xref: /freebsd/sys/net80211/ieee80211_output.c (revision 39beb93c)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/endian.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/bpf.h>
42 #include <net/ethernet.h>
43 #include <net/if.h>
44 #include <net/if_llc.h>
45 #include <net/if_media.h>
46 #include <net/if_vlan_var.h>
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_regdomain.h>
50 #ifdef IEEE80211_SUPPORT_TDMA
51 #include <net80211/ieee80211_tdma.h>
52 #endif
53 #include <net80211/ieee80211_wds.h>
54 
55 #ifdef INET
56 #include <netinet/in.h>
57 #include <netinet/if_ether.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #endif
61 
62 #define	ETHER_HEADER_COPY(dst, src) \
63 	memcpy(dst, src, sizeof(struct ether_header))
64 
65 static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
66 	struct mbuf *m1, const struct ether_header *eh1,
67 	struct mbuf *m2, const struct ether_header *eh2);
68 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
69 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
70 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
71 
72 #ifdef IEEE80211_DEBUG
73 /*
74  * Decide if an outbound management frame should be
75  * printed when debugging is enabled.  This filters some
76  * of the less interesting frames that come frequently
77  * (e.g. beacons).
78  */
79 static __inline int
80 doprint(struct ieee80211vap *vap, int subtype)
81 {
82 	switch (subtype) {
83 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
84 		return (vap->iv_opmode == IEEE80211_M_IBSS);
85 	}
86 	return 1;
87 }
88 #endif
89 
90 /*
91  * Start method for vap's.  All packets from the stack come
92  * through here.  We handle common processing of the packets
93  * before dispatching them to the underlying device.
94  */
95 void
96 ieee80211_start(struct ifnet *ifp)
97 {
98 #define	IS_DWDS(vap) \
99 	(vap->iv_opmode == IEEE80211_M_WDS && \
100 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
101 	struct ieee80211vap *vap = ifp->if_softc;
102 	struct ieee80211com *ic = vap->iv_ic;
103 	struct ifnet *parent = ic->ic_ifp;
104 	struct ieee80211_node *ni;
105 	struct mbuf *m;
106 	struct ether_header *eh;
107 	int error;
108 
109 	/* NB: parent must be up and running */
110 	if (!IFNET_IS_UP_RUNNING(parent)) {
111 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
112 		    "%s: ignore queue, parent %s not up+running\n",
113 		    __func__, parent->if_xname);
114 		/* XXX stat */
115 		return;
116 	}
117 	if (vap->iv_state == IEEE80211_S_SLEEP) {
118 		/*
119 		 * In power save, wakeup device for transmit.
120 		 */
121 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
122 		return;
123 	}
124 	/*
125 	 * No data frames go out unless we're running.
126 	 * Note in particular this covers CAC and CSA
127 	 * states (though maybe we should check muting
128 	 * for CSA).
129 	 */
130 	if (vap->iv_state != IEEE80211_S_RUN) {
131 		IEEE80211_LOCK(ic);
132 		/* re-check under the com lock to avoid races */
133 		if (vap->iv_state != IEEE80211_S_RUN) {
134 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
135 			    "%s: ignore queue, in %s state\n",
136 			    __func__, ieee80211_state_name[vap->iv_state]);
137 			vap->iv_stats.is_tx_badstate++;
138 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
139 			IEEE80211_UNLOCK(ic);
140 			return;
141 		}
142 		IEEE80211_UNLOCK(ic);
143 	}
144 	for (;;) {
145 		IFQ_DEQUEUE(&ifp->if_snd, m);
146 		if (m == NULL)
147 			break;
148 		/*
149 		 * Sanitize mbuf flags for net80211 use.  We cannot
150 		 * clear M_PWR_SAV because this may be set for frames
151 		 * that are re-submitted from the power save queue.
152 		 *
153 		 * NB: This must be done before ieee80211_classify as
154 		 *     it marks EAPOL in frames with M_EAPOL.
155 		 */
156 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
157 		/*
158 		 * Cancel any background scan.
159 		 */
160 		if (ic->ic_flags & IEEE80211_F_SCAN)
161 			ieee80211_cancel_anyscan(vap);
162 		/*
163 		 * Find the node for the destination so we can do
164 		 * things like power save and fast frames aggregation.
165 		 *
166 		 * NB: past this point various code assumes the first
167 		 *     mbuf has the 802.3 header present (and contiguous).
168 		 */
169 		ni = NULL;
170 		if (m->m_len < sizeof(struct ether_header) &&
171 		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
172 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
173 			    "discard frame, %s\n", "m_pullup failed");
174 			vap->iv_stats.is_tx_nobuf++;	/* XXX */
175 			ifp->if_oerrors++;
176 			continue;
177 		}
178 		eh = mtod(m, struct ether_header *);
179 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
180 			if (IS_DWDS(vap)) {
181 				/*
182 				 * Only unicast frames from the above go out
183 				 * DWDS vaps; multicast frames are handled by
184 				 * dispatching the frame as it comes through
185 				 * the AP vap (see below).
186 				 */
187 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
188 				    eh->ether_dhost, "mcast", "%s", "on DWDS");
189 				vap->iv_stats.is_dwds_mcast++;
190 				m_freem(m);
191 				continue;
192 			}
193 			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
194 				/*
195 				 * Spam DWDS vap's w/ multicast traffic.
196 				 */
197 				/* XXX only if dwds in use? */
198 				ieee80211_dwds_mcast(vap, m);
199 			}
200 		}
201 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
202 		if (ni == NULL) {
203 			/* NB: ieee80211_find_txnode does stat+msg */
204 			ifp->if_oerrors++;
205 			m_freem(m);
206 			continue;
207 		}
208 		/* XXX AUTH'd */
209 		if (ni->ni_associd == 0 &&
210 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
211 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
212 			    eh->ether_dhost, NULL,
213 			    "sta not associated (type 0x%04x)",
214 			    htons(eh->ether_type));
215 			vap->iv_stats.is_tx_notassoc++;
216 			ifp->if_oerrors++;
217 			m_freem(m);
218 			ieee80211_free_node(ni);
219 			continue;
220 		}
221 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
222 		    (m->m_flags & M_PWR_SAV) == 0) {
223 			/*
224 			 * Station in power save mode; pass the frame
225 			 * to the 802.11 layer and continue.  We'll get
226 			 * the frame back when the time is right.
227 			 * XXX lose WDS vap linkage?
228 			 */
229 			(void) ieee80211_pwrsave(ni, m);
230 			ieee80211_free_node(ni);
231 			continue;
232 		}
233 		/* calculate priority so drivers can find the tx queue */
234 		if (ieee80211_classify(ni, m)) {
235 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
236 			    eh->ether_dhost, NULL,
237 			    "%s", "classification failure");
238 			vap->iv_stats.is_tx_classify++;
239 			ifp->if_oerrors++;
240 			m_freem(m);
241 			ieee80211_free_node(ni);
242 			continue;
243 		}
244 
245 		BPF_MTAP(ifp, m);		/* 802.11 tx path */
246 
247 		/*
248 		 * XXX When ni is associated with a WDS link then
249 		 * the vap will be the WDS vap but ni_vap will point
250 		 * to the ap vap the station associated to.  Once
251 		 * we handoff the packet to the driver the callback
252 		 * to ieee80211_encap won't be able to tell if the
253 		 * packet should be encapsulated for WDS or not (e.g.
254 		 * multicast frames will not be handled correctly).
255 		 * We hack this by marking the mbuf so ieee80211_encap
256 		 * can do the right thing.
257 		 */
258 		if (vap->iv_opmode == IEEE80211_M_WDS)
259 			m->m_flags |= M_WDS;
260 		else
261 			m->m_flags &= ~M_WDS;
262 
263 		/*
264 		 * Stash the node pointer and hand the frame off to
265 		 * the underlying device.  Note that we do this after
266 		 * any call to ieee80211_dwds_mcast because that code
267 		 * uses any existing value for rcvif.
268 		 */
269 		m->m_pkthdr.rcvif = (void *)ni;
270 
271 		/* XXX defer if_start calls? */
272 		error = parent->if_transmit(parent, m);
273 		if (error != 0) {
274 			/* NB: IFQ_HANDOFF reclaims mbuf */
275 			ieee80211_free_node(ni);
276 		} else {
277 			ifp->if_opackets++;
278 		}
279 		ic->ic_lastdata = ticks;
280 	}
281 #undef IS_DWDS
282 }
283 
284 /*
285  * 802.11 output routine. This is (currently) used only to
286  * connect bpf write calls to the 802.11 layer for injecting
287  * raw 802.11 frames.  Note we locate the ieee80211com from
288  * the ifnet using a spare field setup at attach time.  This
289  * will go away when the virtual ap support comes in.
290  */
291 int
292 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
293 	struct sockaddr *dst, struct rtentry *rt0)
294 {
295 #define senderr(e) do { error = (e); goto bad;} while (0)
296 	struct ieee80211_node *ni = NULL;
297 	struct ieee80211vap *vap;
298 	struct ieee80211_frame *wh;
299 	int error;
300 
301 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
302 		/*
303 		 * Short-circuit requests if the vap is marked OACTIVE
304 		 * as this is used when tearing down state to indicate
305 		 * the vap may be gone.  This can also happen because a
306 		 * packet came down through ieee80211_start before the
307 		 * vap entered RUN state in which case it's also ok to
308 		 * just drop the frame.  This should not be necessary
309 		 * but callers of if_output don't check OACTIVE.
310 		 */
311 		senderr(ENETDOWN);
312 	}
313 	vap = ifp->if_softc;
314 	/*
315 	 * Hand to the 802.3 code if not tagged as
316 	 * a raw 802.11 frame.
317 	 */
318 	if (dst->sa_family != AF_IEEE80211)
319 		return vap->iv_output(ifp, m, dst, rt0);
320 #ifdef MAC
321 	error = mac_check_ifnet_transmit(ifp, m);
322 	if (error)
323 		senderr(error);
324 #endif
325 	if (ifp->if_flags & IFF_MONITOR)
326 		senderr(ENETDOWN);
327 	if (!IFNET_IS_UP_RUNNING(ifp))
328 		senderr(ENETDOWN);
329 	if (vap->iv_state == IEEE80211_S_CAC) {
330 		IEEE80211_DPRINTF(vap,
331 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
332 		    "block %s frame in CAC state\n", "raw data");
333 		vap->iv_stats.is_tx_badstate++;
334 		senderr(EIO);		/* XXX */
335 	}
336 	/* XXX bypass bridge, pfil, carp, etc. */
337 
338 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
339 		senderr(EIO);	/* XXX */
340 	wh = mtod(m, struct ieee80211_frame *);
341 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
342 	    IEEE80211_FC0_VERSION_0)
343 		senderr(EIO);	/* XXX */
344 
345 	/* locate destination node */
346 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
347 	case IEEE80211_FC1_DIR_NODS:
348 	case IEEE80211_FC1_DIR_FROMDS:
349 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
350 		break;
351 	case IEEE80211_FC1_DIR_TODS:
352 	case IEEE80211_FC1_DIR_DSTODS:
353 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
354 			senderr(EIO);	/* XXX */
355 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
356 		break;
357 	default:
358 		senderr(EIO);	/* XXX */
359 	}
360 	if (ni == NULL) {
361 		/*
362 		 * Permit packets w/ bpf params through regardless
363 		 * (see below about sa_len).
364 		 */
365 		if (dst->sa_len == 0)
366 			senderr(EHOSTUNREACH);
367 		ni = ieee80211_ref_node(vap->iv_bss);
368 	}
369 
370 	/*
371 	 * Sanitize mbuf for net80211 flags leaked from above.
372 	 *
373 	 * NB: This must be done before ieee80211_classify as
374 	 *     it marks EAPOL in frames with M_EAPOL.
375 	 */
376 	m->m_flags &= ~M_80211_TX;
377 
378 	/* calculate priority so drivers can find the tx queue */
379 	/* XXX assumes an 802.3 frame */
380 	if (ieee80211_classify(ni, m))
381 		senderr(EIO);		/* XXX */
382 
383 	BPF_MTAP(ifp, m);
384 
385 	/*
386 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
387 	 * present by setting the sa_len field of the sockaddr (yes,
388 	 * this is a hack).
389 	 * NB: we assume sa_data is suitably aligned to cast.
390 	 */
391 	return vap->iv_ic->ic_raw_xmit(ni, m,
392 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
393 		dst->sa_data : NULL));
394 bad:
395 	if (m != NULL)
396 		m_freem(m);
397 	if (ni != NULL)
398 		ieee80211_free_node(ni);
399 	return error;
400 #undef senderr
401 }
402 
403 /*
404  * Set the direction field and address fields of an outgoing
405  * frame.  Note this should be called early on in constructing
406  * a frame as it sets i_fc[1]; other bits can then be or'd in.
407  */
408 static void
409 ieee80211_send_setup(
410 	struct ieee80211_node *ni,
411 	struct ieee80211_frame *wh,
412 	int type, int tid,
413 	const uint8_t sa[IEEE80211_ADDR_LEN],
414 	const uint8_t da[IEEE80211_ADDR_LEN],
415 	const uint8_t bssid[IEEE80211_ADDR_LEN])
416 {
417 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
418 
419 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
420 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
421 		struct ieee80211vap *vap = ni->ni_vap;
422 
423 		switch (vap->iv_opmode) {
424 		case IEEE80211_M_STA:
425 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
426 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
427 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
428 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
429 			break;
430 		case IEEE80211_M_IBSS:
431 		case IEEE80211_M_AHDEMO:
432 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
433 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
434 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
435 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
436 			break;
437 		case IEEE80211_M_HOSTAP:
438 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
439 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
440 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
441 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
442 			break;
443 		case IEEE80211_M_WDS:
444 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
445 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
446 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
447 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
448 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
449 			break;
450 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
451 			break;
452 		}
453 	} else {
454 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
455 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
456 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
457 		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
458 	}
459 	*(uint16_t *)&wh->i_dur[0] = 0;
460 	*(uint16_t *)&wh->i_seq[0] =
461 	    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
462 	ni->ni_txseqs[tid]++;
463 #undef WH4
464 }
465 
466 /*
467  * Send a management frame to the specified node.  The node pointer
468  * must have a reference as the pointer will be passed to the driver
469  * and potentially held for a long time.  If the frame is successfully
470  * dispatched to the driver, then it is responsible for freeing the
471  * reference (and potentially free'ing up any associated storage);
472  * otherwise deal with reclaiming any reference (on error).
473  */
474 int
475 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
476 	struct ieee80211_bpf_params *params)
477 {
478 	struct ieee80211vap *vap = ni->ni_vap;
479 	struct ieee80211com *ic = ni->ni_ic;
480 	struct ieee80211_frame *wh;
481 
482 	KASSERT(ni != NULL, ("null node"));
483 
484 	if (vap->iv_state == IEEE80211_S_CAC) {
485 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
486 		    ni, "block %s frame in CAC state",
487 			ieee80211_mgt_subtype_name[
488 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
489 				IEEE80211_FC0_SUBTYPE_SHIFT]);
490 		vap->iv_stats.is_tx_badstate++;
491 		ieee80211_free_node(ni);
492 		m_freem(m);
493 		return EIO;		/* XXX */
494 	}
495 
496 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
497 	if (m == NULL) {
498 		ieee80211_free_node(ni);
499 		return ENOMEM;
500 	}
501 
502 	wh = mtod(m, struct ieee80211_frame *);
503 	ieee80211_send_setup(ni, wh,
504 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
505 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
506 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
507 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
508 		    "encrypting frame (%s)", __func__);
509 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
510 	}
511 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
512 
513 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
514 	M_WME_SETAC(m, params->ibp_pri);
515 
516 #ifdef IEEE80211_DEBUG
517 	/* avoid printing too many frames */
518 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
519 	    ieee80211_msg_dumppkts(vap)) {
520 		printf("[%s] send %s on channel %u\n",
521 		    ether_sprintf(wh->i_addr1),
522 		    ieee80211_mgt_subtype_name[
523 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
524 				IEEE80211_FC0_SUBTYPE_SHIFT],
525 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
526 	}
527 #endif
528 	IEEE80211_NODE_STAT(ni, tx_mgmt);
529 
530 	return ic->ic_raw_xmit(ni, m, params);
531 }
532 
533 /*
534  * Send a null data frame to the specified node.  If the station
535  * is setup for QoS then a QoS Null Data frame is constructed.
536  * If this is a WDS station then a 4-address frame is constructed.
537  *
538  * NB: the caller is assumed to have setup a node reference
539  *     for use; this is necessary to deal with a race condition
540  *     when probing for inactive stations.  Like ieee80211_mgmt_output
541  *     we must cleanup any node reference on error;  however we
542  *     can safely just unref it as we know it will never be the
543  *     last reference to the node.
544  */
545 int
546 ieee80211_send_nulldata(struct ieee80211_node *ni)
547 {
548 	struct ieee80211vap *vap = ni->ni_vap;
549 	struct ieee80211com *ic = ni->ni_ic;
550 	struct mbuf *m;
551 	struct ieee80211_frame *wh;
552 	int hdrlen;
553 	uint8_t *frm;
554 
555 	if (vap->iv_state == IEEE80211_S_CAC) {
556 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
557 		    ni, "block %s frame in CAC state", "null data");
558 		ieee80211_unref_node(&ni);
559 		vap->iv_stats.is_tx_badstate++;
560 		return EIO;		/* XXX */
561 	}
562 
563 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
564 		hdrlen = sizeof(struct ieee80211_qosframe);
565 	else
566 		hdrlen = sizeof(struct ieee80211_frame);
567 	/* NB: only WDS vap's get 4-address frames */
568 	if (vap->iv_opmode == IEEE80211_M_WDS)
569 		hdrlen += IEEE80211_ADDR_LEN;
570 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
571 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
572 
573 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
574 	if (m == NULL) {
575 		/* XXX debug msg */
576 		ieee80211_unref_node(&ni);
577 		vap->iv_stats.is_tx_nobuf++;
578 		return ENOMEM;
579 	}
580 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
581 	    ("leading space %zd", M_LEADINGSPACE(m)));
582 	M_PREPEND(m, hdrlen, M_DONTWAIT);
583 	if (m == NULL) {
584 		/* NB: cannot happen */
585 		ieee80211_free_node(ni);
586 		return ENOMEM;
587 	}
588 
589 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
590 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
591 		const int tid = WME_AC_TO_TID(WME_AC_BE);
592 		uint8_t *qos;
593 
594 		ieee80211_send_setup(ni, wh,
595 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
596 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
597 
598 		if (vap->iv_opmode == IEEE80211_M_WDS)
599 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
600 		else
601 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
602 		qos[0] = tid & IEEE80211_QOS_TID;
603 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
604 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
605 		qos[1] = 0;
606 	} else {
607 		ieee80211_send_setup(ni, wh,
608 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
609 		    IEEE80211_NONQOS_TID,
610 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
611 	}
612 	if (vap->iv_opmode != IEEE80211_M_WDS) {
613 		/* NB: power management bit is never sent by an AP */
614 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
615 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
616 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
617 	}
618 	m->m_len = m->m_pkthdr.len = hdrlen;
619 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
620 
621 	M_WME_SETAC(m, WME_AC_BE);
622 
623 	IEEE80211_NODE_STAT(ni, tx_data);
624 
625 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
626 	    "send %snull data frame on channel %u, pwr mgt %s",
627 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
628 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
629 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
630 
631 	return ic->ic_raw_xmit(ni, m, NULL);
632 }
633 
634 /*
635  * Assign priority to a frame based on any vlan tag assigned
636  * to the station and/or any Diffserv setting in an IP header.
637  * Finally, if an ACM policy is setup (in station mode) it's
638  * applied.
639  */
640 int
641 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
642 {
643 	const struct ether_header *eh = mtod(m, struct ether_header *);
644 	int v_wme_ac, d_wme_ac, ac;
645 
646 	/*
647 	 * Always promote PAE/EAPOL frames to high priority.
648 	 */
649 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
650 		/* NB: mark so others don't need to check header */
651 		m->m_flags |= M_EAPOL;
652 		ac = WME_AC_VO;
653 		goto done;
654 	}
655 	/*
656 	 * Non-qos traffic goes to BE.
657 	 */
658 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
659 		ac = WME_AC_BE;
660 		goto done;
661 	}
662 
663 	/*
664 	 * If node has a vlan tag then all traffic
665 	 * to it must have a matching tag.
666 	 */
667 	v_wme_ac = 0;
668 	if (ni->ni_vlan != 0) {
669 		 if ((m->m_flags & M_VLANTAG) == 0) {
670 			IEEE80211_NODE_STAT(ni, tx_novlantag);
671 			return 1;
672 		}
673 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
674 		    EVL_VLANOFTAG(ni->ni_vlan)) {
675 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
676 			return 1;
677 		}
678 		/* map vlan priority to AC */
679 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
680 	}
681 
682 #ifdef INET
683 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
684 		uint8_t tos;
685 		/*
686 		 * IP frame, map the DSCP bits from the TOS field.
687 		 */
688 		/* XXX m_copydata may be too slow for fast path */
689 		/* NB: ip header may not be in first mbuf */
690 		m_copydata(m, sizeof(struct ether_header) +
691 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
692 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
693 		d_wme_ac = TID_TO_WME_AC(tos);
694 	} else {
695 #endif /* INET */
696 		d_wme_ac = WME_AC_BE;
697 #ifdef INET
698 	}
699 #endif
700 	/*
701 	 * Use highest priority AC.
702 	 */
703 	if (v_wme_ac > d_wme_ac)
704 		ac = v_wme_ac;
705 	else
706 		ac = d_wme_ac;
707 
708 	/*
709 	 * Apply ACM policy.
710 	 */
711 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
712 		static const int acmap[4] = {
713 			WME_AC_BK,	/* WME_AC_BE */
714 			WME_AC_BK,	/* WME_AC_BK */
715 			WME_AC_BE,	/* WME_AC_VI */
716 			WME_AC_VI,	/* WME_AC_VO */
717 		};
718 		struct ieee80211com *ic = ni->ni_ic;
719 
720 		while (ac != WME_AC_BK &&
721 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
722 			ac = acmap[ac];
723 	}
724 done:
725 	M_WME_SETAC(m, ac);
726 	return 0;
727 }
728 
729 /*
730  * Insure there is sufficient contiguous space to encapsulate the
731  * 802.11 data frame.  If room isn't already there, arrange for it.
732  * Drivers and cipher modules assume we have done the necessary work
733  * and fail rudely if they don't find the space they need.
734  */
735 static struct mbuf *
736 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
737 	struct ieee80211_key *key, struct mbuf *m)
738 {
739 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
740 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
741 
742 	if (key != NULL) {
743 		/* XXX belongs in crypto code? */
744 		needed_space += key->wk_cipher->ic_header;
745 		/* XXX frags */
746 		/*
747 		 * When crypto is being done in the host we must insure
748 		 * the data are writable for the cipher routines; clone
749 		 * a writable mbuf chain.
750 		 * XXX handle SWMIC specially
751 		 */
752 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
753 			m = m_unshare(m, M_NOWAIT);
754 			if (m == NULL) {
755 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
756 				    "%s: cannot get writable mbuf\n", __func__);
757 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
758 				return NULL;
759 			}
760 		}
761 	}
762 	/*
763 	 * We know we are called just before stripping an Ethernet
764 	 * header and prepending an LLC header.  This means we know
765 	 * there will be
766 	 *	sizeof(struct ether_header) - sizeof(struct llc)
767 	 * bytes recovered to which we need additional space for the
768 	 * 802.11 header and any crypto header.
769 	 */
770 	/* XXX check trailing space and copy instead? */
771 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
772 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
773 		if (n == NULL) {
774 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
775 			    "%s: cannot expand storage\n", __func__);
776 			vap->iv_stats.is_tx_nobuf++;
777 			m_freem(m);
778 			return NULL;
779 		}
780 		KASSERT(needed_space <= MHLEN,
781 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
782 		/*
783 		 * Setup new mbuf to have leading space to prepend the
784 		 * 802.11 header and any crypto header bits that are
785 		 * required (the latter are added when the driver calls
786 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
787 		 */
788 		/* NB: must be first 'cuz it clobbers m_data */
789 		m_move_pkthdr(n, m);
790 		n->m_len = 0;			/* NB: m_gethdr does not set */
791 		n->m_data += needed_space;
792 		/*
793 		 * Pull up Ethernet header to create the expected layout.
794 		 * We could use m_pullup but that's overkill (i.e. we don't
795 		 * need the actual data) and it cannot fail so do it inline
796 		 * for speed.
797 		 */
798 		/* NB: struct ether_header is known to be contiguous */
799 		n->m_len += sizeof(struct ether_header);
800 		m->m_len -= sizeof(struct ether_header);
801 		m->m_data += sizeof(struct ether_header);
802 		/*
803 		 * Replace the head of the chain.
804 		 */
805 		n->m_next = m;
806 		m = n;
807 	}
808 	return m;
809 #undef TO_BE_RECLAIMED
810 }
811 
812 /*
813  * Return the transmit key to use in sending a unicast frame.
814  * If a unicast key is set we use that.  When no unicast key is set
815  * we fall back to the default transmit key.
816  */
817 static __inline struct ieee80211_key *
818 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
819 	struct ieee80211_node *ni)
820 {
821 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
822 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
823 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
824 			return NULL;
825 		return &vap->iv_nw_keys[vap->iv_def_txkey];
826 	} else {
827 		return &ni->ni_ucastkey;
828 	}
829 }
830 
831 /*
832  * Return the transmit key to use in sending a multicast frame.
833  * Multicast traffic always uses the group key which is installed as
834  * the default tx key.
835  */
836 static __inline struct ieee80211_key *
837 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
838 	struct ieee80211_node *ni)
839 {
840 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
841 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
842 		return NULL;
843 	return &vap->iv_nw_keys[vap->iv_def_txkey];
844 }
845 
846 /*
847  * Encapsulate an outbound data frame.  The mbuf chain is updated.
848  * If an error is encountered NULL is returned.  The caller is required
849  * to provide a node reference and pullup the ethernet header in the
850  * first mbuf.
851  *
852  * NB: Packet is assumed to be processed by ieee80211_classify which
853  *     marked EAPOL frames w/ M_EAPOL.
854  */
855 struct mbuf *
856 ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
857 {
858 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
859 	struct ieee80211vap *vap = ni->ni_vap;
860 	struct ieee80211com *ic = ni->ni_ic;
861 	struct ether_header eh;
862 	struct ieee80211_frame *wh;
863 	struct ieee80211_key *key;
864 	struct llc *llc;
865 	int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
866 
867 	/*
868 	 * Copy existing Ethernet header to a safe place.  The
869 	 * rest of the code assumes it's ok to strip it when
870 	 * reorganizing state for the final encapsulation.
871 	 */
872 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
873 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
874 
875 	/*
876 	 * Insure space for additional headers.  First identify
877 	 * transmit key to use in calculating any buffer adjustments
878 	 * required.  This is also used below to do privacy
879 	 * encapsulation work.  Then calculate the 802.11 header
880 	 * size and any padding required by the driver.
881 	 *
882 	 * Note key may be NULL if we fall back to the default
883 	 * transmit key and that is not set.  In that case the
884 	 * buffer may not be expanded as needed by the cipher
885 	 * routines, but they will/should discard it.
886 	 */
887 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
888 		if (vap->iv_opmode == IEEE80211_M_STA ||
889 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
890 		    (vap->iv_opmode == IEEE80211_M_WDS &&
891 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
892 			key = ieee80211_crypto_getucastkey(vap, ni);
893 		else
894 			key = ieee80211_crypto_getmcastkey(vap, ni);
895 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
896 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
897 			    eh.ether_dhost,
898 			    "no default transmit key (%s) deftxkey %u",
899 			    __func__, vap->iv_def_txkey);
900 			vap->iv_stats.is_tx_nodefkey++;
901 			goto bad;
902 		}
903 	} else
904 		key = NULL;
905 	/*
906 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
907 	 * frames so suppress use.  This may be an issue if other
908 	 * ap's require all data frames to be QoS-encapsulated
909 	 * once negotiated in which case we'll need to make this
910 	 * configurable.
911 	 */
912 	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
913 		 (m->m_flags & M_EAPOL) == 0;
914 	if (addqos)
915 		hdrsize = sizeof(struct ieee80211_qosframe);
916 	else
917 		hdrsize = sizeof(struct ieee80211_frame);
918 	/*
919 	 * 4-address frames need to be generated for:
920 	 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
921 	 * o packets relayed by a station operating with dynamic WDS
922 	 *   (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
923 	 */
924 	is4addr = (m->m_flags & M_WDS) ||
925 	    vap->iv_opmode == IEEE80211_M_WDS ||	/* XXX redundant? */
926 	    (vap->iv_opmode == IEEE80211_M_STA &&
927 	     (vap->iv_flags & IEEE80211_F_DWDS) &&
928 	     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
929 	if (is4addr)
930 		hdrsize += IEEE80211_ADDR_LEN;
931 	/*
932 	 * Honor driver DATAPAD requirement.
933 	 */
934 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
935 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
936 	else
937 		hdrspace = hdrsize;
938 
939 	if ((isff = m->m_flags & M_FF) != 0) {
940 		struct mbuf *m2;
941 		struct ether_header eh2;
942 
943 		/*
944 		 * Fast frame encapsulation.  There must be two packets
945 		 * chained with m_nextpkt.  We do header adjustment for
946 		 * each, add the tunnel encapsulation, and then concatenate
947 		 * the mbuf chains to form a single frame for transmission.
948 		 */
949 		m2 = m->m_nextpkt;
950 		if (m2 == NULL) {
951 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
952 				"%s: only one frame\n", __func__);
953 			goto bad;
954 		}
955 		m->m_nextpkt = NULL;
956 		/*
957 		 * Include fast frame headers in adjusting header
958 		 * layout; this allocates space according to what
959 		 * ieee80211_encap_fastframe will do.
960 		 */
961 		m = ieee80211_mbuf_adjust(vap,
962 			hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
963 			    sizeof(struct ether_header),
964 			key, m);
965 		if (m == NULL) {
966 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
967 			m_freem(m2);
968 			goto bad;
969 		}
970 		/*
971 		 * Copy second frame's Ethernet header out of line
972 		 * and adjust for encapsulation headers.  Note that
973 		 * we make room for padding in case there isn't room
974 		 * at the end of first frame.
975 		 */
976 		KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
977 		ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
978 		m2 = ieee80211_mbuf_adjust(vap,
979 			ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
980 			NULL, m2);
981 		if (m2 == NULL) {
982 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
983 			goto bad;
984 		}
985 		m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
986 		if (m == NULL)
987 			goto bad;
988 	} else {
989 		/*
990 		 * Normal frame.
991 		 */
992 		m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
993 		if (m == NULL) {
994 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
995 			goto bad;
996 		}
997 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
998 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
999 		llc = mtod(m, struct llc *);
1000 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1001 		llc->llc_control = LLC_UI;
1002 		llc->llc_snap.org_code[0] = 0;
1003 		llc->llc_snap.org_code[1] = 0;
1004 		llc->llc_snap.org_code[2] = 0;
1005 		llc->llc_snap.ether_type = eh.ether_type;
1006 	}
1007 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1008 
1009 	M_PREPEND(m, hdrspace, M_DONTWAIT);
1010 	if (m == NULL) {
1011 		vap->iv_stats.is_tx_nobuf++;
1012 		goto bad;
1013 	}
1014 	wh = mtod(m, struct ieee80211_frame *);
1015 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1016 	*(uint16_t *)wh->i_dur = 0;
1017 	if (is4addr) {
1018 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1019 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1020 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1021 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1022 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1023 	} else switch (vap->iv_opmode) {
1024 	case IEEE80211_M_STA:
1025 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1026 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1027 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1028 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1029 		break;
1030 	case IEEE80211_M_IBSS:
1031 	case IEEE80211_M_AHDEMO:
1032 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1033 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1034 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1035 		/*
1036 		 * NB: always use the bssid from iv_bss as the
1037 		 *     neighbor's may be stale after an ibss merge
1038 		 */
1039 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1040 		break;
1041 	case IEEE80211_M_HOSTAP:
1042 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1043 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1044 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1045 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1046 		break;
1047 	case IEEE80211_M_MONITOR:
1048 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1049 		goto bad;
1050 	}
1051 	if (m->m_flags & M_MORE_DATA)
1052 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1053 	if (addqos) {
1054 		uint8_t *qos;
1055 		int ac, tid;
1056 
1057 		if (is4addr) {
1058 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1059 		} else
1060 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1061 		ac = M_WME_GETAC(m);
1062 		/* map from access class/queue to 11e header priorty value */
1063 		tid = WME_AC_TO_TID(ac);
1064 		qos[0] = tid & IEEE80211_QOS_TID;
1065 		/*
1066 		 * Check if A-MPDU tx aggregation is setup or if we
1067 		 * should try to enable it.  The sta must be associated
1068 		 * with HT and A-MPDU enabled for use.  When the policy
1069 		 * routine decides we should enable A-MPDU we issue an
1070 		 * ADDBA request and wait for a reply.  The frame being
1071 		 * encapsulated will go out w/o using A-MPDU, or possibly
1072 		 * it might be collected by the driver and held/retransmit.
1073 		 * The default ic_ampdu_enable routine handles staggering
1074 		 * ADDBA requests in case the receiver NAK's us or we are
1075 		 * otherwise unable to establish a BA stream.
1076 		 */
1077 		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1078 		    (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1079 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1080 
1081 			ieee80211_txampdu_count_packet(tap);
1082 			if (IEEE80211_AMPDU_RUNNING(tap)) {
1083 				/*
1084 				 * Operational, mark frame for aggregation.
1085 				 *
1086 				 * NB: We support only immediate BA's for
1087 				 * AMPDU which means we set the QoS control
1088 				 * field to "normal ack" (0) to get "implicit
1089 				 * block ack" behaviour.
1090 				 */
1091 				m->m_flags |= M_AMPDU_MPDU;
1092 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1093 			    ic->ic_ampdu_enable(ni, tap)) {
1094 				/*
1095 				 * Not negotiated yet, request service.
1096 				 */
1097 				ieee80211_ampdu_request(ni, tap);
1098 			}
1099 		}
1100 		/* XXX works even when BA marked above */
1101 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1102 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1103 		qos[1] = 0;
1104 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1105 
1106 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1107 			/*
1108 			 * NB: don't assign a sequence # to potential
1109 			 * aggregates; we expect this happens at the
1110 			 * point the frame comes off any aggregation q
1111 			 * as otherwise we may introduce holes in the
1112 			 * BA sequence space and/or make window accouting
1113 			 * more difficult.
1114 			 *
1115 			 * XXX may want to control this with a driver
1116 			 * capability; this may also change when we pull
1117 			 * aggregation up into net80211
1118 			 */
1119 			*(uint16_t *)wh->i_seq =
1120 			    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1121 			ni->ni_txseqs[tid]++;
1122 		}
1123 	} else {
1124 		*(uint16_t *)wh->i_seq =
1125 		    htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1126 		ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1127 	}
1128 	/* check if xmit fragmentation is required */
1129 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1130 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1131 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1132 	    !isff);		/* NB: don't fragment ff's */
1133 	if (key != NULL) {
1134 		/*
1135 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1136 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1137 		 */
1138 		if ((m->m_flags & M_EAPOL) == 0 ||
1139 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1140 		     (vap->iv_opmode == IEEE80211_M_STA ?
1141 		      !IEEE80211_KEY_UNDEFINED(key) :
1142 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1143 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1144 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1145 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1146 				    eh.ether_dhost,
1147 				    "%s", "enmic failed, discard frame");
1148 				vap->iv_stats.is_crypto_enmicfail++;
1149 				goto bad;
1150 			}
1151 		}
1152 	}
1153 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1154 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1155 		goto bad;
1156 
1157 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1158 
1159 	IEEE80211_NODE_STAT(ni, tx_data);
1160 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1161 		IEEE80211_NODE_STAT(ni, tx_mcast);
1162 	else
1163 		IEEE80211_NODE_STAT(ni, tx_ucast);
1164 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1165 
1166 	/* XXX fragmented frames not handled */
1167 	if (bpf_peers_present(vap->iv_rawbpf))
1168 		bpf_mtap(vap->iv_rawbpf, m);
1169 
1170 	return m;
1171 bad:
1172 	if (m != NULL)
1173 		m_freem(m);
1174 	return NULL;
1175 #undef WH4
1176 }
1177 
1178 /*
1179  * Do Ethernet-LLC encapsulation for each payload in a fast frame
1180  * tunnel encapsulation.  The frame is assumed to have an Ethernet
1181  * header at the front that must be stripped before prepending the
1182  * LLC followed by the Ethernet header passed in (with an Ethernet
1183  * type that specifies the payload size).
1184  */
1185 static struct mbuf *
1186 ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1187 	const struct ether_header *eh)
1188 {
1189 	struct llc *llc;
1190 	uint16_t payload;
1191 
1192 	/* XXX optimize by combining m_adj+M_PREPEND */
1193 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1194 	llc = mtod(m, struct llc *);
1195 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1196 	llc->llc_control = LLC_UI;
1197 	llc->llc_snap.org_code[0] = 0;
1198 	llc->llc_snap.org_code[1] = 0;
1199 	llc->llc_snap.org_code[2] = 0;
1200 	llc->llc_snap.ether_type = eh->ether_type;
1201 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
1202 
1203 	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1204 	if (m == NULL) {		/* XXX cannot happen */
1205 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1206 			"%s: no space for ether_header\n", __func__);
1207 		vap->iv_stats.is_tx_nobuf++;
1208 		return NULL;
1209 	}
1210 	ETHER_HEADER_COPY(mtod(m, void *), eh);
1211 	mtod(m, struct ether_header *)->ether_type = htons(payload);
1212 	return m;
1213 }
1214 
1215 /*
1216  * Do fast frame tunnel encapsulation.  The two frames and
1217  * Ethernet headers are supplied.  The caller is assumed to
1218  * have arrange for space in the mbuf chains for encapsulating
1219  * headers (to avoid major mbuf fragmentation).
1220  *
1221  * The encapsulated frame is returned or NULL if there is a
1222  * problem (should not happen).
1223  */
1224 static struct mbuf *
1225 ieee80211_encap_fastframe(struct ieee80211vap *vap,
1226 	struct mbuf *m1, const struct ether_header *eh1,
1227 	struct mbuf *m2, const struct ether_header *eh2)
1228 {
1229 	struct llc *llc;
1230 	struct mbuf *m;
1231 	int pad;
1232 
1233 	/*
1234 	 * First, each frame gets a standard encapsulation.
1235 	 */
1236 	m1 = ieee80211_encap1(vap, m1, eh1);
1237 	if (m1 == NULL) {
1238 		m_freem(m2);
1239 		return NULL;
1240 	}
1241 	m2 = ieee80211_encap1(vap, m2, eh2);
1242 	if (m2 == NULL) {
1243 		m_freem(m1);
1244 		return NULL;
1245 	}
1246 
1247 	/*
1248 	 * Pad leading frame to a 4-byte boundary.  If there
1249 	 * is space at the end of the first frame, put it
1250 	 * there; otherwise prepend to the front of the second
1251 	 * frame.  We know doing the second will always work
1252 	 * because we reserve space above.  We prefer appending
1253 	 * as this typically has better DMA alignment properties.
1254 	 */
1255 	for (m = m1; m->m_next != NULL; m = m->m_next)
1256 		;
1257 	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1258 	if (pad) {
1259 		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
1260 			m2->m_data -= pad;
1261 			m2->m_len += pad;
1262 			m2->m_pkthdr.len += pad;
1263 		} else {				/* append to first */
1264 			m->m_len += pad;
1265 			m1->m_pkthdr.len += pad;
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * Now, stick 'em together and prepend the tunnel headers;
1271 	 * first the Atheros tunnel header (all zero for now) and
1272 	 * then a special fast frame LLC.
1273 	 *
1274 	 * XXX optimize by prepending together
1275 	 */
1276 	m->m_next = m2;			/* NB: last mbuf from above */
1277 	m1->m_pkthdr.len += m2->m_pkthdr.len;
1278 	M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1279 	if (m1 == NULL) {		/* XXX cannot happen */
1280 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1281 			"%s: no space for tunnel header\n", __func__);
1282 		vap->iv_stats.is_tx_nobuf++;
1283 		return NULL;
1284 	}
1285 	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1286 
1287 	M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1288 	if (m1 == NULL) {		/* XXX cannot happen */
1289 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1290 			"%s: no space for llc header\n", __func__);
1291 		vap->iv_stats.is_tx_nobuf++;
1292 		return NULL;
1293 	}
1294 	llc = mtod(m1, struct llc *);
1295 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1296 	llc->llc_control = LLC_UI;
1297 	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1298 	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1299 	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1300 	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1301 
1302 	vap->iv_stats.is_ff_encap++;
1303 
1304 	return m1;
1305 }
1306 
1307 /*
1308  * Fragment the frame according to the specified mtu.
1309  * The size of the 802.11 header (w/o padding) is provided
1310  * so we don't need to recalculate it.  We create a new
1311  * mbuf for each fragment and chain it through m_nextpkt;
1312  * we might be able to optimize this by reusing the original
1313  * packet's mbufs but that is significantly more complicated.
1314  */
1315 static int
1316 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1317 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1318 {
1319 	struct ieee80211_frame *wh, *whf;
1320 	struct mbuf *m, *prev, *next;
1321 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1322 
1323 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1324 	KASSERT(m0->m_pkthdr.len > mtu,
1325 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1326 
1327 	wh = mtod(m0, struct ieee80211_frame *);
1328 	/* NB: mark the first frag; it will be propagated below */
1329 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1330 	totalhdrsize = hdrsize + ciphdrsize;
1331 	fragno = 1;
1332 	off = mtu - ciphdrsize;
1333 	remainder = m0->m_pkthdr.len - off;
1334 	prev = m0;
1335 	do {
1336 		fragsize = totalhdrsize + remainder;
1337 		if (fragsize > mtu)
1338 			fragsize = mtu;
1339 		/* XXX fragsize can be >2048! */
1340 		KASSERT(fragsize < MCLBYTES,
1341 			("fragment size %u too big!", fragsize));
1342 		if (fragsize > MHLEN)
1343 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1344 		else
1345 			m = m_gethdr(M_DONTWAIT, MT_DATA);
1346 		if (m == NULL)
1347 			goto bad;
1348 		/* leave room to prepend any cipher header */
1349 		m_align(m, fragsize - ciphdrsize);
1350 
1351 		/*
1352 		 * Form the header in the fragment.  Note that since
1353 		 * we mark the first fragment with the MORE_FRAG bit
1354 		 * it automatically is propagated to each fragment; we
1355 		 * need only clear it on the last fragment (done below).
1356 		 */
1357 		whf = mtod(m, struct ieee80211_frame *);
1358 		memcpy(whf, wh, hdrsize);
1359 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1360 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1361 				IEEE80211_SEQ_FRAG_SHIFT);
1362 		fragno++;
1363 
1364 		payload = fragsize - totalhdrsize;
1365 		/* NB: destination is known to be contiguous */
1366 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1367 		m->m_len = hdrsize + payload;
1368 		m->m_pkthdr.len = hdrsize + payload;
1369 		m->m_flags |= M_FRAG;
1370 
1371 		/* chain up the fragment */
1372 		prev->m_nextpkt = m;
1373 		prev = m;
1374 
1375 		/* deduct fragment just formed */
1376 		remainder -= payload;
1377 		off += payload;
1378 	} while (remainder != 0);
1379 
1380 	/* set the last fragment */
1381 	m->m_flags |= M_LASTFRAG;
1382 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1383 
1384 	/* strip first mbuf now that everything has been copied */
1385 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1386 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1387 
1388 	vap->iv_stats.is_tx_fragframes++;
1389 	vap->iv_stats.is_tx_frags += fragno-1;
1390 
1391 	return 1;
1392 bad:
1393 	/* reclaim fragments but leave original frame for caller to free */
1394 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1395 		next = m->m_nextpkt;
1396 		m->m_nextpkt = NULL;		/* XXX paranoid */
1397 		m_freem(m);
1398 	}
1399 	m0->m_nextpkt = NULL;
1400 	return 0;
1401 }
1402 
1403 /*
1404  * Add a supported rates element id to a frame.
1405  */
1406 static uint8_t *
1407 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1408 {
1409 	int nrates;
1410 
1411 	*frm++ = IEEE80211_ELEMID_RATES;
1412 	nrates = rs->rs_nrates;
1413 	if (nrates > IEEE80211_RATE_SIZE)
1414 		nrates = IEEE80211_RATE_SIZE;
1415 	*frm++ = nrates;
1416 	memcpy(frm, rs->rs_rates, nrates);
1417 	return frm + nrates;
1418 }
1419 
1420 /*
1421  * Add an extended supported rates element id to a frame.
1422  */
1423 static uint8_t *
1424 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1425 {
1426 	/*
1427 	 * Add an extended supported rates element if operating in 11g mode.
1428 	 */
1429 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1430 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1431 		*frm++ = IEEE80211_ELEMID_XRATES;
1432 		*frm++ = nrates;
1433 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1434 		frm += nrates;
1435 	}
1436 	return frm;
1437 }
1438 
1439 /*
1440  * Add an ssid element to a frame.
1441  */
1442 static uint8_t *
1443 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1444 {
1445 	*frm++ = IEEE80211_ELEMID_SSID;
1446 	*frm++ = len;
1447 	memcpy(frm, ssid, len);
1448 	return frm + len;
1449 }
1450 
1451 /*
1452  * Add an erp element to a frame.
1453  */
1454 static uint8_t *
1455 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1456 {
1457 	uint8_t erp;
1458 
1459 	*frm++ = IEEE80211_ELEMID_ERP;
1460 	*frm++ = 1;
1461 	erp = 0;
1462 	if (ic->ic_nonerpsta != 0)
1463 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1464 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1465 		erp |= IEEE80211_ERP_USE_PROTECTION;
1466 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1467 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1468 	*frm++ = erp;
1469 	return frm;
1470 }
1471 
1472 /*
1473  * Add a CFParams element to a frame.
1474  */
1475 static uint8_t *
1476 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1477 {
1478 #define	ADDSHORT(frm, v) do {			\
1479 	frm[0] = (v) & 0xff;			\
1480 	frm[1] = (v) >> 8;			\
1481 	frm += 2;				\
1482 } while (0)
1483 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1484 	*frm++ = 6;
1485 	*frm++ = 0;		/* CFP count */
1486 	*frm++ = 2;		/* CFP period */
1487 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1488 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1489 	return frm;
1490 #undef ADDSHORT
1491 }
1492 
1493 static __inline uint8_t *
1494 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1495 {
1496 	memcpy(frm, ie->ie_data, ie->ie_len);
1497 	return frm + ie->ie_len;
1498 }
1499 
1500 static __inline uint8_t *
1501 add_ie(uint8_t *frm, const uint8_t *ie)
1502 {
1503 	memcpy(frm, ie, 2 + ie[1]);
1504 	return frm + 2 + ie[1];
1505 }
1506 
1507 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1508 /*
1509  * Add a WME information element to a frame.
1510  */
1511 static uint8_t *
1512 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1513 {
1514 	static const struct ieee80211_wme_info info = {
1515 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1516 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1517 		.wme_oui	= { WME_OUI_BYTES },
1518 		.wme_type	= WME_OUI_TYPE,
1519 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1520 		.wme_version	= WME_VERSION,
1521 		.wme_info	= 0,
1522 	};
1523 	memcpy(frm, &info, sizeof(info));
1524 	return frm + sizeof(info);
1525 }
1526 
1527 /*
1528  * Add a WME parameters element to a frame.
1529  */
1530 static uint8_t *
1531 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1532 {
1533 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1534 #define	ADDSHORT(frm, v) do {			\
1535 	frm[0] = (v) & 0xff;			\
1536 	frm[1] = (v) >> 8;			\
1537 	frm += 2;				\
1538 } while (0)
1539 	/* NB: this works 'cuz a param has an info at the front */
1540 	static const struct ieee80211_wme_info param = {
1541 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1542 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1543 		.wme_oui	= { WME_OUI_BYTES },
1544 		.wme_type	= WME_OUI_TYPE,
1545 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1546 		.wme_version	= WME_VERSION,
1547 	};
1548 	int i;
1549 
1550 	memcpy(frm, &param, sizeof(param));
1551 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1552 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1553 	*frm++ = 0;					/* reserved field */
1554 	for (i = 0; i < WME_NUM_AC; i++) {
1555 		const struct wmeParams *ac =
1556 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1557 		*frm++ = SM(i, WME_PARAM_ACI)
1558 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1559 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1560 		       ;
1561 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1562 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1563 		       ;
1564 		ADDSHORT(frm, ac->wmep_txopLimit);
1565 	}
1566 	return frm;
1567 #undef SM
1568 #undef ADDSHORT
1569 }
1570 #undef WME_OUI_BYTES
1571 
1572 #define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
1573 /*
1574  * Add a WME information element to a frame.
1575  */
1576 static uint8_t *
1577 ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1578 {
1579 	static const struct ieee80211_ath_ie info = {
1580 		.ath_id		= IEEE80211_ELEMID_VENDOR,
1581 		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
1582 		.ath_oui	= { ATH_OUI_BYTES },
1583 		.ath_oui_type	= ATH_OUI_TYPE,
1584 		.ath_oui_subtype= ATH_OUI_SUBTYPE,
1585 		.ath_version	= ATH_OUI_VERSION,
1586 	};
1587 	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1588 
1589 	memcpy(frm, &info, sizeof(info));
1590 	ath->ath_capability = caps;
1591 	ath->ath_defkeyix[0] = (defkeyix & 0xff);
1592 	ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1593 	return frm + sizeof(info);
1594 }
1595 #undef ATH_OUI_BYTES
1596 
1597 /*
1598  * Add an 11h Power Constraint element to a frame.
1599  */
1600 static uint8_t *
1601 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1602 {
1603 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1604 	/* XXX per-vap tx power limit? */
1605 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1606 
1607 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1608 	frm[1] = 1;
1609 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1610 	return frm + 3;
1611 }
1612 
1613 /*
1614  * Add an 11h Power Capability element to a frame.
1615  */
1616 static uint8_t *
1617 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1618 {
1619 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1620 	frm[1] = 2;
1621 	frm[2] = c->ic_minpower;
1622 	frm[3] = c->ic_maxpower;
1623 	return frm + 4;
1624 }
1625 
1626 /*
1627  * Add an 11h Supported Channels element to a frame.
1628  */
1629 static uint8_t *
1630 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1631 {
1632 	static const int ielen = 26;
1633 
1634 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1635 	frm[1] = ielen;
1636 	/* XXX not correct */
1637 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1638 	return frm + 2 + ielen;
1639 }
1640 
1641 /*
1642  * Add an 11h Channel Switch Announcement element to a frame.
1643  * Note that we use the per-vap CSA count to adjust the global
1644  * counter so we can use this routine to form probe response
1645  * frames and get the current count.
1646  */
1647 static uint8_t *
1648 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1649 {
1650 	struct ieee80211com *ic = vap->iv_ic;
1651 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1652 
1653 	csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1654 	csa->csa_len = 3;
1655 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1656 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1657 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1658 	return frm + sizeof(*csa);
1659 }
1660 
1661 /*
1662  * Add an 11h country information element to a frame.
1663  */
1664 static uint8_t *
1665 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1666 {
1667 
1668 	if (ic->ic_countryie == NULL ||
1669 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1670 		/*
1671 		 * Handle lazy construction of ie.  This is done on
1672 		 * first use and after a channel change that requires
1673 		 * re-calculation.
1674 		 */
1675 		if (ic->ic_countryie != NULL)
1676 			free(ic->ic_countryie, M_80211_NODE_IE);
1677 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1678 		if (ic->ic_countryie == NULL)
1679 			return frm;
1680 		ic->ic_countryie_chan = ic->ic_bsschan;
1681 	}
1682 	return add_appie(frm, ic->ic_countryie);
1683 }
1684 
1685 /*
1686  * Send a probe request frame with the specified ssid
1687  * and any optional information element data.
1688  */
1689 int
1690 ieee80211_send_probereq(struct ieee80211_node *ni,
1691 	const uint8_t sa[IEEE80211_ADDR_LEN],
1692 	const uint8_t da[IEEE80211_ADDR_LEN],
1693 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1694 	const uint8_t *ssid, size_t ssidlen)
1695 {
1696 	struct ieee80211vap *vap = ni->ni_vap;
1697 	struct ieee80211com *ic = ni->ni_ic;
1698 	const struct ieee80211_txparam *tp;
1699 	struct ieee80211_bpf_params params;
1700 	struct ieee80211_frame *wh;
1701 	const struct ieee80211_rateset *rs;
1702 	struct mbuf *m;
1703 	uint8_t *frm;
1704 
1705 	if (vap->iv_state == IEEE80211_S_CAC) {
1706 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1707 		    "block %s frame in CAC state", "probe request");
1708 		vap->iv_stats.is_tx_badstate++;
1709 		return EIO;		/* XXX */
1710 	}
1711 
1712 	/*
1713 	 * Hold a reference on the node so it doesn't go away until after
1714 	 * the xmit is complete all the way in the driver.  On error we
1715 	 * will remove our reference.
1716 	 */
1717 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1718 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1719 		__func__, __LINE__,
1720 		ni, ether_sprintf(ni->ni_macaddr),
1721 		ieee80211_node_refcnt(ni)+1);
1722 	ieee80211_ref_node(ni);
1723 
1724 	/*
1725 	 * prreq frame format
1726 	 *	[tlv] ssid
1727 	 *	[tlv] supported rates
1728 	 *	[tlv] RSN (optional)
1729 	 *	[tlv] extended supported rates
1730 	 *	[tlv] WPA (optional)
1731 	 *	[tlv] user-specified ie's
1732 	 */
1733 	m = ieee80211_getmgtframe(&frm,
1734 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1735 	       	 2 + IEEE80211_NWID_LEN
1736 	       + 2 + IEEE80211_RATE_SIZE
1737 	       + sizeof(struct ieee80211_ie_wpa)
1738 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1739 	       + sizeof(struct ieee80211_ie_wpa)
1740 	       + (vap->iv_appie_probereq != NULL ?
1741 		   vap->iv_appie_probereq->ie_len : 0)
1742 	);
1743 	if (m == NULL) {
1744 		vap->iv_stats.is_tx_nobuf++;
1745 		ieee80211_free_node(ni);
1746 		return ENOMEM;
1747 	}
1748 
1749 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1750 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1751 	frm = ieee80211_add_rates(frm, rs);
1752 	if (vap->iv_flags & IEEE80211_F_WPA2) {
1753 		if (vap->iv_rsn_ie != NULL)
1754 			frm = add_ie(frm, vap->iv_rsn_ie);
1755 		/* XXX else complain? */
1756 	}
1757 	frm = ieee80211_add_xrates(frm, rs);
1758 	if (vap->iv_flags & IEEE80211_F_WPA1) {
1759 		if (vap->iv_wpa_ie != NULL)
1760 			frm = add_ie(frm, vap->iv_wpa_ie);
1761 		/* XXX else complain? */
1762 	}
1763 	if (vap->iv_appie_probereq != NULL)
1764 		frm = add_appie(frm, vap->iv_appie_probereq);
1765 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1766 
1767 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1768 	    ("leading space %zd", M_LEADINGSPACE(m)));
1769 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1770 	if (m == NULL) {
1771 		/* NB: cannot happen */
1772 		ieee80211_free_node(ni);
1773 		return ENOMEM;
1774 	}
1775 
1776 	wh = mtod(m, struct ieee80211_frame *);
1777 	ieee80211_send_setup(ni, wh,
1778 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1779 	     IEEE80211_NONQOS_TID, sa, da, bssid);
1780 	/* XXX power management? */
1781 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1782 
1783 	M_WME_SETAC(m, WME_AC_BE);
1784 
1785 	IEEE80211_NODE_STAT(ni, tx_probereq);
1786 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1787 
1788 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1789 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1790 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1791 	    ssidlen, ssid);
1792 
1793 	memset(&params, 0, sizeof(params));
1794 	params.ibp_pri = M_WME_GETAC(m);
1795 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1796 	params.ibp_rate0 = tp->mgmtrate;
1797 	if (IEEE80211_IS_MULTICAST(da)) {
1798 		params.ibp_flags |= IEEE80211_BPF_NOACK;
1799 		params.ibp_try0 = 1;
1800 	} else
1801 		params.ibp_try0 = tp->maxretry;
1802 	params.ibp_power = ni->ni_txpower;
1803 	return ic->ic_raw_xmit(ni, m, &params);
1804 }
1805 
1806 /*
1807  * Calculate capability information for mgt frames.
1808  */
1809 static uint16_t
1810 getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1811 {
1812 	struct ieee80211com *ic = vap->iv_ic;
1813 	uint16_t capinfo;
1814 
1815 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1816 
1817 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1818 		capinfo = IEEE80211_CAPINFO_ESS;
1819 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1820 		capinfo = IEEE80211_CAPINFO_IBSS;
1821 	else
1822 		capinfo = 0;
1823 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1824 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1825 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1826 	    IEEE80211_IS_CHAN_2GHZ(chan))
1827 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1828 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1829 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1830 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1831 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1832 	return capinfo;
1833 }
1834 
1835 /*
1836  * Send a management frame.  The node is for the destination (or ic_bss
1837  * when in station mode).  Nodes other than ic_bss have their reference
1838  * count bumped to reflect our use for an indeterminant time.
1839  */
1840 int
1841 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1842 {
1843 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1844 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1845 	struct ieee80211vap *vap = ni->ni_vap;
1846 	struct ieee80211com *ic = ni->ni_ic;
1847 	struct ieee80211_node *bss = vap->iv_bss;
1848 	struct ieee80211_bpf_params params;
1849 	struct mbuf *m;
1850 	uint8_t *frm;
1851 	uint16_t capinfo;
1852 	int has_challenge, is_shared_key, ret, status;
1853 
1854 	KASSERT(ni != NULL, ("null node"));
1855 
1856 	/*
1857 	 * Hold a reference on the node so it doesn't go away until after
1858 	 * the xmit is complete all the way in the driver.  On error we
1859 	 * will remove our reference.
1860 	 */
1861 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1862 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1863 		__func__, __LINE__,
1864 		ni, ether_sprintf(ni->ni_macaddr),
1865 		ieee80211_node_refcnt(ni)+1);
1866 	ieee80211_ref_node(ni);
1867 
1868 	memset(&params, 0, sizeof(params));
1869 	switch (type) {
1870 
1871 	case IEEE80211_FC0_SUBTYPE_AUTH:
1872 		status = arg >> 16;
1873 		arg &= 0xffff;
1874 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1875 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1876 		    ni->ni_challenge != NULL);
1877 
1878 		/*
1879 		 * Deduce whether we're doing open authentication or
1880 		 * shared key authentication.  We do the latter if
1881 		 * we're in the middle of a shared key authentication
1882 		 * handshake or if we're initiating an authentication
1883 		 * request and configured to use shared key.
1884 		 */
1885 		is_shared_key = has_challenge ||
1886 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1887 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1888 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1889 
1890 		m = ieee80211_getmgtframe(&frm,
1891 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1892 			  3 * sizeof(uint16_t)
1893 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1894 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1895 		);
1896 		if (m == NULL)
1897 			senderr(ENOMEM, is_tx_nobuf);
1898 
1899 		((uint16_t *)frm)[0] =
1900 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1901 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1902 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1903 		((uint16_t *)frm)[2] = htole16(status);/* status */
1904 
1905 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1906 			((uint16_t *)frm)[3] =
1907 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1908 			    IEEE80211_ELEMID_CHALLENGE);
1909 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1910 			    IEEE80211_CHALLENGE_LEN);
1911 			m->m_pkthdr.len = m->m_len =
1912 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1913 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1914 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1915 				    "request encrypt frame (%s)", __func__);
1916 				/* mark frame for encryption */
1917 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1918 			}
1919 		} else
1920 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1921 
1922 		/* XXX not right for shared key */
1923 		if (status == IEEE80211_STATUS_SUCCESS)
1924 			IEEE80211_NODE_STAT(ni, tx_auth);
1925 		else
1926 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1927 
1928 		if (vap->iv_opmode == IEEE80211_M_STA)
1929 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1930 				(void *) vap->iv_state);
1931 		break;
1932 
1933 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1934 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1935 		    "send station deauthenticate (reason %d)", arg);
1936 		m = ieee80211_getmgtframe(&frm,
1937 			ic->ic_headroom + sizeof(struct ieee80211_frame),
1938 			sizeof(uint16_t));
1939 		if (m == NULL)
1940 			senderr(ENOMEM, is_tx_nobuf);
1941 		*(uint16_t *)frm = htole16(arg);	/* reason */
1942 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1943 
1944 		IEEE80211_NODE_STAT(ni, tx_deauth);
1945 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1946 
1947 		ieee80211_node_unauthorize(ni);		/* port closed */
1948 		break;
1949 
1950 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1951 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1952 		/*
1953 		 * asreq frame format
1954 		 *	[2] capability information
1955 		 *	[2] listen interval
1956 		 *	[6*] current AP address (reassoc only)
1957 		 *	[tlv] ssid
1958 		 *	[tlv] supported rates
1959 		 *	[tlv] extended supported rates
1960 		 *	[4] power capability (optional)
1961 		 *	[28] supported channels (optional)
1962 		 *	[tlv] HT capabilities
1963 		 *	[tlv] WME (optional)
1964 		 *	[tlv] Vendor OUI HT capabilities (optional)
1965 		 *	[tlv] Atheros capabilities (if negotiated)
1966 		 *	[tlv] AppIE's (optional)
1967 		 */
1968 		m = ieee80211_getmgtframe(&frm,
1969 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1970 			 sizeof(uint16_t)
1971 		       + sizeof(uint16_t)
1972 		       + IEEE80211_ADDR_LEN
1973 		       + 2 + IEEE80211_NWID_LEN
1974 		       + 2 + IEEE80211_RATE_SIZE
1975 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1976 		       + 4
1977 		       + 2 + 26
1978 		       + sizeof(struct ieee80211_wme_info)
1979 		       + sizeof(struct ieee80211_ie_htcap)
1980 		       + 4 + sizeof(struct ieee80211_ie_htcap)
1981 		       + sizeof(struct ieee80211_ath_ie)
1982 		       + (vap->iv_appie_wpa != NULL ?
1983 				vap->iv_appie_wpa->ie_len : 0)
1984 		       + (vap->iv_appie_assocreq != NULL ?
1985 				vap->iv_appie_assocreq->ie_len : 0)
1986 		);
1987 		if (m == NULL)
1988 			senderr(ENOMEM, is_tx_nobuf);
1989 
1990 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1991 		    ("wrong mode %u", vap->iv_opmode));
1992 		capinfo = IEEE80211_CAPINFO_ESS;
1993 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
1994 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1995 		/*
1996 		 * NB: Some 11a AP's reject the request when
1997 		 *     short premable is set.
1998 		 */
1999 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2000 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2001 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2002 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2003 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2004 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2005 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2006 		    (vap->iv_flags & IEEE80211_F_DOTH))
2007 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2008 		*(uint16_t *)frm = htole16(capinfo);
2009 		frm += 2;
2010 
2011 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2012 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2013 						    bss->ni_intval));
2014 		frm += 2;
2015 
2016 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2017 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2018 			frm += IEEE80211_ADDR_LEN;
2019 		}
2020 
2021 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2022 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2023 		if (vap->iv_flags & IEEE80211_F_WPA2) {
2024 			if (vap->iv_rsn_ie != NULL)
2025 				frm = add_ie(frm, vap->iv_rsn_ie);
2026 			/* XXX else complain? */
2027 		}
2028 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2029 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2030 			frm = ieee80211_add_powercapability(frm,
2031 			    ic->ic_curchan);
2032 			frm = ieee80211_add_supportedchannels(frm, ic);
2033 		}
2034 		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2035 		    ni->ni_ies.htcap_ie != NULL &&
2036 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2037 			frm = ieee80211_add_htcap(frm, ni);
2038 		if (vap->iv_flags & IEEE80211_F_WPA1) {
2039 			if (vap->iv_wpa_ie != NULL)
2040 				frm = add_ie(frm, vap->iv_wpa_ie);
2041 			/* XXX else complain */
2042 		}
2043 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2044 		    ni->ni_ies.wme_ie != NULL)
2045 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2046 		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2047 		    ni->ni_ies.htcap_ie != NULL &&
2048 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2049 			frm = ieee80211_add_htcap_vendor(frm, ni);
2050 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2051 			frm = ieee80211_add_ath(frm,
2052 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2053 				(vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2054 				ni->ni_authmode != IEEE80211_AUTH_8021X &&
2055 				vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
2056 				vap->iv_def_txkey : 0x7fff);
2057 		if (vap->iv_appie_assocreq != NULL)
2058 			frm = add_appie(frm, vap->iv_appie_assocreq);
2059 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2060 
2061 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2062 			(void *) vap->iv_state);
2063 		break;
2064 
2065 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2066 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2067 		/*
2068 		 * asresp frame format
2069 		 *	[2] capability information
2070 		 *	[2] status
2071 		 *	[2] association ID
2072 		 *	[tlv] supported rates
2073 		 *	[tlv] extended supported rates
2074 		 *	[tlv] HT capabilities (standard, if STA enabled)
2075 		 *	[tlv] HT information (standard, if STA enabled)
2076 		 *	[tlv] WME (if configured and STA enabled)
2077 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2078 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2079 		 *	[tlv] Atheros capabilities (if STA enabled)
2080 		 *	[tlv] AppIE's (optional)
2081 		 */
2082 		m = ieee80211_getmgtframe(&frm,
2083 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2084 			 sizeof(uint16_t)
2085 		       + sizeof(uint16_t)
2086 		       + sizeof(uint16_t)
2087 		       + 2 + IEEE80211_RATE_SIZE
2088 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2089 		       + sizeof(struct ieee80211_ie_htcap) + 4
2090 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2091 		       + sizeof(struct ieee80211_wme_param)
2092 		       + sizeof(struct ieee80211_ath_ie)
2093 		       + (vap->iv_appie_assocresp != NULL ?
2094 				vap->iv_appie_assocresp->ie_len : 0)
2095 		);
2096 		if (m == NULL)
2097 			senderr(ENOMEM, is_tx_nobuf);
2098 
2099 		capinfo = getcapinfo(vap, bss->ni_chan);
2100 		*(uint16_t *)frm = htole16(capinfo);
2101 		frm += 2;
2102 
2103 		*(uint16_t *)frm = htole16(arg);	/* status */
2104 		frm += 2;
2105 
2106 		if (arg == IEEE80211_STATUS_SUCCESS) {
2107 			*(uint16_t *)frm = htole16(ni->ni_associd);
2108 			IEEE80211_NODE_STAT(ni, tx_assoc);
2109 		} else
2110 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2111 		frm += 2;
2112 
2113 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2114 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2115 		/* NB: respond according to what we received */
2116 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2117 			frm = ieee80211_add_htcap(frm, ni);
2118 			frm = ieee80211_add_htinfo(frm, ni);
2119 		}
2120 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2121 		    ni->ni_ies.wme_ie != NULL)
2122 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2123 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2124 			frm = ieee80211_add_htcap_vendor(frm, ni);
2125 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2126 		}
2127 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2128 			frm = ieee80211_add_ath(frm,
2129 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2130 				ni->ni_ath_defkeyix);
2131 		if (vap->iv_appie_assocresp != NULL)
2132 			frm = add_appie(frm, vap->iv_appie_assocresp);
2133 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2134 		break;
2135 
2136 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2137 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2138 		    "send station disassociate (reason %d)", arg);
2139 		m = ieee80211_getmgtframe(&frm,
2140 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2141 			sizeof(uint16_t));
2142 		if (m == NULL)
2143 			senderr(ENOMEM, is_tx_nobuf);
2144 		*(uint16_t *)frm = htole16(arg);	/* reason */
2145 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2146 
2147 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2148 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2149 		break;
2150 
2151 	default:
2152 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2153 		    "invalid mgmt frame type %u", type);
2154 		senderr(EINVAL, is_tx_unknownmgt);
2155 		/* NOTREACHED */
2156 	}
2157 
2158 	/* NB: force non-ProbeResp frames to the highest queue */
2159 	params.ibp_pri = WME_AC_VO;
2160 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2161 	/* NB: we know all frames are unicast */
2162 	params.ibp_try0 = bss->ni_txparms->maxretry;
2163 	params.ibp_power = bss->ni_txpower;
2164 	return ieee80211_mgmt_output(ni, m, type, &params);
2165 bad:
2166 	ieee80211_free_node(ni);
2167 	return ret;
2168 #undef senderr
2169 #undef HTFLAGS
2170 }
2171 
2172 /*
2173  * Return an mbuf with a probe response frame in it.
2174  * Space is left to prepend and 802.11 header at the
2175  * front but it's left to the caller to fill in.
2176  */
2177 struct mbuf *
2178 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2179 {
2180 	struct ieee80211vap *vap = bss->ni_vap;
2181 	struct ieee80211com *ic = bss->ni_ic;
2182 	const struct ieee80211_rateset *rs;
2183 	struct mbuf *m;
2184 	uint16_t capinfo;
2185 	uint8_t *frm;
2186 
2187 	/*
2188 	 * probe response frame format
2189 	 *	[8] time stamp
2190 	 *	[2] beacon interval
2191 	 *	[2] cabability information
2192 	 *	[tlv] ssid
2193 	 *	[tlv] supported rates
2194 	 *	[tlv] parameter set (FH/DS)
2195 	 *	[tlv] parameter set (IBSS)
2196 	 *	[tlv] country (optional)
2197 	 *	[3] power control (optional)
2198 	 *	[5] channel switch announcement (CSA) (optional)
2199 	 *	[tlv] extended rate phy (ERP)
2200 	 *	[tlv] extended supported rates
2201 	 *	[tlv] RSN (optional)
2202 	 *	[tlv] HT capabilities
2203 	 *	[tlv] HT information
2204 	 *	[tlv] WPA (optional)
2205 	 *	[tlv] WME (optional)
2206 	 *	[tlv] Vendor OUI HT capabilities (optional)
2207 	 *	[tlv] Vendor OUI HT information (optional)
2208 	 *	[tlv] Atheros capabilities
2209 	 *	[tlv] AppIE's (optional)
2210 	 */
2211 	m = ieee80211_getmgtframe(&frm,
2212 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2213 		 8
2214 	       + sizeof(uint16_t)
2215 	       + sizeof(uint16_t)
2216 	       + 2 + IEEE80211_NWID_LEN
2217 	       + 2 + IEEE80211_RATE_SIZE
2218 	       + 7	/* max(7,3) */
2219 	       + IEEE80211_COUNTRY_MAX_SIZE
2220 	       + 3
2221 	       + sizeof(struct ieee80211_csa_ie)
2222 	       + 3
2223 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2224 	       + sizeof(struct ieee80211_ie_wpa)
2225 	       + sizeof(struct ieee80211_ie_htcap)
2226 	       + sizeof(struct ieee80211_ie_htinfo)
2227 	       + sizeof(struct ieee80211_ie_wpa)
2228 	       + sizeof(struct ieee80211_wme_param)
2229 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2230 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2231 	       + sizeof(struct ieee80211_ath_ie)
2232 	       + (vap->iv_appie_proberesp != NULL ?
2233 			vap->iv_appie_proberesp->ie_len : 0)
2234 	);
2235 	if (m == NULL) {
2236 		vap->iv_stats.is_tx_nobuf++;
2237 		return NULL;
2238 	}
2239 
2240 	memset(frm, 0, 8);	/* timestamp should be filled later */
2241 	frm += 8;
2242 	*(uint16_t *)frm = htole16(bss->ni_intval);
2243 	frm += 2;
2244 	capinfo = getcapinfo(vap, bss->ni_chan);
2245 	*(uint16_t *)frm = htole16(capinfo);
2246 	frm += 2;
2247 
2248 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2249 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2250 	frm = ieee80211_add_rates(frm, rs);
2251 
2252 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2253 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2254 		*frm++ = 5;
2255 		*frm++ = bss->ni_fhdwell & 0x00ff;
2256 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2257 		*frm++ = IEEE80211_FH_CHANSET(
2258 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2259 		*frm++ = IEEE80211_FH_CHANPAT(
2260 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2261 		*frm++ = bss->ni_fhindex;
2262 	} else {
2263 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2264 		*frm++ = 1;
2265 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2266 	}
2267 
2268 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2269 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2270 		*frm++ = 2;
2271 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2272 	}
2273 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2274 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2275 		frm = ieee80211_add_countryie(frm, ic);
2276 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2277 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2278 			frm = ieee80211_add_powerconstraint(frm, vap);
2279 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2280 			frm = ieee80211_add_csa(frm, vap);
2281 	}
2282 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2283 		frm = ieee80211_add_erp(frm, ic);
2284 	frm = ieee80211_add_xrates(frm, rs);
2285 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2286 		if (vap->iv_rsn_ie != NULL)
2287 			frm = add_ie(frm, vap->iv_rsn_ie);
2288 		/* XXX else complain? */
2289 	}
2290 	/*
2291 	 * NB: legacy 11b clients do not get certain ie's.
2292 	 *     The caller identifies such clients by passing
2293 	 *     a token in legacy to us.  Could expand this to be
2294 	 *     any legacy client for stuff like HT ie's.
2295 	 */
2296 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2297 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2298 		frm = ieee80211_add_htcap(frm, bss);
2299 		frm = ieee80211_add_htinfo(frm, bss);
2300 	}
2301 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2302 		if (vap->iv_wpa_ie != NULL)
2303 			frm = add_ie(frm, vap->iv_wpa_ie);
2304 		/* XXX else complain? */
2305 	}
2306 	if (vap->iv_flags & IEEE80211_F_WME)
2307 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2308 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2309 	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2310 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2311 		frm = ieee80211_add_htcap_vendor(frm, bss);
2312 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2313 	}
2314 	if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2315 		frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2316 			bss->ni_ath_defkeyix);
2317 	if (vap->iv_appie_proberesp != NULL)
2318 		frm = add_appie(frm, vap->iv_appie_proberesp);
2319 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2320 
2321 	return m;
2322 }
2323 
2324 /*
2325  * Send a probe response frame to the specified mac address.
2326  * This does not go through the normal mgt frame api so we
2327  * can specify the destination address and re-use the bss node
2328  * for the sta reference.
2329  */
2330 int
2331 ieee80211_send_proberesp(struct ieee80211vap *vap,
2332 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2333 {
2334 	struct ieee80211_node *bss = vap->iv_bss;
2335 	struct ieee80211com *ic = vap->iv_ic;
2336 	struct ieee80211_frame *wh;
2337 	struct mbuf *m;
2338 
2339 	if (vap->iv_state == IEEE80211_S_CAC) {
2340 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2341 		    "block %s frame in CAC state", "probe response");
2342 		vap->iv_stats.is_tx_badstate++;
2343 		return EIO;		/* XXX */
2344 	}
2345 
2346 	/*
2347 	 * Hold a reference on the node so it doesn't go away until after
2348 	 * the xmit is complete all the way in the driver.  On error we
2349 	 * will remove our reference.
2350 	 */
2351 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2352 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2353 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2354 	    ieee80211_node_refcnt(bss)+1);
2355 	ieee80211_ref_node(bss);
2356 
2357 	m = ieee80211_alloc_proberesp(bss, legacy);
2358 	if (m == NULL) {
2359 		ieee80211_free_node(bss);
2360 		return ENOMEM;
2361 	}
2362 
2363 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2364 	KASSERT(m != NULL, ("no room for header"));
2365 
2366 	wh = mtod(m, struct ieee80211_frame *);
2367 	ieee80211_send_setup(bss, wh,
2368 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2369 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2370 	/* XXX power management? */
2371 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2372 
2373 	M_WME_SETAC(m, WME_AC_BE);
2374 
2375 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2376 	    "send probe resp on channel %u to %s%s\n",
2377 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2378 	    legacy ? " <legacy>" : "");
2379 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2380 
2381 	return ic->ic_raw_xmit(bss, m, NULL);
2382 }
2383 
2384 /*
2385  * Allocate and build a RTS (Request To Send) control frame.
2386  */
2387 struct mbuf *
2388 ieee80211_alloc_rts(struct ieee80211com *ic,
2389 	const uint8_t ra[IEEE80211_ADDR_LEN],
2390 	const uint8_t ta[IEEE80211_ADDR_LEN],
2391 	uint16_t dur)
2392 {
2393 	struct ieee80211_frame_rts *rts;
2394 	struct mbuf *m;
2395 
2396 	/* XXX honor ic_headroom */
2397 	m = m_gethdr(M_DONTWAIT, MT_DATA);
2398 	if (m != NULL) {
2399 		rts = mtod(m, struct ieee80211_frame_rts *);
2400 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2401 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2402 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2403 		*(u_int16_t *)rts->i_dur = htole16(dur);
2404 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2405 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2406 
2407 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2408 	}
2409 	return m;
2410 }
2411 
2412 /*
2413  * Allocate and build a CTS (Clear To Send) control frame.
2414  */
2415 struct mbuf *
2416 ieee80211_alloc_cts(struct ieee80211com *ic,
2417 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2418 {
2419 	struct ieee80211_frame_cts *cts;
2420 	struct mbuf *m;
2421 
2422 	/* XXX honor ic_headroom */
2423 	m = m_gethdr(M_DONTWAIT, MT_DATA);
2424 	if (m != NULL) {
2425 		cts = mtod(m, struct ieee80211_frame_cts *);
2426 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2427 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2428 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2429 		*(u_int16_t *)cts->i_dur = htole16(dur);
2430 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2431 
2432 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2433 	}
2434 	return m;
2435 }
2436 
2437 static void
2438 ieee80211_tx_mgt_timeout(void *arg)
2439 {
2440 	struct ieee80211_node *ni = arg;
2441 	struct ieee80211vap *vap = ni->ni_vap;
2442 
2443 	if (vap->iv_state != IEEE80211_S_INIT &&
2444 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2445 		/*
2446 		 * NB: it's safe to specify a timeout as the reason here;
2447 		 *     it'll only be used in the right state.
2448 		 */
2449 		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2450 			IEEE80211_SCAN_FAIL_TIMEOUT);
2451 	}
2452 }
2453 
2454 static void
2455 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2456 {
2457 	struct ieee80211vap *vap = ni->ni_vap;
2458 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2459 
2460 	/*
2461 	 * Frame transmit completed; arrange timer callback.  If
2462 	 * transmit was successfuly we wait for response.  Otherwise
2463 	 * we arrange an immediate callback instead of doing the
2464 	 * callback directly since we don't know what state the driver
2465 	 * is in (e.g. what locks it is holding).  This work should
2466 	 * not be too time-critical and not happen too often so the
2467 	 * added overhead is acceptable.
2468 	 *
2469 	 * XXX what happens if !acked but response shows up before callback?
2470 	 */
2471 	if (vap->iv_state == ostate)
2472 		callout_reset(&vap->iv_mgtsend,
2473 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2474 			ieee80211_tx_mgt_timeout, ni);
2475 }
2476 
2477 static void
2478 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2479 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2480 {
2481 	struct ieee80211vap *vap = ni->ni_vap;
2482 	struct ieee80211com *ic = ni->ni_ic;
2483 	struct ieee80211_rateset *rs = &ni->ni_rates;
2484 	uint16_t capinfo;
2485 
2486 	/*
2487 	 * beacon frame format
2488 	 *	[8] time stamp
2489 	 *	[2] beacon interval
2490 	 *	[2] cabability information
2491 	 *	[tlv] ssid
2492 	 *	[tlv] supported rates
2493 	 *	[3] parameter set (DS)
2494 	 *	[8] CF parameter set (optional)
2495 	 *	[tlv] parameter set (IBSS/TIM)
2496 	 *	[tlv] country (optional)
2497 	 *	[3] power control (optional)
2498 	 *	[5] channel switch announcement (CSA) (optional)
2499 	 *	[tlv] extended rate phy (ERP)
2500 	 *	[tlv] extended supported rates
2501 	 *	[tlv] RSN parameters
2502 	 *	[tlv] HT capabilities
2503 	 *	[tlv] HT information
2504 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2505 	 *	[tlv] WPA parameters
2506 	 *	[tlv] WME parameters
2507 	 *	[tlv] Vendor OUI HT capabilities (optional)
2508 	 *	[tlv] Vendor OUI HT information (optional)
2509 	 *	[tlv] TDMA parameters (optional)
2510 	 *	[tlv] application data (optional)
2511 	 */
2512 
2513 	memset(bo, 0, sizeof(*bo));
2514 
2515 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2516 	frm += 8;
2517 	*(uint16_t *)frm = htole16(ni->ni_intval);
2518 	frm += 2;
2519 	capinfo = getcapinfo(vap, ni->ni_chan);
2520 	bo->bo_caps = (uint16_t *)frm;
2521 	*(uint16_t *)frm = htole16(capinfo);
2522 	frm += 2;
2523 	*frm++ = IEEE80211_ELEMID_SSID;
2524 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2525 		*frm++ = ni->ni_esslen;
2526 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2527 		frm += ni->ni_esslen;
2528 	} else
2529 		*frm++ = 0;
2530 	frm = ieee80211_add_rates(frm, rs);
2531 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2532 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2533 		*frm++ = 1;
2534 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2535 	}
2536 	if (ic->ic_flags & IEEE80211_F_PCF) {
2537 		bo->bo_cfp = frm;
2538 		frm = ieee80211_add_cfparms(frm, ic);
2539 	}
2540 	bo->bo_tim = frm;
2541 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2542 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2543 		*frm++ = 2;
2544 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2545 		bo->bo_tim_len = 0;
2546 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2547 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2548 
2549 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2550 		tie->tim_len = 4;	/* length */
2551 		tie->tim_count = 0;	/* DTIM count */
2552 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2553 		tie->tim_bitctl = 0;	/* bitmap control */
2554 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2555 		frm += sizeof(struct ieee80211_tim_ie);
2556 		bo->bo_tim_len = 1;
2557 	}
2558 	bo->bo_tim_trailer = frm;
2559 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2560 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2561 		frm = ieee80211_add_countryie(frm, ic);
2562 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2563 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2564 			frm = ieee80211_add_powerconstraint(frm, vap);
2565 		bo->bo_csa = frm;
2566 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2567 			frm = ieee80211_add_csa(frm, vap);
2568 	} else
2569 		bo->bo_csa = frm;
2570 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2571 		bo->bo_erp = frm;
2572 		frm = ieee80211_add_erp(frm, ic);
2573 	}
2574 	frm = ieee80211_add_xrates(frm, rs);
2575 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2576 		if (vap->iv_rsn_ie != NULL)
2577 			frm = add_ie(frm, vap->iv_rsn_ie);
2578 		/* XXX else complain */
2579 	}
2580 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2581 		frm = ieee80211_add_htcap(frm, ni);
2582 		bo->bo_htinfo = frm;
2583 		frm = ieee80211_add_htinfo(frm, ni);
2584 	}
2585 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2586 		if (vap->iv_wpa_ie != NULL)
2587 			frm = add_ie(frm, vap->iv_wpa_ie);
2588 		/* XXX else complain */
2589 	}
2590 	if (vap->iv_flags & IEEE80211_F_WME) {
2591 		bo->bo_wme = frm;
2592 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2593 	}
2594 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2595 	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2596 		frm = ieee80211_add_htcap_vendor(frm, ni);
2597 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2598 	}
2599 #ifdef IEEE80211_SUPPORT_TDMA
2600 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2601 		bo->bo_tdma = frm;
2602 		frm = ieee80211_add_tdma(frm, vap);
2603 	}
2604 #endif
2605 	if (vap->iv_appie_beacon != NULL) {
2606 		bo->bo_appie = frm;
2607 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2608 		frm = add_appie(frm, vap->iv_appie_beacon);
2609 	}
2610 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2611 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2612 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2613 }
2614 
2615 /*
2616  * Allocate a beacon frame and fillin the appropriate bits.
2617  */
2618 struct mbuf *
2619 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2620 	struct ieee80211_beacon_offsets *bo)
2621 {
2622 	struct ieee80211vap *vap = ni->ni_vap;
2623 	struct ieee80211com *ic = ni->ni_ic;
2624 	struct ifnet *ifp = vap->iv_ifp;
2625 	struct ieee80211_frame *wh;
2626 	struct mbuf *m;
2627 	int pktlen;
2628 	uint8_t *frm;
2629 
2630 	/*
2631 	 * beacon frame format
2632 	 *	[8] time stamp
2633 	 *	[2] beacon interval
2634 	 *	[2] cabability information
2635 	 *	[tlv] ssid
2636 	 *	[tlv] supported rates
2637 	 *	[3] parameter set (DS)
2638 	 *	[8] CF parameter set (optional)
2639 	 *	[tlv] parameter set (IBSS/TIM)
2640 	 *	[tlv] country (optional)
2641 	 *	[3] power control (optional)
2642 	 *	[5] channel switch announcement (CSA) (optional)
2643 	 *	[tlv] extended rate phy (ERP)
2644 	 *	[tlv] extended supported rates
2645 	 *	[tlv] RSN parameters
2646 	 *	[tlv] HT capabilities
2647 	 *	[tlv] HT information
2648 	 *	[tlv] Vendor OUI HT capabilities (optional)
2649 	 *	[tlv] Vendor OUI HT information (optional)
2650 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2651 	 *	[tlv] WPA parameters
2652 	 *	[tlv] WME parameters
2653 	 *	[tlv] TDMA parameters (optional)
2654 	 *	[tlv] application data (optional)
2655 	 * NB: we allocate the max space required for the TIM bitmap.
2656 	 * XXX how big is this?
2657 	 */
2658 	pktlen =   8					/* time stamp */
2659 		 + sizeof(uint16_t)			/* beacon interval */
2660 		 + sizeof(uint16_t)			/* capabilities */
2661 		 + 2 + ni->ni_esslen			/* ssid */
2662 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2663 	         + 2 + 1				/* DS parameters */
2664 		 + 2 + 6				/* CF parameters */
2665 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2666 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2667 		 + 2 + 1				/* power control */
2668 	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2669 		 + 2 + 1				/* ERP */
2670 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2671 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2672 			2*sizeof(struct ieee80211_ie_wpa) : 0)
2673 		 /* XXX conditional? */
2674 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2675 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2676 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2677 			sizeof(struct ieee80211_wme_param) : 0)
2678 #ifdef IEEE80211_SUPPORT_TDMA
2679 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2680 			sizeof(struct ieee80211_tdma_param) : 0)
2681 #endif
2682 		 + IEEE80211_MAX_APPIE
2683 		 ;
2684 	m = ieee80211_getmgtframe(&frm,
2685 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2686 	if (m == NULL) {
2687 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2688 			"%s: cannot get buf; size %u\n", __func__, pktlen);
2689 		vap->iv_stats.is_tx_nobuf++;
2690 		return NULL;
2691 	}
2692 	ieee80211_beacon_construct(m, frm, bo, ni);
2693 
2694 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2695 	KASSERT(m != NULL, ("no space for 802.11 header?"));
2696 	wh = mtod(m, struct ieee80211_frame *);
2697 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2698 	    IEEE80211_FC0_SUBTYPE_BEACON;
2699 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2700 	*(uint16_t *)wh->i_dur = 0;
2701 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2702 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2703 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2704 	*(uint16_t *)wh->i_seq = 0;
2705 
2706 	return m;
2707 }
2708 
2709 /*
2710  * Update the dynamic parts of a beacon frame based on the current state.
2711  */
2712 int
2713 ieee80211_beacon_update(struct ieee80211_node *ni,
2714 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2715 {
2716 	struct ieee80211vap *vap = ni->ni_vap;
2717 	struct ieee80211com *ic = ni->ni_ic;
2718 	int len_changed = 0;
2719 	uint16_t capinfo;
2720 
2721 	IEEE80211_LOCK(ic);
2722 	/*
2723 	 * Handle 11h channel change when we've reached the count.
2724 	 * We must recalculate the beacon frame contents to account
2725 	 * for the new channel.  Note we do this only for the first
2726 	 * vap that reaches this point; subsequent vaps just update
2727 	 * their beacon state to reflect the recalculated channel.
2728 	 */
2729 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2730 	    vap->iv_csa_count == ic->ic_csa_count) {
2731 		vap->iv_csa_count = 0;
2732 		/*
2733 		 * Effect channel change before reconstructing the beacon
2734 		 * frame contents as many places reference ni_chan.
2735 		 */
2736 		if (ic->ic_csa_newchan != NULL)
2737 			ieee80211_csa_completeswitch(ic);
2738 		/*
2739 		 * NB: ieee80211_beacon_construct clears all pending
2740 		 * updates in bo_flags so we don't need to explicitly
2741 		 * clear IEEE80211_BEACON_CSA.
2742 		 */
2743 		ieee80211_beacon_construct(m,
2744 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2745 
2746 		/* XXX do WME aggressive mode processing? */
2747 		IEEE80211_UNLOCK(ic);
2748 		return 1;		/* just assume length changed */
2749 	}
2750 
2751 	/* XXX faster to recalculate entirely or just changes? */
2752 	capinfo = getcapinfo(vap, ni->ni_chan);
2753 	*bo->bo_caps = htole16(capinfo);
2754 
2755 	if (vap->iv_flags & IEEE80211_F_WME) {
2756 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2757 
2758 		/*
2759 		 * Check for agressive mode change.  When there is
2760 		 * significant high priority traffic in the BSS
2761 		 * throttle back BE traffic by using conservative
2762 		 * parameters.  Otherwise BE uses agressive params
2763 		 * to optimize performance of legacy/non-QoS traffic.
2764 		 */
2765 		if (wme->wme_flags & WME_F_AGGRMODE) {
2766 			if (wme->wme_hipri_traffic >
2767 			    wme->wme_hipri_switch_thresh) {
2768 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2769 				    "%s: traffic %u, disable aggressive mode\n",
2770 				    __func__, wme->wme_hipri_traffic);
2771 				wme->wme_flags &= ~WME_F_AGGRMODE;
2772 				ieee80211_wme_updateparams_locked(vap);
2773 				wme->wme_hipri_traffic =
2774 					wme->wme_hipri_switch_hysteresis;
2775 			} else
2776 				wme->wme_hipri_traffic = 0;
2777 		} else {
2778 			if (wme->wme_hipri_traffic <=
2779 			    wme->wme_hipri_switch_thresh) {
2780 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2781 				    "%s: traffic %u, enable aggressive mode\n",
2782 				    __func__, wme->wme_hipri_traffic);
2783 				wme->wme_flags |= WME_F_AGGRMODE;
2784 				ieee80211_wme_updateparams_locked(vap);
2785 				wme->wme_hipri_traffic = 0;
2786 			} else
2787 				wme->wme_hipri_traffic =
2788 					wme->wme_hipri_switch_hysteresis;
2789 		}
2790 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2791 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2792 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2793 		}
2794 	}
2795 
2796 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2797 		ieee80211_ht_update_beacon(vap, bo);
2798 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2799 	}
2800 #ifdef IEEE80211_SUPPORT_TDMA
2801 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2802 		/*
2803 		 * NB: the beacon is potentially updated every TBTT.
2804 		 */
2805 		ieee80211_tdma_update_beacon(vap, bo);
2806 	}
2807 #endif
2808 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
2809 		struct ieee80211_tim_ie *tie =
2810 			(struct ieee80211_tim_ie *) bo->bo_tim;
2811 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2812 			u_int timlen, timoff, i;
2813 			/*
2814 			 * ATIM/DTIM needs updating.  If it fits in the
2815 			 * current space allocated then just copy in the
2816 			 * new bits.  Otherwise we need to move any trailing
2817 			 * data to make room.  Note that we know there is
2818 			 * contiguous space because ieee80211_beacon_allocate
2819 			 * insures there is space in the mbuf to write a
2820 			 * maximal-size virtual bitmap (based on iv_max_aid).
2821 			 */
2822 			/*
2823 			 * Calculate the bitmap size and offset, copy any
2824 			 * trailer out of the way, and then copy in the
2825 			 * new bitmap and update the information element.
2826 			 * Note that the tim bitmap must contain at least
2827 			 * one byte and any offset must be even.
2828 			 */
2829 			if (vap->iv_ps_pending != 0) {
2830 				timoff = 128;		/* impossibly large */
2831 				for (i = 0; i < vap->iv_tim_len; i++)
2832 					if (vap->iv_tim_bitmap[i]) {
2833 						timoff = i &~ 1;
2834 						break;
2835 					}
2836 				KASSERT(timoff != 128, ("tim bitmap empty!"));
2837 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2838 					if (vap->iv_tim_bitmap[i])
2839 						break;
2840 				timlen = 1 + (i - timoff);
2841 			} else {
2842 				timoff = 0;
2843 				timlen = 1;
2844 			}
2845 			if (timlen != bo->bo_tim_len) {
2846 				/* copy up/down trailer */
2847 				int adjust = tie->tim_bitmap+timlen
2848 					   - bo->bo_tim_trailer;
2849 				ovbcopy(bo->bo_tim_trailer,
2850 				    bo->bo_tim_trailer+adjust,
2851 				    bo->bo_tim_trailer_len);
2852 				bo->bo_tim_trailer += adjust;
2853 				bo->bo_erp += adjust;
2854 				bo->bo_htinfo += adjust;
2855 				bo->bo_appie += adjust;
2856 				bo->bo_wme += adjust;
2857 				bo->bo_csa += adjust;
2858 				bo->bo_tim_len = timlen;
2859 
2860 				/* update information element */
2861 				tie->tim_len = 3 + timlen;
2862 				tie->tim_bitctl = timoff;
2863 				len_changed = 1;
2864 			}
2865 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2866 				bo->bo_tim_len);
2867 
2868 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2869 
2870 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2871 				"%s: TIM updated, pending %u, off %u, len %u\n",
2872 				__func__, vap->iv_ps_pending, timoff, timlen);
2873 		}
2874 		/* count down DTIM period */
2875 		if (tie->tim_count == 0)
2876 			tie->tim_count = tie->tim_period - 1;
2877 		else
2878 			tie->tim_count--;
2879 		/* update state for buffered multicast frames on DTIM */
2880 		if (mcast && tie->tim_count == 0)
2881 			tie->tim_bitctl |= 1;
2882 		else
2883 			tie->tim_bitctl &= ~1;
2884 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2885 			struct ieee80211_csa_ie *csa =
2886 			    (struct ieee80211_csa_ie *) bo->bo_csa;
2887 
2888 			/*
2889 			 * Insert or update CSA ie.  If we're just starting
2890 			 * to count down to the channel switch then we need
2891 			 * to insert the CSA ie.  Otherwise we just need to
2892 			 * drop the count.  The actual change happens above
2893 			 * when the vap's count reaches the target count.
2894 			 */
2895 			if (vap->iv_csa_count == 0) {
2896 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2897 				bo->bo_erp += sizeof(*csa);
2898 				bo->bo_wme += sizeof(*csa);
2899 				bo->bo_appie += sizeof(*csa);
2900 				bo->bo_csa_trailer_len += sizeof(*csa);
2901 				bo->bo_tim_trailer_len += sizeof(*csa);
2902 				m->m_len += sizeof(*csa);
2903 				m->m_pkthdr.len += sizeof(*csa);
2904 
2905 				ieee80211_add_csa(bo->bo_csa, vap);
2906 			} else
2907 				csa->csa_count--;
2908 			vap->iv_csa_count++;
2909 			/* NB: don't clear IEEE80211_BEACON_CSA */
2910 		}
2911 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2912 			/*
2913 			 * ERP element needs updating.
2914 			 */
2915 			(void) ieee80211_add_erp(bo->bo_erp, ic);
2916 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2917 		}
2918 	}
2919 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2920 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2921 		int aielen;
2922 		uint8_t *frm;
2923 
2924 		aielen = 0;
2925 		if (aie != NULL)
2926 			aielen += aie->ie_len;
2927 		if (aielen != bo->bo_appie_len) {
2928 			/* copy up/down trailer */
2929 			int adjust = aielen - bo->bo_appie_len;
2930 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2931 				bo->bo_tim_trailer_len);
2932 			bo->bo_tim_trailer += adjust;
2933 			bo->bo_appie += adjust;
2934 			bo->bo_appie_len = aielen;
2935 
2936 			len_changed = 1;
2937 		}
2938 		frm = bo->bo_appie;
2939 		if (aie != NULL)
2940 			frm  = add_appie(frm, aie);
2941 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2942 	}
2943 	IEEE80211_UNLOCK(ic);
2944 
2945 	return len_changed;
2946 }
2947