xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11 support (FreeBSD-specific code)
31  */
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/systm.h>
37 #include <sys/linker.h>
38 #include <sys/mbuf.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/sysctl.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_clone.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 #include <net/route.h>
53 #include <net/vnet.h>
54 
55 #include <net80211/ieee80211_var.h>
56 #include <net80211/ieee80211_input.h>
57 
58 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
59 
60 #ifdef IEEE80211_DEBUG
61 int	ieee80211_debug = 0;
62 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
63 	    0, "debugging printfs");
64 #endif
65 
66 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
67 
68 #if __FreeBSD_version >= 1000020
69 static const char wlanname[] = "wlan";
70 static struct if_clone *wlan_cloner;
71 #endif
72 
73 /*
74  * Allocate/free com structure in conjunction with ifnet;
75  * these routines are registered with if_register_com_alloc
76  * below and are called automatically by the ifnet code
77  * when the ifnet of the parent device is created.
78  */
79 static void *
80 wlan_alloc(u_char type, struct ifnet *ifp)
81 {
82 	struct ieee80211com *ic;
83 
84 	ic = malloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO);
85 	ic->ic_ifp = ifp;
86 
87 	return (ic);
88 }
89 
90 static void
91 wlan_free(void *ic, u_char type)
92 {
93 	free(ic, M_80211_COM);
94 }
95 
96 static int
97 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
98 {
99 	struct ieee80211_clone_params cp;
100 	struct ieee80211vap *vap;
101 	struct ieee80211com *ic;
102 	struct ifnet *ifp;
103 	int error;
104 
105 	error = copyin(params, &cp, sizeof(cp));
106 	if (error)
107 		return error;
108 	ifp = ifunit(cp.icp_parent);
109 	if (ifp == NULL)
110 		return ENXIO;
111 	/* XXX move printfs to DIAGNOSTIC before release */
112 	if (ifp->if_type != IFT_IEEE80211) {
113 		if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
114 		return ENXIO;
115 	}
116 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
117 		if_printf(ifp, "%s: invalid opmode %d\n",
118 		    __func__, cp.icp_opmode);
119 		return EINVAL;
120 	}
121 	ic = ifp->if_l2com;
122 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
123 		if_printf(ifp, "%s mode not supported\n",
124 		    ieee80211_opmode_name[cp.icp_opmode]);
125 		return EOPNOTSUPP;
126 	}
127 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
128 #ifdef IEEE80211_SUPPORT_TDMA
129 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
130 #else
131 	    (1)
132 #endif
133 	) {
134 		if_printf(ifp, "TDMA not supported\n");
135 		return EOPNOTSUPP;
136 	}
137 #if __FreeBSD_version >= 1000020
138 	vap = ic->ic_vap_create(ic, wlanname, unit,
139 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
140 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
141 			    cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
142 #else
143 	vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
144 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
145 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
146 			    cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
147 
148 #endif
149 
150 	return (vap == NULL ? EIO : 0);
151 }
152 
153 static void
154 wlan_clone_destroy(struct ifnet *ifp)
155 {
156 	struct ieee80211vap *vap = ifp->if_softc;
157 	struct ieee80211com *ic = vap->iv_ic;
158 
159 	ic->ic_vap_delete(vap);
160 }
161 
162 #if __FreeBSD_version < 1000020
163 IFC_SIMPLE_DECLARE(wlan, 0);
164 #endif
165 
166 void
167 ieee80211_vap_destroy(struct ieee80211vap *vap)
168 {
169 	CURVNET_SET(vap->iv_ifp->if_vnet);
170 #if __FreeBSD_version >= 1000020
171 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
172 #else
173 	if_clone_destroyif(&wlan_cloner, vap->iv_ifp);
174 #endif
175 	CURVNET_RESTORE();
176 }
177 
178 int
179 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
180 {
181 	int msecs = ticks_to_msecs(*(int *)arg1);
182 	int error, t;
183 
184 	error = sysctl_handle_int(oidp, &msecs, 0, req);
185 	if (error || !req->newptr)
186 		return error;
187 	t = msecs_to_ticks(msecs);
188 	*(int *)arg1 = (t < 1) ? 1 : t;
189 	return 0;
190 }
191 
192 static int
193 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
194 {
195 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
196 	int error;
197 
198 	error = sysctl_handle_int(oidp, &inact, 0, req);
199 	if (error || !req->newptr)
200 		return error;
201 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
202 	return 0;
203 }
204 
205 static int
206 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
207 {
208 	struct ieee80211com *ic = arg1;
209 	const char *name = ic->ic_ifp->if_xname;
210 
211 	return SYSCTL_OUT(req, name, strlen(name));
212 }
213 
214 static int
215 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
216 {
217 	struct ieee80211com *ic = arg1;
218 	int t = 0, error;
219 
220 	error = sysctl_handle_int(oidp, &t, 0, req);
221 	if (error || !req->newptr)
222 		return error;
223 	IEEE80211_LOCK(ic);
224 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
225 	IEEE80211_UNLOCK(ic);
226 	return 0;
227 }
228 
229 void
230 ieee80211_sysctl_attach(struct ieee80211com *ic)
231 {
232 }
233 
234 void
235 ieee80211_sysctl_detach(struct ieee80211com *ic)
236 {
237 }
238 
239 void
240 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
241 {
242 	struct ifnet *ifp = vap->iv_ifp;
243 	struct sysctl_ctx_list *ctx;
244 	struct sysctl_oid *oid;
245 	char num[14];			/* sufficient for 32 bits */
246 
247 	ctx = (struct sysctl_ctx_list *) malloc(sizeof(struct sysctl_ctx_list),
248 		M_DEVBUF, M_NOWAIT | M_ZERO);
249 	if (ctx == NULL) {
250 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
251 			__func__);
252 		return;
253 	}
254 	sysctl_ctx_init(ctx);
255 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
256 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
257 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
258 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
259 		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
260 		ieee80211_sysctl_parent, "A", "parent device");
261 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
262 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
263 		"driver capabilities");
264 #ifdef IEEE80211_DEBUG
265 	vap->iv_debug = ieee80211_debug;
266 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
267 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
268 		"control debugging printfs");
269 #endif
270 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
271 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
272 		"consecutive beacon misses before scanning");
273 	/* XXX inherit from tunables */
274 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
275 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
276 		ieee80211_sysctl_inact, "I",
277 		"station inactivity timeout (sec)");
278 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
279 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
280 		ieee80211_sysctl_inact, "I",
281 		"station inactivity probe timeout (sec)");
282 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
283 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
284 		ieee80211_sysctl_inact, "I",
285 		"station authentication timeout (sec)");
286 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
287 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
288 		ieee80211_sysctl_inact, "I",
289 		"station initial state timeout (sec)");
290 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
291 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
292 			"ampdu_mintraffic_bk", CTLFLAG_RW,
293 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
294 			"BK traffic tx aggr threshold (pps)");
295 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
296 			"ampdu_mintraffic_be", CTLFLAG_RW,
297 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
298 			"BE traffic tx aggr threshold (pps)");
299 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
300 			"ampdu_mintraffic_vo", CTLFLAG_RW,
301 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
302 			"VO traffic tx aggr threshold (pps)");
303 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
304 			"ampdu_mintraffic_vi", CTLFLAG_RW,
305 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
306 			"VI traffic tx aggr threshold (pps)");
307 	}
308 	if (vap->iv_caps & IEEE80211_C_DFS) {
309 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
310 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
311 			ieee80211_sysctl_radar, "I", "simulate radar event");
312 	}
313 	vap->iv_sysctl = ctx;
314 	vap->iv_oid = oid;
315 }
316 
317 void
318 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
319 {
320 
321 	if (vap->iv_sysctl != NULL) {
322 		sysctl_ctx_free(vap->iv_sysctl);
323 		free(vap->iv_sysctl, M_DEVBUF);
324 		vap->iv_sysctl = NULL;
325 	}
326 }
327 
328 int
329 ieee80211_node_dectestref(struct ieee80211_node *ni)
330 {
331 	/* XXX need equivalent of atomic_dec_and_test */
332 	atomic_subtract_int(&ni->ni_refcnt, 1);
333 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
334 }
335 
336 void
337 ieee80211_drain_ifq(struct ifqueue *ifq)
338 {
339 	struct ieee80211_node *ni;
340 	struct mbuf *m;
341 
342 	for (;;) {
343 		IF_DEQUEUE(ifq, m);
344 		if (m == NULL)
345 			break;
346 
347 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
348 		KASSERT(ni != NULL, ("frame w/o node"));
349 		ieee80211_free_node(ni);
350 		m->m_pkthdr.rcvif = NULL;
351 
352 		m_freem(m);
353 	}
354 }
355 
356 void
357 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
358 {
359 	struct ieee80211_node *ni;
360 	struct mbuf *m, **mprev;
361 
362 	IF_LOCK(ifq);
363 	mprev = &ifq->ifq_head;
364 	while ((m = *mprev) != NULL) {
365 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
366 		if (ni != NULL && ni->ni_vap == vap) {
367 			*mprev = m->m_nextpkt;		/* remove from list */
368 			ifq->ifq_len--;
369 
370 			m_freem(m);
371 			ieee80211_free_node(ni);	/* reclaim ref */
372 		} else
373 			mprev = &m->m_nextpkt;
374 	}
375 	/* recalculate tail ptr */
376 	m = ifq->ifq_head;
377 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
378 		;
379 	ifq->ifq_tail = m;
380 	IF_UNLOCK(ifq);
381 }
382 
383 /*
384  * As above, for mbufs allocated with m_gethdr/MGETHDR
385  * or initialized by M_COPY_PKTHDR.
386  */
387 #define	MC_ALIGN(m, len)						\
388 do {									\
389 	(m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1);	\
390 } while (/* CONSTCOND */ 0)
391 
392 /*
393  * Allocate and setup a management frame of the specified
394  * size.  We return the mbuf and a pointer to the start
395  * of the contiguous data area that's been reserved based
396  * on the packet length.  The data area is forced to 32-bit
397  * alignment and the buffer length to a multiple of 4 bytes.
398  * This is done mainly so beacon frames (that require this)
399  * can use this interface too.
400  */
401 struct mbuf *
402 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
403 {
404 	struct mbuf *m;
405 	u_int len;
406 
407 	/*
408 	 * NB: we know the mbuf routines will align the data area
409 	 *     so we don't need to do anything special.
410 	 */
411 	len = roundup2(headroom + pktlen, 4);
412 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
413 	if (len < MINCLSIZE) {
414 		m = m_gethdr(M_NOWAIT, MT_DATA);
415 		/*
416 		 * Align the data in case additional headers are added.
417 		 * This should only happen when a WEP header is added
418 		 * which only happens for shared key authentication mgt
419 		 * frames which all fit in MHLEN.
420 		 */
421 		if (m != NULL)
422 			MH_ALIGN(m, len);
423 	} else {
424 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
425 		if (m != NULL)
426 			MC_ALIGN(m, len);
427 	}
428 	if (m != NULL) {
429 		m->m_data += headroom;
430 		*frm = m->m_data;
431 	}
432 	return m;
433 }
434 
435 #ifndef __NO_STRICT_ALIGNMENT
436 /*
437  * Re-align the payload in the mbuf.  This is mainly used (right now)
438  * to handle IP header alignment requirements on certain architectures.
439  */
440 struct mbuf *
441 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
442 {
443 	int pktlen, space;
444 	struct mbuf *n;
445 
446 	pktlen = m->m_pkthdr.len;
447 	space = pktlen + align;
448 	if (space < MINCLSIZE)
449 		n = m_gethdr(M_NOWAIT, MT_DATA);
450 	else {
451 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
452 		    space <= MCLBYTES ?     MCLBYTES :
453 #if MJUMPAGESIZE != MCLBYTES
454 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
455 #endif
456 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
457 	}
458 	if (__predict_true(n != NULL)) {
459 		m_move_pkthdr(n, m);
460 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
461 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
462 		n->m_len = pktlen;
463 	} else {
464 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
465 		    mtod(m, const struct ieee80211_frame *), NULL,
466 		    "%s", "no mbuf to realign");
467 		vap->iv_stats.is_rx_badalign++;
468 	}
469 	m_freem(m);
470 	return n;
471 }
472 #endif /* !__NO_STRICT_ALIGNMENT */
473 
474 int
475 ieee80211_add_callback(struct mbuf *m,
476 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
477 {
478 	struct m_tag *mtag;
479 	struct ieee80211_cb *cb;
480 
481 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
482 			sizeof(struct ieee80211_cb), M_NOWAIT);
483 	if (mtag == NULL)
484 		return 0;
485 
486 	cb = (struct ieee80211_cb *)(mtag+1);
487 	cb->func = func;
488 	cb->arg = arg;
489 	m_tag_prepend(m, mtag);
490 	m->m_flags |= M_TXCB;
491 	return 1;
492 }
493 
494 void
495 ieee80211_process_callback(struct ieee80211_node *ni,
496 	struct mbuf *m, int status)
497 {
498 	struct m_tag *mtag;
499 
500 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
501 	if (mtag != NULL) {
502 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
503 		cb->func(ni, cb->arg, status);
504 	}
505 }
506 
507 /*
508  * Transmit a frame to the parent interface.
509  *
510  * TODO: if the transmission fails, make sure the parent node is freed
511  *   (the callers will first need modifying.)
512  */
513 int
514 ieee80211_parent_transmit(struct ieee80211com *ic,
515 	struct mbuf *m)
516 {
517 	struct ifnet *parent = ic->ic_ifp;
518 	/*
519 	 * Assert the IC TX lock is held - this enforces the
520 	 * processing -> queuing order is maintained
521 	 */
522 	IEEE80211_TX_LOCK_ASSERT(ic);
523 
524 	return (parent->if_transmit(parent, m));
525 }
526 
527 /*
528  * Transmit a frame to the VAP interface.
529  */
530 int
531 ieee80211_vap_transmit(struct ieee80211vap *vap, struct mbuf *m)
532 {
533 	struct ifnet *ifp = vap->iv_ifp;
534 
535 	/*
536 	 * When transmitting via the VAP, we shouldn't hold
537 	 * any IC TX lock as the VAP TX path will acquire it.
538 	 */
539 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
540 
541 	return (ifp->if_transmit(ifp, m));
542 
543 }
544 
545 #include <sys/libkern.h>
546 
547 void
548 get_random_bytes(void *p, size_t n)
549 {
550 	uint8_t *dp = p;
551 
552 	while (n > 0) {
553 		uint32_t v = arc4random();
554 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
555 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
556 		dp += sizeof(uint32_t), n -= nb;
557 	}
558 }
559 
560 /*
561  * Helper function for events that pass just a single mac address.
562  */
563 static void
564 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
565 {
566 	struct ieee80211_join_event iev;
567 
568 	CURVNET_SET(ifp->if_vnet);
569 	memset(&iev, 0, sizeof(iev));
570 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
571 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
572 	CURVNET_RESTORE();
573 }
574 
575 void
576 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
577 {
578 	struct ieee80211vap *vap = ni->ni_vap;
579 	struct ifnet *ifp = vap->iv_ifp;
580 
581 	CURVNET_SET_QUIET(ifp->if_vnet);
582 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
583 	    (ni == vap->iv_bss) ? "bss " : "");
584 
585 	if (ni == vap->iv_bss) {
586 		notify_macaddr(ifp, newassoc ?
587 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
588 		if_link_state_change(ifp, LINK_STATE_UP);
589 	} else {
590 		notify_macaddr(ifp, newassoc ?
591 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
592 	}
593 	CURVNET_RESTORE();
594 }
595 
596 void
597 ieee80211_notify_node_leave(struct ieee80211_node *ni)
598 {
599 	struct ieee80211vap *vap = ni->ni_vap;
600 	struct ifnet *ifp = vap->iv_ifp;
601 
602 	CURVNET_SET_QUIET(ifp->if_vnet);
603 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
604 	    (ni == vap->iv_bss) ? "bss " : "");
605 
606 	if (ni == vap->iv_bss) {
607 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
608 		if_link_state_change(ifp, LINK_STATE_DOWN);
609 	} else {
610 		/* fire off wireless event station leaving */
611 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
612 	}
613 	CURVNET_RESTORE();
614 }
615 
616 void
617 ieee80211_notify_scan_done(struct ieee80211vap *vap)
618 {
619 	struct ifnet *ifp = vap->iv_ifp;
620 
621 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
622 
623 	/* dispatch wireless event indicating scan completed */
624 	CURVNET_SET(ifp->if_vnet);
625 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
626 	CURVNET_RESTORE();
627 }
628 
629 void
630 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
631 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
632 	u_int64_t rsc, int tid)
633 {
634 	struct ifnet *ifp = vap->iv_ifp;
635 
636 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
637 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
638 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
639 	    (intmax_t) k->wk_keyrsc[tid],
640 	    k->wk_keyix, k->wk_rxkeyix);
641 
642 	if (ifp != NULL) {		/* NB: for cipher test modules */
643 		struct ieee80211_replay_event iev;
644 
645 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
646 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
647 		iev.iev_cipher = k->wk_cipher->ic_cipher;
648 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
649 			iev.iev_keyix = k->wk_rxkeyix;
650 		else
651 			iev.iev_keyix = k->wk_keyix;
652 		iev.iev_keyrsc = k->wk_keyrsc[tid];
653 		iev.iev_rsc = rsc;
654 		CURVNET_SET(ifp->if_vnet);
655 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
656 		CURVNET_RESTORE();
657 	}
658 }
659 
660 void
661 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
662 	const struct ieee80211_frame *wh, u_int keyix)
663 {
664 	struct ifnet *ifp = vap->iv_ifp;
665 
666 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
667 	    "michael MIC verification failed <keyix %u>", keyix);
668 	vap->iv_stats.is_rx_tkipmic++;
669 
670 	if (ifp != NULL) {		/* NB: for cipher test modules */
671 		struct ieee80211_michael_event iev;
672 
673 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
674 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
675 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
676 		iev.iev_keyix = keyix;
677 		CURVNET_SET(ifp->if_vnet);
678 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
679 		CURVNET_RESTORE();
680 	}
681 }
682 
683 void
684 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
685 {
686 	struct ieee80211vap *vap = ni->ni_vap;
687 	struct ifnet *ifp = vap->iv_ifp;
688 
689 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
690 }
691 
692 void
693 ieee80211_notify_csa(struct ieee80211com *ic,
694 	const struct ieee80211_channel *c, int mode, int count)
695 {
696 	struct ifnet *ifp = ic->ic_ifp;
697 	struct ieee80211_csa_event iev;
698 
699 	memset(&iev, 0, sizeof(iev));
700 	iev.iev_flags = c->ic_flags;
701 	iev.iev_freq = c->ic_freq;
702 	iev.iev_ieee = c->ic_ieee;
703 	iev.iev_mode = mode;
704 	iev.iev_count = count;
705 	CURVNET_SET(ifp->if_vnet);
706 	rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
707 	CURVNET_RESTORE();
708 }
709 
710 void
711 ieee80211_notify_radar(struct ieee80211com *ic,
712 	const struct ieee80211_channel *c)
713 {
714 	struct ifnet *ifp = ic->ic_ifp;
715 	struct ieee80211_radar_event iev;
716 
717 	memset(&iev, 0, sizeof(iev));
718 	iev.iev_flags = c->ic_flags;
719 	iev.iev_freq = c->ic_freq;
720 	iev.iev_ieee = c->ic_ieee;
721 	CURVNET_SET(ifp->if_vnet);
722 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
723 	CURVNET_RESTORE();
724 }
725 
726 void
727 ieee80211_notify_cac(struct ieee80211com *ic,
728 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
729 {
730 	struct ifnet *ifp = ic->ic_ifp;
731 	struct ieee80211_cac_event iev;
732 
733 	memset(&iev, 0, sizeof(iev));
734 	iev.iev_flags = c->ic_flags;
735 	iev.iev_freq = c->ic_freq;
736 	iev.iev_ieee = c->ic_ieee;
737 	iev.iev_type = type;
738 	CURVNET_SET(ifp->if_vnet);
739 	rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
740 	CURVNET_RESTORE();
741 }
742 
743 void
744 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
745 {
746 	struct ieee80211vap *vap = ni->ni_vap;
747 	struct ifnet *ifp = vap->iv_ifp;
748 
749 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
750 
751 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
752 }
753 
754 void
755 ieee80211_notify_node_auth(struct ieee80211_node *ni)
756 {
757 	struct ieee80211vap *vap = ni->ni_vap;
758 	struct ifnet *ifp = vap->iv_ifp;
759 
760 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
761 
762 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
763 }
764 
765 void
766 ieee80211_notify_country(struct ieee80211vap *vap,
767 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
768 {
769 	struct ifnet *ifp = vap->iv_ifp;
770 	struct ieee80211_country_event iev;
771 
772 	memset(&iev, 0, sizeof(iev));
773 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
774 	iev.iev_cc[0] = cc[0];
775 	iev.iev_cc[1] = cc[1];
776 	CURVNET_SET(ifp->if_vnet);
777 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
778 	CURVNET_RESTORE();
779 }
780 
781 void
782 ieee80211_notify_radio(struct ieee80211com *ic, int state)
783 {
784 	struct ifnet *ifp = ic->ic_ifp;
785 	struct ieee80211_radio_event iev;
786 
787 	memset(&iev, 0, sizeof(iev));
788 	iev.iev_state = state;
789 	CURVNET_SET(ifp->if_vnet);
790 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
791 	CURVNET_RESTORE();
792 }
793 
794 void
795 ieee80211_load_module(const char *modname)
796 {
797 
798 #ifdef notyet
799 	(void)kern_kldload(curthread, modname, NULL);
800 #else
801 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
802 #endif
803 }
804 
805 static eventhandler_tag wlan_bpfevent;
806 static eventhandler_tag wlan_ifllevent;
807 
808 static void
809 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
810 {
811 	/* NB: identify vap's by if_start */
812 	if (dlt == DLT_IEEE802_11_RADIO && ifp->if_start == ieee80211_start) {
813 		struct ieee80211vap *vap = ifp->if_softc;
814 		/*
815 		 * Track bpf radiotap listener state.  We mark the vap
816 		 * to indicate if any listener is present and the com
817 		 * to indicate if any listener exists on any associated
818 		 * vap.  This flag is used by drivers to prepare radiotap
819 		 * state only when needed.
820 		 */
821 		if (attach) {
822 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
823 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
824 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
825 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
826 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
827 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
828 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
829 		}
830 	}
831 }
832 
833 static void
834 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
835 {
836 	struct ieee80211com *ic = ifp->if_l2com;
837 	struct ieee80211vap *vap, *next;
838 
839 	if (ifp->if_type != IFT_IEEE80211 || ic == NULL)
840 		return;
841 
842 	IEEE80211_LOCK(ic);
843 	TAILQ_FOREACH_SAFE(vap, &ic->ic_vaps, iv_next, next) {
844 		/*
845 		 * If the MAC address has changed on the parent and it was
846 		 * copied to the vap on creation then re-sync.
847 		 */
848 		if (vap->iv_ic == ic &&
849 		    (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
850 			IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
851 			IEEE80211_UNLOCK(ic);
852 			if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
853 			    IEEE80211_ADDR_LEN);
854 			IEEE80211_LOCK(ic);
855 		}
856 	}
857 	IEEE80211_UNLOCK(ic);
858 }
859 
860 /*
861  * Module glue.
862  *
863  * NB: the module name is "wlan" for compatibility with NetBSD.
864  */
865 static int
866 wlan_modevent(module_t mod, int type, void *unused)
867 {
868 	switch (type) {
869 	case MOD_LOAD:
870 		if (bootverbose)
871 			printf("wlan: <802.11 Link Layer>\n");
872 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
873 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
874 		if (wlan_bpfevent == NULL)
875 			return ENOMEM;
876 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
877 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
878 		if (wlan_ifllevent == NULL) {
879 			EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
880 			return ENOMEM;
881 		}
882 #if __FreeBSD_version >= 1000020
883 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
884 		    wlan_clone_destroy, 0);
885 #else
886 		if_clone_attach(&wlan_cloner);
887 #endif
888 		if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
889 		return 0;
890 	case MOD_UNLOAD:
891 		if_deregister_com_alloc(IFT_IEEE80211);
892 #if __FreeBSD_version >= 1000020
893 		if_clone_detach(wlan_cloner);
894 #else
895 		if_clone_detach(&wlan_cloner);
896 #endif
897 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
898 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
899 		return 0;
900 	}
901 	return EINVAL;
902 }
903 
904 static moduledata_t wlan_mod = {
905 #if __FreeBSD_version >= 1000020
906 	wlanname,
907 #else
908 	"wlan",
909 #endif
910 	wlan_modevent,
911 	0
912 };
913 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
914 MODULE_VERSION(wlan, 1);
915 MODULE_DEPEND(wlan, ether, 1, 1, 1);
916 #ifdef	IEEE80211_ALQ
917 MODULE_DEPEND(wlan, alq, 1, 1, 1);
918 #endif	/* IEEE80211_ALQ */
919 
920