 	ieee80211_vht_vdetach(vap);
791 	ieee80211_ht_vdetach(vap);
792 	/* NB: must be before ieee80211_node_vdetach */
793 	ieee80211_proto_vdetach(vap);
794 	ieee80211_crypto_vdetach(vap);
795 	ieee80211_power_vdetach(vap);
796 	ieee80211_node_vdetach(vap);
797 	ieee80211_sysctl_vdetach(vap);
798 
799 	if_free(ifp);
800 
801 	CURVNET_RESTORE();
802 }
803 
804 /*
805  * Count number of vaps in promisc, and issue promisc on
806  * parent respectively.
807  */
808 void
809 ieee80211_promisc(struct ieee80211vap *vap, bool on)
810 {
811 	struct ieee80211com *ic = vap->iv_ic;
812 
813 	IEEE80211_LOCK_ASSERT(ic);
814 
815 	if (on) {
816 		if (++ic->ic_promisc == 1)
817 			ieee80211_runtask(ic, &ic->ic_promisc_task);
818 	} else {
819 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
820 		    __func__, ic));
821 		if (--ic->ic_promisc == 0)
822 			ieee80211_runtask(ic, &ic->ic_promisc_task);
823 	}
824 }
825 
826 /*
827  * Count number of vaps in allmulti, and issue allmulti on
828  * parent respectively.
829  */
830 void
831 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
832 {
833 	struct ieee80211com *ic = vap->iv_ic;
834 
835 	IEEE80211_LOCK_ASSERT(ic);
836 
837 	if (on) {
838 		if (++ic->ic_allmulti == 1)
839 			ieee80211_runtask(ic, &ic->ic_mcast_task);
840 	} else {
841 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
842 		    __func__, ic));
843 		if (--ic->ic_allmulti == 0)
844 			ieee80211_runtask(ic, &ic->ic_mcast_task);
845 	}
846 }
847 
848 /*
849  * Synchronize flag bit state in the com structure
850  * according to the state of all vap's.  This is used,
851  * for example, to handle state changes via ioctls.
852  */
853 static void
854 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
855 {
856 	struct ieee80211vap *vap;
857 	int bit;
858 
859 	IEEE80211_LOCK_ASSERT(ic);
860 
861 	bit = 0;
862 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
863 		if (vap->iv_flags & flag) {
864 			bit = 1;
865 			break;
866 		}
867 	if (bit)
868 		ic->ic_flags |= flag;
869 	else
870 		ic->ic_flags &= ~flag;
871 }
872 
873 void
874 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
875 {
876 	struct ieee80211com *ic = vap->iv_ic;
877 
878 	IEEE80211_LOCK(ic);
879 	if (flag < 0) {
880 		flag = -flag;
881 		vap->iv_flags &= ~flag;
882 	} else
883 		vap->iv_flags |= flag;
884 	ieee80211_syncflag_locked(ic, flag);
885 	IEEE80211_UNLOCK(ic);
886 }
887 
888 /*
889  * Synchronize flags_ht bit state in the com structure
890  * according to the state of all vap's.  This is used,
891  * for example, to handle state changes via ioctls.
892  */
893 static void
894 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
895 {
896 	struct ieee80211vap *vap;
897 	int bit;
898 
899 	IEEE80211_LOCK_ASSERT(ic);
900 
901 	bit = 0;
902 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
903 		if (vap->iv_flags_ht & flag) {
904 			bit = 1;
905 			break;
906 		}
907 	if (bit)
908 		ic->ic_flags_ht |= flag;
909 	else
910 		ic->ic_flags_ht &= ~flag;
911 }
912 
913 void
914 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
915 {
916 	struct ieee80211com *ic = vap->iv_ic;
917 
918 	IEEE80211_LOCK(ic);
919 	if (flag < 0) {
920 		flag = -flag;
921 		vap->iv_flags_ht &= ~flag;
922 	} else
923 		vap->iv_flags_ht |= flag;
924 	ieee80211_syncflag_ht_locked(ic, flag);
925 	IEEE80211_UNLOCK(ic);
926 }
927 
928 /*
929  * Synchronize flags_vht bit state in the com structure
930  * according to the state of all vap's.  This is used,
931  * for example, to handle state changes via ioctls.
932  */
933 static void
934 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
935 {
936 	struct ieee80211vap *vap;
937 	int bit;
938 
939 	IEEE80211_LOCK_ASSERT(ic);
940 
941 	bit = 0;
942 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
943 		if (vap->iv_flags_vht & flag) {
944 			bit = 1;
945 			break;
946 		}
947 	if (bit)
948 		ic->ic_flags_vht |= flag;
949 	else
950 		ic->ic_flags_vht &= ~flag;
951 }
952 
953 void
954 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
955 {
956 	struct ieee80211com *ic = vap->iv_ic;
957 
958 	IEEE80211_LOCK(ic);
959 	if (flag < 0) {
960 		flag = -flag;
961 		vap->iv_flags_vht &= ~flag;
962 	} else
963 		vap->iv_flags_vht |= flag;
964 	ieee80211_syncflag_vht_locked(ic, flag);
965 	IEEE80211_UNLOCK(ic);
966 }
967 
968 /*
969  * Synchronize flags_ext bit state in the com structure
970  * according to the state of all vap's.  This is used,
971  * for example, to handle state changes via ioctls.
972  */
973 static void
974 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
975 {
976 	struct ieee80211vap *vap;
977 	int bit;
978 
979 	IEEE80211_LOCK_ASSERT(ic);
980 
981 	bit = 0;
982 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
983 		if (vap->iv_flags_ext & flag) {
984 			bit = 1;
985 			break;
986 		}
987 	if (bit)
988 		ic->ic_flags_ext |= flag;
989 	else
990 		ic->ic_flags_ext &= ~flag;
991 }
992 
993 void
994 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
995 {
996 	struct ieee80211com *ic = vap->iv_ic;
997 
998 	IEEE80211_LOCK(ic);
999 	if (flag < 0) {
1000 		flag = -flag;
1001 		vap->iv_flags_ext &= ~flag;
1002 	} else
1003 		vap->iv_flags_ext |= flag;
1004 	ieee80211_syncflag_ext_locked(ic, flag);
1005 	IEEE80211_UNLOCK(ic);
1006 }
1007 
1008 static __inline int
1009 mapgsm(u_int freq, u_int flags)
1010 {
1011 	freq *= 10;
1012 	if (flags & IEEE80211_CHAN_QUARTER)
1013 		freq += 5;
1014 	else if (flags & IEEE80211_CHAN_HALF)
1015 		freq += 10;
1016 	else
1017 		freq += 20;
1018 	/* NB: there is no 907/20 wide but leave room */
1019 	return (freq - 906*10) / 5;
1020 }
1021 
1022 static __inline int
1023 mappsb(u_int freq, u_int flags)
1024 {
1025 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1026 }
1027 
1028 /*
1029  * Convert MHz frequency to IEEE channel number.
1030  */
1031 int
1032 ieee80211_mhz2ieee(u_int freq, u_int flags)
1033 {
1034 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1035 	if (flags & IEEE80211_CHAN_GSM)
1036 		return mapgsm(freq, flags);
1037 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1038 		if (freq == 2484)
1039 			return 14;
1040 		if (freq < 2484)
1041 			return ((int) freq - 2407) / 5;
1042 		else
1043 			return 15 + ((freq - 2512) / 20);
1044 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1045 		if (freq <= 5000) {
1046 			/* XXX check regdomain? */
1047 			if (IS_FREQ_IN_PSB(freq))
1048 				return mappsb(freq, flags);
1049 			return (freq - 4000) / 5;
1050 		} else
1051 			return (freq - 5000) / 5;
1052 	} else {				/* either, guess */
1053 		if (freq == 2484)
1054 			return 14;
1055 		if (freq < 2484) {
1056 			if (907 <= freq && freq <= 922)
1057 				return mapgsm(freq, flags);
1058 			return ((int) freq - 2407) / 5;
1059 		}
1060 		if (freq < 5000) {
1061 			if (IS_FREQ_IN_PSB(freq))
1062 				return mappsb(freq, flags);
1063 			else if (freq > 4900)
1064 				return (freq - 4000) / 5;
1065 			else
1066 				return 15 + ((freq - 2512) / 20);
1067 		}
1068 		return (freq - 5000) / 5;
1069 	}
1070 #undef IS_FREQ_IN_PSB
1071 }
1072 
1073 /*
1074  * Convert channel to IEEE channel number.
1075  */
1076 int
1077 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1078 {
1079 	if (c == NULL) {
1080 		ic_printf(ic, "invalid channel (NULL)\n");
1081 		return 0;		/* XXX */
1082 	}
1083 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1084 }
1085 
1086 /*
1087  * Convert IEEE channel number to MHz frequency.
1088  */
1089 u_int
1090 ieee80211_ieee2mhz(u_int chan, u_int flags)
1091 {
1092 	if (flags & IEEE80211_CHAN_GSM)
1093 		return 907 + 5 * (chan / 10);
1094 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1095 		if (chan == 14)
1096 			return 2484;
1097 		if (chan < 14)
1098 			return 2407 + chan*5;
1099 		else
1100 			return 2512 + ((chan-15)*20);
1101 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1102 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1103 			chan -= 37;
1104 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1105 		}
1106 		return 5000 + (chan*5);
1107 	} else {				/* either, guess */
1108 		/* XXX can't distinguish PSB+GSM channels */
1109 		if (chan == 14)
1110 			return 2484;
1111 		if (chan < 14)			/* 0-13 */
1112 			return 2407 + chan*5;
1113 		if (chan < 27)			/* 15-26 */
1114 			return 2512 + ((chan-15)*20);
1115 		return 5000 + (chan*5);
1116 	}
1117 }
1118 
1119 static __inline void
1120 set_extchan(struct ieee80211_channel *c)
1121 {
1122 
1123 	/*
1124 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1125 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1126 	 */
1127 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1128 		c->ic_extieee = c->ic_ieee + 4;
1129 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1130 		c->ic_extieee = c->ic_ieee - 4;
1131 	else
1132 		c->ic_extieee = 0;
1133 }
1134 
1135 /*
1136  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1137  *
1138  * This for now uses a hard-coded list of 80MHz wide channels.
1139  *
1140  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1141  * wide channel we've already decided upon.
1142  *
1143  * For VHT80 and VHT160, there are only a small number of fixed
1144  * 80/160MHz wide channels, so we just use those.
1145  *
1146  * This is all likely very very wrong - both the regulatory code
1147  * and this code needs to ensure that all four channels are
1148  * available and valid before the VHT80 (and eight for VHT160) channel
1149  * is created.
1150  */
1151 
1152 struct vht_chan_range {
1153 	uint16_t freq_start;
1154 	uint16_t freq_end;
1155 };
1156 
1157 struct vht_chan_range vht80_chan_ranges[] = {
1158 	{ 5170, 5250 },
1159 	{ 5250, 5330 },
1160 	{ 5490, 5570 },
1161 	{ 5570, 5650 },
1162 	{ 5650, 5730 },
1163 	{ 5735, 5815 },
1164 	{ 0, 0, }
1165 };
1166 
1167 static int
1168 set_vht_extchan(struct ieee80211_channel *c)
1169 {
1170 	int i;
1171 
1172 	if (! IEEE80211_IS_CHAN_VHT(c)) {
1173 		return (0);
1174 	}
1175 
1176 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1177 		c->ic_vht_ch_freq1 = c->ic_ieee;
1178 		return (1);
1179 	}
1180 
1181 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1182 		if (IEEE80211_IS_CHAN_HT40U(c))
1183 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1184 		else if (IEEE80211_IS_CHAN_HT40D(c))
1185 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1186 		else
1187 			return (0);
1188 		return (1);
1189 	}
1190 
1191 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1192 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1193 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1194 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1195 				int midpoint;
1196 
1197 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1198 				c->ic_vht_ch_freq1 =
1199 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1200 				c->ic_vht_ch_freq2 = 0;
1201 #if 0
1202 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1203 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1204 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1205 #endif
1206 				return (1);
1207 			}
1208 		}
1209 		return (0);
1210 	}
1211 
1212 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1213 	    __func__,
1214 	    c->ic_ieee,
1215 	    c->ic_flags);
1216 
1217 	return (0);
1218 }
1219 
1220 /*
1221  * Return whether the current channel could possibly be a part of
1222  * a VHT80 channel.
1223  *
1224  * This doesn't check that the whole range is in the allowed list
1225  * according to regulatory.
1226  */
1227 static int
1228 is_vht80_valid_freq(uint16_t freq)
1229 {
1230 	int i;
1231 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1232 		if (freq >= vht80_chan_ranges[i].freq_start &&
1233 		    freq < vht80_chan_ranges[i].freq_end)
1234 			return (1);
1235 	}
1236 	return (0);
1237 }
1238 
1239 static int
1240 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1241     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1242 {
1243 	struct ieee80211_channel *c;
1244 
1245 	if (*nchans >= maxchans)
1246 		return (ENOBUFS);
1247 
1248 #if 0
1249 	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1250 	    __func__,
1251 	    *nchans,
1252 	    ieee,
1253 	    freq,
1254 	    flags);
1255 #endif
1256 
1257 	c = &chans[(*nchans)++];
1258 	c->ic_ieee = ieee;
1259 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1260 	c->ic_maxregpower = maxregpower;
1261 	c->ic_maxpower = 2 * maxregpower;
1262 	c->ic_flags = flags;
1263 	c->ic_vht_ch_freq1 = 0;
1264 	c->ic_vht_ch_freq2 = 0;
1265 	set_extchan(c);
1266 	set_vht_extchan(c);
1267 
1268 	return (0);
1269 }
1270 
1271 static int
1272 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1273     uint32_t flags)
1274 {
1275 	struct ieee80211_channel *c;
1276 
1277 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1278 
1279 	if (*nchans >= maxchans)
1280 		return (ENOBUFS);
1281 
1282 #if 0
1283 	printf("%s: %d: flags=0x%08x\n",
1284 	    __func__,
1285 	    *nchans,
1286 	    flags);
1287 #endif
1288 
1289 	c = &chans[(*nchans)++];
1290 	c[0] = c[-1];
1291 	c->ic_flags = flags;
1292 	c->ic_vht_ch_freq1 = 0;
1293 	c->ic_vht_ch_freq2 = 0;
1294 	set_extchan(c);
1295 	set_vht_extchan(c);
1296 
1297 	return (0);
1298 }
1299 
1300 /*
1301  * XXX VHT-2GHz
1302  */
1303 static void
1304 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1305 {
1306 	int nmodes;
1307 
1308 	nmodes = 0;
1309 	if (isset(bands, IEEE80211_MODE_11B))
1310 		flags[nmodes++] = IEEE80211_CHAN_B;
1311 	if (isset(bands, IEEE80211_MODE_11G))
1312 		flags[nmodes++] = IEEE80211_CHAN_G;
1313 	if (isset(bands, IEEE80211_MODE_11NG))
1314 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1315 	if (ht40) {
1316 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1317 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1318 	}
1319 	flags[nmodes] = 0;
1320 }
1321 
1322 static void
1323 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1324 {
1325 	int nmodes;
1326 
1327 	/*
1328 	 * the addchan_list function seems to expect the flags array to
1329 	 * be in channel width order, so the VHT bits are interspersed
1330 	 * as appropriate to maintain said order.
1331 	 *
1332 	 * It also assumes HT40U is before HT40D.
1333 	 */
1334 	nmodes = 0;
1335 
1336 	/* 20MHz */
1337 	if (isset(bands, IEEE80211_MODE_11A))
1338 		flags[nmodes++] = IEEE80211_CHAN_A;
1339 	if (isset(bands, IEEE80211_MODE_11NA))
1340 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1341 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1342 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1343 		    IEEE80211_CHAN_VHT20;
1344 	}
1345 
1346 	/* 40MHz */
1347 	if (ht40) {
1348 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1349 	}
1350 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1351 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U
1352 		    | IEEE80211_CHAN_VHT40U;
1353 	}
1354 	if (ht40) {
1355 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1356 	}
1357 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1358 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D
1359 		    | IEEE80211_CHAN_VHT40D;
1360 	}
1361 
1362 	/* 80MHz */
1363 	if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1364 		flags[nmodes++] = IEEE80211_CHAN_A |
1365 		    IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80;
1366 		flags[nmodes++] = IEEE80211_CHAN_A |
1367 		    IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80;
1368 	}
1369 
1370 	/* XXX VHT80+80 */
1371 	/* XXX VHT160 */
1372 	flags[nmodes] = 0;
1373 }
1374 
1375 static void
1376 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1377 {
1378 
1379 	flags[0] = 0;
1380 	if (isset(bands, IEEE80211_MODE_11A) ||
1381 	    isset(bands, IEEE80211_MODE_11NA) ||
1382 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1383 		if (isset(bands, IEEE80211_MODE_11B) ||
1384 		    isset(bands, IEEE80211_MODE_11G) ||
1385 		    isset(bands, IEEE80211_MODE_11NG) ||
1386 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1387 			return;
1388 
1389 		getflags_5ghz(bands, flags, ht40, vht80);
1390 	} else
1391 		getflags_2ghz(bands, flags, ht40);
1392 }
1393 
1394 /*
1395  * Add one 20 MHz channel into specified channel list.
1396  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1397  * channels if you have any B/G/N band bit set.
1398  */
1399 /* XXX VHT */
1400 int
1401 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1402     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1403     uint32_t chan_flags, const uint8_t bands[])
1404 {
1405 	uint32_t flags[IEEE80211_MODE_MAX];
1406 	int i, error;
1407 
1408 	getflags(bands, flags, 0, 0);
1409 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1410 
1411 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1412 	    flags[0] | chan_flags);
1413 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1414 		error = copychan_prev(chans, maxchans, nchans,
1415 		    flags[i] | chan_flags);
1416 	}
1417 
1418 	return (error);
1419 }
1420 
1421 static struct ieee80211_channel *
1422 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1423     uint32_t flags)
1424 {
1425 	struct ieee80211_channel *c;
1426 	int i;
1427 
1428 	flags &= IEEE80211_CHAN_ALLTURBO;
1429 	/* brute force search */
1430 	for (i = 0; i < nchans; i++) {
1431 		c = &chans[i];
1432 		if (c->ic_freq == freq &&
1433 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1434 			return c;
1435 	}
1436 	return NULL;
1437 }
1438 
1439 /*
1440  * Add 40 MHz channel pair into specified channel list.
1441  */
1442 /* XXX VHT */
1443 int
1444 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1445     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1446 {
1447 	struct ieee80211_channel *cent, *extc;
1448 	uint16_t freq;
1449 	int error;
1450 
1451 	freq = ieee80211_ieee2mhz(ieee, flags);
1452 
1453 	/*
1454 	 * Each entry defines an HT40 channel pair; find the
1455 	 * center channel, then the extension channel above.
1456 	 */
1457 	flags |= IEEE80211_CHAN_HT20;
1458 	cent = findchannel(chans, *nchans, freq, flags);
1459 	if (cent == NULL)
1460 		return (EINVAL);
1461 
1462 	extc = findchannel(chans, *nchans, freq + 20, flags);
1463 	if (extc == NULL)
1464 		return (ENOENT);
1465 
1466 	flags &= ~IEEE80211_CHAN_HT;
1467 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1468 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1469 	if (error != 0)
1470 		return (error);
1471 
1472 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1473 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1474 
1475 	return (error);
1476 }
1477 
1478 /*
1479  * Fetch the center frequency for the primary channel.
1480  */
1481 uint32_t
1482 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1483 {
1484 
1485 	return (c->ic_freq);
1486 }
1487 
1488 /*
1489  * Fetch the center frequency for the primary BAND channel.
1490  *
1491  * For 5, 10, 20MHz channels it'll be the normally configured channel
1492  * frequency.
1493  *
1494  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1495  * wide channel, not the centre of the primary channel (that's ic_freq).
1496  *
1497  * For 80+80MHz channels this will be the centre of the primary
1498  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1499  */
1500 uint32_t
1501 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1502 {
1503 
1504 	/*
1505 	 * VHT - use the pre-calculated centre frequency
1506 	 * of the given channel.
1507 	 */
1508 	if (IEEE80211_IS_CHAN_VHT(c))
1509 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1510 
1511 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1512 		return (c->ic_freq + 10);
1513 	}
1514 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1515 		return (c->ic_freq - 10);
1516 	}
1517 
1518 	return (c->ic_freq);
1519 }
1520 
1521 /*
1522  * For now, no 80+80 support; it will likely always return 0.
1523  */
1524 uint32_t
1525 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1526 {
1527 
1528 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1529 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1530 
1531 	return (0);
1532 }
1533 
1534 /*
1535  * Adds channels into specified channel list (ieee[] array must be sorted).
1536  * Channels are already sorted.
1537  */
1538 static int
1539 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1540     const uint8_t ieee[], int nieee, uint32_t flags[])
1541 {
1542 	uint16_t freq;
1543 	int i, j, error;
1544 	int is_vht;
1545 
1546 	for (i = 0; i < nieee; i++) {
1547 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1548 		for (j = 0; flags[j] != 0; j++) {
1549 			/*
1550 			 * Notes:
1551 			 * + HT40 and VHT40 channels occur together, so
1552 			 *   we need to be careful that we actually allow that.
1553 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1554 			 *   make sure it's not skipped because of the overlap
1555 			 *   check used for (V)HT40.
1556 			 */
1557 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1558 
1559 			/*
1560 			 * Test for VHT80.
1561 			 * XXX This is all very broken right now.
1562 			 * What we /should/ do is:
1563 			 *
1564 			 * + check that the frequency is in the list of
1565 			 *   allowed VHT80 ranges; and
1566 			 * + the other 3 channels in the list are actually
1567 			 *   also available.
1568 			 */
1569 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1570 				if (! is_vht80_valid_freq(freq))
1571 					continue;
1572 
1573 			/*
1574 			 * Test for (V)HT40.
1575 			 *
1576 			 * This is also a fall through from VHT80; as we only
1577 			 * allow a VHT80 channel if the VHT40 combination is
1578 			 * also valid.  If the VHT40 form is not valid then
1579 			 * we certainly can't do VHT80..
1580 			 */
1581 			if (flags[j] & IEEE80211_CHAN_HT40D)
1582 				/*
1583 				 * Can't have a "lower" channel if we are the
1584 				 * first channel.
1585 				 *
1586 				 * Can't have a "lower" channel if it's below/
1587 				 * within 20MHz of the first channel.
1588 				 *
1589 				 * Can't have a "lower" channel if the channel
1590 				 * below it is not 20MHz away.
1591 				 */
1592 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1593 				    freq - 20 !=
1594 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1595 					continue;
1596 			if (flags[j] & IEEE80211_CHAN_HT40U)
1597 				/*
1598 				 * Can't have an "upper" channel if we are
1599 				 * the last channel.
1600 				 *
1601 				 * Can't have an "upper" channel be above the
1602 				 * last channel in the list.
1603 				 *
1604 				 * Can't have an "upper" channel if the next
1605 				 * channel according to the math isn't 20MHz
1606 				 * away.  (Likely for channel 13/14.)
1607 				 */
1608 				if (i == nieee - 1 ||
1609 				    ieee[i] + 4 > ieee[nieee - 1] ||
1610 				    freq + 20 !=
1611 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1612 					continue;
1613 
1614 			if (j == 0) {
1615 				error = addchan(chans, maxchans, nchans,
1616 				    ieee[i], freq, 0, flags[j]);
1617 			} else {
1618 				error = copychan_prev(chans, maxchans, nchans,
1619 				    flags[j]);
1620 			}
1621 			if (error != 0)
1622 				return (error);
1623 		}
1624 	}
1625 
1626 	return (0);
1627 }
1628 
1629 int
1630 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1631     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1632     int ht40)
1633 {
1634 	uint32_t flags[IEEE80211_MODE_MAX];
1635 
1636 	/* XXX no VHT for now */
1637 	getflags_2ghz(bands, flags, ht40);
1638 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1639 
1640 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1641 }
1642 
1643 int
1644 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1645     int maxchans, int *nchans, const uint8_t bands[], int ht40)
1646 {
1647 	const uint8_t default_chan_list[] =
1648 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1649 
1650 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1651 	    default_chan_list, nitems(default_chan_list), bands, ht40));
1652 }
1653 
1654 int
1655 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1656     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1657     int ht40)
1658 {
1659 	uint32_t flags[IEEE80211_MODE_MAX];
1660 	int vht80 = 0;
1661 
1662 	/*
1663 	 * For now, assume VHT == VHT80 support as a minimum.
1664 	 */
1665 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ))
1666 		vht80 = 1;
1667 
1668 	getflags_5ghz(bands, flags, ht40, vht80);
1669 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1670 
1671 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1672 }
1673 
1674 /*
1675  * Locate a channel given a frequency+flags.  We cache
1676  * the previous lookup to optimize switching between two
1677  * channels--as happens with dynamic turbo.
1678  */
1679 struct ieee80211_channel *
1680 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1681 {
1682 	struct ieee80211_channel *c;
1683 
1684 	flags &= IEEE80211_CHAN_ALLTURBO;
1685 	c = ic->ic_prevchan;
1686 	if (c != NULL && c->ic_freq == freq &&
1687 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1688 		return c;
1689 	/* brute force search */
1690 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1691 }
1692 
1693 /*
1694  * Locate a channel given a channel number+flags.  We cache
1695  * the previous lookup to optimize switching between two
1696  * channels--as happens with dynamic turbo.
1697  */
1698 struct ieee80211_channel *
1699 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1700 {
1701 	struct ieee80211_channel *c;
1702 	int i;
1703 
1704 	flags &= IEEE80211_CHAN_ALLTURBO;
1705 	c = ic->ic_prevchan;
1706 	if (c != NULL && c->ic_ieee == ieee &&
1707 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1708 		return c;
1709 	/* brute force search */
1710 	for (i = 0; i < ic->ic_nchans; i++) {
1711 		c = &ic->ic_channels[i];
1712 		if (c->ic_ieee == ieee &&
1713 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1714 			return c;
1715 	}
1716 	return NULL;
1717 }
1718 
1719 /*
1720  * Lookup a channel suitable for the given rx status.
1721  *
1722  * This is used to find a channel for a frame (eg beacon, probe
1723  * response) based purely on the received PHY information.
1724  *
1725  * For now it tries to do it based on R_FREQ / R_IEEE.
1726  * This is enough for 11bg and 11a (and thus 11ng/11na)
1727  * but it will not be enough for GSM, PSB channels and the
1728  * like.  It also doesn't know about legacy-turbog and
1729  * legacy-turbo modes, which some offload NICs actually
1730  * support in weird ways.
1731  *
1732  * Takes the ic and rxstatus; returns the channel or NULL
1733  * if not found.
1734  *
1735  * XXX TODO: Add support for that when the need arises.
1736  */
1737 struct ieee80211_channel *
1738 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1739     const struct ieee80211_rx_stats *rxs)
1740 {
1741 	struct ieee80211com *ic = vap->iv_ic;
1742 	uint32_t flags;
1743 	struct ieee80211_channel *c;
1744 
1745 	if (rxs == NULL)
1746 		return (NULL);
1747 
1748 	/*
1749 	 * Strictly speaking we only use freq for now,
1750 	 * however later on we may wish to just store
1751 	 * the ieee for verification.
1752 	 */
1753 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1754 		return (NULL);
1755 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1756 		return (NULL);
1757 
1758 	/*
1759 	 * If the rx status contains a valid ieee/freq, then
1760 	 * ensure we populate the correct channel information
1761 	 * in rxchan before passing it up to the scan infrastructure.
1762 	 * Offload NICs will pass up beacons from all channels
1763 	 * during background scans.
1764 	 */
1765 
1766 	/* Determine a band */
1767 	/* XXX should be done by the driver? */
1768 	if (rxs->c_freq < 3000) {
1769 		flags = IEEE80211_CHAN_G;
1770 	} else {
1771 		flags = IEEE80211_CHAN_A;
1772 	}
1773 
1774 	/* Channel lookup */
1775 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1776 
1777 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1778 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1779 	    __func__,
1780 	    (int) rxs->c_freq,
1781 	    (int) rxs->c_ieee,
1782 	    flags,
1783 	    c);
1784 
1785 	return (c);
1786 }
1787 
1788 static void
1789 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1790 {
1791 #define	ADD(_ic, _s, _o) \
1792 	ifmedia_add(media, \
1793 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1794 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1795 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1796 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1797 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1798 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1799 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1800 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1801 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1802 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1803 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1804 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1805 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1806 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1807 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1808 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1809 	};
1810 	u_int mopt;
1811 
1812 	mopt = mopts[mode];
1813 	if (addsta)
1814 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1815 	if (caps & IEEE80211_C_IBSS)
1816 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1817 	if (caps & IEEE80211_C_HOSTAP)
1818 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1819 	if (caps & IEEE80211_C_AHDEMO)
1820 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1821 	if (caps & IEEE80211_C_MONITOR)
1822 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1823 	if (caps & IEEE80211_C_WDS)
1824 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1825 	if (caps & IEEE80211_C_MBSS)
1826 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1827 #undef ADD
1828 }
1829 
1830 /*
1831  * Setup the media data structures according to the channel and
1832  * rate tables.
1833  */
1834 static int
1835 ieee80211_media_setup(struct ieee80211com *ic,
1836 	struct ifmedia *media, int caps, int addsta,
1837 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1838 {
1839 	int i, j, rate, maxrate, mword, r;
1840 	enum ieee80211_phymode mode;
1841 	const struct ieee80211_rateset *rs;
1842 	struct ieee80211_rateset allrates;
1843 
1844 	/*
1845 	 * Fill in media characteristics.
1846 	 */
1847 	ifmedia_init(media, 0, media_change, media_stat);
1848 	maxrate = 0;
1849 	/*
1850 	 * Add media for legacy operating modes.
1851 	 */
1852 	memset(&allrates, 0, sizeof(allrates));
1853 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1854 		if (isclr(ic->ic_modecaps, mode))
1855 			continue;
1856 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1857 		if (mode == IEEE80211_MODE_AUTO)
1858 			continue;
1859 		rs = &ic->ic_sup_rates[mode];
1860 		for (i = 0; i < rs->rs_nrates; i++) {
1861 			rate = rs->rs_rates[i];
1862 			mword = ieee80211_rate2media(ic, rate, mode);
1863 			if (mword == 0)
1864 				continue;
1865 			addmedia(media, caps, addsta, mode, mword);
1866 			/*
1867 			 * Add legacy rate to the collection of all rates.
1868 			 */
1869 			r = rate & IEEE80211_RATE_VAL;
1870 			for (j = 0; j < allrates.rs_nrates; j++)
1871 				if (allrates.rs_rates[j] == r)
1872 					break;
1873 			if (j == allrates.rs_nrates) {
1874 				/* unique, add to the set */
1875 				allrates.rs_rates[j] = r;
1876 				allrates.rs_nrates++;
1877 			}
1878 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1879 			if (rate > maxrate)
1880 				maxrate = rate;
1881 		}
1882 	}
1883 	for (i = 0; i < allrates.rs_nrates; i++) {
1884 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1885 				IEEE80211_MODE_AUTO);
1886 		if (mword == 0)
1887 			continue;
1888 		/* NB: remove media options from mword */
1889 		addmedia(media, caps, addsta,
1890 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1891 	}
1892 	/*
1893 	 * Add HT/11n media.  Note that we do not have enough
1894 	 * bits in the media subtype to express the MCS so we
1895 	 * use a "placeholder" media subtype and any fixed MCS
1896 	 * must be specified with a different mechanism.
1897 	 */
1898 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1899 		if (isclr(ic->ic_modecaps, mode))
1900 			continue;
1901 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1902 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1903 	}
1904 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1905 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1906 		addmedia(media, caps, addsta,
1907 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1908 		i = ic->ic_txstream * 8 - 1;
1909 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1910 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1911 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1912 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1913 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1914 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1915 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1916 		else
1917 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1918 		if (rate > maxrate)
1919 			maxrate = rate;
1920 	}
1921 
1922 	/*
1923 	 * Add VHT media.
1924 	 */
1925 	for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) {
1926 		if (isclr(ic->ic_modecaps, mode))
1927 			continue;
1928 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1929 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1930 
1931 		/* XXX TODO: VHT maxrate */
1932 	}
1933 
1934 	return maxrate;
1935 }
1936 
1937 /* XXX inline or eliminate? */
1938 const struct ieee80211_rateset *
1939 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1940 {
1941 	/* XXX does this work for 11ng basic rates? */
1942 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1943 }
1944 
1945 /* XXX inline or eliminate? */
1946 const struct ieee80211_htrateset *
1947 ieee80211_get_suphtrates(struct ieee80211com *ic,
1948     const struct ieee80211_channel *c)
1949 {
1950 	return &ic->ic_sup_htrates;
1951 }
1952 
1953 void
1954 ieee80211_announce(struct ieee80211com *ic)
1955 {
1956 	int i, rate, mword;
1957 	enum ieee80211_phymode mode;
1958 	const struct ieee80211_rateset *rs;
1959 
1960 	/* NB: skip AUTO since it has no rates */
1961 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1962 		if (isclr(ic->ic_modecaps, mode))
1963 			continue;
1964 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1965 		rs = &ic->ic_sup_rates[mode];
1966 		for (i = 0; i < rs->rs_nrates; i++) {
1967 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1968 			if (mword == 0)
1969 				continue;
1970 			rate = ieee80211_media2rate(mword);
1971 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1972 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1973 		}
1974 		printf("\n");
1975 	}
1976 	ieee80211_ht_announce(ic);
1977 	ieee80211_vht_announce(ic);
1978 }
1979 
1980 void
1981 ieee80211_announce_channels(struct ieee80211com *ic)
1982 {
1983 	const struct ieee80211_channel *c;
1984 	char type;
1985 	int i, cw;
1986 
1987 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1988 	for (i = 0; i < ic->ic_nchans; i++) {
1989 		c = &ic->ic_channels[i];
1990 		if (IEEE80211_IS_CHAN_ST(c))
1991 			type = 'S';
1992 		else if (IEEE80211_IS_CHAN_108A(c))
1993 			type = 'T';
1994 		else if (IEEE80211_IS_CHAN_108G(c))
1995 			type = 'G';
1996 		else if (IEEE80211_IS_CHAN_HT(c))
1997 			type = 'n';
1998 		else if (IEEE80211_IS_CHAN_A(c))
1999 			type = 'a';
2000 		else if (IEEE80211_IS_CHAN_ANYG(c))
2001 			type = 'g';
2002 		else if (IEEE80211_IS_CHAN_B(c))
2003 			type = 'b';
2004 		else
2005 			type = 'f';
2006 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2007 			cw = 40;
2008 		else if (IEEE80211_IS_CHAN_HALF(c))
2009 			cw = 10;
2010 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2011 			cw = 5;
2012 		else
2013 			cw = 20;
2014 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2015 			, c->ic_ieee, c->ic_freq, type
2016 			, cw
2017 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2018 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2019 			, c->ic_maxregpower
2020 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2021 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2022 		);
2023 	}
2024 }
2025 
2026 static int
2027 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2028 {
2029 	switch (IFM_MODE(ime->ifm_media)) {
2030 	case IFM_IEEE80211_11A:
2031 		*mode = IEEE80211_MODE_11A;
2032 		break;
2033 	case IFM_IEEE80211_11B:
2034 		*mode = IEEE80211_MODE_11B;
2035 		break;
2036 	case IFM_IEEE80211_11G:
2037 		*mode = IEEE80211_MODE_11G;
2038 		break;
2039 	case IFM_IEEE80211_FH:
2040 		*mode = IEEE80211_MODE_FH;
2041 		break;
2042 	case IFM_IEEE80211_11NA:
2043 		*mode = IEEE80211_MODE_11NA;
2044 		break;
2045 	case IFM_IEEE80211_11NG:
2046 		*mode = IEEE80211_MODE_11NG;
2047 		break;
2048 	case IFM_AUTO:
2049 		*mode = IEEE80211_MODE_AUTO;
2050 		break;
2051 	default:
2052 		return 0;
2053 	}
2054 	/*
2055 	 * Turbo mode is an ``option''.
2056 	 * XXX does not apply to AUTO
2057 	 */
2058 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2059 		if (*mode == IEEE80211_MODE_11A) {
2060 			if (flags & IEEE80211_F_TURBOP)
2061 				*mode = IEEE80211_MODE_TURBO_A;
2062 			else
2063 				*mode = IEEE80211_MODE_STURBO_A;
2064 		} else if (*mode == IEEE80211_MODE_11G)
2065 			*mode = IEEE80211_MODE_TURBO_G;
2066 		else
2067 			return 0;
2068 	}
2069 	/* XXX HT40 +/- */
2070 	return 1;
2071 }
2072 
2073 /*
2074  * Handle a media change request on the vap interface.
2075  */
2076 int
2077 ieee80211_media_change(struct ifnet *ifp)
2078 {
2079 	struct ieee80211vap *vap = ifp->if_softc;
2080 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2081 	uint16_t newmode;
2082 
2083 	if (!media2mode(ime, vap->iv_flags, &newmode))
2084 		return EINVAL;
2085 	if (vap->iv_des_mode != newmode) {
2086 		vap->iv_des_mode = newmode;
2087 		/* XXX kick state machine if up+running */
2088 	}
2089 	return 0;
2090 }
2091 
2092 /*
2093  * Common code to calculate the media status word
2094  * from the operating mode and channel state.
2095  */
2096 static int
2097 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2098 {
2099 	int status;
2100 
2101 	status = IFM_IEEE80211;
2102 	switch (opmode) {
2103 	case IEEE80211_M_STA:
2104 		break;
2105 	case IEEE80211_M_IBSS:
2106 		status |= IFM_IEEE80211_ADHOC;
2107 		break;
2108 	case IEEE80211_M_HOSTAP:
2109 		status |= IFM_IEEE80211_HOSTAP;
2110 		break;
2111 	case IEEE80211_M_MONITOR:
2112 		status |= IFM_IEEE80211_MONITOR;
2113 		break;
2114 	case IEEE80211_M_AHDEMO:
2115 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2116 		break;
2117 	case IEEE80211_M_WDS:
2118 		status |= IFM_IEEE80211_WDS;
2119 		break;
2120 	case IEEE80211_M_MBSS:
2121 		status |= IFM_IEEE80211_MBSS;
2122 		break;
2123 	}
2124 	if (IEEE80211_IS_CHAN_HTA(chan)) {
2125 		status |= IFM_IEEE80211_11NA;
2126 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2127 		status |= IFM_IEEE80211_11NG;
2128 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2129 		status |= IFM_IEEE80211_11A;
2130 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2131 		status |= IFM_IEEE80211_11B;
2132 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2133 		status |= IFM_IEEE80211_11G;
2134 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2135 		status |= IFM_IEEE80211_FH;
2136 	}
2137 	/* XXX else complain? */
2138 
2139 	if (IEEE80211_IS_CHAN_TURBO(chan))
2140 		status |= IFM_IEEE80211_TURBO;
2141 #if 0
2142 	if (IEEE80211_IS_CHAN_HT20(chan))
2143 		status |= IFM_IEEE80211_HT20;
2144 	if (IEEE80211_IS_CHAN_HT40(chan))
2145 		status |= IFM_IEEE80211_HT40;
2146 #endif
2147 	return status;
2148 }
2149 
2150 void
2151 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2152 {
2153 	struct ieee80211vap *vap = ifp->if_softc;
2154 	struct ieee80211com *ic = vap->iv_ic;
2155 	enum ieee80211_phymode mode;
2156 
2157 	imr->ifm_status = IFM_AVALID;
2158 	/*
2159 	 * NB: use the current channel's mode to lock down a xmit
2160 	 * rate only when running; otherwise we may have a mismatch
2161 	 * in which case the rate will not be convertible.
2162 	 */
2163 	if (vap->iv_state == IEEE80211_S_RUN ||
2164 	    vap->iv_state == IEEE80211_S_SLEEP) {
2165 		imr->ifm_status |= IFM_ACTIVE;
2166 		mode = ieee80211_chan2mode(ic->ic_curchan);
2167 	} else
2168 		mode = IEEE80211_MODE_AUTO;
2169 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2170 	/*
2171 	 * Calculate a current rate if possible.
2172 	 */
2173 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2174 		/*
2175 		 * A fixed rate is set, report that.
2176 		 */
2177 		imr->ifm_active |= ieee80211_rate2media(ic,
2178 			vap->iv_txparms[mode].ucastrate, mode);
2179 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2180 		/*
2181 		 * In station mode report the current transmit rate.
2182 		 */
2183 		imr->ifm_active |= ieee80211_rate2media(ic,
2184 			vap->iv_bss->ni_txrate, mode);
2185 	} else
2186 		imr->ifm_active |= IFM_AUTO;
2187 	if (imr->ifm_status & IFM_ACTIVE)
2188 		imr->ifm_current = imr->ifm_active;
2189 }
2190 
2191 /*
2192  * Set the current phy mode and recalculate the active channel
2193  * set based on the available channels for this mode.  Also
2194  * select a new default/current channel if the current one is
2195  * inappropriate for this mode.
2196  */
2197 int
2198 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2199 {
2200 	/*
2201 	 * Adjust basic rates in 11b/11g supported rate set.
2202 	 * Note that if operating on a hal/quarter rate channel
2203 	 * this is a noop as those rates sets are different
2204 	 * and used instead.
2205 	 */
2206 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2207 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2208 
2209 	ic->ic_curmode = mode;
2210 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2211 
2212 	return 0;
2213 }
2214 
2215 /*
2216  * Return the phy mode for with the specified channel.
2217  */
2218 enum ieee80211_phymode
2219 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2220 {
2221 
2222 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2223 		return IEEE80211_MODE_VHT_2GHZ;
2224 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2225 		return IEEE80211_MODE_VHT_5GHZ;
2226 	else if (IEEE80211_IS_CHAN_HTA(chan))
2227 		return IEEE80211_MODE_11NA;
2228 	else if (IEEE80211_IS_CHAN_HTG(chan))
2229 		return IEEE80211_MODE_11NG;
2230 	else if (IEEE80211_IS_CHAN_108G(chan))
2231 		return IEEE80211_MODE_TURBO_G;
2232 	else if (IEEE80211_IS_CHAN_ST(chan))
2233 		return IEEE80211_MODE_STURBO_A;
2234 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2235 		return IEEE80211_MODE_TURBO_A;
2236 	else if (IEEE80211_IS_CHAN_HALF(chan))
2237 		return IEEE80211_MODE_HALF;
2238 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2239 		return IEEE80211_MODE_QUARTER;
2240 	else if (IEEE80211_IS_CHAN_A(chan))
2241 		return IEEE80211_MODE_11A;
2242 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2243 		return IEEE80211_MODE_11G;
2244 	else if (IEEE80211_IS_CHAN_B(chan))
2245 		return IEEE80211_MODE_11B;
2246 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2247 		return IEEE80211_MODE_FH;
2248 
2249 	/* NB: should not get here */
2250 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2251 		__func__, chan->ic_freq, chan->ic_flags);
2252 	return IEEE80211_MODE_11B;
2253 }
2254 
2255 struct ratemedia {
2256 	u_int	match;	/* rate + mode */
2257 	u_int	media;	/* if_media rate */
2258 };
2259 
2260 static int
2261 findmedia(const struct ratemedia rates[], int n, u_int match)
2262 {
2263 	int i;
2264 
2265 	for (i = 0; i < n; i++)
2266 		if (rates[i].match == match)
2267 			return rates[i].media;
2268 	return IFM_AUTO;
2269 }
2270 
2271 /*
2272  * Convert IEEE80211 rate value to ifmedia subtype.
2273  * Rate is either a legacy rate in units of 0.5Mbps
2274  * or an MCS index.
2275  */
2276 int
2277 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2278 {
2279 	static const struct ratemedia rates[] = {
2280 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2281 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2282 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2283 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2284 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2285 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2286 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2287 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2288 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2289 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2290 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2291 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2292 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2293 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2294 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2295 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2296 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2297 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2298 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2299 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2300 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2301 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2302 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2303 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2304 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2305 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2306 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2307 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2308 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2309 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2310 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2311 	};
2312 	static const struct ratemedia htrates[] = {
2313 		{   0, IFM_IEEE80211_MCS },
2314 		{   1, IFM_IEEE80211_MCS },
2315 		{   2, IFM_IEEE80211_MCS },
2316 		{   3, IFM_IEEE80211_MCS },
2317 		{   4, IFM_IEEE80211_MCS },
2318 		{   5, IFM_IEEE80211_MCS },
2319 		{   6, IFM_IEEE80211_MCS },
2320 		{   7, IFM_IEEE80211_MCS },
2321 		{   8, IFM_IEEE80211_MCS },
2322 		{   9, IFM_IEEE80211_MCS },
2323 		{  10, IFM_IEEE80211_MCS },
2324 		{  11, IFM_IEEE80211_MCS },
2325 		{  12, IFM_IEEE80211_MCS },
2326 		{  13, IFM_IEEE80211_MCS },
2327 		{  14, IFM_IEEE80211_MCS },
2328 		{  15, IFM_IEEE80211_MCS },
2329 		{  16, IFM_IEEE80211_MCS },
2330 		{  17, IFM_IEEE80211_MCS },
2331 		{  18, IFM_IEEE80211_MCS },
2332 		{  19, IFM_IEEE80211_MCS },
2333 		{  20, IFM_IEEE80211_MCS },
2334 		{  21, IFM_IEEE80211_MCS },
2335 		{  22, IFM_IEEE80211_MCS },
2336 		{  23, IFM_IEEE80211_MCS },
2337 		{  24, IFM_IEEE80211_MCS },
2338 		{  25, IFM_IEEE80211_MCS },
2339 		{  26, IFM_IEEE80211_MCS },
2340 		{  27, IFM_IEEE80211_MCS },
2341 		{  28, IFM_IEEE80211_MCS },
2342 		{  29, IFM_IEEE80211_MCS },
2343 		{  30, IFM_IEEE80211_MCS },
2344 		{  31, IFM_IEEE80211_MCS },
2345 		{  32, IFM_IEEE80211_MCS },
2346 		{  33, IFM_IEEE80211_MCS },
2347 		{  34, IFM_IEEE80211_MCS },
2348 		{  35, IFM_IEEE80211_MCS },
2349 		{  36, IFM_IEEE80211_MCS },
2350 		{  37, IFM_IEEE80211_MCS },
2351 		{  38, IFM_IEEE80211_MCS },
2352 		{  39, IFM_IEEE80211_MCS },
2353 		{  40, IFM_IEEE80211_MCS },
2354 		{  41, IFM_IEEE80211_MCS },
2355 		{  42, IFM_IEEE80211_MCS },
2356 		{  43, IFM_IEEE80211_MCS },
2357 		{  44, IFM_IEEE80211_MCS },
2358 		{  45, IFM_IEEE80211_MCS },
2359 		{  46, IFM_IEEE80211_MCS },
2360 		{  47, IFM_IEEE80211_MCS },
2361 		{  48, IFM_IEEE80211_MCS },
2362 		{  49, IFM_IEEE80211_MCS },
2363 		{  50, IFM_IEEE80211_MCS },
2364 		{  51, IFM_IEEE80211_MCS },
2365 		{  52, IFM_IEEE80211_MCS },
2366 		{  53, IFM_IEEE80211_MCS },
2367 		{  54, IFM_IEEE80211_MCS },
2368 		{  55, IFM_IEEE80211_MCS },
2369 		{  56, IFM_IEEE80211_MCS },
2370 		{  57, IFM_IEEE80211_MCS },
2371 		{  58, IFM_IEEE80211_MCS },
2372 		{  59, IFM_IEEE80211_MCS },
2373 		{  60, IFM_IEEE80211_MCS },
2374 		{  61, IFM_IEEE80211_MCS },
2375 		{  62, IFM_IEEE80211_MCS },
2376 		{  63, IFM_IEEE80211_MCS },
2377 		{  64, IFM_IEEE80211_MCS },
2378 		{  65, IFM_IEEE80211_MCS },
2379 		{  66, IFM_IEEE80211_MCS },
2380 		{  67, IFM_IEEE80211_MCS },
2381 		{  68, IFM_IEEE80211_MCS },
2382 		{  69, IFM_IEEE80211_MCS },
2383 		{  70, IFM_IEEE80211_MCS },
2384 		{  71, IFM_IEEE80211_MCS },
2385 		{  72, IFM_IEEE80211_MCS },
2386 		{  73, IFM_IEEE80211_MCS },
2387 		{  74, IFM_IEEE80211_MCS },
2388 		{  75, IFM_IEEE80211_MCS },
2389 		{  76, IFM_IEEE80211_MCS },
2390 	};
2391 	int m;
2392 
2393 	/*
2394 	 * Check 11n rates first for match as an MCS.
2395 	 */
2396 	if (mode == IEEE80211_MODE_11NA) {
2397 		if (rate & IEEE80211_RATE_MCS) {
2398 			rate &= ~IEEE80211_RATE_MCS;
2399 			m = findmedia(htrates, nitems(htrates), rate);
2400 			if (m != IFM_AUTO)
2401 				return m | IFM_IEEE80211_11NA;
2402 		}
2403 	} else if (mode == IEEE80211_MODE_11NG) {
2404 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2405 		if (rate & IEEE80211_RATE_MCS) {
2406 			rate &= ~IEEE80211_RATE_MCS;
2407 			m = findmedia(htrates, nitems(htrates), rate);
2408 			if (m != IFM_AUTO)
2409 				return m | IFM_IEEE80211_11NG;
2410 		}
2411 	}
2412 	rate &= IEEE80211_RATE_VAL;
2413 	switch (mode) {
2414 	case IEEE80211_MODE_11A:
2415 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2416 	case IEEE80211_MODE_QUARTER:
2417 	case IEEE80211_MODE_11NA:
2418 	case IEEE80211_MODE_TURBO_A:
2419 	case IEEE80211_MODE_STURBO_A:
2420 		return findmedia(rates, nitems(rates),
2421 		    rate | IFM_IEEE80211_11A);
2422 	case IEEE80211_MODE_11B:
2423 		return findmedia(rates, nitems(rates),
2424 		    rate | IFM_IEEE80211_11B);
2425 	case IEEE80211_MODE_FH:
2426 		return findmedia(rates, nitems(rates),
2427 		    rate | IFM_IEEE80211_FH);
2428 	case IEEE80211_MODE_AUTO:
2429 		/* NB: ic may be NULL for some drivers */
2430 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2431 			return findmedia(rates, nitems(rates),
2432 			    rate | IFM_IEEE80211_FH);
2433 		/* NB: hack, 11g matches both 11b+11a rates */
2434 		/* fall thru... */
2435 	case IEEE80211_MODE_11G:
2436 	case IEEE80211_MODE_11NG:
2437 	case IEEE80211_MODE_TURBO_G:
2438 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2439 	case IEEE80211_MODE_VHT_2GHZ:
2440 	case IEEE80211_MODE_VHT_5GHZ:
2441 		/* XXX TODO: need to figure out mapping for VHT rates */
2442 		return IFM_AUTO;
2443 	}
2444 	return IFM_AUTO;
2445 }
2446 
2447 int
2448 ieee80211_media2rate(int mword)
2449 {
2450 	static const int ieeerates[] = {
2451 		-1,		/* IFM_AUTO */
2452 		0,		/* IFM_MANUAL */
2453 		0,		/* IFM_NONE */
2454 		2,		/* IFM_IEEE80211_FH1 */
2455 		4,		/* IFM_IEEE80211_FH2 */
2456 		2,		/* IFM_IEEE80211_DS1 */
2457 		4,		/* IFM_IEEE80211_DS2 */
2458 		11,		/* IFM_IEEE80211_DS5 */
2459 		22,		/* IFM_IEEE80211_DS11 */
2460 		44,		/* IFM_IEEE80211_DS22 */
2461 		12,		/* IFM_IEEE80211_OFDM6 */
2462 		18,		/* IFM_IEEE80211_OFDM9 */
2463 		24,		/* IFM_IEEE80211_OFDM12 */
2464 		36,		/* IFM_IEEE80211_OFDM18 */
2465 		48,		/* IFM_IEEE80211_OFDM24 */
2466 		72,		/* IFM_IEEE80211_OFDM36 */
2467 		96,		/* IFM_IEEE80211_OFDM48 */
2468 		108,		/* IFM_IEEE80211_OFDM54 */
2469 		144,		/* IFM_IEEE80211_OFDM72 */
2470 		0,		/* IFM_IEEE80211_DS354k */
2471 		0,		/* IFM_IEEE80211_DS512k */
2472 		6,		/* IFM_IEEE80211_OFDM3 */
2473 		9,		/* IFM_IEEE80211_OFDM4 */
2474 		54,		/* IFM_IEEE80211_OFDM27 */
2475 		-1,		/* IFM_IEEE80211_MCS */
2476 		-1,		/* IFM_IEEE80211_VHT */
2477 	};
2478 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2479 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2480 }
2481 
2482 /*
2483  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2484  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2485  */
2486 #define	mix(a, b, c)							\
2487 do {									\
2488 	a -= b; a -= c; a ^= (c >> 13);					\
2489 	b -= c; b -= a; b ^= (a << 8);					\
2490 	c -= a; c -= b; c ^= (b >> 13);					\
2491 	a -= b; a -= c; a ^= (c >> 12);					\
2492 	b -= c; b -= a; b ^= (a << 16);					\
2493 	c -= a; c -= b; c ^= (b >> 5);					\
2494 	a -= b; a -= c; a ^= (c >> 3);					\
2495 	b -= c; b -= a; b ^= (a << 10);					\
2496 	c -= a; c -= b; c ^= (b >> 15);					\
2497 } while (/*CONSTCOND*/0)
2498 
2499 uint32_t
2500 ieee80211_mac_hash(const struct ieee80211com *ic,
2501 	const uint8_t addr[IEEE80211_ADDR_LEN])
2502 {
2503 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2504 
2505 	b += addr[5] << 8;
2506 	b += addr[4];
2507 	a += addr[3] << 24;
2508 	a += addr[2] << 16;
2509 	a += addr[1] << 8;
2510 	a += addr[0];
2511 
2512 	mix(a, b, c);
2513 
2514 	return c;
2515 }
2516 #undef mix
2517 
2518 char
2519 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2520 {
2521 	if (IEEE80211_IS_CHAN_ST(c))
2522 		return 'S';
2523 	if (IEEE80211_IS_CHAN_108A(c))
2524 		return 'T';
2525 	if (IEEE80211_IS_CHAN_108G(c))
2526 		return 'G';
2527 	if (IEEE80211_IS_CHAN_VHT(c))
2528 		return 'v';
2529 	if (IEEE80211_IS_CHAN_HT(c))
2530 		return 'n';
2531 	if (IEEE80211_IS_CHAN_A(c))
2532 		return 'a';
2533 	if (IEEE80211_IS_CHAN_ANYG(c))
2534 		return 'g';
2535 	if (IEEE80211_IS_CHAN_B(c))
2536 		return 'b';
2537 	return 'f';
2538 }
2539