xref: /freebsd/sys/net80211/ieee80211_ht.c (revision c7046f76)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #ifdef __FreeBSD__
30 __FBSDID("$FreeBSD$");
31 #endif
32 
33 /*
34  * IEEE 802.11n protocol support.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_wlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/systm.h>
44 #include <sys/endian.h>
45 
46 #include <sys/socket.h>
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_media.h>
51 #include <net/ethernet.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_action.h>
55 #include <net80211/ieee80211_input.h>
56 
57 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
58 	{  13,  14,   27,   30 },	/* MCS 0 */
59 	{  26,  29,   54,   60 },	/* MCS 1 */
60 	{  39,  43,   81,   90 },	/* MCS 2 */
61 	{  52,  58,  108,  120 },	/* MCS 3 */
62 	{  78,  87,  162,  180 },	/* MCS 4 */
63 	{ 104, 116,  216,  240 },	/* MCS 5 */
64 	{ 117, 130,  243,  270 },	/* MCS 6 */
65 	{ 130, 144,  270,  300 },	/* MCS 7 */
66 	{  26,  29,   54,   60 },	/* MCS 8 */
67 	{  52,  58,  108,  120 },	/* MCS 9 */
68 	{  78,  87,  162,  180 },	/* MCS 10 */
69 	{ 104, 116,  216,  240 },	/* MCS 11 */
70 	{ 156, 173,  324,  360 },	/* MCS 12 */
71 	{ 208, 231,  432,  480 },	/* MCS 13 */
72 	{ 234, 260,  486,  540 },	/* MCS 14 */
73 	{ 260, 289,  540,  600 },	/* MCS 15 */
74 	{  39,  43,   81,   90 },	/* MCS 16 */
75 	{  78,  87,  162,  180 },	/* MCS 17 */
76 	{ 117, 130,  243,  270 },	/* MCS 18 */
77 	{ 156, 173,  324,  360 },	/* MCS 19 */
78 	{ 234, 260,  486,  540 },	/* MCS 20 */
79 	{ 312, 347,  648,  720 },	/* MCS 21 */
80 	{ 351, 390,  729,  810 },	/* MCS 22 */
81 	{ 390, 433,  810,  900 },	/* MCS 23 */
82 	{  52,  58,  108,  120 },	/* MCS 24 */
83 	{ 104, 116,  216,  240 },	/* MCS 25 */
84 	{ 156, 173,  324,  360 },	/* MCS 26 */
85 	{ 208, 231,  432,  480 },	/* MCS 27 */
86 	{ 312, 347,  648,  720 },	/* MCS 28 */
87 	{ 416, 462,  864,  960 },	/* MCS 29 */
88 	{ 468, 520,  972, 1080 },	/* MCS 30 */
89 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
90 	{   0,   0,   12,   13 },	/* MCS 32 */
91 	{  78,  87,  162,  180 },	/* MCS 33 */
92 	{ 104, 116,  216,  240 },	/* MCS 34 */
93 	{ 130, 144,  270,  300 },	/* MCS 35 */
94 	{ 117, 130,  243,  270 },	/* MCS 36 */
95 	{ 156, 173,  324,  360 },	/* MCS 37 */
96 	{ 195, 217,  405,  450 },	/* MCS 38 */
97 	{ 104, 116,  216,  240 },	/* MCS 39 */
98 	{ 130, 144,  270,  300 },	/* MCS 40 */
99 	{ 130, 144,  270,  300 },	/* MCS 41 */
100 	{ 156, 173,  324,  360 },	/* MCS 42 */
101 	{ 182, 202,  378,  420 },	/* MCS 43 */
102 	{ 182, 202,  378,  420 },	/* MCS 44 */
103 	{ 208, 231,  432,  480 },	/* MCS 45 */
104 	{ 156, 173,  324,  360 },	/* MCS 46 */
105 	{ 195, 217,  405,  450 },	/* MCS 47 */
106 	{ 195, 217,  405,  450 },	/* MCS 48 */
107 	{ 234, 260,  486,  540 },	/* MCS 49 */
108 	{ 273, 303,  567,  630 },	/* MCS 50 */
109 	{ 273, 303,  567,  630 },	/* MCS 51 */
110 	{ 312, 347,  648,  720 },	/* MCS 52 */
111 	{ 130, 144,  270,  300 },	/* MCS 53 */
112 	{ 156, 173,  324,  360 },	/* MCS 54 */
113 	{ 182, 202,  378,  420 },	/* MCS 55 */
114 	{ 156, 173,  324,  360 },	/* MCS 56 */
115 	{ 182, 202,  378,  420 },	/* MCS 57 */
116 	{ 208, 231,  432,  480 },	/* MCS 58 */
117 	{ 234, 260,  486,  540 },	/* MCS 59 */
118 	{ 208, 231,  432,  480 },	/* MCS 60 */
119 	{ 234, 260,  486,  540 },	/* MCS 61 */
120 	{ 260, 289,  540,  600 },	/* MCS 62 */
121 	{ 260, 289,  540,  600 },	/* MCS 63 */
122 	{ 286, 318,  594,  660 },	/* MCS 64 */
123 	{ 195, 217,  405,  450 },	/* MCS 65 */
124 	{ 234, 260,  486,  540 },	/* MCS 66 */
125 	{ 273, 303,  567,  630 },	/* MCS 67 */
126 	{ 234, 260,  486,  540 },	/* MCS 68 */
127 	{ 273, 303,  567,  630 },	/* MCS 69 */
128 	{ 312, 347,  648,  720 },	/* MCS 70 */
129 	{ 351, 390,  729,  810 },	/* MCS 71 */
130 	{ 312, 347,  648,  720 },	/* MCS 72 */
131 	{ 351, 390,  729,  810 },	/* MCS 73 */
132 	{ 390, 433,  810,  900 },	/* MCS 74 */
133 	{ 390, 433,  810,  900 },	/* MCS 75 */
134 	{ 429, 477,  891,  990 },	/* MCS 76 */
135 };
136 
137 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
138 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age,
139     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
140     &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
141     "AMPDU max reorder age (ms)");
142 
143 static	int ieee80211_recv_bar_ena = 1;
144 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
145 	    0, "BAR frame processing (ena/dis)");
146 
147 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
148 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout,
149     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
150     &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
151     "ADDBA request timeout (ms)");
152 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff,
154     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
155     &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
156     "ADDBA request backoff (ms)");
157 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
158 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
159 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
160 
161 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
162 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
163 
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
165 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
166 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
167 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
168 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
169 
170 static	ieee80211_send_action_func ht_send_action_ba_addba;
171 static	ieee80211_send_action_func ht_send_action_ba_delba;
172 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
173 
174 static void
175 ieee80211_ht_init(void)
176 {
177 	/*
178 	 * Setup HT parameters that depends on the clock frequency.
179 	 */
180 	ieee80211_ampdu_age = msecs_to_ticks(500);
181 	ieee80211_addba_timeout = msecs_to_ticks(250);
182 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
183 	ieee80211_bar_timeout = msecs_to_ticks(250);
184 	/*
185 	 * Register action frame handlers.
186 	 */
187 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
188 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
189 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
190 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
191 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
192 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
193 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
194 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
195 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
196 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
197 
198 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
199 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
200 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
201 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
202 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
203 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
204 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
205 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
206 }
207 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
208 
209 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
210 	struct ieee80211_tx_ampdu *tap);
211 static int ieee80211_addba_request(struct ieee80211_node *ni,
212 	struct ieee80211_tx_ampdu *tap,
213 	int dialogtoken, int baparamset, int batimeout);
214 static int ieee80211_addba_response(struct ieee80211_node *ni,
215 	struct ieee80211_tx_ampdu *tap,
216 	int code, int baparamset, int batimeout);
217 static void ieee80211_addba_stop(struct ieee80211_node *ni,
218 	struct ieee80211_tx_ampdu *tap);
219 static void null_addba_response_timeout(struct ieee80211_node *ni,
220 	struct ieee80211_tx_ampdu *tap);
221 
222 static void ieee80211_bar_response(struct ieee80211_node *ni,
223 	struct ieee80211_tx_ampdu *tap, int status);
224 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
225 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
226 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
227 	int baparamset, int batimeout, int baseqctl);
228 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
229 
230 void
231 ieee80211_ht_attach(struct ieee80211com *ic)
232 {
233 	/* setup default aggregation policy */
234 	ic->ic_recv_action = ieee80211_recv_action;
235 	ic->ic_send_action = ieee80211_send_action;
236 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
237 	ic->ic_addba_request = ieee80211_addba_request;
238 	ic->ic_addba_response = ieee80211_addba_response;
239 	ic->ic_addba_response_timeout = null_addba_response_timeout;
240 	ic->ic_addba_stop = ieee80211_addba_stop;
241 	ic->ic_bar_response = ieee80211_bar_response;
242 	ic->ic_ampdu_rx_start = ampdu_rx_start;
243 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
244 
245 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
246 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
247 }
248 
249 void
250 ieee80211_ht_detach(struct ieee80211com *ic)
251 {
252 }
253 
254 void
255 ieee80211_ht_vattach(struct ieee80211vap *vap)
256 {
257 
258 	/* driver can override defaults */
259 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
260 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
261 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
262 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
263 	/* tx aggregation traffic thresholds */
264 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
265 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
266 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
267 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
268 
269 	vap->iv_htprotmode = IEEE80211_PROT_RTSCTS;
270 	vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
271 
272 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
273 		/*
274 		 * Device is HT capable; enable all HT-related
275 		 * facilities by default.
276 		 * XXX these choices may be too aggressive.
277 		 */
278 		vap->iv_flags_ht |= IEEE80211_FHT_HT
279 				 |  IEEE80211_FHT_HTCOMPAT
280 				 ;
281 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
282 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
283 		/* XXX infer from channel list? */
284 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
285 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
286 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
287 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
288 		}
289 		/* enable RIFS if capable */
290 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
291 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
292 
293 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
294 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
295 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
296 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
297 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
298 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
299 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
300 
301 		if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
302 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
303 		if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
304 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
305 
306 		if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC)
307 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX;
308 		if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC)
309 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX;
310 	}
311 	/* NB: disable default legacy WDS, too many issues right now */
312 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
313 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
314 }
315 
316 void
317 ieee80211_ht_vdetach(struct ieee80211vap *vap)
318 {
319 }
320 
321 static int
322 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
323     int ratetype)
324 {
325 	int mword, rate;
326 
327 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
328 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
329 		return (0);
330 	switch (ratetype) {
331 	case 0:
332 		rate = ieee80211_htrates[index].ht20_rate_800ns;
333 		break;
334 	case 1:
335 		rate = ieee80211_htrates[index].ht20_rate_400ns;
336 		break;
337 	case 2:
338 		rate = ieee80211_htrates[index].ht40_rate_800ns;
339 		break;
340 	default:
341 		rate = ieee80211_htrates[index].ht40_rate_400ns;
342 		break;
343 	}
344 	return (rate);
345 }
346 
347 static struct printranges {
348 	int	minmcs;
349 	int	maxmcs;
350 	int	txstream;
351 	int	ratetype;
352 	int	htcapflags;
353 } ranges[] = {
354 	{  0,  7, 1, 0, 0 },
355 	{  8, 15, 2, 0, 0 },
356 	{ 16, 23, 3, 0, 0 },
357 	{ 24, 31, 4, 0, 0 },
358 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
359 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
360 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
361 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
362 	{  0,  0, 0, 0, 0 },
363 };
364 
365 static void
366 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
367 {
368 	int minrate, maxrate;
369 	struct printranges *range;
370 
371 	for (range = ranges; range->txstream != 0; range++) {
372 		if (ic->ic_txstream < range->txstream)
373 			continue;
374 		if (range->htcapflags &&
375 		    (ic->ic_htcaps & range->htcapflags) == 0)
376 			continue;
377 		if (ratetype < range->ratetype)
378 			continue;
379 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
380 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
381 		if (range->maxmcs) {
382 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
383 			    range->minmcs, range->maxmcs,
384 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
385 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
386 		} else {
387 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
388 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
389 		}
390 	}
391 }
392 
393 static void
394 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
395 {
396 	const char *modestr = ieee80211_phymode_name[mode];
397 
398 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
399 	ht_rateprint(ic, mode, 0);
400 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
401 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
402 		ht_rateprint(ic, mode, 1);
403 	}
404 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
405 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
406 		ht_rateprint(ic, mode, 2);
407 	}
408 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
409 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
410 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
411 		ht_rateprint(ic, mode, 3);
412 	}
413 }
414 
415 void
416 ieee80211_ht_announce(struct ieee80211com *ic)
417 {
418 
419 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
420 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
421 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
422 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
423 		ht_announce(ic, IEEE80211_MODE_11NA);
424 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
425 		ht_announce(ic, IEEE80211_MODE_11NG);
426 }
427 
428 void
429 ieee80211_init_suphtrates(struct ieee80211com *ic)
430 {
431 #define	ADDRATE(x)	do {						\
432 	htrateset->rs_rates[htrateset->rs_nrates] = x;			\
433 	htrateset->rs_nrates++;						\
434 } while (0)
435 	struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates;
436 	int i;
437 
438 	memset(htrateset, 0, sizeof(struct ieee80211_htrateset));
439 	for (i = 0; i < ic->ic_txstream * 8; i++)
440 		ADDRATE(i);
441 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
442 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
443 		ADDRATE(32);
444 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
445 		if (ic->ic_txstream >= 2) {
446 			 for (i = 33; i <= 38; i++)
447 				ADDRATE(i);
448 		}
449 		if (ic->ic_txstream >= 3) {
450 			for (i = 39; i <= 52; i++)
451 				ADDRATE(i);
452 		}
453 		if (ic->ic_txstream == 4) {
454 			for (i = 53; i <= 76; i++)
455 				ADDRATE(i);
456 		}
457 	}
458 #undef	ADDRATE
459 }
460 
461 /*
462  * Receive processing.
463  */
464 
465 /*
466  * Decap the encapsulated A-MSDU frames and dispatch all but
467  * the last for delivery.  The last frame is returned for
468  * delivery via the normal path.
469  */
470 struct mbuf *
471 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
472 {
473 	struct ieee80211vap *vap = ni->ni_vap;
474 	int framelen;
475 	struct mbuf *n;
476 
477 	/* discard 802.3 header inserted by ieee80211_decap */
478 	m_adj(m, sizeof(struct ether_header));
479 
480 	vap->iv_stats.is_amsdu_decap++;
481 
482 	for (;;) {
483 		/*
484 		 * Decap the first frame, bust it apart from the
485 		 * remainder and deliver.  We leave the last frame
486 		 * delivery to the caller (for consistency with other
487 		 * code paths, could also do it here).
488 		 */
489 		m = ieee80211_decap1(m, &framelen);
490 		if (m == NULL) {
491 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
492 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
493 			vap->iv_stats.is_amsdu_tooshort++;
494 			return NULL;
495 		}
496 		if (m->m_pkthdr.len == framelen)
497 			break;
498 		n = m_split(m, framelen, IEEE80211_M_NOWAIT);
499 		if (n == NULL) {
500 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
501 			    ni->ni_macaddr, "a-msdu",
502 			    "%s", "unable to split encapsulated frames");
503 			vap->iv_stats.is_amsdu_split++;
504 			m_freem(m);			/* NB: must reclaim */
505 			return NULL;
506 		}
507 		vap->iv_deliver_data(vap, ni, m);
508 
509 		/*
510 		 * Remove frame contents; each intermediate frame
511 		 * is required to be aligned to a 4-byte boundary.
512 		 */
513 		m = n;
514 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
515 	}
516 	return m;				/* last delivered by caller */
517 }
518 
519 static void
520 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i)
521 {
522 	struct mbuf *m;
523 
524 	/* Walk the queue, removing frames as appropriate */
525 	while (mbufq_len(&rap->rxa_mq[i]) != 0) {
526 		m = mbufq_dequeue(&rap->rxa_mq[i]);
527 		if (m == NULL)
528 			break;
529 		rap->rxa_qbytes -= m->m_pkthdr.len;
530 		rap->rxa_qframes--;
531 		m_freem(m);
532 	}
533 }
534 
535 /*
536  * Add the given frame to the current RX reorder slot.
537  *
538  * For future offloaded A-MSDU handling where multiple frames with
539  * the same sequence number show up here, this routine will append
540  * those frames as long as they're appropriately tagged.
541  */
542 static int
543 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid,
544     ieee80211_seq rxseq,
545     struct ieee80211_node *ni,
546     struct mbuf *m,
547     const struct ieee80211_rx_stats *rxs)
548 {
549 	const struct ieee80211_rx_stats *rxs_final = NULL;
550 	struct ieee80211vap *vap = ni->ni_vap;
551 	int toss_dup;
552 #define	PROCESS		0	/* caller should process frame */
553 #define	CONSUMED	1	/* frame consumed, caller does nothing */
554 
555 	/*
556 	 * Figure out if this is a duplicate frame for the given slot.
557 	 *
558 	 * We're assuming that the driver will hand us all the frames
559 	 * for a given AMSDU decap pass and if we get /a/ frame
560 	 * for an AMSDU decap then we'll get all of them.
561 	 *
562 	 * The tricksy bit is that we don't know when the /end/ of
563 	 * the decap pass is, because we aren't tracking state here
564 	 * per-slot to know that we've finished receiving the frame list.
565 	 *
566 	 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us
567 	 * what's going on; so ideally we'd just check the frame at the
568 	 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE -
569 	 * that means we've received the whole AMSDU decap pass.
570 	 */
571 
572 	/*
573 	 * Get the rxs of the final mbuf in the slot, if one exists.
574 	 */
575 	if (mbufq_len(&rap->rxa_mq[off]) != 0) {
576 		rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off]));
577 	}
578 
579 	/* Default to tossing the duplicate frame */
580 	toss_dup = 1;
581 
582 	/*
583 	 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND
584 	 * this frame has F_AMSDU set (MORE or otherwise.)  That's a sign
585 	 * that more can come.
586 	 */
587 
588 	if ((rxs != NULL) && (rxs_final != NULL) &&
589 	    ieee80211_check_rxseq_amsdu(rxs) &&
590 	    ieee80211_check_rxseq_amsdu(rxs_final)) {
591 		if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) {
592 			/*
593 			 * amsdu_more() returning 0 means "it's not the
594 			 * final frame" so we can append more
595 			 * frames here.
596 			 */
597 			toss_dup = 0;
598 		}
599 	}
600 
601 	/*
602 	 * If the list is empty OR we have determined we can put more
603 	 * driver decap'ed AMSDU frames in here, then insert.
604 	 */
605 	if ((mbufq_len(&rap->rxa_mq[off]) == 0) || (toss_dup == 0)) {
606 		if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) {
607 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
608 			    ni->ni_macaddr,
609 			    "a-mpdu queue fail",
610 			    "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d",
611 			    rxseq, tid, rap->rxa_start,
612 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
613 			    off,
614 			    mbufq_len(&rap->rxa_mq[off]),
615 			    rap->rxa_mq[off].mq_maxlen);
616 			/* XXX error count */
617 			m_freem(m);
618 			return CONSUMED;
619 		}
620 		rap->rxa_qframes++;
621 		rap->rxa_qbytes += m->m_pkthdr.len;
622 		vap->iv_stats.is_ampdu_rx_reorder++;
623 		/*
624 		 * Statistics for AMSDU decap.
625 		 */
626 		if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) {
627 			if (ieee80211_check_rxseq_amsdu_more(rxs)) {
628 				/* more=1, AMSDU, end of batch */
629 				IEEE80211_NODE_STAT(ni, rx_amsdu_more_end);
630 			} else {
631 				IEEE80211_NODE_STAT(ni, rx_amsdu_more);
632 			}
633 		}
634 	} else {
635 		IEEE80211_DISCARD_MAC(vap,
636 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
637 		    ni->ni_macaddr, "a-mpdu duplicate",
638 		    "seqno %u tid %u BA win <%u:%u>",
639 		    rxseq, tid, rap->rxa_start,
640 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
641 		if (rxs != NULL) {
642 			IEEE80211_DISCARD_MAC(vap,
643 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
644 			    ni->ni_macaddr, "a-mpdu duplicate",
645 			    "seqno %d tid %u pktflags 0x%08x\n",
646 			    rxseq, tid, rxs->c_pktflags);
647 		}
648 		if (rxs_final != NULL) {
649 			IEEE80211_DISCARD_MAC(vap,
650 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
651 			    ni->ni_macaddr, "a-mpdu duplicate",
652 			    "final: pktflags 0x%08x\n",
653 			    rxs_final->c_pktflags);
654 		}
655 		vap->iv_stats.is_rx_dup++;
656 		IEEE80211_NODE_STAT(ni, rx_dup);
657 		m_freem(m);
658 	}
659 	return CONSUMED;
660 #undef	CONSUMED
661 #undef	PROCESS
662 }
663 
664 /*
665  * Purge all frames in the A-MPDU re-order queue.
666  */
667 static void
668 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
669 {
670 	int i;
671 
672 	for (i = 0; i < rap->rxa_wnd; i++) {
673 		ampdu_rx_purge_slot(rap, i);
674 		if (rap->rxa_qframes == 0)
675 			break;
676 	}
677 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
678 	    ("lost %u data, %u frames on ampdu rx q",
679 	    rap->rxa_qbytes, rap->rxa_qframes));
680 }
681 
682 static void
683 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni,
684     struct ieee80211_rx_ampdu *rap)
685 {
686 	int i;
687 
688 	/* XXX TODO: ensure the queues are empty */
689 	memset(rap, 0, sizeof(*rap));
690 	for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++)
691 		mbufq_init(&rap->rxa_mq[i], 256);
692 }
693 
694 /*
695  * Start A-MPDU rx/re-order processing for the specified TID.
696  */
697 static int
698 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
699 	int baparamset, int batimeout, int baseqctl)
700 {
701 	struct ieee80211vap *vap = ni->ni_vap;
702 	int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
703 
704 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
705 		/*
706 		 * AMPDU previously setup and not terminated with a DELBA,
707 		 * flush the reorder q's in case anything remains.
708 		 */
709 		ampdu_rx_purge(rap);
710 	}
711 	ieee80211_ampdu_rx_init_rap(ni, rap);
712 	rap->rxa_wnd = (bufsiz == 0) ?
713 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
714 	rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START);
715 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
716 
717 	/* XXX this should be a configuration flag */
718 	if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) &&
719 	    (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)))
720 		rap->rxa_flags |= IEEE80211_AGGR_AMSDU;
721 	else
722 		rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU;
723 
724 	return 0;
725 }
726 
727 /*
728  * Public function; manually setup the RX ampdu state.
729  */
730 int
731 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
732 {
733 	struct ieee80211_rx_ampdu *rap;
734 
735 	/* XXX TODO: sanity check tid, seq, baw */
736 
737 	rap = &ni->ni_rx_ampdu[tid];
738 
739 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
740 		/*
741 		 * AMPDU previously setup and not terminated with a DELBA,
742 		 * flush the reorder q's in case anything remains.
743 		 */
744 		ampdu_rx_purge(rap);
745 	}
746 
747 	ieee80211_ampdu_rx_init_rap(ni, rap);
748 
749 	rap->rxa_wnd = (baw== 0) ?
750 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
751 	if (seq == -1) {
752 		/* Wait for the first RX frame, use that as BAW */
753 		rap->rxa_start = 0;
754 		rap->rxa_flags |= IEEE80211_AGGR_WAITRX;
755 	} else {
756 		rap->rxa_start = seq;
757 	}
758 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
759 
760 	/* XXX TODO: no amsdu flag */
761 
762 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
763 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x",
764 	    __func__,
765 	    tid,
766 	    seq,
767 	    rap->rxa_wnd,
768 	    rap->rxa_flags);
769 
770 	return 0;
771 }
772 
773 /*
774  * Public function; manually stop the RX AMPDU state.
775  */
776 void
777 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid)
778 {
779 	struct ieee80211_rx_ampdu *rap;
780 
781 	/* XXX TODO: sanity check tid, seq, baw */
782 	rap = &ni->ni_rx_ampdu[tid];
783 	ampdu_rx_stop(ni, rap);
784 }
785 
786 /*
787  * Stop A-MPDU rx processing for the specified TID.
788  */
789 static void
790 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
791 {
792 
793 	ampdu_rx_purge(rap);
794 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING
795 	    | IEEE80211_AGGR_XCHGPEND
796 	    | IEEE80211_AGGR_WAITRX);
797 }
798 
799 /*
800  * Dispatch a frame from the A-MPDU reorder queue.  The
801  * frame is fed back into ieee80211_input marked with an
802  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
803  * permits ieee80211_input to optimize re-processing).
804  */
805 static __inline void
806 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
807 {
808 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
809 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
810 	(void) ieee80211_input(ni, m, 0, 0);
811 }
812 
813 static int
814 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
815     int i)
816 {
817 	struct mbuf *m;
818 	int n = 0;
819 
820 	while (mbufq_len(&rap->rxa_mq[i]) != 0) {
821 		m = mbufq_dequeue(&rap->rxa_mq[i]);
822 		if (m == NULL)
823 			break;
824 		n++;
825 
826 		rap->rxa_qbytes -= m->m_pkthdr.len;
827 		rap->rxa_qframes--;
828 
829 		ampdu_dispatch(ni, m);
830 	}
831 	return (n);
832 }
833 
834 static void
835 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
836     int i, int winstart)
837 {
838 	struct ieee80211vap *vap = ni->ni_vap;
839 
840 	/*
841 	 * If frames remain, copy the mbuf pointers down so
842 	 * they correspond to the offsets in the new window.
843 	 */
844 	if (rap->rxa_qframes != 0) {
845 		int n = rap->rxa_qframes, j;
846 		for (j = i+1; j < rap->rxa_wnd; j++) {
847 			/*
848 			 * Concat the list contents over, which will
849 			 * blank the source list for us.
850 			 */
851 			if (mbufq_len(&rap->rxa_mq[j]) != 0) {
852 				n = n - mbufq_len(&rap->rxa_mq[j]);
853 				mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]);
854 				KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n));
855 				if (n == 0)
856 					break;
857 			}
858 		}
859 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
860 		    "BA win <%d:%d> winstart %d",
861 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
862 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
863 		    winstart));
864 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
865 	}
866 }
867 
868 /*
869  * Dispatch as many frames as possible from the re-order queue.
870  * Frames will always be "at the front"; we process all frames
871  * up to the first empty slot in the window.  On completion we
872  * cleanup state if there are still pending frames in the current
873  * BA window.  We assume the frame at slot 0 is already handled
874  * by the caller; we always start at slot 1.
875  */
876 static void
877 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
878 {
879 	struct ieee80211vap *vap = ni->ni_vap;
880 	int i, r, r2;
881 
882 	/* flush run of frames */
883 	r2 = 0;
884 	for (i = 1; i < rap->rxa_wnd; i++) {
885 		r = ampdu_dispatch_slot(rap, ni, i);
886 		if (r == 0)
887 			break;
888 		r2 += r;
889 	}
890 
891 	/* move up frames */
892 	ampdu_rx_moveup(rap, ni, i, -1);
893 
894 	/*
895 	 * Adjust the start of the BA window to
896 	 * reflect the frames just dispatched.
897 	 */
898 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
899 	vap->iv_stats.is_ampdu_rx_oor += r2;
900 
901 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
902 	    "%s: moved slot up %d slots to start at %d (%d frames)",
903 	    __func__,
904 	    i,
905 	    rap->rxa_start,
906 	    r2);
907 }
908 
909 /*
910  * Dispatch all frames in the A-MPDU re-order queue.
911  */
912 static void
913 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
914 {
915 	int i, r;
916 
917 	for (i = 0; i < rap->rxa_wnd; i++) {
918 		r = ampdu_dispatch_slot(rap, ni, i);
919 		if (r == 0)
920 			continue;
921 		ni->ni_vap->iv_stats.is_ampdu_rx_oor += r;
922 
923 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
924 		    "%s: moved slot up %d slots to start at %d (%d frames)",
925 		    __func__,
926 		    1,
927 		    rap->rxa_start,
928 		    r);
929 
930 		if (rap->rxa_qframes == 0)
931 			break;
932 	}
933 }
934 
935 /*
936  * Dispatch all frames in the A-MPDU re-order queue
937  * preceding the specified sequence number.  This logic
938  * handles window moves due to a received MSDU or BAR.
939  */
940 static void
941 ampdu_rx_flush_upto(struct ieee80211_node *ni,
942 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
943 {
944 	struct ieee80211vap *vap = ni->ni_vap;
945 	ieee80211_seq seqno;
946 	int i, r;
947 
948 	/*
949 	 * Flush any complete MSDU's with a sequence number lower
950 	 * than winstart.  Gaps may exist.  Note that we may actually
951 	 * dispatch frames past winstart if a run continues; this is
952 	 * an optimization that avoids having to do a separate pass
953 	 * to dispatch frames after moving the BA window start.
954 	 */
955 	seqno = rap->rxa_start;
956 	for (i = 0; i < rap->rxa_wnd; i++) {
957 		if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) {
958 			(void) ampdu_dispatch_slot(rap, ni, i);
959 		} else {
960 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
961 				break;
962 		}
963 		vap->iv_stats.is_ampdu_rx_oor += r;
964 		seqno = IEEE80211_SEQ_INC(seqno);
965 
966 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
967 		    "%s: moved slot up %d slots to start at %d (%d frames)",
968 		    __func__,
969 		    1,
970 		    seqno,
971 		    r);
972 	}
973 
974 	/*
975 	 * If frames remain, copy the mbuf pointers down so
976 	 * they correspond to the offsets in the new window.
977 	 */
978 	ampdu_rx_moveup(rap, ni, i, winstart);
979 
980 	/*
981 	 * Move the start of the BA window; we use the
982 	 * sequence number of the last MSDU that was
983 	 * passed up the stack+1 or winstart if stopped on
984 	 * a gap in the reorder buffer.
985 	 */
986 	rap->rxa_start = seqno;
987 }
988 
989 /*
990  * Process a received QoS data frame for an HT station.  Handle
991  * A-MPDU reordering: if this frame is received out of order
992  * and falls within the BA window hold onto it.  Otherwise if
993  * this frame completes a run, flush any pending frames.  We
994  * return 1 if the frame is consumed.  A 0 is returned if
995  * the frame should be processed normally by the caller.
996  *
997  * A-MSDU: handle hardware decap'ed A-MSDU frames that are
998  * pretending to be MPDU's.  They're dispatched directly if
999  * able; or attempted to put into the receive reordering slot.
1000  */
1001 int
1002 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m,
1003     const struct ieee80211_rx_stats *rxs)
1004 {
1005 #define	PROCESS		0	/* caller should process frame */
1006 #define	CONSUMED	1	/* frame consumed, caller does nothing */
1007 	struct ieee80211vap *vap = ni->ni_vap;
1008 	struct ieee80211_qosframe *wh;
1009 	struct ieee80211_rx_ampdu *rap;
1010 	ieee80211_seq rxseq;
1011 	uint8_t tid;
1012 	int off;
1013 	int amsdu = ieee80211_check_rxseq_amsdu(rxs);
1014 	int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs);
1015 
1016 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
1017 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
1018 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1019 
1020 	/* NB: m_len known to be sufficient */
1021 	wh = mtod(m, struct ieee80211_qosframe *);
1022 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
1023 		/*
1024 		 * Not QoS data, shouldn't get here but just
1025 		 * return it to the caller for processing.
1026 		 */
1027 		return PROCESS;
1028 	}
1029 
1030 	/*
1031 	 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery.
1032 	 *
1033 	 * Multicast QoS data frames are checked against a different
1034 	 * counter, not the per-TID counter.
1035 	 */
1036 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1037 		return PROCESS;
1038 
1039 	tid = ieee80211_getqos(wh)[0];
1040 	tid &= IEEE80211_QOS_TID;
1041 	rap = &ni->ni_rx_ampdu[tid];
1042 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1043 		/*
1044 		 * No ADDBA request yet, don't touch.
1045 		 */
1046 		return PROCESS;
1047 	}
1048 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
1049 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
1050 		/*
1051 		 * Fragments are not allowed; toss.
1052 		 */
1053 		IEEE80211_DISCARD_MAC(vap,
1054 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1055 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
1056 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1057 		vap->iv_stats.is_ampdu_rx_drop++;
1058 		IEEE80211_NODE_STAT(ni, rx_drop);
1059 		m_freem(m);
1060 		return CONSUMED;
1061 	}
1062 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
1063 	rap->rxa_nframes++;
1064 
1065 	/*
1066 	 * Handle waiting for the first frame to define the BAW.
1067 	 * Some firmware doesn't provide the RX of the starting point
1068 	 * of the BAW and we have to cope.
1069 	 */
1070 	if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) {
1071 		rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX;
1072 		rap->rxa_start = rxseq;
1073 	}
1074 again:
1075 	if (rxseq == rap->rxa_start) {
1076 		/*
1077 		 * First frame in window.
1078 		 */
1079 		if (rap->rxa_qframes != 0) {
1080 			/*
1081 			 * Dispatch as many packets as we can.
1082 			 */
1083 			KASSERT((mbufq_len(&rap->rxa_mq[0]) == 0), ("unexpected dup"));
1084 			ampdu_dispatch(ni, m);
1085 			ampdu_rx_dispatch(rap, ni);
1086 			return CONSUMED;
1087 		} else {
1088 			/*
1089 			 * In order; advance window if needed and notify
1090 			 * caller to dispatch directly.
1091 			 */
1092 			if (amsdu) {
1093 				if (amsdu_end) {
1094 					rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
1095 					IEEE80211_NODE_STAT(ni, rx_amsdu_more_end);
1096 				} else {
1097 					IEEE80211_NODE_STAT(ni, rx_amsdu_more);
1098 				}
1099 			} else {
1100 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
1101 			}
1102 			return PROCESS;
1103 		}
1104 	}
1105 	/*
1106 	 * Frame is out of order; store if in the BA window.
1107 	 */
1108 	/* calculate offset in BA window */
1109 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1110 	if (off < rap->rxa_wnd) {
1111 		/*
1112 		 * Common case (hopefully): in the BA window.
1113 		 * Sec 9.10.7.6.2 a) (p.137)
1114 		 */
1115 
1116 		/*
1117 		 * Check for frames sitting too long in the reorder queue.
1118 		 * This should only ever happen if frames are not delivered
1119 		 * without the sender otherwise notifying us (e.g. with a
1120 		 * BAR to move the window).  Typically this happens because
1121 		 * of vendor bugs that cause the sequence number to jump.
1122 		 * When this happens we get a gap in the reorder queue that
1123 		 * leaves frame sitting on the queue until they get pushed
1124 		 * out due to window moves.  When the vendor does not send
1125 		 * BAR this move only happens due to explicit packet sends
1126 		 *
1127 		 * NB: we only track the time of the oldest frame in the
1128 		 * reorder q; this means that if we flush we might push
1129 		 * frames that still "new"; if this happens then subsequent
1130 		 * frames will result in BA window moves which cost something
1131 		 * but is still better than a big throughput dip.
1132 		 */
1133 		if (rap->rxa_qframes != 0) {
1134 			/* XXX honor batimeout? */
1135 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1136 				/*
1137 				 * Too long since we received the first
1138 				 * frame; flush the reorder buffer.
1139 				 */
1140 				if (rap->rxa_qframes != 0) {
1141 					vap->iv_stats.is_ampdu_rx_age +=
1142 					    rap->rxa_qframes;
1143 					ampdu_rx_flush(ni, rap);
1144 				}
1145 				/*
1146 				 * Advance the window if needed and notify
1147 				 * the caller to dispatch directly.
1148 				 */
1149 				if (amsdu) {
1150 					if (amsdu_end) {
1151 						rap->rxa_start =
1152 						    IEEE80211_SEQ_INC(rxseq);
1153 						IEEE80211_NODE_STAT(ni,
1154 						    rx_amsdu_more_end);
1155 					} else {
1156 						IEEE80211_NODE_STAT(ni,
1157 						    rx_amsdu_more);
1158 					}
1159 				} else {
1160 					rap->rxa_start =
1161 					    IEEE80211_SEQ_INC(rxseq);
1162 				}
1163 				return PROCESS;
1164 			}
1165 		} else {
1166 			/*
1167 			 * First frame, start aging timer.
1168 			 */
1169 			rap->rxa_age = ticks;
1170 		}
1171 
1172 		/* save packet - this consumes, no matter what */
1173 		ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs);
1174 		return CONSUMED;
1175 	}
1176 	if (off < IEEE80211_SEQ_BA_RANGE) {
1177 		/*
1178 		 * Outside the BA window, but within range;
1179 		 * flush the reorder q and move the window.
1180 		 * Sec 9.10.7.6.2 b) (p.138)
1181 		 */
1182 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1183 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
1184 		    rap->rxa_start,
1185 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1186 		    rap->rxa_qframes, rxseq, tid);
1187 		vap->iv_stats.is_ampdu_rx_move++;
1188 
1189 		/*
1190 		 * The spec says to flush frames up to but not including:
1191 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
1192 		 * Then insert the frame or notify the caller to process
1193 		 * it immediately.  We can safely do this by just starting
1194 		 * over again because we know the frame will now be within
1195 		 * the BA window.
1196 		 */
1197 		/* NB: rxa_wnd known to be >0 */
1198 		ampdu_rx_flush_upto(ni, rap,
1199 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
1200 		goto again;
1201 	} else {
1202 		/*
1203 		 * Outside the BA window and out of range; toss.
1204 		 * Sec 9.10.7.6.2 c) (p.138)
1205 		 */
1206 		IEEE80211_DISCARD_MAC(vap,
1207 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1208 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1209 		    rap->rxa_start,
1210 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1211 		    rap->rxa_qframes, rxseq, tid,
1212 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1213 		vap->iv_stats.is_ampdu_rx_drop++;
1214 		IEEE80211_NODE_STAT(ni, rx_drop);
1215 		m_freem(m);
1216 		return CONSUMED;
1217 	}
1218 #undef CONSUMED
1219 #undef PROCESS
1220 }
1221 
1222 /*
1223  * Process a BAR ctl frame.  Dispatch all frames up to
1224  * the sequence number of the frame.  If this frame is
1225  * out of range it's discarded.
1226  */
1227 void
1228 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
1229 {
1230 	struct ieee80211vap *vap = ni->ni_vap;
1231 	struct ieee80211_frame_bar *wh;
1232 	struct ieee80211_rx_ampdu *rap;
1233 	ieee80211_seq rxseq;
1234 	int tid, off;
1235 
1236 	if (!ieee80211_recv_bar_ena) {
1237 #if 0
1238 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
1239 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
1240 #endif
1241 		vap->iv_stats.is_ampdu_bar_bad++;
1242 		return;
1243 	}
1244 	wh = mtod(m0, struct ieee80211_frame_bar *);
1245 	/* XXX check basic BAR */
1246 	tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
1247 	rap = &ni->ni_rx_ampdu[tid];
1248 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1249 		/*
1250 		 * No ADDBA request yet, don't touch.
1251 		 */
1252 		IEEE80211_DISCARD_MAC(vap,
1253 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1254 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1255 		vap->iv_stats.is_ampdu_bar_bad++;
1256 		return;
1257 	}
1258 	vap->iv_stats.is_ampdu_bar_rx++;
1259 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1260 	if (rxseq == rap->rxa_start)
1261 		return;
1262 	/* calculate offset in BA window */
1263 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1264 	if (off < IEEE80211_SEQ_BA_RANGE) {
1265 		/*
1266 		 * Flush the reorder q up to rxseq and move the window.
1267 		 * Sec 9.10.7.6.3 a) (p.138)
1268 		 */
1269 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1270 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1271 		    rap->rxa_start,
1272 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1273 		    rap->rxa_qframes, rxseq, tid);
1274 		vap->iv_stats.is_ampdu_bar_move++;
1275 
1276 		ampdu_rx_flush_upto(ni, rap, rxseq);
1277 		if (off >= rap->rxa_wnd) {
1278 			/*
1279 			 * BAR specifies a window start to the right of BA
1280 			 * window; we must move it explicitly since
1281 			 * ampdu_rx_flush_upto will not.
1282 			 */
1283 			rap->rxa_start = rxseq;
1284 		}
1285 	} else {
1286 		/*
1287 		 * Out of range; toss.
1288 		 * Sec 9.10.7.6.3 b) (p.138)
1289 		 */
1290 		IEEE80211_DISCARD_MAC(vap,
1291 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1292 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1293 		    rap->rxa_start,
1294 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1295 		    rap->rxa_qframes, rxseq, tid,
1296 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1297 		vap->iv_stats.is_ampdu_bar_oow++;
1298 		IEEE80211_NODE_STAT(ni, rx_drop);
1299 	}
1300 }
1301 
1302 /*
1303  * Setup HT-specific state in a node.  Called only
1304  * when HT use is negotiated so we don't do extra
1305  * work for temporary and/or legacy sta's.
1306  */
1307 void
1308 ieee80211_ht_node_init(struct ieee80211_node *ni)
1309 {
1310 	struct ieee80211_tx_ampdu *tap;
1311 	int tid;
1312 
1313 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1314 	    ni,
1315 	    "%s: called (%p)",
1316 	    __func__,
1317 	    ni);
1318 
1319 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1320 		/*
1321 		 * Clean AMPDU state on re-associate.  This handles the case
1322 		 * where a station leaves w/o notifying us and then returns
1323 		 * before node is reaped for inactivity.
1324 		 */
1325 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1326 		    ni,
1327 		    "%s: calling cleanup (%p)",
1328 		    __func__, ni);
1329 		ieee80211_ht_node_cleanup(ni);
1330 	}
1331 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1332 		tap = &ni->ni_tx_ampdu[tid];
1333 		tap->txa_tid = tid;
1334 		tap->txa_ni = ni;
1335 		ieee80211_txampdu_init_pps(tap);
1336 		/* NB: further initialization deferred */
1337 		ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]);
1338 	}
1339 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU |
1340 	    IEEE80211_NODE_AMSDU;
1341 }
1342 
1343 /*
1344  * Cleanup HT-specific state in a node.  Called only
1345  * when HT use has been marked.
1346  */
1347 void
1348 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1349 {
1350 	struct ieee80211com *ic = ni->ni_ic;
1351 	int i;
1352 
1353 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1354 	    ni,
1355 	    "%s: called (%p)",
1356 	    __func__, ni);
1357 
1358 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1359 
1360 	/* XXX optimize this */
1361 	for (i = 0; i < WME_NUM_TID; i++) {
1362 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1363 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1364 			ampdu_tx_stop(tap);
1365 	}
1366 	for (i = 0; i < WME_NUM_TID; i++)
1367 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1368 
1369 	ni->ni_htcap = 0;
1370 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1371 }
1372 
1373 /*
1374  * Age out HT resources for a station.
1375  */
1376 void
1377 ieee80211_ht_node_age(struct ieee80211_node *ni)
1378 {
1379 	struct ieee80211vap *vap = ni->ni_vap;
1380 	uint8_t tid;
1381 
1382 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1383 
1384 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1385 		struct ieee80211_rx_ampdu *rap;
1386 
1387 		rap = &ni->ni_rx_ampdu[tid];
1388 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1389 			continue;
1390 		if (rap->rxa_qframes == 0)
1391 			continue;
1392 		/*
1393 		 * Check for frames sitting too long in the reorder queue.
1394 		 * See above for more details on what's happening here.
1395 		 */
1396 		/* XXX honor batimeout? */
1397 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1398 			/*
1399 			 * Too long since we received the first
1400 			 * frame; flush the reorder buffer.
1401 			 */
1402 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1403 			ampdu_rx_flush(ni, rap);
1404 		}
1405 	}
1406 }
1407 
1408 static struct ieee80211_channel *
1409 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1410 {
1411 	return ieee80211_find_channel(ic, c->ic_freq,
1412 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1413 }
1414 
1415 /*
1416  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1417  */
1418 struct ieee80211_channel *
1419 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1420 	struct ieee80211_channel *chan, int flags)
1421 {
1422 	struct ieee80211_channel *c;
1423 
1424 	if (flags & IEEE80211_FHT_HT) {
1425 		/* promote to HT if possible */
1426 		if (flags & IEEE80211_FHT_USEHT40) {
1427 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1428 				/* NB: arbitrarily pick ht40+ over ht40- */
1429 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1430 				if (c == NULL)
1431 					c = findhtchan(ic, chan,
1432 						IEEE80211_CHAN_HT40D);
1433 				if (c == NULL)
1434 					c = findhtchan(ic, chan,
1435 						IEEE80211_CHAN_HT20);
1436 				if (c != NULL)
1437 					chan = c;
1438 			}
1439 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1440 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1441 			if (c != NULL)
1442 				chan = c;
1443 		}
1444 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1445 		/* demote to legacy, HT use is disabled */
1446 		c = ieee80211_find_channel(ic, chan->ic_freq,
1447 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1448 		if (c != NULL)
1449 			chan = c;
1450 	}
1451 	return chan;
1452 }
1453 
1454 /*
1455  * Setup HT-specific state for a legacy WDS peer.
1456  */
1457 void
1458 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1459 {
1460 	struct ieee80211vap *vap = ni->ni_vap;
1461 	struct ieee80211_tx_ampdu *tap;
1462 	int tid;
1463 
1464 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1465 
1466 	/* XXX check scan cache in case peer has an ap and we have info */
1467 	/*
1468 	 * If setup with a legacy channel; locate an HT channel.
1469 	 * Otherwise if the inherited channel (from a companion
1470 	 * AP) is suitable use it so we use the same location
1471 	 * for the extension channel).
1472 	 */
1473 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1474 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1475 
1476 	ni->ni_htcap = 0;
1477 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1478 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1479 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1480 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1481 		ni->ni_chw = 40;
1482 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1483 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1484 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1485 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1486 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1487 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1488 	} else {
1489 		ni->ni_chw = 20;
1490 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1491 	}
1492 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1493 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1494 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1495 	/* XXX does it make sense to enable SMPS? */
1496 
1497 	ni->ni_htopmode = 0;		/* XXX need protection state */
1498 	ni->ni_htstbc = 0;		/* XXX need info */
1499 
1500 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1501 		tap = &ni->ni_tx_ampdu[tid];
1502 		tap->txa_tid = tid;
1503 		ieee80211_txampdu_init_pps(tap);
1504 	}
1505 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1506 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU |
1507 	    IEEE80211_NODE_AMSDU;
1508 }
1509 
1510 /*
1511  * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP.
1512  *
1513  * This is to be called from the deferred HT protection update
1514  * task once the flags are updated.
1515  */
1516 void
1517 ieee80211_htinfo_notify(struct ieee80211vap *vap)
1518 {
1519 
1520 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1521 
1522 	if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1523 		return;
1524 	if (vap->iv_state != IEEE80211_S_RUN ||
1525 	    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1526 		return;
1527 
1528 	IEEE80211_NOTE(vap,
1529 	    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1530 	    vap->iv_bss,
1531 	    "HT bss occupancy change: %d sta, %d ht, "
1532 	    "%d ht40%s, HT protmode now 0x%x"
1533 	    , vap->iv_sta_assoc
1534 	    , vap->iv_ht_sta_assoc
1535 	    , vap->iv_ht40_sta_assoc
1536 	    , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1537 		 ", non-HT sta present" : ""
1538 	    , vap->iv_curhtprotmode);
1539 
1540 	ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1541 }
1542 
1543 /*
1544  * Calculate HT protection mode from current
1545  * state and handle updates.
1546  */
1547 static void
1548 htinfo_update(struct ieee80211vap *vap)
1549 {
1550 	struct ieee80211com *ic = vap->iv_ic;
1551 	uint8_t protmode;
1552 
1553 	if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) {
1554 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1555 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1556 	} else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) {
1557 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1558 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1559 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1560 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1561 	    vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) {
1562 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1563 	} else {
1564 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1565 	}
1566 	if (protmode != vap->iv_curhtprotmode) {
1567 		vap->iv_curhtprotmode = protmode;
1568 		/* Update VAP with new protection mode */
1569 		ieee80211_vap_update_ht_protmode(vap);
1570 	}
1571 }
1572 
1573 /*
1574  * Handle an HT station joining a BSS.
1575  */
1576 void
1577 ieee80211_ht_node_join(struct ieee80211_node *ni)
1578 {
1579 	struct ieee80211vap *vap = ni->ni_vap;
1580 
1581 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1582 
1583 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1584 		vap->iv_ht_sta_assoc++;
1585 		if (ni->ni_chw == 40)
1586 			vap->iv_ht40_sta_assoc++;
1587 	}
1588 	htinfo_update(vap);
1589 }
1590 
1591 /*
1592  * Handle an HT station leaving a BSS.
1593  */
1594 void
1595 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1596 {
1597 	struct ieee80211vap *vap = ni->ni_vap;
1598 
1599 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1600 
1601 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1602 		vap->iv_ht_sta_assoc--;
1603 		if (ni->ni_chw == 40)
1604 			vap->iv_ht40_sta_assoc--;
1605 	}
1606 	htinfo_update(vap);
1607 }
1608 
1609 /*
1610  * Public version of htinfo_update; used for processing
1611  * beacon frames from overlapping bss.
1612  *
1613  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1614  * (on receipt of a beacon that advertises MIXED) or
1615  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1616  * from an overlapping legacy bss).  We treat MIXED with
1617  * a higher precedence than PROTOPT (i.e. we will not change
1618  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1619  * corresponds to how we handle things in htinfo_update.
1620  *
1621  */
1622 void
1623 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode)
1624 {
1625 	struct ieee80211com *ic = vap->iv_ic;
1626 #define	OPMODE(x)	_IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE)
1627 	IEEE80211_LOCK(ic);
1628 
1629 	/* track non-HT station presence */
1630 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1631 	    ("protmode 0x%x", protmode));
1632 	vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR;
1633 	vap->iv_lastnonht = ticks;
1634 
1635 	if (protmode != vap->iv_curhtprotmode &&
1636 	    (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1637 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1638 		vap->iv_curhtprotmode = protmode;
1639 		/* Update VAP with new protection mode */
1640 		ieee80211_vap_update_ht_protmode(vap);
1641 	}
1642 	IEEE80211_UNLOCK(ic);
1643 #undef OPMODE
1644 }
1645 
1646 /*
1647  * Time out presence of an overlapping bss with non-HT
1648  * stations.  When operating in hostap mode we listen for
1649  * beacons from other stations and if we identify a non-HT
1650  * station is present we update the opmode field of the
1651  * HTINFO ie.  To identify when all non-HT stations are
1652  * gone we time out this condition.
1653  */
1654 void
1655 ieee80211_ht_timeout(struct ieee80211vap *vap)
1656 {
1657 
1658 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1659 
1660 	if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1661 	    ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1662 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1663 		    "%s", "time out non-HT STA present on channel");
1664 		vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1665 		htinfo_update(vap);
1666 	}
1667 }
1668 
1669 /*
1670  * Process an 802.11n HT capabilities ie.
1671  */
1672 void
1673 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1674 {
1675 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1676 		/*
1677 		 * Station used Vendor OUI ie to associate;
1678 		 * mark the node so when we respond we'll use
1679 		 * the Vendor OUI's and not the standard ie's.
1680 		 */
1681 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1682 		ie += 4;
1683 	} else
1684 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1685 
1686 	ni->ni_htcap = le16dec(ie +
1687 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1688 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1689 }
1690 
1691 static void
1692 htinfo_parse(struct ieee80211_node *ni,
1693 	const struct ieee80211_ie_htinfo *htinfo)
1694 {
1695 	uint16_t w;
1696 
1697 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1698 	ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1,
1699 	    IEEE80211_HTINFO_2NDCHAN);
1700 	w = le16dec(&htinfo->hi_byte2);
1701 	ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE);
1702 	w = le16dec(&htinfo->hi_byte45);
1703 	ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1704 }
1705 
1706 /*
1707  * Parse an 802.11n HT info ie and save useful information
1708  * to the node state.  Note this does not effect any state
1709  * changes such as for channel width change.
1710  */
1711 void
1712 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1713 {
1714 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1715 		ie += 4;
1716 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1717 }
1718 
1719 /*
1720  * Handle 11n/11ac channel switch.
1721  *
1722  * Use the received HT/VHT ie's to identify the right channel to use.
1723  * If we cannot locate it in the channel table then fallback to
1724  * legacy operation.
1725  *
1726  * Note that we use this information to identify the node's
1727  * channel only; the caller is responsible for insuring any
1728  * required channel change is done (e.g. in sta mode when
1729  * parsing the contents of a beacon frame).
1730  */
1731 static int
1732 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags)
1733 {
1734 	struct ieee80211com *ic = ni->ni_ic;
1735 	struct ieee80211_channel *c;
1736 	int chanflags;
1737 	int ret = 0;
1738 
1739 	/*
1740 	 * First step - do HT/VHT only channel lookup based on operating mode
1741 	 * flags.  This involves masking out the VHT flags as well.
1742 	 * Otherwise we end up doing the full channel walk each time
1743 	 * we trigger this, which is expensive.
1744 	 */
1745 	chanflags = (ni->ni_chan->ic_flags &~
1746 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags;
1747 
1748 	if (chanflags == ni->ni_chan->ic_flags)
1749 		goto done;
1750 
1751 	/*
1752 	 * If HT /or/ VHT flags have changed then check both.
1753 	 * We need to start by picking a HT channel anyway.
1754 	 */
1755 
1756 	c = NULL;
1757 	chanflags = (ni->ni_chan->ic_flags &~
1758 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags;
1759 	/* XXX not right for ht40- */
1760 	c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1761 	if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1762 		/*
1763 		 * No HT40 channel entry in our table; fall back
1764 		 * to HT20 operation.  This should not happen.
1765 		 */
1766 		c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1767 #if 0
1768 		IEEE80211_NOTE(ni->ni_vap,
1769 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1770 		    "no HT40 channel (freq %u), falling back to HT20",
1771 		    ni->ni_chan->ic_freq);
1772 #endif
1773 		/* XXX stat */
1774 	}
1775 
1776 	/* Nothing found - leave it alone; move onto VHT */
1777 	if (c == NULL)
1778 		c = ni->ni_chan;
1779 
1780 	/*
1781 	 * If it's non-HT, then bail out now.
1782 	 */
1783 	if (! IEEE80211_IS_CHAN_HT(c)) {
1784 		IEEE80211_NOTE(ni->ni_vap,
1785 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1786 		    "not HT; skipping VHT check (%u/0x%x)",
1787 		    c->ic_freq, c->ic_flags);
1788 		goto done;
1789 	}
1790 
1791 	/*
1792 	 * Next step - look at the current VHT flags and determine
1793 	 * if we need to upgrade.  Mask out the VHT and HT flags since
1794 	 * the vhtflags field will already have the correct HT
1795 	 * flags to use.
1796 	 */
1797 	if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) {
1798 		chanflags = (c->ic_flags
1799 		    &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT))
1800 		    | vhtflags;
1801 		IEEE80211_NOTE(ni->ni_vap,
1802 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1803 		    ni,
1804 		    "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x",
1805 		    __func__, ni->ni_vht_chanwidth, vhtflags);
1806 
1807 		IEEE80211_NOTE(ni->ni_vap,
1808 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1809 		    ni,
1810 		    "%s: VHT; trying lookup for %d/0x%08x",
1811 		    __func__, c->ic_freq, chanflags);
1812 		c = ieee80211_find_channel(ic, c->ic_freq, chanflags);
1813 	}
1814 
1815 	/* Finally, if it's changed */
1816 	if (c != NULL && c != ni->ni_chan) {
1817 		IEEE80211_NOTE(ni->ni_vap,
1818 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1819 		    "switch station to %s%d channel %u/0x%x",
1820 		    IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT",
1821 		    IEEE80211_IS_CHAN_VHT80(c) ? 80 :
1822 		      (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20),
1823 		    c->ic_freq, c->ic_flags);
1824 		ni->ni_chan = c;
1825 		ret = 1;
1826 	}
1827 	/* NB: caller responsible for forcing any channel change */
1828 
1829 done:
1830 	/* update node's (11n) tx channel width */
1831 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1832 	return (ret);
1833 }
1834 
1835 /*
1836  * Update 11n MIMO PS state according to received htcap.
1837  */
1838 static __inline int
1839 htcap_update_mimo_ps(struct ieee80211_node *ni)
1840 {
1841 	uint16_t oflags = ni->ni_flags;
1842 
1843 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1844 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1845 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1846 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1847 		break;
1848 	case IEEE80211_HTCAP_SMPS_ENA:
1849 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1850 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1851 		break;
1852 	case IEEE80211_HTCAP_SMPS_OFF:
1853 	default:		/* disable on rx of reserved value */
1854 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1855 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1856 		break;
1857 	}
1858 	return (oflags ^ ni->ni_flags);
1859 }
1860 
1861 /*
1862  * Update short GI state according to received htcap
1863  * and local settings.
1864  */
1865 static __inline void
1866 htcap_update_shortgi(struct ieee80211_node *ni)
1867 {
1868 	struct ieee80211vap *vap = ni->ni_vap;
1869 
1870 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1871 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1872 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1873 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1874 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1875 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1876 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1877 }
1878 
1879 /*
1880  * Update LDPC state according to received htcap
1881  * and local settings.
1882  */
1883 static __inline void
1884 htcap_update_ldpc(struct ieee80211_node *ni)
1885 {
1886 	struct ieee80211vap *vap = ni->ni_vap;
1887 
1888 	if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) &&
1889 	    (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX))
1890 		ni->ni_flags |= IEEE80211_NODE_LDPC;
1891 }
1892 
1893 /*
1894  * Parse and update HT-related state extracted from
1895  * the HT cap and info ie's.
1896  *
1897  * This is called from the STA management path and
1898  * the ieee80211_node_join() path.  It will take into
1899  * account the IEs discovered during scanning and
1900  * adjust things accordingly.
1901  */
1902 void
1903 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1904 	const uint8_t *htcapie, const uint8_t *htinfoie)
1905 {
1906 	struct ieee80211vap *vap = ni->ni_vap;
1907 	const struct ieee80211_ie_htinfo *htinfo;
1908 
1909 	ieee80211_parse_htcap(ni, htcapie);
1910 	if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
1911 		htcap_update_mimo_ps(ni);
1912 	htcap_update_shortgi(ni);
1913 	htcap_update_ldpc(ni);
1914 
1915 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1916 		htinfoie += 4;
1917 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1918 	htinfo_parse(ni, htinfo);
1919 
1920 	/*
1921 	 * Defer the node channel change; we need to now
1922 	 * update VHT parameters before we do it.
1923 	 */
1924 
1925 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1926 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1927 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1928 	else
1929 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1930 }
1931 
1932 static uint32_t
1933 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags)
1934 {
1935 	struct ieee80211vap *vap = ni->ni_vap;
1936 	uint32_t vhtflags = 0;
1937 
1938 	vhtflags = 0;
1939 	if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
1940 		if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) &&
1941 		    /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */
1942 		    (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps,
1943 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) &&
1944 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) {
1945 			vhtflags = IEEE80211_CHAN_VHT160;
1946 			/* Mirror the HT40 flags */
1947 			if (htflags == IEEE80211_CHAN_HT40U) {
1948 				vhtflags |= IEEE80211_CHAN_HT40U;
1949 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1950 				vhtflags |= IEEE80211_CHAN_HT40D;
1951 			}
1952 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) &&
1953 		    /* XXX 2 means "160MHz and 80+80MHz" */
1954 		    (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps,
1955 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) &&
1956 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) {
1957 			vhtflags = IEEE80211_CHAN_VHT80P80;
1958 			/* Mirror the HT40 flags */
1959 			if (htflags == IEEE80211_CHAN_HT40U) {
1960 				vhtflags |= IEEE80211_CHAN_HT40U;
1961 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1962 				vhtflags |= IEEE80211_CHAN_HT40D;
1963 			}
1964 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) &&
1965 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) {
1966 			vhtflags = IEEE80211_CHAN_VHT80;
1967 			/* Mirror the HT40 flags */
1968 			if (htflags == IEEE80211_CHAN_HT40U) {
1969 				vhtflags |= IEEE80211_CHAN_HT40U;
1970 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1971 				vhtflags |= IEEE80211_CHAN_HT40D;
1972 			}
1973 		} else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) {
1974 			/* Mirror the HT40 flags */
1975 			/*
1976 			 * XXX TODO: if ht40 is disabled, but vht40 isn't
1977 			 * disabled then this logic will get very, very sad.
1978 			 * It's quite possible the only sane thing to do is
1979 			 * to not have vht40 as an option, and just obey
1980 			 * 'ht40' as that flag.
1981 			 */
1982 			if ((htflags == IEEE80211_CHAN_HT40U) &&
1983 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1984 				vhtflags = IEEE80211_CHAN_VHT40U
1985 				    | IEEE80211_CHAN_HT40U;
1986 			} else if (htflags == IEEE80211_CHAN_HT40D &&
1987 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1988 				vhtflags = IEEE80211_CHAN_VHT40D
1989 				    | IEEE80211_CHAN_HT40D;
1990 			} else if (htflags == IEEE80211_CHAN_HT20) {
1991 				vhtflags = IEEE80211_CHAN_VHT20
1992 				    | IEEE80211_CHAN_HT20;
1993 			}
1994 		} else {
1995 			vhtflags = IEEE80211_CHAN_VHT20;
1996 		}
1997 	}
1998 	return (vhtflags);
1999 }
2000 
2001 /*
2002  * Final part of updating the HT parameters.
2003  *
2004  * This is called from the STA management path and
2005  * the ieee80211_node_join() path.  It will take into
2006  * account the IEs discovered during scanning and
2007  * adjust things accordingly.
2008  *
2009  * This is done after a call to ieee80211_ht_updateparams()
2010  * because it (and the upcoming VHT version of updateparams)
2011  * needs to ensure everything is parsed before htinfo_update_chw()
2012  * is called - which will change the channel config for the
2013  * node for us.
2014  */
2015 int
2016 ieee80211_ht_updateparams_final(struct ieee80211_node *ni,
2017 	const uint8_t *htcapie, const uint8_t *htinfoie)
2018 {
2019 	struct ieee80211vap *vap = ni->ni_vap;
2020 	const struct ieee80211_ie_htinfo *htinfo;
2021 	int htflags, vhtflags;
2022 	int ret = 0;
2023 
2024 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
2025 
2026 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
2027 	    IEEE80211_CHAN_HT20 : 0;
2028 
2029 	/* NB: honor operating mode constraint */
2030 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
2031 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
2032 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
2033 			htflags = IEEE80211_CHAN_HT40U;
2034 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
2035 			htflags = IEEE80211_CHAN_HT40D;
2036 	}
2037 
2038 	/*
2039 	 * VHT flags - do much the same; check whether VHT is available
2040 	 * and if so, what our ideal channel use would be based on our
2041 	 * capabilities and the (pre-parsed) VHT info IE.
2042 	 */
2043 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
2044 
2045 	if (htinfo_update_chw(ni, htflags, vhtflags))
2046 		ret = 1;
2047 
2048 	return (ret);
2049 }
2050 
2051 /*
2052  * Parse and update HT-related state extracted from the HT cap ie
2053  * for a station joining an HT BSS.
2054  *
2055  * This is called from the hostap path for each station.
2056  */
2057 void
2058 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
2059 {
2060 	struct ieee80211vap *vap = ni->ni_vap;
2061 
2062 	ieee80211_parse_htcap(ni, htcapie);
2063 	if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
2064 		htcap_update_mimo_ps(ni);
2065 	htcap_update_shortgi(ni);
2066 	htcap_update_ldpc(ni);
2067 }
2068 
2069 /*
2070  * Called once HT and VHT capabilities are parsed in hostap mode -
2071  * this will adjust the channel configuration of the given node
2072  * based on the configuration and capabilities.
2073  */
2074 void
2075 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni)
2076 {
2077 	struct ieee80211vap *vap = ni->ni_vap;
2078 	int htflags;
2079 	int vhtflags;
2080 
2081 	/* NB: honor operating mode constraint */
2082 	/* XXX 40 MHz intolerant */
2083 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
2084 	    IEEE80211_CHAN_HT20 : 0;
2085 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
2086 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
2087 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
2088 			htflags = IEEE80211_CHAN_HT40U;
2089 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
2090 			htflags = IEEE80211_CHAN_HT40D;
2091 	}
2092 	/*
2093 	 * VHT flags - do much the same; check whether VHT is available
2094 	 * and if so, what our ideal channel use would be based on our
2095 	 * capabilities and the (pre-parsed) VHT info IE.
2096 	 */
2097 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
2098 
2099 	(void) htinfo_update_chw(ni, htflags, vhtflags);
2100 }
2101 
2102 /*
2103  * Install received HT rate set by parsing the HT cap ie.
2104  */
2105 int
2106 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
2107 {
2108 	struct ieee80211com *ic = ni->ni_ic;
2109 	struct ieee80211vap *vap = ni->ni_vap;
2110 	const struct ieee80211_ie_htcap *htcap;
2111 	struct ieee80211_htrateset *rs;
2112 	int i, maxequalmcs, maxunequalmcs;
2113 
2114 	maxequalmcs = ic->ic_txstream * 8 - 1;
2115 	maxunequalmcs = 0;
2116 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
2117 		if (ic->ic_txstream >= 2)
2118 			maxunequalmcs = 38;
2119 		if (ic->ic_txstream >= 3)
2120 			maxunequalmcs = 52;
2121 		if (ic->ic_txstream >= 4)
2122 			maxunequalmcs = 76;
2123 	}
2124 
2125 	rs = &ni->ni_htrates;
2126 	memset(rs, 0, sizeof(*rs));
2127 	if (ie != NULL) {
2128 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
2129 			ie += 4;
2130 		htcap = (const struct ieee80211_ie_htcap *) ie;
2131 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
2132 			if (isclr(htcap->hc_mcsset, i))
2133 				continue;
2134 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
2135 				IEEE80211_NOTE(vap,
2136 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
2137 				    "WARNING, HT rate set too large; only "
2138 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
2139 				vap->iv_stats.is_rx_rstoobig++;
2140 				break;
2141 			}
2142 			if (i <= 31 && i > maxequalmcs)
2143 				continue;
2144 			if (i == 32 &&
2145 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
2146 				continue;
2147 			if (i > 32 && i > maxunequalmcs)
2148 				continue;
2149 			rs->rs_rates[rs->rs_nrates++] = i;
2150 		}
2151 	}
2152 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
2153 }
2154 
2155 /*
2156  * Mark rates in a node's HT rate set as basic according
2157  * to the information in the supplied HT info ie.
2158  */
2159 void
2160 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
2161 {
2162 	const struct ieee80211_ie_htinfo *htinfo;
2163 	struct ieee80211_htrateset *rs;
2164 	int i, j;
2165 
2166 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
2167 		ie += 4;
2168 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
2169 	rs = &ni->ni_htrates;
2170 	if (rs->rs_nrates == 0) {
2171 		IEEE80211_NOTE(ni->ni_vap,
2172 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
2173 		    "%s", "WARNING, empty HT rate set");
2174 		return;
2175 	}
2176 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
2177 		if (isclr(htinfo->hi_basicmcsset, i))
2178 			continue;
2179 		for (j = 0; j < rs->rs_nrates; j++)
2180 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
2181 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
2182 	}
2183 }
2184 
2185 static void
2186 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
2187 {
2188 	callout_init(&tap->txa_timer, 1);
2189 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
2190 	tap->txa_lastsample = ticks;
2191 }
2192 
2193 static void
2194 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
2195 {
2196 	struct ieee80211_node *ni = tap->txa_ni;
2197 	struct ieee80211com *ic = ni->ni_ic;
2198 
2199 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2200 	    tap->txa_ni,
2201 	    "%s: called",
2202 	    __func__);
2203 
2204 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
2205 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
2206 	    TID_TO_WME_AC(tap->txa_tid)));
2207 
2208 	/*
2209 	 * Stop BA stream if setup so driver has a chance
2210 	 * to reclaim any resources it might have allocated.
2211 	 */
2212 	ic->ic_addba_stop(ni, tap);
2213 	/*
2214 	 * Stop any pending BAR transmit.
2215 	 */
2216 	bar_stop_timer(tap);
2217 
2218 	/*
2219 	 * Reset packet estimate.
2220 	 */
2221 	ieee80211_txampdu_init_pps(tap);
2222 
2223 	/* NB: clearing NAK means we may re-send ADDBA */
2224 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
2225 }
2226 
2227 /*
2228  * ADDBA response timeout.
2229  *
2230  * If software aggregation and per-TID queue management was done here,
2231  * that queue would be unpaused after the ADDBA timeout occurs.
2232  */
2233 static void
2234 addba_timeout(void *arg)
2235 {
2236 	struct ieee80211_tx_ampdu *tap = arg;
2237 	struct ieee80211_node *ni = tap->txa_ni;
2238 	struct ieee80211com *ic = ni->ni_ic;
2239 
2240 	/* XXX ? */
2241 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2242 	tap->txa_attempts++;
2243 	ic->ic_addba_response_timeout(ni, tap);
2244 }
2245 
2246 static void
2247 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
2248 {
2249 	/* XXX use CALLOUT_PENDING instead? */
2250 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
2251 	    addba_timeout, tap);
2252 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
2253 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
2254 }
2255 
2256 static void
2257 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
2258 {
2259 	/* XXX use CALLOUT_PENDING instead? */
2260 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
2261 		callout_stop(&tap->txa_timer);
2262 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2263 	}
2264 }
2265 
2266 static void
2267 null_addba_response_timeout(struct ieee80211_node *ni,
2268     struct ieee80211_tx_ampdu *tap)
2269 {
2270 }
2271 
2272 /*
2273  * Default method for requesting A-MPDU tx aggregation.
2274  * We setup the specified state block and start a timer
2275  * to wait for an ADDBA response frame.
2276  */
2277 static int
2278 ieee80211_addba_request(struct ieee80211_node *ni,
2279 	struct ieee80211_tx_ampdu *tap,
2280 	int dialogtoken, int baparamset, int batimeout)
2281 {
2282 	int bufsiz;
2283 
2284 	/* XXX locking */
2285 	tap->txa_token = dialogtoken;
2286 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
2287 	bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2288 	tap->txa_wnd = (bufsiz == 0) ?
2289 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2290 	addba_start_timeout(tap);
2291 	return 1;
2292 }
2293 
2294 /*
2295  * Called by drivers that wish to request an ADDBA session be
2296  * setup.  This brings it up and starts the request timer.
2297  */
2298 int
2299 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
2300 {
2301 	struct ieee80211_tx_ampdu *tap;
2302 
2303 	if (tid < 0 || tid > 15)
2304 		return (0);
2305 	tap = &ni->ni_tx_ampdu[tid];
2306 
2307 	/* XXX locking */
2308 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2309 		/* do deferred setup of state */
2310 		ampdu_tx_setup(tap);
2311 	}
2312 	/* XXX hack for not doing proper locking */
2313 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2314 	addba_start_timeout(tap);
2315 	return (1);
2316 }
2317 
2318 /*
2319  * Called by drivers that have marked a session as active.
2320  */
2321 int
2322 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
2323     int status)
2324 {
2325 	struct ieee80211_tx_ampdu *tap;
2326 
2327 	if (tid < 0 || tid > 15)
2328 		return (0);
2329 	tap = &ni->ni_tx_ampdu[tid];
2330 
2331 	/* XXX locking */
2332 	addba_stop_timeout(tap);
2333 	if (status == 1) {
2334 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2335 		tap->txa_attempts = 0;
2336 	} else {
2337 		/* mark tid so we don't try again */
2338 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2339 	}
2340 	return (1);
2341 }
2342 
2343 /*
2344  * Default method for processing an A-MPDU tx aggregation
2345  * response.  We shutdown any pending timer and update the
2346  * state block according to the reply.
2347  */
2348 static int
2349 ieee80211_addba_response(struct ieee80211_node *ni,
2350 	struct ieee80211_tx_ampdu *tap,
2351 	int status, int baparamset, int batimeout)
2352 {
2353 	struct ieee80211vap *vap = ni->ni_vap;
2354 	int bufsiz;
2355 
2356 	/* XXX locking */
2357 	addba_stop_timeout(tap);
2358 	if (status == IEEE80211_STATUS_SUCCESS) {
2359 		bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2360 		/* XXX override our request? */
2361 		tap->txa_wnd = (bufsiz == 0) ?
2362 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2363 #ifdef __notyet__
2364 		tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2365 #endif
2366 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2367 		tap->txa_attempts = 0;
2368 		/* TODO: this should be a vap flag */
2369 		if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) &&
2370 		    (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
2371 		    (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)))
2372 			tap->txa_flags |= IEEE80211_AGGR_AMSDU;
2373 		else
2374 			tap->txa_flags &= ~IEEE80211_AGGR_AMSDU;
2375 	} else {
2376 		/* mark tid so we don't try again */
2377 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2378 	}
2379 	return 1;
2380 }
2381 
2382 /*
2383  * Default method for stopping A-MPDU tx aggregation.
2384  * Any timer is cleared and we drain any pending frames.
2385  */
2386 static void
2387 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
2388 {
2389 	/* XXX locking */
2390 	addba_stop_timeout(tap);
2391 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
2392 		/* XXX clear aggregation queue */
2393 		tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU);
2394 	}
2395 	tap->txa_attempts = 0;
2396 }
2397 
2398 /*
2399  * Process a received action frame using the default aggregation
2400  * policy.  We intercept ADDBA-related frames and use them to
2401  * update our aggregation state.  All other frames are passed up
2402  * for processing by ieee80211_recv_action.
2403  */
2404 static int
2405 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
2406 	const struct ieee80211_frame *wh,
2407 	const uint8_t *frm, const uint8_t *efrm)
2408 {
2409 	struct ieee80211com *ic = ni->ni_ic;
2410 	struct ieee80211vap *vap = ni->ni_vap;
2411 	struct ieee80211_rx_ampdu *rap;
2412 	uint8_t dialogtoken;
2413 	uint16_t baparamset, batimeout, baseqctl;
2414 	uint16_t args[5];
2415 	int tid;
2416 
2417 	dialogtoken = frm[2];
2418 	baparamset = le16dec(frm+3);
2419 	batimeout = le16dec(frm+5);
2420 	baseqctl = le16dec(frm+7);
2421 
2422 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2423 
2424 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2425 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
2426 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d",
2427 	    dialogtoken, baparamset,
2428 	    tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ),
2429 	    batimeout,
2430 	    _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START),
2431 	    _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG),
2432 	    _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU));
2433 
2434 	rap = &ni->ni_rx_ampdu[tid];
2435 
2436 	/* Send ADDBA response */
2437 	args[0] = dialogtoken;
2438 	/*
2439 	 * NB: We ack only if the sta associated with HT and
2440 	 * the ap is configured to do AMPDU rx (the latter
2441 	 * violates the 11n spec and is mostly for testing).
2442 	 */
2443 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
2444 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
2445 		/* XXX TODO: handle ampdu_rx_start failure */
2446 		ic->ic_ampdu_rx_start(ni, rap,
2447 		    baparamset, batimeout, baseqctl);
2448 
2449 		args[1] = IEEE80211_STATUS_SUCCESS;
2450 	} else {
2451 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2452 		    ni, "reject ADDBA request: %s",
2453 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
2454 		       "administratively disabled" :
2455 		       "not negotiated for station");
2456 		vap->iv_stats.is_addba_reject++;
2457 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
2458 	}
2459 	/* XXX honor rap flags? */
2460 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
2461 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID)
2462 		| _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
2463 		;
2464 
2465 	/*
2466 	 * TODO: we're out of iv_flags_ht fields; once
2467 	 * this is extended we should make this configurable.
2468 	 */
2469 	if ((baparamset & IEEE80211_BAPS_AMSDU) &&
2470 	    (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) &&
2471 	    (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU))
2472 		args[2] |= IEEE80211_BAPS_AMSDU;
2473 
2474 	args[3] = 0;
2475 	args[4] = 0;
2476 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2477 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
2478 	return 0;
2479 }
2480 
2481 static int
2482 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
2483 	const struct ieee80211_frame *wh,
2484 	const uint8_t *frm, const uint8_t *efrm)
2485 {
2486 	struct ieee80211com *ic = ni->ni_ic;
2487 	struct ieee80211vap *vap = ni->ni_vap;
2488 	struct ieee80211_tx_ampdu *tap;
2489 	uint8_t dialogtoken, policy;
2490 	uint16_t baparamset, batimeout, code;
2491 	int tid;
2492 #ifdef IEEE80211_DEBUG
2493 	int amsdu, bufsiz;
2494 #endif
2495 
2496 	dialogtoken = frm[2];
2497 	code = le16dec(frm+3);
2498 	baparamset = le16dec(frm+5);
2499 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2500 #ifdef IEEE80211_DEBUG
2501 	bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2502 	amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU);
2503 #endif
2504 	policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY);
2505 	batimeout = le16dec(frm+7);
2506 
2507 	tap = &ni->ni_tx_ampdu[tid];
2508 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2509 		IEEE80211_DISCARD_MAC(vap,
2510 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2511 		    ni->ni_macaddr, "ADDBA response",
2512 		    "no pending ADDBA, tid %d dialogtoken %u "
2513 		    "code %d", tid, dialogtoken, code);
2514 		vap->iv_stats.is_addba_norequest++;
2515 		return 0;
2516 	}
2517 	if (dialogtoken != tap->txa_token) {
2518 		IEEE80211_DISCARD_MAC(vap,
2519 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2520 		    ni->ni_macaddr, "ADDBA response",
2521 		    "dialogtoken mismatch: waiting for %d, "
2522 		    "received %d, tid %d code %d",
2523 		    tap->txa_token, dialogtoken, tid, code);
2524 		vap->iv_stats.is_addba_badtoken++;
2525 		return 0;
2526 	}
2527 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2528 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2529 		IEEE80211_DISCARD_MAC(vap,
2530 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2531 		    ni->ni_macaddr, "ADDBA response",
2532 		    "policy mismatch: expecting %s, "
2533 		    "received %s, tid %d code %d",
2534 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2535 		    policy, tid, code);
2536 		vap->iv_stats.is_addba_badpolicy++;
2537 		return 0;
2538 	}
2539 #if 0
2540 	/* XXX we take MIN in ieee80211_addba_response */
2541 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2542 		IEEE80211_DISCARD_MAC(vap,
2543 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2544 		    ni->ni_macaddr, "ADDBA response",
2545 		    "BA window too large: max %d, "
2546 		    "received %d, tid %d code %d",
2547 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2548 		vap->iv_stats.is_addba_badbawinsize++;
2549 		return 0;
2550 	}
2551 #endif
2552 
2553 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2554 	    "recv ADDBA response: dialogtoken %u code %d "
2555 	    "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d",
2556 	    dialogtoken, code, baparamset, tid,
2557 	    bufsiz,
2558 	    amsdu,
2559 	    batimeout);
2560 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2561 	return 0;
2562 }
2563 
2564 static int
2565 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2566 	const struct ieee80211_frame *wh,
2567 	const uint8_t *frm, const uint8_t *efrm)
2568 {
2569 	struct ieee80211com *ic = ni->ni_ic;
2570 	struct ieee80211_rx_ampdu *rap;
2571 	struct ieee80211_tx_ampdu *tap;
2572 	uint16_t baparamset;
2573 #ifdef IEEE80211_DEBUG
2574 	uint16_t code;
2575 #endif
2576 	int tid;
2577 
2578 	baparamset = le16dec(frm+2);
2579 #ifdef IEEE80211_DEBUG
2580 	code = le16dec(frm+4);
2581 #endif
2582 
2583 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID);
2584 
2585 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2586 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2587 	    "code %d", baparamset, tid,
2588 	    _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code);
2589 
2590 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2591 		tap = &ni->ni_tx_ampdu[tid];
2592 		ic->ic_addba_stop(ni, tap);
2593 	} else {
2594 		rap = &ni->ni_rx_ampdu[tid];
2595 		ic->ic_ampdu_rx_stop(ni, rap);
2596 	}
2597 	return 0;
2598 }
2599 
2600 static int
2601 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2602 	const struct ieee80211_frame *wh,
2603 	const uint8_t *frm, const uint8_t *efrm)
2604 {
2605 	int chw;
2606 
2607 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2608 
2609 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2610 	    "%s: HT txchwidth, width %d%s",
2611 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2612 	if (chw != ni->ni_chw) {
2613 		/* XXX does this need to change the ht40 station count? */
2614 		ni->ni_chw = chw;
2615 		/* XXX notify on change */
2616 	}
2617 	return 0;
2618 }
2619 
2620 static int
2621 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2622 	const struct ieee80211_frame *wh,
2623 	const uint8_t *frm, const uint8_t *efrm)
2624 {
2625 	const struct ieee80211_action_ht_mimopowersave *mps =
2626 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2627 
2628 	/* XXX check iv_htcaps */
2629 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2630 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2631 	else
2632 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2633 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2634 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2635 	else
2636 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2637 	/* XXX notify on change */
2638 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2639 	    "%s: HT MIMO PS (%s%s)", __func__,
2640 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2641 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2642 	);
2643 	return 0;
2644 }
2645 
2646 /*
2647  * Transmit processing.
2648  */
2649 
2650 /*
2651  * Check if A-MPDU should be requested/enabled for a stream.
2652  * We require a traffic rate above a per-AC threshold and we
2653  * also handle backoff from previous failed attempts.
2654  *
2655  * Drivers may override this method to bring in information
2656  * such as link state conditions in making the decision.
2657  */
2658 static int
2659 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2660 	struct ieee80211_tx_ampdu *tap)
2661 {
2662 	struct ieee80211vap *vap = ni->ni_vap;
2663 
2664 	if (tap->txa_avgpps <
2665 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2666 		return 0;
2667 	/* XXX check rssi? */
2668 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2669 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2670 		/*
2671 		 * Don't retry too often; txa_nextrequest is set
2672 		 * to the minimum interval we'll retry after
2673 		 * ieee80211_addba_maxtries failed attempts are made.
2674 		 */
2675 		return 0;
2676 	}
2677 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2678 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2679 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2680 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2681 	return 1;
2682 }
2683 
2684 /*
2685  * Request A-MPDU tx aggregation.  Setup local state and
2686  * issue an ADDBA request.  BA use will only happen after
2687  * the other end replies with ADDBA response.
2688  */
2689 int
2690 ieee80211_ampdu_request(struct ieee80211_node *ni,
2691 	struct ieee80211_tx_ampdu *tap)
2692 {
2693 	struct ieee80211com *ic = ni->ni_ic;
2694 	uint16_t args[5];
2695 	int tid, dialogtoken;
2696 	static int tokens = 0;	/* XXX */
2697 
2698 	/* XXX locking */
2699 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2700 		/* do deferred setup of state */
2701 		ampdu_tx_setup(tap);
2702 	}
2703 	/* XXX hack for not doing proper locking */
2704 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2705 
2706 	dialogtoken = (tokens+1) % 63;		/* XXX */
2707 	tid = tap->txa_tid;
2708 
2709 	/*
2710 	 * XXX TODO: This is racy with any other parallel TX going on. :(
2711 	 */
2712 	tap->txa_start = ni->ni_txseqs[tid];
2713 
2714 	args[0] = dialogtoken;
2715 	args[1] = 0;	/* NB: status code not used */
2716 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2717 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID)
2718 		| _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX,
2719 		    IEEE80211_BAPS_BUFSIZ)
2720 		;
2721 
2722 	/* XXX TODO: this should be a flag, not iv_htcaps */
2723 	if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
2724 	    (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU))
2725 		args[2] |= IEEE80211_BAPS_AMSDU;
2726 
2727 	args[3] = 0;	/* batimeout */
2728 	/* NB: do first so there's no race against reply */
2729 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2730 		/* unable to setup state, don't make request */
2731 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2732 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2733 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2734 		/* defer next try so we don't slam the driver with requests */
2735 		tap->txa_attempts = ieee80211_addba_maxtries;
2736 		/* NB: check in case driver wants to override */
2737 		if (tap->txa_nextrequest <= ticks)
2738 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2739 		return 0;
2740 	}
2741 	tokens = dialogtoken;			/* allocate token */
2742 	/* NB: after calling ic_addba_request so driver can set txa_start */
2743 	args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START)
2744 		| _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG)
2745 		;
2746 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2747 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2748 }
2749 
2750 /*
2751  * Terminate an AMPDU tx stream.  State is reclaimed
2752  * and the peer notified with a DelBA Action frame.
2753  */
2754 void
2755 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2756 	int reason)
2757 {
2758 	struct ieee80211com *ic = ni->ni_ic;
2759 	struct ieee80211vap *vap = ni->ni_vap;
2760 	uint16_t args[4];
2761 
2762 	/* XXX locking */
2763 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2764 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2765 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2766 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2767 		    __func__, tap->txa_tid, reason,
2768 		    ieee80211_reason_to_string(reason));
2769 		vap->iv_stats.is_ampdu_stop++;
2770 
2771 		ic->ic_addba_stop(ni, tap);
2772 		args[0] = tap->txa_tid;
2773 		args[1] = IEEE80211_DELBAPS_INIT;
2774 		args[2] = reason;			/* XXX reason code */
2775 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2776 			IEEE80211_ACTION_BA_DELBA, args);
2777 	} else {
2778 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2779 		    ni, "%s: BA stream for TID %d not running "
2780 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2781 		    ieee80211_reason_to_string(reason));
2782 		vap->iv_stats.is_ampdu_stop_failed++;
2783 	}
2784 }
2785 
2786 /* XXX */
2787 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2788 
2789 static void
2790 bar_timeout(void *arg)
2791 {
2792 	struct ieee80211_tx_ampdu *tap = arg;
2793 	struct ieee80211_node *ni = tap->txa_ni;
2794 
2795 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2796 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2797 
2798 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2799 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2800 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2801 
2802 	/* guard against race with bar_tx_complete */
2803 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2804 		return;
2805 	/* XXX ? */
2806 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2807 		struct ieee80211com *ic = ni->ni_ic;
2808 
2809 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2810 		/*
2811 		 * If (at least) the last BAR TX timeout was due to
2812 		 * an ieee80211_send_bar() failures, then we need
2813 		 * to make sure we notify the driver that a BAR
2814 		 * TX did occur and fail.  This gives the driver
2815 		 * a chance to undo any queue pause that may
2816 		 * have occurred.
2817 		 */
2818 		ic->ic_bar_response(ni, tap, 1);
2819 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2820 	} else {
2821 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2822 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2823 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2824 			    ni, "%s: failed to TX, starting timer\n",
2825 			    __func__);
2826 			/*
2827 			 * If ieee80211_send_bar() fails here, the
2828 			 * timer may have stopped and/or the pending
2829 			 * flag may be clear.  Because of this,
2830 			 * fake the BARPEND and reset the timer.
2831 			 * A retransmission attempt will then occur
2832 			 * during the next timeout.
2833 			 */
2834 			/* XXX locking */
2835 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2836 			bar_start_timer(tap);
2837 		}
2838 	}
2839 }
2840 
2841 static void
2842 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2843 {
2844 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2845 	    tap->txa_ni,
2846 	    "%s: called",
2847 	    __func__);
2848 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2849 }
2850 
2851 static void
2852 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2853 {
2854 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2855 	    tap->txa_ni,
2856 	    "%s: called",
2857 	    __func__);
2858 	callout_stop(&tap->txa_timer);
2859 }
2860 
2861 static void
2862 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2863 {
2864 	struct ieee80211_tx_ampdu *tap = arg;
2865 
2866 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2867 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2868 	    __func__, tap->txa_tid, tap->txa_flags,
2869 	    callout_pending(&tap->txa_timer), status);
2870 
2871 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2872 	/* XXX locking */
2873 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2874 	    callout_pending(&tap->txa_timer)) {
2875 		struct ieee80211com *ic = ni->ni_ic;
2876 
2877 		if (status == 0)		/* ACK'd */
2878 			bar_stop_timer(tap);
2879 		ic->ic_bar_response(ni, tap, status);
2880 		/* NB: just let timer expire so we pace requests */
2881 	}
2882 }
2883 
2884 static void
2885 ieee80211_bar_response(struct ieee80211_node *ni,
2886 	struct ieee80211_tx_ampdu *tap, int status)
2887 {
2888 
2889 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2890 	    tap->txa_ni,
2891 	    "%s: called",
2892 	    __func__);
2893 	if (status == 0) {		/* got ACK */
2894 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2895 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2896 		    tap->txa_start,
2897 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2898 		    tap->txa_qframes, tap->txa_seqpending,
2899 		    tap->txa_tid);
2900 
2901 		/* NB: timer already stopped in bar_tx_complete */
2902 		tap->txa_start = tap->txa_seqpending;
2903 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2904 	}
2905 }
2906 
2907 /*
2908  * Transmit a BAR frame to the specified node.  The
2909  * BAR contents are drawn from the supplied aggregation
2910  * state associated with the node.
2911  *
2912  * NB: we only handle immediate ACK w/ compressed bitmap.
2913  */
2914 int
2915 ieee80211_send_bar(struct ieee80211_node *ni,
2916 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2917 {
2918 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2919 	struct ieee80211vap *vap = ni->ni_vap;
2920 	struct ieee80211com *ic = ni->ni_ic;
2921 	struct ieee80211_frame_bar *bar;
2922 	struct mbuf *m;
2923 	uint16_t barctl, barseqctl;
2924 	uint8_t *frm;
2925 	int tid, ret;
2926 
2927 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2928 	    tap->txa_ni,
2929 	    "%s: called",
2930 	    __func__);
2931 
2932 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2933 		/* no ADDBA response, should not happen */
2934 		/* XXX stat+msg */
2935 		return EINVAL;
2936 	}
2937 	/* XXX locking */
2938 	bar_stop_timer(tap);
2939 
2940 	ieee80211_ref_node(ni);
2941 
2942 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2943 	if (m == NULL)
2944 		senderr(ENOMEM, is_tx_nobuf);
2945 
2946 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2947 		m_freem(m);
2948 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2949 		/* NOTREACHED */
2950 	}
2951 
2952 	bar = mtod(m, struct ieee80211_frame_bar *);
2953 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2954 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2955 	bar->i_fc[1] = 0;
2956 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2957 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2958 
2959 	tid = tap->txa_tid;
2960 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2961 			0 : IEEE80211_BAR_NOACK)
2962 		| IEEE80211_BAR_COMP
2963 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID)
2964 		;
2965 	barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START);
2966 	/* NB: known to have proper alignment */
2967 	bar->i_ctl = htole16(barctl);
2968 	bar->i_seq = htole16(barseqctl);
2969 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2970 
2971 	M_WME_SETAC(m, WME_AC_VO);
2972 
2973 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2974 
2975 	/* XXX locking */
2976 	/* init/bump attempts counter */
2977 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2978 		tap->txa_attempts = 1;
2979 	else
2980 		tap->txa_attempts++;
2981 	tap->txa_seqpending = seq;
2982 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2983 
2984 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2985 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2986 	    tid, barctl, seq, tap->txa_attempts);
2987 
2988 	/*
2989 	 * ic_raw_xmit will free the node reference
2990 	 * regardless of queue/TX success or failure.
2991 	 */
2992 	IEEE80211_TX_LOCK(ic);
2993 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2994 	IEEE80211_TX_UNLOCK(ic);
2995 	if (ret != 0) {
2996 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2997 		    ni, "send BAR: failed: (ret = %d)\n",
2998 		    ret);
2999 		/* xmit failed, clear state flag */
3000 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
3001 		vap->iv_stats.is_ampdu_bar_tx_fail++;
3002 		return ret;
3003 	}
3004 	/* XXX hack against tx complete happening before timer is started */
3005 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
3006 		bar_start_timer(tap);
3007 	return 0;
3008 bad:
3009 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
3010 	    tap->txa_ni,
3011 	    "%s: bad! ret=%d",
3012 	    __func__, ret);
3013 	vap->iv_stats.is_ampdu_bar_tx_fail++;
3014 	ieee80211_free_node(ni);
3015 	return ret;
3016 #undef senderr
3017 }
3018 
3019 static int
3020 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
3021 {
3022 	struct ieee80211_bpf_params params;
3023 
3024 	memset(&params, 0, sizeof(params));
3025 	params.ibp_pri = WME_AC_VO;
3026 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
3027 	/* NB: we know all frames are unicast */
3028 	params.ibp_try0 = ni->ni_txparms->maxretry;
3029 	params.ibp_power = ni->ni_txpower;
3030 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
3031 	     &params);
3032 }
3033 
3034 #define	ADDSHORT(frm, v) do {			\
3035 	frm[0] = (v) & 0xff;			\
3036 	frm[1] = (v) >> 8;			\
3037 	frm += 2;				\
3038 } while (0)
3039 
3040 /*
3041  * Send an action management frame.  The arguments are stuff
3042  * into a frame without inspection; the caller is assumed to
3043  * prepare them carefully (e.g. based on the aggregation state).
3044  */
3045 static int
3046 ht_send_action_ba_addba(struct ieee80211_node *ni,
3047 	int category, int action, void *arg0)
3048 {
3049 	struct ieee80211vap *vap = ni->ni_vap;
3050 	struct ieee80211com *ic = ni->ni_ic;
3051 	uint16_t *args = arg0;
3052 	struct mbuf *m;
3053 	uint8_t *frm;
3054 
3055 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3056 	    "send ADDBA %s: dialogtoken %d status %d "
3057 	    "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x",
3058 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
3059 		"request" : "response", args[0], args[1], args[2],
3060 	    _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID),
3061 	    _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU),
3062 	    args[3], args[4]);
3063 
3064 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3065 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3066 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3067 	ieee80211_ref_node(ni);
3068 
3069 	m = ieee80211_getmgtframe(&frm,
3070 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3071 	    sizeof(uint16_t)	/* action+category */
3072 	    /* XXX may action payload */
3073 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3074 	);
3075 	if (m != NULL) {
3076 		*frm++ = category;
3077 		*frm++ = action;
3078 		*frm++ = args[0];		/* dialog token */
3079 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
3080 			ADDSHORT(frm, args[1]);	/* status code */
3081 		ADDSHORT(frm, args[2]);		/* baparamset */
3082 		ADDSHORT(frm, args[3]);		/* batimeout */
3083 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
3084 			ADDSHORT(frm, args[4]);	/* baseqctl */
3085 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3086 		return ht_action_output(ni, m);
3087 	} else {
3088 		vap->iv_stats.is_tx_nobuf++;
3089 		ieee80211_free_node(ni);
3090 		return ENOMEM;
3091 	}
3092 }
3093 
3094 static int
3095 ht_send_action_ba_delba(struct ieee80211_node *ni,
3096 	int category, int action, void *arg0)
3097 {
3098 	struct ieee80211vap *vap = ni->ni_vap;
3099 	struct ieee80211com *ic = ni->ni_ic;
3100 	uint16_t *args = arg0;
3101 	struct mbuf *m;
3102 	uint16_t baparamset;
3103 	uint8_t *frm;
3104 
3105 	baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID)
3106 		   | args[1]
3107 		   ;
3108 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3109 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
3110 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
3111 
3112 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3113 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3114 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3115 	ieee80211_ref_node(ni);
3116 
3117 	m = ieee80211_getmgtframe(&frm,
3118 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3119 	    sizeof(uint16_t)	/* action+category */
3120 	    /* XXX may action payload */
3121 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3122 	);
3123 	if (m != NULL) {
3124 		*frm++ = category;
3125 		*frm++ = action;
3126 		ADDSHORT(frm, baparamset);
3127 		ADDSHORT(frm, args[2]);		/* reason code */
3128 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3129 		return ht_action_output(ni, m);
3130 	} else {
3131 		vap->iv_stats.is_tx_nobuf++;
3132 		ieee80211_free_node(ni);
3133 		return ENOMEM;
3134 	}
3135 }
3136 
3137 static int
3138 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
3139 	int category, int action, void *arg0)
3140 {
3141 	struct ieee80211vap *vap = ni->ni_vap;
3142 	struct ieee80211com *ic = ni->ni_ic;
3143 	struct mbuf *m;
3144 	uint8_t *frm;
3145 
3146 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3147 	    "send HT txchwidth: width %d",
3148 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
3149 
3150 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3151 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3152 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3153 	ieee80211_ref_node(ni);
3154 
3155 	m = ieee80211_getmgtframe(&frm,
3156 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3157 	    sizeof(uint16_t)	/* action+category */
3158 	    /* XXX may action payload */
3159 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3160 	);
3161 	if (m != NULL) {
3162 		*frm++ = category;
3163 		*frm++ = action;
3164 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
3165 			IEEE80211_A_HT_TXCHWIDTH_2040 :
3166 			IEEE80211_A_HT_TXCHWIDTH_20;
3167 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3168 		return ht_action_output(ni, m);
3169 	} else {
3170 		vap->iv_stats.is_tx_nobuf++;
3171 		ieee80211_free_node(ni);
3172 		return ENOMEM;
3173 	}
3174 }
3175 #undef ADDSHORT
3176 
3177 /*
3178  * Construct the MCS bit mask for inclusion in an HT capabilities
3179  * information element.
3180  */
3181 static void
3182 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
3183 {
3184 	int i;
3185 	uint8_t txparams;
3186 
3187 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
3188 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
3189 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
3190 	    ("ic_txstream %d out of range", ic->ic_txstream));
3191 
3192 	for (i = 0; i < ic->ic_rxstream * 8; i++)
3193 		setbit(frm, i);
3194 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
3195 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
3196 		setbit(frm, 32);
3197 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
3198 		if (ic->ic_rxstream >= 2) {
3199 			for (i = 33; i <= 38; i++)
3200 				setbit(frm, i);
3201 		}
3202 		if (ic->ic_rxstream >= 3) {
3203 			for (i = 39; i <= 52; i++)
3204 				setbit(frm, i);
3205 		}
3206 		if (ic->ic_txstream >= 4) {
3207 			for (i = 53; i <= 76; i++)
3208 				setbit(frm, i);
3209 		}
3210 	}
3211 
3212 	if (ic->ic_rxstream != ic->ic_txstream) {
3213 		txparams = 0x1;			/* TX MCS set defined */
3214 		txparams |= 0x2;		/* TX RX MCS not equal */
3215 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
3216 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
3217 			txparams |= 0x16;	/* TX unequal modulation sup */
3218 	} else
3219 		txparams = 0;
3220 	frm[12] = txparams;
3221 }
3222 
3223 /*
3224  * Add body of an HTCAP information element.
3225  */
3226 static uint8_t *
3227 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
3228 {
3229 #define	ADDSHORT(frm, v) do {			\
3230 	frm[0] = (v) & 0xff;			\
3231 	frm[1] = (v) >> 8;			\
3232 	frm += 2;				\
3233 } while (0)
3234 	struct ieee80211com *ic = ni->ni_ic;
3235 	struct ieee80211vap *vap = ni->ni_vap;
3236 	uint16_t caps, extcaps;
3237 	int rxmax, density;
3238 
3239 	/* HT capabilities */
3240 	caps = vap->iv_htcaps & 0xffff;
3241 	/*
3242 	 * Note channel width depends on whether we are operating as
3243 	 * a sta or not.  When operating as a sta we are generating
3244 	 * a request based on our desired configuration.  Otherwise
3245 	 * we are operational and the channel attributes identify
3246 	 * how we've been setup (which might be different if a fixed
3247 	 * channel is specified).
3248 	 */
3249 	if (vap->iv_opmode == IEEE80211_M_STA) {
3250 		/* override 20/40 use based on config */
3251 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
3252 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3253 		else
3254 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3255 
3256 		/* Start by using the advertised settings */
3257 		rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam,
3258 		    IEEE80211_HTCAP_MAXRXAMPDU);
3259 		density = _IEEE80211_MASKSHIFT(ni->ni_htparam,
3260 		    IEEE80211_HTCAP_MPDUDENSITY);
3261 
3262 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
3263 		    "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
3264 		    __func__,
3265 		    rxmax,
3266 		    density,
3267 		    vap->iv_ampdu_rxmax,
3268 		    vap->iv_ampdu_density);
3269 
3270 		/* Cap at VAP rxmax */
3271 		if (rxmax > vap->iv_ampdu_rxmax)
3272 			rxmax = vap->iv_ampdu_rxmax;
3273 
3274 		/*
3275 		 * If the VAP ampdu density value greater, use that.
3276 		 *
3277 		 * (Larger density value == larger minimum gap between A-MPDU
3278 		 * subframes.)
3279 		 */
3280 		if (vap->iv_ampdu_density > density)
3281 			density = vap->iv_ampdu_density;
3282 
3283 		/*
3284 		 * NB: Hardware might support HT40 on some but not all
3285 		 * channels. We can't determine this earlier because only
3286 		 * after association the channel is upgraded to HT based
3287 		 * on the negotiated capabilities.
3288 		 */
3289 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
3290 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
3291 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
3292 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3293 	} else {
3294 		/* override 20/40 use based on current channel */
3295 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3296 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3297 		else
3298 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3299 
3300 		/* XXX TODO should it start by using advertised settings? */
3301 		rxmax = vap->iv_ampdu_rxmax;
3302 		density = vap->iv_ampdu_density;
3303 	}
3304 
3305 	/* adjust short GI based on channel and config */
3306 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3307 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3308 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3309 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3310 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3311 
3312 	/* adjust STBC based on receive capabilities */
3313 	if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
3314 		caps &= ~IEEE80211_HTCAP_RXSTBC;
3315 
3316 	/* adjust LDPC based on receive capabilites */
3317 	if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0)
3318 		caps &= ~IEEE80211_HTCAP_LDPC;
3319 
3320 	ADDSHORT(frm, caps);
3321 
3322 	/* HT parameters */
3323 	*frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3324 	     | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY)
3325 	     ;
3326 	frm++;
3327 
3328 	/* pre-zero remainder of ie */
3329 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3330 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3331 
3332 	/* supported MCS set */
3333 	/*
3334 	 * XXX: For sta mode the rate set should be restricted based
3335 	 * on the AP's capabilities, but ni_htrates isn't setup when
3336 	 * we're called to form an AssocReq frame so for now we're
3337 	 * restricted to the device capabilities.
3338 	 */
3339 	ieee80211_set_mcsset(ni->ni_ic, frm);
3340 
3341 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3342 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3343 
3344 	/* HT extended capabilities */
3345 	extcaps = vap->iv_htextcaps & 0xffff;
3346 
3347 	ADDSHORT(frm, extcaps);
3348 
3349 	frm += sizeof(struct ieee80211_ie_htcap) -
3350 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3351 
3352 	return frm;
3353 #undef ADDSHORT
3354 }
3355 
3356 /*
3357  * Add 802.11n HT capabilities information element
3358  */
3359 uint8_t *
3360 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
3361 {
3362 	frm[0] = IEEE80211_ELEMID_HTCAP;
3363 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3364 	return ieee80211_add_htcap_body(frm + 2, ni);
3365 }
3366 
3367 /*
3368  * Non-associated probe request - add HT capabilities based on
3369  * the current channel configuration.
3370  */
3371 static uint8_t *
3372 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap,
3373     struct ieee80211_channel *c)
3374 {
3375 #define	ADDSHORT(frm, v) do {			\
3376 	frm[0] = (v) & 0xff;			\
3377 	frm[1] = (v) >> 8;			\
3378 	frm += 2;				\
3379 } while (0)
3380 	struct ieee80211com *ic = vap->iv_ic;
3381 	uint16_t caps, extcaps;
3382 	int rxmax, density;
3383 
3384 	/* HT capabilities */
3385 	caps = vap->iv_htcaps & 0xffff;
3386 
3387 	/*
3388 	 * We don't use this in STA mode; only in IBSS mode.
3389 	 * So in IBSS mode we base our HTCAP flags on the
3390 	 * given channel.
3391 	 */
3392 
3393 	/* override 20/40 use based on current channel */
3394 	if (IEEE80211_IS_CHAN_HT40(c))
3395 		caps |= IEEE80211_HTCAP_CHWIDTH40;
3396 	else
3397 		caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3398 
3399 	/* Use the currently configured values */
3400 	rxmax = vap->iv_ampdu_rxmax;
3401 	density = vap->iv_ampdu_density;
3402 
3403 	/* adjust short GI based on channel and config */
3404 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3405 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3406 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3407 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3408 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3409 	ADDSHORT(frm, caps);
3410 
3411 	/* HT parameters */
3412 	*frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3413 	     | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY)
3414 	     ;
3415 	frm++;
3416 
3417 	/* pre-zero remainder of ie */
3418 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3419 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3420 
3421 	/* supported MCS set */
3422 	/*
3423 	 * XXX: For sta mode the rate set should be restricted based
3424 	 * on the AP's capabilities, but ni_htrates isn't setup when
3425 	 * we're called to form an AssocReq frame so for now we're
3426 	 * restricted to the device capabilities.
3427 	 */
3428 	ieee80211_set_mcsset(ic, frm);
3429 
3430 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3431 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3432 
3433 	/* HT extended capabilities */
3434 	extcaps = vap->iv_htextcaps & 0xffff;
3435 
3436 	ADDSHORT(frm, extcaps);
3437 
3438 	frm += sizeof(struct ieee80211_ie_htcap) -
3439 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3440 
3441 	return frm;
3442 #undef ADDSHORT
3443 }
3444 
3445 /*
3446  * Add 802.11n HT capabilities information element
3447  */
3448 uint8_t *
3449 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap,
3450     struct ieee80211_channel *c)
3451 {
3452 	frm[0] = IEEE80211_ELEMID_HTCAP;
3453 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3454 	return ieee80211_add_htcap_body_ch(frm + 2, vap, c);
3455 }
3456 
3457 /*
3458  * Add Broadcom OUI wrapped standard HTCAP ie; this is
3459  * used for compatibility w/ pre-draft implementations.
3460  */
3461 uint8_t *
3462 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
3463 {
3464 	frm[0] = IEEE80211_ELEMID_VENDOR;
3465 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
3466 	frm[2] = (BCM_OUI >> 0) & 0xff;
3467 	frm[3] = (BCM_OUI >> 8) & 0xff;
3468 	frm[4] = (BCM_OUI >> 16) & 0xff;
3469 	frm[5] = BCM_OUI_HTCAP;
3470 	return ieee80211_add_htcap_body(frm + 6, ni);
3471 }
3472 
3473 /*
3474  * Construct the MCS bit mask of basic rates
3475  * for inclusion in an HT information element.
3476  */
3477 static void
3478 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
3479 {
3480 	int i;
3481 
3482 	for (i = 0; i < rs->rs_nrates; i++) {
3483 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
3484 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
3485 		    r < IEEE80211_HTRATE_MAXSIZE) {
3486 			/* NB: this assumes a particular implementation */
3487 			setbit(frm, r);
3488 		}
3489 	}
3490 }
3491 
3492 /*
3493  * Update the HTINFO ie for a beacon frame.
3494  */
3495 void
3496 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
3497 	struct ieee80211_beacon_offsets *bo)
3498 {
3499 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
3500 	struct ieee80211_node *ni;
3501 	const struct ieee80211_channel *bsschan;
3502 	struct ieee80211com *ic = vap->iv_ic;
3503 	struct ieee80211_ie_htinfo *ht =
3504 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
3505 
3506 	ni = ieee80211_ref_node(vap->iv_bss);
3507 	bsschan = ni->ni_chan;
3508 
3509 	/* XXX only update on channel change */
3510 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
3511 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3512 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
3513 	else
3514 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
3515 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
3516 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3517 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
3518 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3519 	else
3520 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
3521 	if (IEEE80211_IS_CHAN_HT40(bsschan))
3522 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
3523 
3524 	/* protection mode */
3525 	/*
3526 	 * XXX TODO: this uses the global flag, not the per-VAP flag.
3527 	 * Eventually (once the protection modes are done per-channel
3528 	 * rather than per-VAP) we can flip this over to be per-VAP but
3529 	 * using the channel protection mode.
3530 	 */
3531 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
3532 
3533 	ieee80211_free_node(ni);
3534 
3535 	/* XXX propagate to vendor ie's */
3536 #undef PROTMODE
3537 }
3538 
3539 /*
3540  * Add body of an HTINFO information element.
3541  *
3542  * NB: We don't use struct ieee80211_ie_htinfo because we can
3543  * be called to fillin both a standard ie and a compat ie that
3544  * has a vendor OUI at the front.
3545  */
3546 static uint8_t *
3547 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
3548 {
3549 	struct ieee80211vap *vap = ni->ni_vap;
3550 	struct ieee80211com *ic = ni->ni_ic;
3551 
3552 	/* pre-zero remainder of ie */
3553 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
3554 
3555 	/* primary/control channel center */
3556 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3557 
3558 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3559 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
3560 	else
3561 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
3562 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3563 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3564 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3565 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3566 	else
3567 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
3568 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3569 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
3570 
3571 	/*
3572 	 * Add current protection mode.  Unlike for beacons,
3573 	 * this will respect the per-VAP flags.
3574 	 */
3575 	frm[1] = vap->iv_curhtprotmode;
3576 
3577 	frm += 5;
3578 
3579 	/* basic MCS set */
3580 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
3581 	frm += sizeof(struct ieee80211_ie_htinfo) -
3582 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
3583 	return frm;
3584 }
3585 
3586 /*
3587  * Add 802.11n HT information element.
3588  */
3589 uint8_t *
3590 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
3591 {
3592 	frm[0] = IEEE80211_ELEMID_HTINFO;
3593 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
3594 	return ieee80211_add_htinfo_body(frm + 2, ni);
3595 }
3596 
3597 /*
3598  * Add Broadcom OUI wrapped standard HTINFO ie; this is
3599  * used for compatibility w/ pre-draft implementations.
3600  */
3601 uint8_t *
3602 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
3603 {
3604 	frm[0] = IEEE80211_ELEMID_VENDOR;
3605 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
3606 	frm[2] = (BCM_OUI >> 0) & 0xff;
3607 	frm[3] = (BCM_OUI >> 8) & 0xff;
3608 	frm[4] = (BCM_OUI >> 16) & 0xff;
3609 	frm[5] = BCM_OUI_HTINFO;
3610 	return ieee80211_add_htinfo_body(frm + 6, ni);
3611 }
3612