xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision 2a58b312)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11 support (FreeBSD-specific code)
33  */
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/eventhandler.h>
39 #include <sys/kernel.h>
40 #include <sys/linker.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/sysctl.h>
47 
48 #include <sys/socket.h>
49 
50 #include <net/bpf.h>
51 #include <net/debugnet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_dl.h>
55 #include <net/if_clone.h>
56 #include <net/if_media.h>
57 #include <net/if_private.h>
58 #include <net/if_types.h>
59 #include <net/ethernet.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_input.h>
65 
66 DEBUGNET_DEFINE(ieee80211);
67 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
68     "IEEE 80211 parameters");
69 
70 #ifdef IEEE80211_DEBUG
71 static int	ieee80211_debug = 0;
72 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
73 	    0, "debugging printfs");
74 #endif
75 
76 static const char wlanname[] = "wlan";
77 static struct if_clone *wlan_cloner;
78 
79 /*
80  * priv(9) NET80211 checks.
81  * Return 0 if operation is allowed, E* (usually EPERM) otherwise.
82  */
83 int
84 ieee80211_priv_check_vap_getkey(u_long cmd __unused,
85      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
86 {
87 
88 	return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY));
89 }
90 
91 int
92 ieee80211_priv_check_vap_manage(u_long cmd __unused,
93      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
94 {
95 
96 	return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE));
97 }
98 
99 int
100 ieee80211_priv_check_vap_setmac(u_long cmd __unused,
101      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
102 {
103 
104 	return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC));
105 }
106 
107 int
108 ieee80211_priv_check_create_vap(u_long cmd __unused,
109     struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
110 {
111 
112 	return (priv_check(curthread, PRIV_NET80211_CREATE_VAP));
113 }
114 
115 static int
116 wlan_clone_create(struct if_clone *ifc, char *name, size_t len,
117     struct ifc_data *ifd, struct ifnet **ifpp)
118 {
119 	struct ieee80211_clone_params cp;
120 	struct ieee80211vap *vap;
121 	struct ieee80211com *ic;
122 	int error;
123 
124 	error = ieee80211_priv_check_create_vap(0, NULL, NULL);
125 	if (error)
126 		return error;
127 
128 	error = ifc_copyin(ifd, &cp, sizeof(cp));
129 	if (error)
130 		return error;
131 	ic = ieee80211_find_com(cp.icp_parent);
132 	if (ic == NULL)
133 		return ENXIO;
134 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
135 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
136 		    cp.icp_opmode);
137 		return EINVAL;
138 	}
139 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
140 		ic_printf(ic, "%s mode not supported\n",
141 		    ieee80211_opmode_name[cp.icp_opmode]);
142 		return EOPNOTSUPP;
143 	}
144 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
145 #ifdef IEEE80211_SUPPORT_TDMA
146 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
147 #else
148 	    (1)
149 #endif
150 	) {
151 		ic_printf(ic, "TDMA not supported\n");
152 		return EOPNOTSUPP;
153 	}
154 	vap = ic->ic_vap_create(ic, wlanname, ifd->unit,
155 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
156 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
157 			    cp.icp_macaddr : ic->ic_macaddr);
158 
159 	if (vap == NULL)
160 		return (EIO);
161 
162 #ifdef DEBUGNET
163 	if (ic->ic_debugnet_meth != NULL)
164 		DEBUGNET_SET(vap->iv_ifp, ieee80211);
165 #endif
166 	*ifpp = vap->iv_ifp;
167 
168 	return (0);
169 }
170 
171 static int
172 wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
173 {
174 	struct ieee80211vap *vap = ifp->if_softc;
175 	struct ieee80211com *ic = vap->iv_ic;
176 
177 	ic->ic_vap_delete(vap);
178 
179 	return (0);
180 }
181 
182 void
183 ieee80211_vap_destroy(struct ieee80211vap *vap)
184 {
185 	CURVNET_SET(vap->iv_ifp->if_vnet);
186 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
187 	CURVNET_RESTORE();
188 }
189 
190 int
191 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
192 {
193 	int msecs = ticks_to_msecs(*(int *)arg1);
194 	int error;
195 
196 	error = sysctl_handle_int(oidp, &msecs, 0, req);
197 	if (error || !req->newptr)
198 		return error;
199 	*(int *)arg1 = msecs_to_ticks(msecs);
200 	return 0;
201 }
202 
203 static int
204 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
205 {
206 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
207 	int error;
208 
209 	error = sysctl_handle_int(oidp, &inact, 0, req);
210 	if (error || !req->newptr)
211 		return error;
212 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
213 	return 0;
214 }
215 
216 static int
217 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
218 {
219 	struct ieee80211com *ic = arg1;
220 
221 	return SYSCTL_OUT_STR(req, ic->ic_name);
222 }
223 
224 static int
225 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
226 {
227 	struct ieee80211com *ic = arg1;
228 	int t = 0, error;
229 
230 	error = sysctl_handle_int(oidp, &t, 0, req);
231 	if (error || !req->newptr)
232 		return error;
233 	IEEE80211_LOCK(ic);
234 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
235 	IEEE80211_UNLOCK(ic);
236 	return 0;
237 }
238 
239 /*
240  * For now, just restart everything.
241  *
242  * Later on, it'd be nice to have a separate VAP restart to
243  * full-device restart.
244  */
245 static int
246 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
247 {
248 	struct ieee80211vap *vap = arg1;
249 	int t = 0, error;
250 
251 	error = sysctl_handle_int(oidp, &t, 0, req);
252 	if (error || !req->newptr)
253 		return error;
254 
255 	ieee80211_restart_all(vap->iv_ic);
256 	return 0;
257 }
258 
259 void
260 ieee80211_sysctl_attach(struct ieee80211com *ic)
261 {
262 }
263 
264 void
265 ieee80211_sysctl_detach(struct ieee80211com *ic)
266 {
267 }
268 
269 void
270 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
271 {
272 	struct ifnet *ifp = vap->iv_ifp;
273 	struct sysctl_ctx_list *ctx;
274 	struct sysctl_oid *oid;
275 	char num[14];			/* sufficient for 32 bits */
276 
277 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
278 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
279 	if (ctx == NULL) {
280 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
281 			__func__);
282 		return;
283 	}
284 	sysctl_ctx_init(ctx);
285 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
286 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
287 	    OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
288 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
289 	    "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
290 	    vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device");
291 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
292 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
293 		"driver capabilities");
294 #ifdef IEEE80211_DEBUG
295 	vap->iv_debug = ieee80211_debug;
296 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
297 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
298 		"control debugging printfs");
299 #endif
300 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
301 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
302 		"consecutive beacon misses before scanning");
303 	/* XXX inherit from tunables */
304 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
305 	    "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
306 	    &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I",
307 	    "station inactivity timeout (sec)");
308 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
309 	    "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
310 	    &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I",
311 	    "station inactivity probe timeout (sec)");
312 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
313 	    "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
314 	    &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I",
315 	    "station authentication timeout (sec)");
316 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
317 	    "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
318 	    &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I",
319 	    "station initial state timeout (sec)");
320 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
321 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
322 			"ampdu_mintraffic_bk", CTLFLAG_RW,
323 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
324 			"BK traffic tx aggr threshold (pps)");
325 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
326 			"ampdu_mintraffic_be", CTLFLAG_RW,
327 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
328 			"BE traffic tx aggr threshold (pps)");
329 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
330 			"ampdu_mintraffic_vo", CTLFLAG_RW,
331 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
332 			"VO traffic tx aggr threshold (pps)");
333 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
334 			"ampdu_mintraffic_vi", CTLFLAG_RW,
335 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
336 			"VI traffic tx aggr threshold (pps)");
337 	}
338 
339 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
340 	    "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
341 	    vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart");
342 
343 	if (vap->iv_caps & IEEE80211_C_DFS) {
344 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
345 		    "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
346 		    vap->iv_ic, 0, ieee80211_sysctl_radar, "I",
347 		    "simulate radar event");
348 	}
349 	vap->iv_sysctl = ctx;
350 	vap->iv_oid = oid;
351 }
352 
353 void
354 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
355 {
356 
357 	if (vap->iv_sysctl != NULL) {
358 		sysctl_ctx_free(vap->iv_sysctl);
359 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
360 		vap->iv_sysctl = NULL;
361 	}
362 }
363 
364 int
365 ieee80211_com_vincref(struct ieee80211vap *vap)
366 {
367 	uint32_t ostate;
368 
369 	ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
370 
371 	if (ostate & IEEE80211_COM_DETACHED) {
372 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
373 		return (ENETDOWN);
374 	}
375 
376 	if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) ==
377 	    IEEE80211_COM_REF_MAX) {
378 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
379 		return (EOVERFLOW);
380 	}
381 
382 	return (0);
383 }
384 
385 void
386 ieee80211_com_vdecref(struct ieee80211vap *vap)
387 {
388 	uint32_t ostate;
389 
390 	ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
391 
392 	KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0,
393 	    ("com reference counter underflow"));
394 
395 	(void) ostate;
396 }
397 
398 void
399 ieee80211_com_vdetach(struct ieee80211vap *vap)
400 {
401 	int sleep_time;
402 
403 	sleep_time = msecs_to_ticks(250);
404 	atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
405 	while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state),
406 	    IEEE80211_COM_REF) != 0)
407 		pause("comref", sleep_time);
408 }
409 
410 int
411 ieee80211_node_dectestref(struct ieee80211_node *ni)
412 {
413 	/* XXX need equivalent of atomic_dec_and_test */
414 	atomic_subtract_int(&ni->ni_refcnt, 1);
415 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
416 }
417 
418 void
419 ieee80211_drain_ifq(struct ifqueue *ifq)
420 {
421 	struct ieee80211_node *ni;
422 	struct mbuf *m;
423 
424 	for (;;) {
425 		IF_DEQUEUE(ifq, m);
426 		if (m == NULL)
427 			break;
428 
429 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
430 		KASSERT(ni != NULL, ("frame w/o node"));
431 		ieee80211_free_node(ni);
432 		m->m_pkthdr.rcvif = NULL;
433 
434 		m_freem(m);
435 	}
436 }
437 
438 void
439 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
440 {
441 	struct ieee80211_node *ni;
442 	struct mbuf *m, **mprev;
443 
444 	IF_LOCK(ifq);
445 	mprev = &ifq->ifq_head;
446 	while ((m = *mprev) != NULL) {
447 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
448 		if (ni != NULL && ni->ni_vap == vap) {
449 			*mprev = m->m_nextpkt;		/* remove from list */
450 			ifq->ifq_len--;
451 
452 			m_freem(m);
453 			ieee80211_free_node(ni);	/* reclaim ref */
454 		} else
455 			mprev = &m->m_nextpkt;
456 	}
457 	/* recalculate tail ptr */
458 	m = ifq->ifq_head;
459 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
460 		;
461 	ifq->ifq_tail = m;
462 	IF_UNLOCK(ifq);
463 }
464 
465 /*
466  * As above, for mbufs allocated with m_gethdr/MGETHDR
467  * or initialized by M_COPY_PKTHDR.
468  */
469 #define	MC_ALIGN(m, len)						\
470 do {									\
471 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
472 } while (/* CONSTCOND */ 0)
473 
474 /*
475  * Allocate and setup a management frame of the specified
476  * size.  We return the mbuf and a pointer to the start
477  * of the contiguous data area that's been reserved based
478  * on the packet length.  The data area is forced to 32-bit
479  * alignment and the buffer length to a multiple of 4 bytes.
480  * This is done mainly so beacon frames (that require this)
481  * can use this interface too.
482  */
483 struct mbuf *
484 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
485 {
486 	struct mbuf *m;
487 	u_int len;
488 
489 	/*
490 	 * NB: we know the mbuf routines will align the data area
491 	 *     so we don't need to do anything special.
492 	 */
493 	len = roundup2(headroom + pktlen, 4);
494 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
495 	if (len < MINCLSIZE) {
496 		m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
497 		/*
498 		 * Align the data in case additional headers are added.
499 		 * This should only happen when a WEP header is added
500 		 * which only happens for shared key authentication mgt
501 		 * frames which all fit in MHLEN.
502 		 */
503 		if (m != NULL)
504 			M_ALIGN(m, len);
505 	} else {
506 		m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
507 		if (m != NULL)
508 			MC_ALIGN(m, len);
509 	}
510 	if (m != NULL) {
511 		m->m_data += headroom;
512 		*frm = m->m_data;
513 	}
514 	return m;
515 }
516 
517 #ifndef __NO_STRICT_ALIGNMENT
518 /*
519  * Re-align the payload in the mbuf.  This is mainly used (right now)
520  * to handle IP header alignment requirements on certain architectures.
521  */
522 struct mbuf *
523 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
524 {
525 	int pktlen, space;
526 	struct mbuf *n;
527 
528 	pktlen = m->m_pkthdr.len;
529 	space = pktlen + align;
530 	if (space < MINCLSIZE)
531 		n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
532 	else {
533 		n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR,
534 		    space <= MCLBYTES ?     MCLBYTES :
535 #if MJUMPAGESIZE != MCLBYTES
536 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
537 #endif
538 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
539 	}
540 	if (__predict_true(n != NULL)) {
541 		m_move_pkthdr(n, m);
542 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
543 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
544 		n->m_len = pktlen;
545 	} else {
546 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
547 		    mtod(m, const struct ieee80211_frame *), NULL,
548 		    "%s", "no mbuf to realign");
549 		vap->iv_stats.is_rx_badalign++;
550 	}
551 	m_freem(m);
552 	return n;
553 }
554 #endif /* !__NO_STRICT_ALIGNMENT */
555 
556 int
557 ieee80211_add_callback(struct mbuf *m,
558 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
559 {
560 	struct m_tag *mtag;
561 	struct ieee80211_cb *cb;
562 
563 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
564 			sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT);
565 	if (mtag == NULL)
566 		return 0;
567 
568 	cb = (struct ieee80211_cb *)(mtag+1);
569 	cb->func = func;
570 	cb->arg = arg;
571 	m_tag_prepend(m, mtag);
572 	m->m_flags |= M_TXCB;
573 	return 1;
574 }
575 
576 int
577 ieee80211_add_xmit_params(struct mbuf *m,
578     const struct ieee80211_bpf_params *params)
579 {
580 	struct m_tag *mtag;
581 	struct ieee80211_tx_params *tx;
582 
583 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
584 	    sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT);
585 	if (mtag == NULL)
586 		return (0);
587 
588 	tx = (struct ieee80211_tx_params *)(mtag+1);
589 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
590 	m_tag_prepend(m, mtag);
591 	return (1);
592 }
593 
594 int
595 ieee80211_get_xmit_params(struct mbuf *m,
596     struct ieee80211_bpf_params *params)
597 {
598 	struct m_tag *mtag;
599 	struct ieee80211_tx_params *tx;
600 
601 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
602 	    NULL);
603 	if (mtag == NULL)
604 		return (-1);
605 	tx = (struct ieee80211_tx_params *)(mtag + 1);
606 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
607 	return (0);
608 }
609 
610 void
611 ieee80211_process_callback(struct ieee80211_node *ni,
612 	struct mbuf *m, int status)
613 {
614 	struct m_tag *mtag;
615 
616 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
617 	if (mtag != NULL) {
618 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
619 		cb->func(ni, cb->arg, status);
620 	}
621 }
622 
623 /*
624  * Add RX parameters to the given mbuf.
625  *
626  * Returns 1 if OK, 0 on error.
627  */
628 int
629 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
630 {
631 	struct m_tag *mtag;
632 	struct ieee80211_rx_params *rx;
633 
634 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
635 	    sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT);
636 	if (mtag == NULL)
637 		return (0);
638 
639 	rx = (struct ieee80211_rx_params *)(mtag + 1);
640 	memcpy(&rx->params, rxs, sizeof(*rxs));
641 	m_tag_prepend(m, mtag);
642 	return (1);
643 }
644 
645 int
646 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
647 {
648 	struct m_tag *mtag;
649 	struct ieee80211_rx_params *rx;
650 
651 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
652 	    NULL);
653 	if (mtag == NULL)
654 		return (-1);
655 	rx = (struct ieee80211_rx_params *)(mtag + 1);
656 	memcpy(rxs, &rx->params, sizeof(*rxs));
657 	return (0);
658 }
659 
660 const struct ieee80211_rx_stats *
661 ieee80211_get_rx_params_ptr(struct mbuf *m)
662 {
663 	struct m_tag *mtag;
664 	struct ieee80211_rx_params *rx;
665 
666 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
667 	    NULL);
668 	if (mtag == NULL)
669 		return (NULL);
670 	rx = (struct ieee80211_rx_params *)(mtag + 1);
671 	return (&rx->params);
672 }
673 
674 /*
675  * Add TOA parameters to the given mbuf.
676  */
677 int
678 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
679 {
680 	struct m_tag *mtag;
681 	struct ieee80211_toa_params *rp;
682 
683 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
684 	    sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT);
685 	if (mtag == NULL)
686 		return (0);
687 
688 	rp = (struct ieee80211_toa_params *)(mtag + 1);
689 	memcpy(rp, p, sizeof(*rp));
690 	m_tag_prepend(m, mtag);
691 	return (1);
692 }
693 
694 int
695 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
696 {
697 	struct m_tag *mtag;
698 	struct ieee80211_toa_params *rp;
699 
700 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
701 	    NULL);
702 	if (mtag == NULL)
703 		return (0);
704 	rp = (struct ieee80211_toa_params *)(mtag + 1);
705 	if (p != NULL)
706 		memcpy(p, rp, sizeof(*p));
707 	return (1);
708 }
709 
710 /*
711  * Transmit a frame to the parent interface.
712  */
713 int
714 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
715 {
716 	int error;
717 
718 	/*
719 	 * Assert the IC TX lock is held - this enforces the
720 	 * processing -> queuing order is maintained
721 	 */
722 	IEEE80211_TX_LOCK_ASSERT(ic);
723 	error = ic->ic_transmit(ic, m);
724 	if (error) {
725 		struct ieee80211_node *ni;
726 
727 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
728 
729 		/* XXX number of fragments */
730 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
731 		ieee80211_free_node(ni);
732 		ieee80211_free_mbuf(m);
733 	}
734 	return (error);
735 }
736 
737 /*
738  * Transmit a frame to the VAP interface.
739  */
740 int
741 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
742 {
743 	struct ifnet *ifp = vap->iv_ifp;
744 
745 	/*
746 	 * When transmitting via the VAP, we shouldn't hold
747 	 * any IC TX lock as the VAP TX path will acquire it.
748 	 */
749 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
750 
751 	return (ifp->if_transmit(ifp, m));
752 
753 }
754 
755 #include <sys/libkern.h>
756 
757 void
758 net80211_get_random_bytes(void *p, size_t n)
759 {
760 	uint8_t *dp = p;
761 
762 	while (n > 0) {
763 		uint32_t v = arc4random();
764 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
765 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
766 		dp += sizeof(uint32_t), n -= nb;
767 	}
768 }
769 
770 /*
771  * Helper function for events that pass just a single mac address.
772  */
773 static void
774 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
775 {
776 	struct ieee80211_join_event iev;
777 
778 	CURVNET_SET(ifp->if_vnet);
779 	memset(&iev, 0, sizeof(iev));
780 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
781 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
782 	CURVNET_RESTORE();
783 }
784 
785 void
786 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
787 {
788 	struct ieee80211vap *vap = ni->ni_vap;
789 	struct ifnet *ifp = vap->iv_ifp;
790 
791 	CURVNET_SET_QUIET(ifp->if_vnet);
792 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
793 	    (ni == vap->iv_bss) ? "bss " : "");
794 
795 	if (ni == vap->iv_bss) {
796 		notify_macaddr(ifp, newassoc ?
797 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
798 		if_link_state_change(ifp, LINK_STATE_UP);
799 	} else {
800 		notify_macaddr(ifp, newassoc ?
801 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
802 	}
803 	CURVNET_RESTORE();
804 }
805 
806 void
807 ieee80211_notify_node_leave(struct ieee80211_node *ni)
808 {
809 	struct ieee80211vap *vap = ni->ni_vap;
810 	struct ifnet *ifp = vap->iv_ifp;
811 
812 	CURVNET_SET_QUIET(ifp->if_vnet);
813 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
814 	    (ni == vap->iv_bss) ? "bss " : "");
815 
816 	if (ni == vap->iv_bss) {
817 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
818 		if_link_state_change(ifp, LINK_STATE_DOWN);
819 	} else {
820 		/* fire off wireless event station leaving */
821 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
822 	}
823 	CURVNET_RESTORE();
824 }
825 
826 void
827 ieee80211_notify_scan_done(struct ieee80211vap *vap)
828 {
829 	struct ifnet *ifp = vap->iv_ifp;
830 
831 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
832 
833 	/* dispatch wireless event indicating scan completed */
834 	CURVNET_SET(ifp->if_vnet);
835 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
836 	CURVNET_RESTORE();
837 }
838 
839 void
840 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
841 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
842 	u_int64_t rsc, int tid)
843 {
844 	struct ifnet *ifp = vap->iv_ifp;
845 
846 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
847 	    "%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>",
848 	    k->wk_cipher->ic_name, tid,
849 	    (intmax_t) rsc,
850 	    (intmax_t) rsc,
851 	    (intmax_t) k->wk_keyrsc[tid],
852 	    (intmax_t) k->wk_keyrsc[tid],
853 	    k->wk_keyix, k->wk_rxkeyix);
854 
855 	if (ifp != NULL) {		/* NB: for cipher test modules */
856 		struct ieee80211_replay_event iev;
857 
858 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
859 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
860 		iev.iev_cipher = k->wk_cipher->ic_cipher;
861 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
862 			iev.iev_keyix = k->wk_rxkeyix;
863 		else
864 			iev.iev_keyix = k->wk_keyix;
865 		iev.iev_keyrsc = k->wk_keyrsc[tid];
866 		iev.iev_rsc = rsc;
867 		CURVNET_SET(ifp->if_vnet);
868 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
869 		CURVNET_RESTORE();
870 	}
871 }
872 
873 void
874 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
875 	const struct ieee80211_frame *wh, u_int keyix)
876 {
877 	struct ifnet *ifp = vap->iv_ifp;
878 
879 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
880 	    "michael MIC verification failed <keyix %u>", keyix);
881 	vap->iv_stats.is_rx_tkipmic++;
882 
883 	if (ifp != NULL) {		/* NB: for cipher test modules */
884 		struct ieee80211_michael_event iev;
885 
886 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
887 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
888 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
889 		iev.iev_keyix = keyix;
890 		CURVNET_SET(ifp->if_vnet);
891 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
892 		CURVNET_RESTORE();
893 	}
894 }
895 
896 void
897 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
898 {
899 	struct ieee80211vap *vap = ni->ni_vap;
900 	struct ifnet *ifp = vap->iv_ifp;
901 
902 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
903 }
904 
905 void
906 ieee80211_notify_csa(struct ieee80211com *ic,
907 	const struct ieee80211_channel *c, int mode, int count)
908 {
909 	struct ieee80211_csa_event iev;
910 	struct ieee80211vap *vap;
911 	struct ifnet *ifp;
912 
913 	memset(&iev, 0, sizeof(iev));
914 	iev.iev_flags = c->ic_flags;
915 	iev.iev_freq = c->ic_freq;
916 	iev.iev_ieee = c->ic_ieee;
917 	iev.iev_mode = mode;
918 	iev.iev_count = count;
919 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
920 		ifp = vap->iv_ifp;
921 		CURVNET_SET(ifp->if_vnet);
922 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
923 		CURVNET_RESTORE();
924 	}
925 }
926 
927 void
928 ieee80211_notify_radar(struct ieee80211com *ic,
929 	const struct ieee80211_channel *c)
930 {
931 	struct ieee80211_radar_event iev;
932 	struct ieee80211vap *vap;
933 	struct ifnet *ifp;
934 
935 	memset(&iev, 0, sizeof(iev));
936 	iev.iev_flags = c->ic_flags;
937 	iev.iev_freq = c->ic_freq;
938 	iev.iev_ieee = c->ic_ieee;
939 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
940 		ifp = vap->iv_ifp;
941 		CURVNET_SET(ifp->if_vnet);
942 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
943 		CURVNET_RESTORE();
944 	}
945 }
946 
947 void
948 ieee80211_notify_cac(struct ieee80211com *ic,
949 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
950 {
951 	struct ieee80211_cac_event iev;
952 	struct ieee80211vap *vap;
953 	struct ifnet *ifp;
954 
955 	memset(&iev, 0, sizeof(iev));
956 	iev.iev_flags = c->ic_flags;
957 	iev.iev_freq = c->ic_freq;
958 	iev.iev_ieee = c->ic_ieee;
959 	iev.iev_type = type;
960 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
961 		ifp = vap->iv_ifp;
962 		CURVNET_SET(ifp->if_vnet);
963 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
964 		CURVNET_RESTORE();
965 	}
966 }
967 
968 void
969 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
970 {
971 	struct ieee80211vap *vap = ni->ni_vap;
972 	struct ifnet *ifp = vap->iv_ifp;
973 
974 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
975 
976 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
977 }
978 
979 void
980 ieee80211_notify_node_auth(struct ieee80211_node *ni)
981 {
982 	struct ieee80211vap *vap = ni->ni_vap;
983 	struct ifnet *ifp = vap->iv_ifp;
984 
985 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
986 
987 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
988 }
989 
990 void
991 ieee80211_notify_country(struct ieee80211vap *vap,
992 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
993 {
994 	struct ifnet *ifp = vap->iv_ifp;
995 	struct ieee80211_country_event iev;
996 
997 	memset(&iev, 0, sizeof(iev));
998 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
999 	iev.iev_cc[0] = cc[0];
1000 	iev.iev_cc[1] = cc[1];
1001 	CURVNET_SET(ifp->if_vnet);
1002 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
1003 	CURVNET_RESTORE();
1004 }
1005 
1006 void
1007 ieee80211_notify_radio(struct ieee80211com *ic, int state)
1008 {
1009 	struct ieee80211_radio_event iev;
1010 	struct ieee80211vap *vap;
1011 	struct ifnet *ifp;
1012 
1013 	memset(&iev, 0, sizeof(iev));
1014 	iev.iev_state = state;
1015 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1016 		ifp = vap->iv_ifp;
1017 		CURVNET_SET(ifp->if_vnet);
1018 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
1019 		CURVNET_RESTORE();
1020 	}
1021 }
1022 
1023 void
1024 ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask)
1025 {
1026 	struct ifnet *ifp = vap->iv_ifp;
1027 
1028 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n",
1029 	    "interface state change");
1030 
1031 	CURVNET_SET(ifp->if_vnet);
1032 	rt_ifmsg(ifp, if_flags_mask);
1033 	CURVNET_RESTORE();
1034 }
1035 
1036 void
1037 ieee80211_load_module(const char *modname)
1038 {
1039 
1040 #ifdef notyet
1041 	(void)kern_kldload(curthread, modname, NULL);
1042 #else
1043 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
1044 #endif
1045 }
1046 
1047 static eventhandler_tag wlan_bpfevent;
1048 static eventhandler_tag wlan_ifllevent;
1049 
1050 static void
1051 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
1052 {
1053 	/* NB: identify vap's by if_init */
1054 	if (dlt == DLT_IEEE802_11_RADIO &&
1055 	    ifp->if_init == ieee80211_init) {
1056 		struct ieee80211vap *vap = ifp->if_softc;
1057 		/*
1058 		 * Track bpf radiotap listener state.  We mark the vap
1059 		 * to indicate if any listener is present and the com
1060 		 * to indicate if any listener exists on any associated
1061 		 * vap.  This flag is used by drivers to prepare radiotap
1062 		 * state only when needed.
1063 		 */
1064 		if (attach) {
1065 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1066 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1067 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1068 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
1069 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1070 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1071 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1072 		}
1073 	}
1074 }
1075 
1076 /*
1077  * Change MAC address on the vap (if was not started).
1078  */
1079 static void
1080 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1081 {
1082 	/* NB: identify vap's by if_init */
1083 	if (ifp->if_init == ieee80211_init &&
1084 	    (ifp->if_flags & IFF_UP) == 0) {
1085 		struct ieee80211vap *vap = ifp->if_softc;
1086 
1087 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1088 	}
1089 }
1090 
1091 /*
1092  * Fetch the VAP name.
1093  *
1094  * This returns a const char pointer suitable for debugging,
1095  * but don't expect it to stick around for much longer.
1096  */
1097 const char *
1098 ieee80211_get_vap_ifname(struct ieee80211vap *vap)
1099 {
1100 	if (vap->iv_ifp == NULL)
1101 		return "(none)";
1102 	return vap->iv_ifp->if_xname;
1103 }
1104 
1105 #ifdef DEBUGNET
1106 static void
1107 ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
1108 {
1109 	struct ieee80211vap *vap;
1110 	struct ieee80211com *ic;
1111 
1112 	vap = if_getsoftc(ifp);
1113 	ic = vap->iv_ic;
1114 
1115 	IEEE80211_LOCK(ic);
1116 	ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize);
1117 	IEEE80211_UNLOCK(ic);
1118 }
1119 
1120 static void
1121 ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev)
1122 {
1123 	struct ieee80211vap *vap;
1124 	struct ieee80211com *ic;
1125 
1126 	vap = if_getsoftc(ifp);
1127 	ic = vap->iv_ic;
1128 
1129 	IEEE80211_LOCK(ic);
1130 	ic->ic_debugnet_meth->dn8_event(ic, ev);
1131 	IEEE80211_UNLOCK(ic);
1132 }
1133 
1134 static int
1135 ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
1136 {
1137 	return (ieee80211_vap_transmit(ifp, m));
1138 }
1139 
1140 static int
1141 ieee80211_debugnet_poll(struct ifnet *ifp, int count)
1142 {
1143 	struct ieee80211vap *vap;
1144 	struct ieee80211com *ic;
1145 
1146 	vap = if_getsoftc(ifp);
1147 	ic = vap->iv_ic;
1148 
1149 	return (ic->ic_debugnet_meth->dn8_poll(ic, count));
1150 }
1151 #endif
1152 
1153 /*
1154  * Module glue.
1155  *
1156  * NB: the module name is "wlan" for compatibility with NetBSD.
1157  */
1158 static int
1159 wlan_modevent(module_t mod, int type, void *unused)
1160 {
1161 	switch (type) {
1162 	case MOD_LOAD:
1163 		if (bootverbose)
1164 			printf("wlan: <802.11 Link Layer>\n");
1165 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1166 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
1167 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1168 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1169 		struct if_clone_addreq req = {
1170 			.create_f = wlan_clone_create,
1171 			.destroy_f = wlan_clone_destroy,
1172 			.flags = IFC_F_AUTOUNIT,
1173 		};
1174 		wlan_cloner = ifc_attach_cloner(wlanname, &req);
1175 		return 0;
1176 	case MOD_UNLOAD:
1177 		ifc_detach_cloner(wlan_cloner);
1178 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1179 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1180 		return 0;
1181 	}
1182 	return EINVAL;
1183 }
1184 
1185 static moduledata_t wlan_mod = {
1186 	wlanname,
1187 	wlan_modevent,
1188 	0
1189 };
1190 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1191 MODULE_VERSION(wlan, 1);
1192 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1193 #ifdef	IEEE80211_ALQ
1194 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1195 #endif	/* IEEE80211_ALQ */
1196