xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 42249ef2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6  * Copyright (c) 2012 IEEE
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * IEEE 802.11 protocol support.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_wlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_media.h>
51 #include <net/ethernet.h>		/* XXX for ether_sprintf */
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_adhoc.h>
55 #include <net80211/ieee80211_sta.h>
56 #include <net80211/ieee80211_hostap.h>
57 #include <net80211/ieee80211_wds.h>
58 #ifdef IEEE80211_SUPPORT_MESH
59 #include <net80211/ieee80211_mesh.h>
60 #endif
61 #include <net80211/ieee80211_monitor.h>
62 #include <net80211/ieee80211_input.h>
63 
64 /* XXX tunables */
65 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
66 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
67 
68 const char *mgt_subtype_name[] = {
69 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
70 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
71 	"beacon",	"atim",		"disassoc",	"auth",
72 	"deauth",	"action",	"action_noack",	"reserved#15"
73 };
74 const char *ctl_subtype_name[] = {
75 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
76 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
77 	"bar",		"ba",		"ps_poll",	"rts",
78 	"cts",		"ack",		"cf_end",	"cf_end_ack"
79 };
80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
81 	"IBSS",		/* IEEE80211_M_IBSS */
82 	"STA",		/* IEEE80211_M_STA */
83 	"WDS",		/* IEEE80211_M_WDS */
84 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
85 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
86 	"MONITOR",	/* IEEE80211_M_MONITOR */
87 	"MBSS"		/* IEEE80211_M_MBSS */
88 };
89 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
90 	"INIT",		/* IEEE80211_S_INIT */
91 	"SCAN",		/* IEEE80211_S_SCAN */
92 	"AUTH",		/* IEEE80211_S_AUTH */
93 	"ASSOC",	/* IEEE80211_S_ASSOC */
94 	"CAC",		/* IEEE80211_S_CAC */
95 	"RUN",		/* IEEE80211_S_RUN */
96 	"CSA",		/* IEEE80211_S_CSA */
97 	"SLEEP",	/* IEEE80211_S_SLEEP */
98 };
99 const char *ieee80211_wme_acnames[] = {
100 	"WME_AC_BE",
101 	"WME_AC_BK",
102 	"WME_AC_VI",
103 	"WME_AC_VO",
104 	"WME_UPSD",
105 };
106 
107 
108 /*
109  * Reason code descriptions were (mostly) obtained from
110  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
111  */
112 const char *
113 ieee80211_reason_to_string(uint16_t reason)
114 {
115 	switch (reason) {
116 	case IEEE80211_REASON_UNSPECIFIED:
117 		return ("unspecified");
118 	case IEEE80211_REASON_AUTH_EXPIRE:
119 		return ("previous authentication is expired");
120 	case IEEE80211_REASON_AUTH_LEAVE:
121 		return ("sending STA is leaving/has left IBSS or ESS");
122 	case IEEE80211_REASON_ASSOC_EXPIRE:
123 		return ("disassociated due to inactivity");
124 	case IEEE80211_REASON_ASSOC_TOOMANY:
125 		return ("too many associated STAs");
126 	case IEEE80211_REASON_NOT_AUTHED:
127 		return ("class 2 frame received from nonauthenticated STA");
128 	case IEEE80211_REASON_NOT_ASSOCED:
129 		return ("class 3 frame received from nonassociated STA");
130 	case IEEE80211_REASON_ASSOC_LEAVE:
131 		return ("sending STA is leaving/has left BSS");
132 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
133 		return ("STA requesting (re)association is not authenticated");
134 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
135 		return ("information in the Power Capability element is "
136 			"unacceptable");
137 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
138 		return ("information in the Supported Channels element is "
139 			"unacceptable");
140 	case IEEE80211_REASON_IE_INVALID:
141 		return ("invalid element");
142 	case IEEE80211_REASON_MIC_FAILURE:
143 		return ("MIC failure");
144 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
145 		return ("4-Way handshake timeout");
146 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
147 		return ("group key update timeout");
148 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
149 		return ("element in 4-Way handshake different from "
150 			"(re)association request/probe response/beacon frame");
151 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
152 		return ("invalid group cipher");
153 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
154 		return ("invalid pairwise cipher");
155 	case IEEE80211_REASON_AKMP_INVALID:
156 		return ("invalid AKMP");
157 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
158 		return ("unsupported version in RSN IE");
159 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
160 		return ("invalid capabilities in RSN IE");
161 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
162 		return ("IEEE 802.1X authentication failed");
163 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
164 		return ("cipher suite rejected because of the security "
165 			"policy");
166 	case IEEE80211_REASON_UNSPECIFIED_QOS:
167 		return ("unspecified (QoS-related)");
168 	case IEEE80211_REASON_INSUFFICIENT_BW:
169 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
170 	case IEEE80211_REASON_TOOMANY_FRAMES:
171 		return ("too many frames need to be acknowledged");
172 	case IEEE80211_REASON_OUTSIDE_TXOP:
173 		return ("STA is transmitting outside the limits of its TXOPs");
174 	case IEEE80211_REASON_LEAVING_QBSS:
175 		return ("requested from peer STA (the STA is "
176 			"resetting/leaving the BSS)");
177 	case IEEE80211_REASON_BAD_MECHANISM:
178 		return ("requested from peer STA (it does not want to use "
179 			"the mechanism)");
180 	case IEEE80211_REASON_SETUP_NEEDED:
181 		return ("requested from peer STA (setup is required for the "
182 			"used mechanism)");
183 	case IEEE80211_REASON_TIMEOUT:
184 		return ("requested from peer STA (timeout)");
185 	case IEEE80211_REASON_PEER_LINK_CANCELED:
186 		return ("SME cancels the mesh peering instance (not related "
187 			"to the maximum number of peer mesh STAs)");
188 	case IEEE80211_REASON_MESH_MAX_PEERS:
189 		return ("maximum number of peer mesh STAs was reached");
190 	case IEEE80211_REASON_MESH_CPVIOLATION:
191 		return ("the received information violates the Mesh "
192 			"Configuration policy configured in the mesh STA "
193 			"profile");
194 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
195 		return ("the mesh STA has received a Mesh Peering Close "
196 			"message requesting to close the mesh peering");
197 	case IEEE80211_REASON_MESH_MAX_RETRIES:
198 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
199 			"Peering Open messages, without receiving a Mesh "
200 			"Peering Confirm message");
201 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
202 		return ("the confirmTimer for the mesh peering instance times "
203 			"out");
204 	case IEEE80211_REASON_MESH_INVALID_GTK:
205 		return ("the mesh STA fails to unwrap the GTK or the values "
206 			"in the wrapped contents do not match");
207 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
208 		return ("the mesh STA receives inconsistent information about "
209 			"the mesh parameters between Mesh Peering Management "
210 			"frames");
211 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
212 		return ("the mesh STA fails the authenticated mesh peering "
213 			"exchange because due to failure in selecting "
214 			"pairwise/group ciphersuite");
215 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
216 		return ("the mesh STA does not have proxy information for "
217 			"this external destination");
218 	case IEEE80211_REASON_MESH_PERR_NO_FI:
219 		return ("the mesh STA does not have forwarding information "
220 			"for this destination");
221 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
222 		return ("the mesh STA determines that the link to the next "
223 			"hop of an active path in its forwarding information "
224 			"is no longer usable");
225 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
226 		return ("the MAC address of the STA already exists in the "
227 			"mesh BSS");
228 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
229 		return ("the mesh STA performs channel switch to meet "
230 			"regulatory requirements");
231 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
232 		return ("the mesh STA performs channel switch with "
233 			"unspecified reason");
234 	default:
235 		return ("reserved/unknown");
236 	}
237 }
238 
239 static void beacon_miss(void *, int);
240 static void beacon_swmiss(void *, int);
241 static void parent_updown(void *, int);
242 static void update_mcast(void *, int);
243 static void update_promisc(void *, int);
244 static void update_channel(void *, int);
245 static void update_chw(void *, int);
246 static void vap_update_wme(void *, int);
247 static void restart_vaps(void *, int);
248 static void ieee80211_newstate_cb(void *, int);
249 
250 static int
251 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
252 	const struct ieee80211_bpf_params *params)
253 {
254 
255 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
256 	m_freem(m);
257 	return ENETDOWN;
258 }
259 
260 void
261 ieee80211_proto_attach(struct ieee80211com *ic)
262 {
263 	uint8_t hdrlen;
264 
265 	/* override the 802.3 setting */
266 	hdrlen = ic->ic_headroom
267 		+ sizeof(struct ieee80211_qosframe_addr4)
268 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
269 		+ IEEE80211_WEP_EXTIVLEN;
270 	/* XXX no way to recalculate on ifdetach */
271 	if (ALIGN(hdrlen) > max_linkhdr) {
272 		/* XXX sanity check... */
273 		max_linkhdr = ALIGN(hdrlen);
274 		max_hdr = max_linkhdr + max_protohdr;
275 		max_datalen = MHLEN - max_hdr;
276 	}
277 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
278 
279 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
280 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
281 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
282 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
283 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
284 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
285 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
286 
287 	ic->ic_wme.wme_hipri_switch_hysteresis =
288 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
289 
290 	/* initialize management frame handlers */
291 	ic->ic_send_mgmt = ieee80211_send_mgmt;
292 	ic->ic_raw_xmit = null_raw_xmit;
293 
294 	ieee80211_adhoc_attach(ic);
295 	ieee80211_sta_attach(ic);
296 	ieee80211_wds_attach(ic);
297 	ieee80211_hostap_attach(ic);
298 #ifdef IEEE80211_SUPPORT_MESH
299 	ieee80211_mesh_attach(ic);
300 #endif
301 	ieee80211_monitor_attach(ic);
302 }
303 
304 void
305 ieee80211_proto_detach(struct ieee80211com *ic)
306 {
307 	ieee80211_monitor_detach(ic);
308 #ifdef IEEE80211_SUPPORT_MESH
309 	ieee80211_mesh_detach(ic);
310 #endif
311 	ieee80211_hostap_detach(ic);
312 	ieee80211_wds_detach(ic);
313 	ieee80211_adhoc_detach(ic);
314 	ieee80211_sta_detach(ic);
315 }
316 
317 static void
318 null_update_beacon(struct ieee80211vap *vap, int item)
319 {
320 }
321 
322 void
323 ieee80211_proto_vattach(struct ieee80211vap *vap)
324 {
325 	struct ieee80211com *ic = vap->iv_ic;
326 	struct ifnet *ifp = vap->iv_ifp;
327 	int i;
328 
329 	/* override the 802.3 setting */
330 	ifp->if_hdrlen = ic->ic_headroom
331                 + sizeof(struct ieee80211_qosframe_addr4)
332                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
333                 + IEEE80211_WEP_EXTIVLEN;
334 
335 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
336 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
337 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
338 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
339 	callout_init(&vap->iv_mgtsend, 1);
340 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
341 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
342 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
343 	/*
344 	 * Install default tx rate handling: no fixed rate, lowest
345 	 * supported rate for mgmt and multicast frames.  Default
346 	 * max retry count.  These settings can be changed by the
347 	 * driver and/or user applications.
348 	 */
349 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
350 		if (isclr(ic->ic_modecaps, i))
351 			continue;
352 
353 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
354 
355 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
356 
357 		/*
358 		 * Setting the management rate to MCS 0 assumes that the
359 		 * BSS Basic rate set is empty and the BSS Basic MCS set
360 		 * is not.
361 		 *
362 		 * Since we're not checking this, default to the lowest
363 		 * defined rate for this mode.
364 		 *
365 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
366 		 * some MCS management traffic (eg BA response frames.)
367 		 *
368 		 * See also: 9.6.0 of the 802.11n-2009 specification.
369 		 */
370 #ifdef	NOTYET
371 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
372 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
373 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
374 		} else {
375 			vap->iv_txparms[i].mgmtrate =
376 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
377 			vap->iv_txparms[i].mcastrate =
378 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
379 		}
380 #endif
381 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
382 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
383 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
384 	}
385 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
386 
387 	vap->iv_update_beacon = null_update_beacon;
388 	vap->iv_deliver_data = ieee80211_deliver_data;
389 
390 	/* attach support for operating mode */
391 	ic->ic_vattach[vap->iv_opmode](vap);
392 }
393 
394 void
395 ieee80211_proto_vdetach(struct ieee80211vap *vap)
396 {
397 #define	FREEAPPIE(ie) do { \
398 	if (ie != NULL) \
399 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
400 } while (0)
401 	/*
402 	 * Detach operating mode module.
403 	 */
404 	if (vap->iv_opdetach != NULL)
405 		vap->iv_opdetach(vap);
406 	/*
407 	 * This should not be needed as we detach when reseting
408 	 * the state but be conservative here since the
409 	 * authenticator may do things like spawn kernel threads.
410 	 */
411 	if (vap->iv_auth->ia_detach != NULL)
412 		vap->iv_auth->ia_detach(vap);
413 	/*
414 	 * Detach any ACL'ator.
415 	 */
416 	if (vap->iv_acl != NULL)
417 		vap->iv_acl->iac_detach(vap);
418 
419 	FREEAPPIE(vap->iv_appie_beacon);
420 	FREEAPPIE(vap->iv_appie_probereq);
421 	FREEAPPIE(vap->iv_appie_proberesp);
422 	FREEAPPIE(vap->iv_appie_assocreq);
423 	FREEAPPIE(vap->iv_appie_assocresp);
424 	FREEAPPIE(vap->iv_appie_wpa);
425 #undef FREEAPPIE
426 }
427 
428 /*
429  * Simple-minded authenticator module support.
430  */
431 
432 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
433 /* XXX well-known names */
434 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
435 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
436 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
437 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
438 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
439 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
440 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
441 };
442 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
443 
444 static const struct ieee80211_authenticator auth_internal = {
445 	.ia_name		= "wlan_internal",
446 	.ia_attach		= NULL,
447 	.ia_detach		= NULL,
448 	.ia_node_join		= NULL,
449 	.ia_node_leave		= NULL,
450 };
451 
452 /*
453  * Setup internal authenticators once; they are never unregistered.
454  */
455 static void
456 ieee80211_auth_setup(void)
457 {
458 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
459 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
460 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
461 }
462 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
463 
464 const struct ieee80211_authenticator *
465 ieee80211_authenticator_get(int auth)
466 {
467 	if (auth >= IEEE80211_AUTH_MAX)
468 		return NULL;
469 	if (authenticators[auth] == NULL)
470 		ieee80211_load_module(auth_modnames[auth]);
471 	return authenticators[auth];
472 }
473 
474 void
475 ieee80211_authenticator_register(int type,
476 	const struct ieee80211_authenticator *auth)
477 {
478 	if (type >= IEEE80211_AUTH_MAX)
479 		return;
480 	authenticators[type] = auth;
481 }
482 
483 void
484 ieee80211_authenticator_unregister(int type)
485 {
486 
487 	if (type >= IEEE80211_AUTH_MAX)
488 		return;
489 	authenticators[type] = NULL;
490 }
491 
492 /*
493  * Very simple-minded ACL module support.
494  */
495 /* XXX just one for now */
496 static	const struct ieee80211_aclator *acl = NULL;
497 
498 void
499 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
500 {
501 	printf("wlan: %s acl policy registered\n", iac->iac_name);
502 	acl = iac;
503 }
504 
505 void
506 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
507 {
508 	if (acl == iac)
509 		acl = NULL;
510 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
511 }
512 
513 const struct ieee80211_aclator *
514 ieee80211_aclator_get(const char *name)
515 {
516 	if (acl == NULL)
517 		ieee80211_load_module("wlan_acl");
518 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
519 }
520 
521 void
522 ieee80211_print_essid(const uint8_t *essid, int len)
523 {
524 	const uint8_t *p;
525 	int i;
526 
527 	if (len > IEEE80211_NWID_LEN)
528 		len = IEEE80211_NWID_LEN;
529 	/* determine printable or not */
530 	for (i = 0, p = essid; i < len; i++, p++) {
531 		if (*p < ' ' || *p > 0x7e)
532 			break;
533 	}
534 	if (i == len) {
535 		printf("\"");
536 		for (i = 0, p = essid; i < len; i++, p++)
537 			printf("%c", *p);
538 		printf("\"");
539 	} else {
540 		printf("0x");
541 		for (i = 0, p = essid; i < len; i++, p++)
542 			printf("%02x", *p);
543 	}
544 }
545 
546 void
547 ieee80211_dump_pkt(struct ieee80211com *ic,
548 	const uint8_t *buf, int len, int rate, int rssi)
549 {
550 	const struct ieee80211_frame *wh;
551 	int i;
552 
553 	wh = (const struct ieee80211_frame *)buf;
554 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
555 	case IEEE80211_FC1_DIR_NODS:
556 		printf("NODS %s", ether_sprintf(wh->i_addr2));
557 		printf("->%s", ether_sprintf(wh->i_addr1));
558 		printf("(%s)", ether_sprintf(wh->i_addr3));
559 		break;
560 	case IEEE80211_FC1_DIR_TODS:
561 		printf("TODS %s", ether_sprintf(wh->i_addr2));
562 		printf("->%s", ether_sprintf(wh->i_addr3));
563 		printf("(%s)", ether_sprintf(wh->i_addr1));
564 		break;
565 	case IEEE80211_FC1_DIR_FROMDS:
566 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
567 		printf("->%s", ether_sprintf(wh->i_addr1));
568 		printf("(%s)", ether_sprintf(wh->i_addr2));
569 		break;
570 	case IEEE80211_FC1_DIR_DSTODS:
571 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
572 		printf("->%s", ether_sprintf(wh->i_addr3));
573 		printf("(%s", ether_sprintf(wh->i_addr2));
574 		printf("->%s)", ether_sprintf(wh->i_addr1));
575 		break;
576 	}
577 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
578 	case IEEE80211_FC0_TYPE_DATA:
579 		printf(" data");
580 		break;
581 	case IEEE80211_FC0_TYPE_MGT:
582 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
583 		break;
584 	default:
585 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
586 		break;
587 	}
588 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
589 		const struct ieee80211_qosframe *qwh =
590 			(const struct ieee80211_qosframe *)buf;
591 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
592 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
593 	}
594 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
595 		int off;
596 
597 		off = ieee80211_anyhdrspace(ic, wh);
598 		printf(" WEP [IV %.02x %.02x %.02x",
599 			buf[off+0], buf[off+1], buf[off+2]);
600 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
601 			printf(" %.02x %.02x %.02x",
602 				buf[off+4], buf[off+5], buf[off+6]);
603 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
604 	}
605 	if (rate >= 0)
606 		printf(" %dM", rate / 2);
607 	if (rssi >= 0)
608 		printf(" +%d", rssi);
609 	printf("\n");
610 	if (len > 0) {
611 		for (i = 0; i < len; i++) {
612 			if ((i & 1) == 0)
613 				printf(" ");
614 			printf("%02x", buf[i]);
615 		}
616 		printf("\n");
617 	}
618 }
619 
620 static __inline int
621 findrix(const struct ieee80211_rateset *rs, int r)
622 {
623 	int i;
624 
625 	for (i = 0; i < rs->rs_nrates; i++)
626 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
627 			return i;
628 	return -1;
629 }
630 
631 int
632 ieee80211_fix_rate(struct ieee80211_node *ni,
633 	struct ieee80211_rateset *nrs, int flags)
634 {
635 	struct ieee80211vap *vap = ni->ni_vap;
636 	struct ieee80211com *ic = ni->ni_ic;
637 	int i, j, rix, error;
638 	int okrate, badrate, fixedrate, ucastrate;
639 	const struct ieee80211_rateset *srs;
640 	uint8_t r;
641 
642 	error = 0;
643 	okrate = badrate = 0;
644 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
645 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
646 		/*
647 		 * Workaround awkwardness with fixed rate.  We are called
648 		 * to check both the legacy rate set and the HT rate set
649 		 * but we must apply any legacy fixed rate check only to the
650 		 * legacy rate set and vice versa.  We cannot tell what type
651 		 * of rate set we've been given (legacy or HT) but we can
652 		 * distinguish the fixed rate type (MCS have 0x80 set).
653 		 * So to deal with this the caller communicates whether to
654 		 * check MCS or legacy rate using the flags and we use the
655 		 * type of any fixed rate to avoid applying an MCS to a
656 		 * legacy rate and vice versa.
657 		 */
658 		if (ucastrate & 0x80) {
659 			if (flags & IEEE80211_F_DOFRATE)
660 				flags &= ~IEEE80211_F_DOFRATE;
661 		} else if ((ucastrate & 0x80) == 0) {
662 			if (flags & IEEE80211_F_DOFMCS)
663 				flags &= ~IEEE80211_F_DOFMCS;
664 		}
665 		/* NB: required to make MCS match below work */
666 		ucastrate &= IEEE80211_RATE_VAL;
667 	}
668 	fixedrate = IEEE80211_FIXED_RATE_NONE;
669 	/*
670 	 * XXX we are called to process both MCS and legacy rates;
671 	 * we must use the appropriate basic rate set or chaos will
672 	 * ensue; for now callers that want MCS must supply
673 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
674 	 * function so there are two variants, one for MCS and one
675 	 * for legacy rates.
676 	 */
677 	if (flags & IEEE80211_F_DOBRS)
678 		srs = (const struct ieee80211_rateset *)
679 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
680 	else
681 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
682 	for (i = 0; i < nrs->rs_nrates; ) {
683 		if (flags & IEEE80211_F_DOSORT) {
684 			/*
685 			 * Sort rates.
686 			 */
687 			for (j = i + 1; j < nrs->rs_nrates; j++) {
688 				if (IEEE80211_RV(nrs->rs_rates[i]) >
689 				    IEEE80211_RV(nrs->rs_rates[j])) {
690 					r = nrs->rs_rates[i];
691 					nrs->rs_rates[i] = nrs->rs_rates[j];
692 					nrs->rs_rates[j] = r;
693 				}
694 			}
695 		}
696 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
697 		badrate = r;
698 		/*
699 		 * Check for fixed rate.
700 		 */
701 		if (r == ucastrate)
702 			fixedrate = r;
703 		/*
704 		 * Check against supported rates.
705 		 */
706 		rix = findrix(srs, r);
707 		if (flags & IEEE80211_F_DONEGO) {
708 			if (rix < 0) {
709 				/*
710 				 * A rate in the node's rate set is not
711 				 * supported.  If this is a basic rate and we
712 				 * are operating as a STA then this is an error.
713 				 * Otherwise we just discard/ignore the rate.
714 				 */
715 				if ((flags & IEEE80211_F_JOIN) &&
716 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
717 					error++;
718 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
719 				/*
720 				 * Overwrite with the supported rate
721 				 * value so any basic rate bit is set.
722 				 */
723 				nrs->rs_rates[i] = srs->rs_rates[rix];
724 			}
725 		}
726 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
727 			/*
728 			 * Delete unacceptable rates.
729 			 */
730 			nrs->rs_nrates--;
731 			for (j = i; j < nrs->rs_nrates; j++)
732 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
733 			nrs->rs_rates[j] = 0;
734 			continue;
735 		}
736 		if (rix >= 0)
737 			okrate = nrs->rs_rates[i];
738 		i++;
739 	}
740 	if (okrate == 0 || error != 0 ||
741 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
742 	     fixedrate != ucastrate)) {
743 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
744 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
745 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
746 		return badrate | IEEE80211_RATE_BASIC;
747 	} else
748 		return IEEE80211_RV(okrate);
749 }
750 
751 /*
752  * Reset 11g-related state.
753  */
754 void
755 ieee80211_reset_erp(struct ieee80211com *ic)
756 {
757 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
758 	ic->ic_nonerpsta = 0;
759 	ic->ic_longslotsta = 0;
760 	/*
761 	 * Short slot time is enabled only when operating in 11g
762 	 * and not in an IBSS.  We must also honor whether or not
763 	 * the driver is capable of doing it.
764 	 */
765 	ieee80211_set_shortslottime(ic,
766 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
767 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
768 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
769 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
770 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
771 	/*
772 	 * Set short preamble and ERP barker-preamble flags.
773 	 */
774 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
775 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
776 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
777 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
778 	} else {
779 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
780 		ic->ic_flags |= IEEE80211_F_USEBARKER;
781 	}
782 }
783 
784 /*
785  * Set the short slot time state and notify the driver.
786  */
787 void
788 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
789 {
790 	if (onoff)
791 		ic->ic_flags |= IEEE80211_F_SHSLOT;
792 	else
793 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
794 	/* notify driver */
795 	if (ic->ic_updateslot != NULL)
796 		ic->ic_updateslot(ic);
797 }
798 
799 /*
800  * Check if the specified rate set supports ERP.
801  * NB: the rate set is assumed to be sorted.
802  */
803 int
804 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
805 {
806 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
807 	int i, j;
808 
809 	if (rs->rs_nrates < nitems(rates))
810 		return 0;
811 	for (i = 0; i < nitems(rates); i++) {
812 		for (j = 0; j < rs->rs_nrates; j++) {
813 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
814 			if (rates[i] == r)
815 				goto next;
816 			if (r > rates[i])
817 				return 0;
818 		}
819 		return 0;
820 	next:
821 		;
822 	}
823 	return 1;
824 }
825 
826 /*
827  * Mark the basic rates for the rate table based on the
828  * operating mode.  For real 11g we mark all the 11b rates
829  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
830  * 11b rates.  There's also a pseudo 11a-mode used to mark only
831  * the basic OFDM rates.
832  */
833 static void
834 setbasicrates(struct ieee80211_rateset *rs,
835     enum ieee80211_phymode mode, int add)
836 {
837 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
838 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
839 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
840 					    /* NB: mixed b/g */
841 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
842 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
843 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
844 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
845 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
846 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
847 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
848 					    /* NB: mixed b/g */
849 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
850 					    /* NB: mixed b/g */
851 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
852 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
853 	};
854 	int i, j;
855 
856 	for (i = 0; i < rs->rs_nrates; i++) {
857 		if (!add)
858 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
859 		for (j = 0; j < basic[mode].rs_nrates; j++)
860 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
861 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
862 				break;
863 			}
864 	}
865 }
866 
867 /*
868  * Set the basic rates in a rate set.
869  */
870 void
871 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
872     enum ieee80211_phymode mode)
873 {
874 	setbasicrates(rs, mode, 0);
875 }
876 
877 /*
878  * Add basic rates to a rate set.
879  */
880 void
881 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
882     enum ieee80211_phymode mode)
883 {
884 	setbasicrates(rs, mode, 1);
885 }
886 
887 /*
888  * WME protocol support.
889  *
890  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
891  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
892  * Draft 2.0 Test Plan (Appendix D).
893  *
894  * Static/Dynamic Turbo mode settings come from Atheros.
895  */
896 typedef struct phyParamType {
897 	uint8_t		aifsn;
898 	uint8_t		logcwmin;
899 	uint8_t		logcwmax;
900 	uint16_t	txopLimit;
901 	uint8_t 	acm;
902 } paramType;
903 
904 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
905 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
906 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
907 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
908 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
909 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
910 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
911 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
912 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
913 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
914 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
915 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
916 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
917 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
918 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
919 };
920 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
921 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
922 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
923 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
924 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
925 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
926 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
927 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
928 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
929 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
930 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
931 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
932 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
933 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
934 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
935 };
936 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
937 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
938 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
939 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
940 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
941 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
942 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
943 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
944 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
945 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
946 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
947 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
948 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
949 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
950 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
951 };
952 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
953 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
954 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
955 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
956 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
957 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
958 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
959 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
960 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
961 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
962 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
963 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
964 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
965 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
966 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
967 };
968 
969 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
970 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
971 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
972 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
973 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
974 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
975 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
976 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
977 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
978 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
979 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
980 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
981 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
982 };
983 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
984 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
985 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
986 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
987 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
988 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
989 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
990 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
991 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
992 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
993 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
994 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
995 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
996 };
997 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
998 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
999 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
1000 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
1001 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
1002 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
1003 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1004 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1005 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1006 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1007 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1008 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1009 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1010 };
1011 
1012 static void
1013 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1014 {
1015 	wmep->wmep_aifsn = phy->aifsn;
1016 	wmep->wmep_logcwmin = phy->logcwmin;
1017 	wmep->wmep_logcwmax = phy->logcwmax;
1018 	wmep->wmep_txopLimit = phy->txopLimit;
1019 }
1020 
1021 static void
1022 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1023 	struct wmeParams *wmep, const paramType *phy)
1024 {
1025 	wmep->wmep_acm = phy->acm;
1026 	_setifsparams(wmep, phy);
1027 
1028 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1029 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1030 	    ieee80211_wme_acnames[ac], type,
1031 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1032 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1033 }
1034 
1035 static void
1036 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1037 {
1038 	struct ieee80211com *ic = vap->iv_ic;
1039 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1040 	const paramType *pPhyParam, *pBssPhyParam;
1041 	struct wmeParams *wmep;
1042 	enum ieee80211_phymode mode;
1043 	int i;
1044 
1045 	IEEE80211_LOCK_ASSERT(ic);
1046 
1047 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1048 		return;
1049 
1050 	/*
1051 	 * Clear the wme cap_info field so a qoscount from a previous
1052 	 * vap doesn't confuse later code which only parses the beacon
1053 	 * field and updates hardware when said field changes.
1054 	 * Otherwise the hardware is programmed with defaults, not what
1055 	 * the beacon actually announces.
1056 	 */
1057 	wme->wme_wmeChanParams.cap_info = 0;
1058 
1059 	/*
1060 	 * Select mode; we can be called early in which case we
1061 	 * always use auto mode.  We know we'll be called when
1062 	 * entering the RUN state with bsschan setup properly
1063 	 * so state will eventually get set correctly
1064 	 */
1065 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1066 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1067 	else
1068 		mode = IEEE80211_MODE_AUTO;
1069 	for (i = 0; i < WME_NUM_AC; i++) {
1070 		switch (i) {
1071 		case WME_AC_BK:
1072 			pPhyParam = &phyParamForAC_BK[mode];
1073 			pBssPhyParam = &phyParamForAC_BK[mode];
1074 			break;
1075 		case WME_AC_VI:
1076 			pPhyParam = &phyParamForAC_VI[mode];
1077 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1078 			break;
1079 		case WME_AC_VO:
1080 			pPhyParam = &phyParamForAC_VO[mode];
1081 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1082 			break;
1083 		case WME_AC_BE:
1084 		default:
1085 			pPhyParam = &phyParamForAC_BE[mode];
1086 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1087 			break;
1088 		}
1089 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1090 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1091 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1092 		} else {
1093 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1094 		}
1095 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1096 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1097 	}
1098 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1099 	if (vap->iv_bss != NULL) {
1100 		/*
1101 		 * Calculate aggressive mode switching threshold based
1102 		 * on beacon interval.  This doesn't need locking since
1103 		 * we're only called before entering the RUN state at
1104 		 * which point we start sending beacon frames.
1105 		 */
1106 		wme->wme_hipri_switch_thresh =
1107 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1108 		wme->wme_flags &= ~WME_F_AGGRMODE;
1109 		ieee80211_wme_updateparams(vap);
1110 	}
1111 }
1112 
1113 void
1114 ieee80211_wme_initparams(struct ieee80211vap *vap)
1115 {
1116 	struct ieee80211com *ic = vap->iv_ic;
1117 
1118 	IEEE80211_LOCK(ic);
1119 	ieee80211_wme_initparams_locked(vap);
1120 	IEEE80211_UNLOCK(ic);
1121 }
1122 
1123 /*
1124  * Update WME parameters for ourself and the BSS.
1125  */
1126 void
1127 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1128 {
1129 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1130 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1131 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1132 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1133 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1134 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1135 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1136 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1137 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1138 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1139 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1140 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1141 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1142 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1143 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1144 	};
1145 	struct ieee80211com *ic = vap->iv_ic;
1146 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1147 	const struct wmeParams *wmep;
1148 	struct wmeParams *chanp, *bssp;
1149 	enum ieee80211_phymode mode;
1150 	int i;
1151 	int do_aggrmode = 0;
1152 
1153        	/*
1154 	 * Set up the channel access parameters for the physical
1155 	 * device.  First populate the configured settings.
1156 	 */
1157 	for (i = 0; i < WME_NUM_AC; i++) {
1158 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1159 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1160 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1161 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1162 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1163 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1164 
1165 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1166 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1167 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1168 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1169 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1170 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1171 	}
1172 
1173 	/*
1174 	 * Select mode; we can be called early in which case we
1175 	 * always use auto mode.  We know we'll be called when
1176 	 * entering the RUN state with bsschan setup properly
1177 	 * so state will eventually get set correctly
1178 	 */
1179 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1180 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1181 	else
1182 		mode = IEEE80211_MODE_AUTO;
1183 
1184 	/*
1185 	 * This implements aggressive mode as found in certain
1186 	 * vendors' AP's.  When there is significant high
1187 	 * priority (VI/VO) traffic in the BSS throttle back BE
1188 	 * traffic by using conservative parameters.  Otherwise
1189 	 * BE uses aggressive params to optimize performance of
1190 	 * legacy/non-QoS traffic.
1191 	 */
1192 
1193 	/* Hostap? Only if aggressive mode is enabled */
1194         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1195 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1196 		do_aggrmode = 1;
1197 
1198 	/*
1199 	 * Station? Only if we're in a non-QoS BSS.
1200 	 */
1201 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1202 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1203 		do_aggrmode = 1;
1204 
1205 	/*
1206 	 * IBSS? Only if we we have WME enabled.
1207 	 */
1208 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1209 	    (vap->iv_flags & IEEE80211_F_WME))
1210 		do_aggrmode = 1;
1211 
1212 	/*
1213 	 * If WME is disabled on this VAP, default to aggressive mode
1214 	 * regardless of the configuration.
1215 	 */
1216 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1217 		do_aggrmode = 1;
1218 
1219 	/* XXX WDS? */
1220 
1221 	/* XXX MBSS? */
1222 
1223 	if (do_aggrmode) {
1224 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1225 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1226 
1227 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1228 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1229 		    aggrParam[mode].logcwmin;
1230 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1231 		    aggrParam[mode].logcwmax;
1232 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1233 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1234 			aggrParam[mode].txopLimit : 0;
1235 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1236 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1237 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1238 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1239 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1240 	}
1241 
1242 
1243 	/*
1244 	 * Change the contention window based on the number of associated
1245 	 * stations.  If the number of associated stations is 1 and
1246 	 * aggressive mode is enabled, lower the contention window even
1247 	 * further.
1248 	 */
1249 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1250 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1251 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1252 		    [IEEE80211_MODE_AUTO]	= 3,
1253 		    [IEEE80211_MODE_11A]	= 3,
1254 		    [IEEE80211_MODE_11B]	= 4,
1255 		    [IEEE80211_MODE_11G]	= 3,
1256 		    [IEEE80211_MODE_FH]		= 4,
1257 		    [IEEE80211_MODE_TURBO_A]	= 3,
1258 		    [IEEE80211_MODE_TURBO_G]	= 3,
1259 		    [IEEE80211_MODE_STURBO_A]	= 3,
1260 		    [IEEE80211_MODE_HALF]	= 3,
1261 		    [IEEE80211_MODE_QUARTER]	= 3,
1262 		    [IEEE80211_MODE_11NA]	= 3,
1263 		    [IEEE80211_MODE_11NG]	= 3,
1264 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1265 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1266 		};
1267 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1268 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1269 
1270 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1271 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1272 		    "update %s (chan+bss) logcwmin %u\n",
1273 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1274 	}
1275 
1276 	/*
1277 	 * Arrange for the beacon update.
1278 	 *
1279 	 * XXX what about MBSS, WDS?
1280 	 */
1281 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1282 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1283 		/*
1284 		 * Arrange for a beacon update and bump the parameter
1285 		 * set number so associated stations load the new values.
1286 		 */
1287 		wme->wme_bssChanParams.cap_info =
1288 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1289 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1290 	}
1291 
1292 	/* schedule the deferred WME update */
1293 	ieee80211_runtask(ic, &vap->iv_wme_task);
1294 
1295 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1296 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1297 	    vap->iv_opmode == IEEE80211_M_STA ?
1298 		wme->wme_wmeChanParams.cap_info :
1299 		wme->wme_bssChanParams.cap_info);
1300 }
1301 
1302 void
1303 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1304 {
1305 	struct ieee80211com *ic = vap->iv_ic;
1306 
1307 	if (ic->ic_caps & IEEE80211_C_WME) {
1308 		IEEE80211_LOCK(ic);
1309 		ieee80211_wme_updateparams_locked(vap);
1310 		IEEE80211_UNLOCK(ic);
1311 	}
1312 }
1313 
1314 /*
1315  * Fetch the WME parameters for the given VAP.
1316  *
1317  * When net80211 grows p2p, etc support, this may return different
1318  * parameters for each VAP.
1319  */
1320 void
1321 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1322 {
1323 
1324 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1325 }
1326 
1327 /*
1328  * For NICs which only support one set of WME paramaters (ie, softmac NICs)
1329  * there may be different VAP WME parameters but only one is "active".
1330  * This returns the "NIC" WME parameters for the currently active
1331  * context.
1332  */
1333 void
1334 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1335 {
1336 
1337 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1338 }
1339 
1340 /*
1341  * Return whether to use QoS on a given WME queue.
1342  *
1343  * This is intended to be called from the transmit path of softmac drivers
1344  * which are setting NoAck bits in transmit descriptors.
1345  *
1346  * Ideally this would be set in some transmit field before the packet is
1347  * queued to the driver but net80211 isn't quite there yet.
1348  */
1349 int
1350 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1351 {
1352 	/* Bounds/sanity check */
1353 	if (ac < 0 || ac >= WME_NUM_AC)
1354 		return (0);
1355 
1356 	/* Again, there's only one global context for now */
1357 	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1358 }
1359 
1360 static void
1361 parent_updown(void *arg, int npending)
1362 {
1363 	struct ieee80211com *ic = arg;
1364 
1365 	ic->ic_parent(ic);
1366 }
1367 
1368 static void
1369 update_mcast(void *arg, int npending)
1370 {
1371 	struct ieee80211com *ic = arg;
1372 
1373 	ic->ic_update_mcast(ic);
1374 }
1375 
1376 static void
1377 update_promisc(void *arg, int npending)
1378 {
1379 	struct ieee80211com *ic = arg;
1380 
1381 	ic->ic_update_promisc(ic);
1382 }
1383 
1384 static void
1385 update_channel(void *arg, int npending)
1386 {
1387 	struct ieee80211com *ic = arg;
1388 
1389 	ic->ic_set_channel(ic);
1390 	ieee80211_radiotap_chan_change(ic);
1391 }
1392 
1393 static void
1394 update_chw(void *arg, int npending)
1395 {
1396 	struct ieee80211com *ic = arg;
1397 
1398 	/*
1399 	 * XXX should we defer the channel width _config_ update until now?
1400 	 */
1401 	ic->ic_update_chw(ic);
1402 }
1403 
1404 /*
1405  * Deferred WME update.
1406  *
1407  * In preparation for per-VAP WME configuration, call the VAP
1408  * method if the VAP requires it.  Otherwise, just call the
1409  * older global method.  There isn't a per-VAP WME configuration
1410  * just yet so for now just use the global configuration.
1411  */
1412 static void
1413 vap_update_wme(void *arg, int npending)
1414 {
1415 	struct ieee80211vap *vap = arg;
1416 	struct ieee80211com *ic = vap->iv_ic;
1417 
1418 	if (vap->iv_wme_update != NULL)
1419 		vap->iv_wme_update(vap,
1420 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
1421 	else
1422 		ic->ic_wme.wme_update(ic);
1423 }
1424 
1425 static void
1426 restart_vaps(void *arg, int npending)
1427 {
1428 	struct ieee80211com *ic = arg;
1429 
1430 	ieee80211_suspend_all(ic);
1431 	ieee80211_resume_all(ic);
1432 }
1433 
1434 /*
1435  * Block until the parent is in a known state.  This is
1436  * used after any operations that dispatch a task (e.g.
1437  * to auto-configure the parent device up/down).
1438  */
1439 void
1440 ieee80211_waitfor_parent(struct ieee80211com *ic)
1441 {
1442 	taskqueue_block(ic->ic_tq);
1443 	ieee80211_draintask(ic, &ic->ic_parent_task);
1444 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1445 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1446 	ieee80211_draintask(ic, &ic->ic_chan_task);
1447 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1448 	ieee80211_draintask(ic, &ic->ic_chw_task);
1449 	taskqueue_unblock(ic->ic_tq);
1450 }
1451 
1452 /*
1453  * Check to see whether the current channel needs reset.
1454  *
1455  * Some devices don't handle being given an invalid channel
1456  * in their operating mode very well (eg wpi(4) will throw a
1457  * firmware exception.)
1458  *
1459  * Return 0 if we're ok, 1 if the channel needs to be reset.
1460  *
1461  * See PR kern/202502.
1462  */
1463 static int
1464 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1465 {
1466 	struct ieee80211com *ic = vap->iv_ic;
1467 
1468 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1469 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1470 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1471 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1472 		return (1);
1473 	return (0);
1474 }
1475 
1476 /*
1477  * Reset the curchan to a known good state.
1478  */
1479 static void
1480 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1481 {
1482 	struct ieee80211com *ic = vap->iv_ic;
1483 
1484 	ic->ic_curchan = &ic->ic_channels[0];
1485 }
1486 
1487 /*
1488  * Start a vap running.  If this is the first vap to be
1489  * set running on the underlying device then we
1490  * automatically bring the device up.
1491  */
1492 void
1493 ieee80211_start_locked(struct ieee80211vap *vap)
1494 {
1495 	struct ifnet *ifp = vap->iv_ifp;
1496 	struct ieee80211com *ic = vap->iv_ic;
1497 
1498 	IEEE80211_LOCK_ASSERT(ic);
1499 
1500 	IEEE80211_DPRINTF(vap,
1501 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1502 		"start running, %d vaps running\n", ic->ic_nrunning);
1503 
1504 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1505 		/*
1506 		 * Mark us running.  Note that it's ok to do this first;
1507 		 * if we need to bring the parent device up we defer that
1508 		 * to avoid dropping the com lock.  We expect the device
1509 		 * to respond to being marked up by calling back into us
1510 		 * through ieee80211_start_all at which point we'll come
1511 		 * back in here and complete the work.
1512 		 */
1513 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1514 		/*
1515 		 * We are not running; if this we are the first vap
1516 		 * to be brought up auto-up the parent if necessary.
1517 		 */
1518 		if (ic->ic_nrunning++ == 0) {
1519 
1520 			/* reset the channel to a known good channel */
1521 			if (ieee80211_start_check_reset_chan(vap))
1522 				ieee80211_start_reset_chan(vap);
1523 
1524 			IEEE80211_DPRINTF(vap,
1525 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1526 			    "%s: up parent %s\n", __func__, ic->ic_name);
1527 			ieee80211_runtask(ic, &ic->ic_parent_task);
1528 			return;
1529 		}
1530 	}
1531 	/*
1532 	 * If the parent is up and running, then kick the
1533 	 * 802.11 state machine as appropriate.
1534 	 */
1535 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1536 		if (vap->iv_opmode == IEEE80211_M_STA) {
1537 #if 0
1538 			/* XXX bypasses scan too easily; disable for now */
1539 			/*
1540 			 * Try to be intelligent about clocking the state
1541 			 * machine.  If we're currently in RUN state then
1542 			 * we should be able to apply any new state/parameters
1543 			 * simply by re-associating.  Otherwise we need to
1544 			 * re-scan to select an appropriate ap.
1545 			 */
1546 			if (vap->iv_state >= IEEE80211_S_RUN)
1547 				ieee80211_new_state_locked(vap,
1548 				    IEEE80211_S_ASSOC, 1);
1549 			else
1550 #endif
1551 				ieee80211_new_state_locked(vap,
1552 				    IEEE80211_S_SCAN, 0);
1553 		} else {
1554 			/*
1555 			 * For monitor+wds mode there's nothing to do but
1556 			 * start running.  Otherwise if this is the first
1557 			 * vap to be brought up, start a scan which may be
1558 			 * preempted if the station is locked to a particular
1559 			 * channel.
1560 			 */
1561 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1562 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1563 			    vap->iv_opmode == IEEE80211_M_WDS)
1564 				ieee80211_new_state_locked(vap,
1565 				    IEEE80211_S_RUN, -1);
1566 			else
1567 				ieee80211_new_state_locked(vap,
1568 				    IEEE80211_S_SCAN, 0);
1569 		}
1570 	}
1571 }
1572 
1573 /*
1574  * Start a single vap.
1575  */
1576 void
1577 ieee80211_init(void *arg)
1578 {
1579 	struct ieee80211vap *vap = arg;
1580 
1581 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1582 	    "%s\n", __func__);
1583 
1584 	IEEE80211_LOCK(vap->iv_ic);
1585 	ieee80211_start_locked(vap);
1586 	IEEE80211_UNLOCK(vap->iv_ic);
1587 }
1588 
1589 /*
1590  * Start all runnable vap's on a device.
1591  */
1592 void
1593 ieee80211_start_all(struct ieee80211com *ic)
1594 {
1595 	struct ieee80211vap *vap;
1596 
1597 	IEEE80211_LOCK(ic);
1598 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1599 		struct ifnet *ifp = vap->iv_ifp;
1600 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1601 			ieee80211_start_locked(vap);
1602 	}
1603 	IEEE80211_UNLOCK(ic);
1604 }
1605 
1606 /*
1607  * Stop a vap.  We force it down using the state machine
1608  * then mark it's ifnet not running.  If this is the last
1609  * vap running on the underlying device then we close it
1610  * too to insure it will be properly initialized when the
1611  * next vap is brought up.
1612  */
1613 void
1614 ieee80211_stop_locked(struct ieee80211vap *vap)
1615 {
1616 	struct ieee80211com *ic = vap->iv_ic;
1617 	struct ifnet *ifp = vap->iv_ifp;
1618 
1619 	IEEE80211_LOCK_ASSERT(ic);
1620 
1621 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1622 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1623 
1624 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1625 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1626 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1627 		if (--ic->ic_nrunning == 0) {
1628 			IEEE80211_DPRINTF(vap,
1629 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1630 			    "down parent %s\n", ic->ic_name);
1631 			ieee80211_runtask(ic, &ic->ic_parent_task);
1632 		}
1633 	}
1634 }
1635 
1636 void
1637 ieee80211_stop(struct ieee80211vap *vap)
1638 {
1639 	struct ieee80211com *ic = vap->iv_ic;
1640 
1641 	IEEE80211_LOCK(ic);
1642 	ieee80211_stop_locked(vap);
1643 	IEEE80211_UNLOCK(ic);
1644 }
1645 
1646 /*
1647  * Stop all vap's running on a device.
1648  */
1649 void
1650 ieee80211_stop_all(struct ieee80211com *ic)
1651 {
1652 	struct ieee80211vap *vap;
1653 
1654 	IEEE80211_LOCK(ic);
1655 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1656 		struct ifnet *ifp = vap->iv_ifp;
1657 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1658 			ieee80211_stop_locked(vap);
1659 	}
1660 	IEEE80211_UNLOCK(ic);
1661 
1662 	ieee80211_waitfor_parent(ic);
1663 }
1664 
1665 /*
1666  * Stop all vap's running on a device and arrange
1667  * for those that were running to be resumed.
1668  */
1669 void
1670 ieee80211_suspend_all(struct ieee80211com *ic)
1671 {
1672 	struct ieee80211vap *vap;
1673 
1674 	IEEE80211_LOCK(ic);
1675 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1676 		struct ifnet *ifp = vap->iv_ifp;
1677 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1678 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1679 			ieee80211_stop_locked(vap);
1680 		}
1681 	}
1682 	IEEE80211_UNLOCK(ic);
1683 
1684 	ieee80211_waitfor_parent(ic);
1685 }
1686 
1687 /*
1688  * Start all vap's marked for resume.
1689  */
1690 void
1691 ieee80211_resume_all(struct ieee80211com *ic)
1692 {
1693 	struct ieee80211vap *vap;
1694 
1695 	IEEE80211_LOCK(ic);
1696 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1697 		struct ifnet *ifp = vap->iv_ifp;
1698 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1699 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1700 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1701 			ieee80211_start_locked(vap);
1702 		}
1703 	}
1704 	IEEE80211_UNLOCK(ic);
1705 }
1706 
1707 /*
1708  * Restart all vap's running on a device.
1709  */
1710 void
1711 ieee80211_restart_all(struct ieee80211com *ic)
1712 {
1713 	/*
1714 	 * NB: do not use ieee80211_runtask here, we will
1715 	 * block & drain net80211 taskqueue.
1716 	 */
1717 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1718 }
1719 
1720 void
1721 ieee80211_beacon_miss(struct ieee80211com *ic)
1722 {
1723 	IEEE80211_LOCK(ic);
1724 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1725 		/* Process in a taskq, the handler may reenter the driver */
1726 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1727 	}
1728 	IEEE80211_UNLOCK(ic);
1729 }
1730 
1731 static void
1732 beacon_miss(void *arg, int npending)
1733 {
1734 	struct ieee80211com *ic = arg;
1735 	struct ieee80211vap *vap;
1736 
1737 	IEEE80211_LOCK(ic);
1738 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1739 		/*
1740 		 * We only pass events through for sta vap's in RUN+ state;
1741 		 * may be too restrictive but for now this saves all the
1742 		 * handlers duplicating these checks.
1743 		 */
1744 		if (vap->iv_opmode == IEEE80211_M_STA &&
1745 		    vap->iv_state >= IEEE80211_S_RUN &&
1746 		    vap->iv_bmiss != NULL)
1747 			vap->iv_bmiss(vap);
1748 	}
1749 	IEEE80211_UNLOCK(ic);
1750 }
1751 
1752 static void
1753 beacon_swmiss(void *arg, int npending)
1754 {
1755 	struct ieee80211vap *vap = arg;
1756 	struct ieee80211com *ic = vap->iv_ic;
1757 
1758 	IEEE80211_LOCK(ic);
1759 	if (vap->iv_state >= IEEE80211_S_RUN) {
1760 		/* XXX Call multiple times if npending > zero? */
1761 		vap->iv_bmiss(vap);
1762 	}
1763 	IEEE80211_UNLOCK(ic);
1764 }
1765 
1766 /*
1767  * Software beacon miss handling.  Check if any beacons
1768  * were received in the last period.  If not post a
1769  * beacon miss; otherwise reset the counter.
1770  */
1771 void
1772 ieee80211_swbmiss(void *arg)
1773 {
1774 	struct ieee80211vap *vap = arg;
1775 	struct ieee80211com *ic = vap->iv_ic;
1776 
1777 	IEEE80211_LOCK_ASSERT(ic);
1778 
1779 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1780 	    ("wrong state %d", vap->iv_state));
1781 
1782 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1783 		/*
1784 		 * If scanning just ignore and reset state.  If we get a
1785 		 * bmiss after coming out of scan because we haven't had
1786 		 * time to receive a beacon then we should probe the AP
1787 		 * before posting a real bmiss (unless iv_bmiss_max has
1788 		 * been artifiically lowered).  A cleaner solution might
1789 		 * be to disable the timer on scan start/end but to handle
1790 		 * case of multiple sta vap's we'd need to disable the
1791 		 * timers of all affected vap's.
1792 		 */
1793 		vap->iv_swbmiss_count = 0;
1794 	} else if (vap->iv_swbmiss_count == 0) {
1795 		if (vap->iv_bmiss != NULL)
1796 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1797 	} else
1798 		vap->iv_swbmiss_count = 0;
1799 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1800 		ieee80211_swbmiss, vap);
1801 }
1802 
1803 /*
1804  * Start an 802.11h channel switch.  We record the parameters,
1805  * mark the operation pending, notify each vap through the
1806  * beacon update mechanism so it can update the beacon frame
1807  * contents, and then switch vap's to CSA state to block outbound
1808  * traffic.  Devices that handle CSA directly can use the state
1809  * switch to do the right thing so long as they call
1810  * ieee80211_csa_completeswitch when it's time to complete the
1811  * channel change.  Devices that depend on the net80211 layer can
1812  * use ieee80211_beacon_update to handle the countdown and the
1813  * channel switch.
1814  */
1815 void
1816 ieee80211_csa_startswitch(struct ieee80211com *ic,
1817 	struct ieee80211_channel *c, int mode, int count)
1818 {
1819 	struct ieee80211vap *vap;
1820 
1821 	IEEE80211_LOCK_ASSERT(ic);
1822 
1823 	ic->ic_csa_newchan = c;
1824 	ic->ic_csa_mode = mode;
1825 	ic->ic_csa_count = count;
1826 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1827 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1828 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1829 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1830 		    vap->iv_opmode == IEEE80211_M_MBSS)
1831 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1832 		/* switch to CSA state to block outbound traffic */
1833 		if (vap->iv_state == IEEE80211_S_RUN)
1834 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1835 	}
1836 	ieee80211_notify_csa(ic, c, mode, count);
1837 }
1838 
1839 /*
1840  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1841  * This is called by both the completion and cancellation functions
1842  * so each VAP is placed back in the RUN state and can thus transmit.
1843  */
1844 static void
1845 csa_completeswitch(struct ieee80211com *ic)
1846 {
1847 	struct ieee80211vap *vap;
1848 
1849 	ic->ic_csa_newchan = NULL;
1850 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1851 
1852 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1853 		if (vap->iv_state == IEEE80211_S_CSA)
1854 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1855 }
1856 
1857 /*
1858  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1859  * We clear state and move all vap's in CSA state to RUN state
1860  * so they can again transmit.
1861  *
1862  * Although this may not be completely correct, update the BSS channel
1863  * for each VAP to the newly configured channel. The setcurchan sets
1864  * the current operating channel for the interface (so the radio does
1865  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1866  * reported information via ioctl.
1867  */
1868 void
1869 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1870 {
1871 	struct ieee80211vap *vap;
1872 
1873 	IEEE80211_LOCK_ASSERT(ic);
1874 
1875 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1876 
1877 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1878 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1879 		if (vap->iv_state == IEEE80211_S_CSA)
1880 			vap->iv_bss->ni_chan = ic->ic_curchan;
1881 
1882 	csa_completeswitch(ic);
1883 }
1884 
1885 /*
1886  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1887  * We clear state and move all vap's in CSA state to RUN state
1888  * so they can again transmit.
1889  */
1890 void
1891 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1892 {
1893 	IEEE80211_LOCK_ASSERT(ic);
1894 
1895 	csa_completeswitch(ic);
1896 }
1897 
1898 /*
1899  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1900  * We clear state and move all vap's in CAC state to RUN state.
1901  */
1902 void
1903 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1904 {
1905 	struct ieee80211com *ic = vap0->iv_ic;
1906 	struct ieee80211vap *vap;
1907 
1908 	IEEE80211_LOCK(ic);
1909 	/*
1910 	 * Complete CAC state change for lead vap first; then
1911 	 * clock all the other vap's waiting.
1912 	 */
1913 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1914 	    ("wrong state %d", vap0->iv_state));
1915 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1916 
1917 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1918 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
1919 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1920 	IEEE80211_UNLOCK(ic);
1921 }
1922 
1923 /*
1924  * Force all vap's other than the specified vap to the INIT state
1925  * and mark them as waiting for a scan to complete.  These vaps
1926  * will be brought up when the scan completes and the scanning vap
1927  * reaches RUN state by wakeupwaiting.
1928  */
1929 static void
1930 markwaiting(struct ieee80211vap *vap0)
1931 {
1932 	struct ieee80211com *ic = vap0->iv_ic;
1933 	struct ieee80211vap *vap;
1934 
1935 	IEEE80211_LOCK_ASSERT(ic);
1936 
1937 	/*
1938 	 * A vap list entry can not disappear since we are running on the
1939 	 * taskqueue and a vap destroy will queue and drain another state
1940 	 * change task.
1941 	 */
1942 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1943 		if (vap == vap0)
1944 			continue;
1945 		if (vap->iv_state != IEEE80211_S_INIT) {
1946 			/* NB: iv_newstate may drop the lock */
1947 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1948 			IEEE80211_LOCK_ASSERT(ic);
1949 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1950 		}
1951 	}
1952 }
1953 
1954 /*
1955  * Wakeup all vap's waiting for a scan to complete.  This is the
1956  * companion to markwaiting (above) and is used to coordinate
1957  * multiple vaps scanning.
1958  * This is called from the state taskqueue.
1959  */
1960 static void
1961 wakeupwaiting(struct ieee80211vap *vap0)
1962 {
1963 	struct ieee80211com *ic = vap0->iv_ic;
1964 	struct ieee80211vap *vap;
1965 
1966 	IEEE80211_LOCK_ASSERT(ic);
1967 
1968 	/*
1969 	 * A vap list entry can not disappear since we are running on the
1970 	 * taskqueue and a vap destroy will queue and drain another state
1971 	 * change task.
1972 	 */
1973 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1974 		if (vap == vap0)
1975 			continue;
1976 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1977 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1978 			/* NB: sta's cannot go INIT->RUN */
1979 			/* NB: iv_newstate may drop the lock */
1980 			vap->iv_newstate(vap,
1981 			    vap->iv_opmode == IEEE80211_M_STA ?
1982 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1983 			IEEE80211_LOCK_ASSERT(ic);
1984 		}
1985 	}
1986 }
1987 
1988 /*
1989  * Handle post state change work common to all operating modes.
1990  */
1991 static void
1992 ieee80211_newstate_cb(void *xvap, int npending)
1993 {
1994 	struct ieee80211vap *vap = xvap;
1995 	struct ieee80211com *ic = vap->iv_ic;
1996 	enum ieee80211_state nstate, ostate;
1997 	int arg, rc;
1998 
1999 	IEEE80211_LOCK(ic);
2000 	nstate = vap->iv_nstate;
2001 	arg = vap->iv_nstate_arg;
2002 
2003 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2004 		/*
2005 		 * We have been requested to drop back to the INIT before
2006 		 * proceeding to the new state.
2007 		 */
2008 		/* Deny any state changes while we are here. */
2009 		vap->iv_nstate = IEEE80211_S_INIT;
2010 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2011 		    "%s: %s -> %s arg %d\n", __func__,
2012 		    ieee80211_state_name[vap->iv_state],
2013 		    ieee80211_state_name[vap->iv_nstate], arg);
2014 		vap->iv_newstate(vap, vap->iv_nstate, 0);
2015 		IEEE80211_LOCK_ASSERT(ic);
2016 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2017 		    IEEE80211_FEXT_STATEWAIT);
2018 		/* enqueue new state transition after cancel_scan() task */
2019 		ieee80211_new_state_locked(vap, nstate, arg);
2020 		goto done;
2021 	}
2022 
2023 	ostate = vap->iv_state;
2024 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2025 		/*
2026 		 * SCAN was forced; e.g. on beacon miss.  Force other running
2027 		 * vap's to INIT state and mark them as waiting for the scan to
2028 		 * complete.  This insures they don't interfere with our
2029 		 * scanning.  Since we are single threaded the vaps can not
2030 		 * transition again while we are executing.
2031 		 *
2032 		 * XXX not always right, assumes ap follows sta
2033 		 */
2034 		markwaiting(vap);
2035 	}
2036 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2037 	    "%s: %s -> %s arg %d\n", __func__,
2038 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2039 
2040 	rc = vap->iv_newstate(vap, nstate, arg);
2041 	IEEE80211_LOCK_ASSERT(ic);
2042 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2043 	if (rc != 0) {
2044 		/* State transition failed */
2045 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2046 		KASSERT(nstate != IEEE80211_S_INIT,
2047 		    ("INIT state change failed"));
2048 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2049 		    "%s: %s returned error %d\n", __func__,
2050 		    ieee80211_state_name[nstate], rc);
2051 		goto done;
2052 	}
2053 
2054 	/* No actual transition, skip post processing */
2055 	if (ostate == nstate)
2056 		goto done;
2057 
2058 	if (nstate == IEEE80211_S_RUN) {
2059 		/*
2060 		 * OACTIVE may be set on the vap if the upper layer
2061 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2062 		 * RUN state.  Clear it and restart xmit.
2063 		 *
2064 		 * Note this can also happen as a result of SLEEP->RUN
2065 		 * (i.e. coming out of power save mode).
2066 		 */
2067 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2068 
2069 		/*
2070 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2071 		 */
2072 
2073 		/* bring up any vaps waiting on us */
2074 		wakeupwaiting(vap);
2075 	} else if (nstate == IEEE80211_S_INIT) {
2076 		/*
2077 		 * Flush the scan cache if we did the last scan (XXX?)
2078 		 * and flush any frames on send queues from this vap.
2079 		 * Note the mgt q is used only for legacy drivers and
2080 		 * will go away shortly.
2081 		 */
2082 		ieee80211_scan_flush(vap);
2083 
2084 		/*
2085 		 * XXX TODO: ic/vap queue flush
2086 		 */
2087 	}
2088 done:
2089 	IEEE80211_UNLOCK(ic);
2090 }
2091 
2092 /*
2093  * Public interface for initiating a state machine change.
2094  * This routine single-threads the request and coordinates
2095  * the scheduling of multiple vaps for the purpose of selecting
2096  * an operating channel.  Specifically the following scenarios
2097  * are handled:
2098  * o only one vap can be selecting a channel so on transition to
2099  *   SCAN state if another vap is already scanning then
2100  *   mark the caller for later processing and return without
2101  *   doing anything (XXX? expectations by caller of synchronous operation)
2102  * o only one vap can be doing CAC of a channel so on transition to
2103  *   CAC state if another vap is already scanning for radar then
2104  *   mark the caller for later processing and return without
2105  *   doing anything (XXX? expectations by caller of synchronous operation)
2106  * o if another vap is already running when a request is made
2107  *   to SCAN then an operating channel has been chosen; bypass
2108  *   the scan and just join the channel
2109  *
2110  * Note that the state change call is done through the iv_newstate
2111  * method pointer so any driver routine gets invoked.  The driver
2112  * will normally call back into operating mode-specific
2113  * ieee80211_newstate routines (below) unless it needs to completely
2114  * bypass the state machine (e.g. because the firmware has it's
2115  * own idea how things should work).  Bypassing the net80211 layer
2116  * is usually a mistake and indicates lack of proper integration
2117  * with the net80211 layer.
2118  */
2119 int
2120 ieee80211_new_state_locked(struct ieee80211vap *vap,
2121 	enum ieee80211_state nstate, int arg)
2122 {
2123 	struct ieee80211com *ic = vap->iv_ic;
2124 	struct ieee80211vap *vp;
2125 	enum ieee80211_state ostate;
2126 	int nrunning, nscanning;
2127 
2128 	IEEE80211_LOCK_ASSERT(ic);
2129 
2130 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2131 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2132 		    ((vap->iv_state == IEEE80211_S_INIT ||
2133 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2134 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2135 		    nstate > IEEE80211_S_SCAN)) {
2136 			/*
2137 			 * XXX The vap is being stopped/started,
2138 			 * do not allow any other state changes
2139 			 * until this is completed.
2140 			 */
2141 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2142 			    "%s: %s -> %s (%s) transition discarded\n",
2143 			    __func__,
2144 			    ieee80211_state_name[vap->iv_state],
2145 			    ieee80211_state_name[nstate],
2146 			    ieee80211_state_name[vap->iv_nstate]);
2147 			return -1;
2148 		} else if (vap->iv_state != vap->iv_nstate) {
2149 #if 0
2150 			/* Warn if the previous state hasn't completed. */
2151 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2152 			    "%s: pending %s -> %s transition lost\n", __func__,
2153 			    ieee80211_state_name[vap->iv_state],
2154 			    ieee80211_state_name[vap->iv_nstate]);
2155 #else
2156 			/* XXX temporarily enable to identify issues */
2157 			if_printf(vap->iv_ifp,
2158 			    "%s: pending %s -> %s transition lost\n",
2159 			    __func__, ieee80211_state_name[vap->iv_state],
2160 			    ieee80211_state_name[vap->iv_nstate]);
2161 #endif
2162 		}
2163 	}
2164 
2165 	nrunning = nscanning = 0;
2166 	/* XXX can track this state instead of calculating */
2167 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2168 		if (vp != vap) {
2169 			if (vp->iv_state >= IEEE80211_S_RUN)
2170 				nrunning++;
2171 			/* XXX doesn't handle bg scan */
2172 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2173 			else if (vp->iv_state > IEEE80211_S_INIT)
2174 				nscanning++;
2175 		}
2176 	}
2177 	ostate = vap->iv_state;
2178 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2179 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2180 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2181 	    nrunning, nscanning);
2182 	switch (nstate) {
2183 	case IEEE80211_S_SCAN:
2184 		if (ostate == IEEE80211_S_INIT) {
2185 			/*
2186 			 * INIT -> SCAN happens on initial bringup.
2187 			 */
2188 			KASSERT(!(nscanning && nrunning),
2189 			    ("%d scanning and %d running", nscanning, nrunning));
2190 			if (nscanning) {
2191 				/*
2192 				 * Someone is scanning, defer our state
2193 				 * change until the work has completed.
2194 				 */
2195 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2196 				    "%s: defer %s -> %s\n",
2197 				    __func__, ieee80211_state_name[ostate],
2198 				    ieee80211_state_name[nstate]);
2199 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2200 				return 0;
2201 			}
2202 			if (nrunning) {
2203 				/*
2204 				 * Someone is operating; just join the channel
2205 				 * they have chosen.
2206 				 */
2207 				/* XXX kill arg? */
2208 				/* XXX check each opmode, adhoc? */
2209 				if (vap->iv_opmode == IEEE80211_M_STA)
2210 					nstate = IEEE80211_S_SCAN;
2211 				else
2212 					nstate = IEEE80211_S_RUN;
2213 #ifdef IEEE80211_DEBUG
2214 				if (nstate != IEEE80211_S_SCAN) {
2215 					IEEE80211_DPRINTF(vap,
2216 					    IEEE80211_MSG_STATE,
2217 					    "%s: override, now %s -> %s\n",
2218 					    __func__,
2219 					    ieee80211_state_name[ostate],
2220 					    ieee80211_state_name[nstate]);
2221 				}
2222 #endif
2223 			}
2224 		}
2225 		break;
2226 	case IEEE80211_S_RUN:
2227 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2228 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2229 		    nscanning) {
2230 			/*
2231 			 * Legacy WDS with someone else scanning; don't
2232 			 * go online until that completes as we should
2233 			 * follow the other vap to the channel they choose.
2234 			 */
2235 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2236 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2237 			     ieee80211_state_name[ostate],
2238 			     ieee80211_state_name[nstate]);
2239 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2240 			return 0;
2241 		}
2242 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2243 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2244 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2245 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2246 			/*
2247 			 * This is a DFS channel, transition to CAC state
2248 			 * instead of RUN.  This allows us to initiate
2249 			 * Channel Availability Check (CAC) as specified
2250 			 * by 11h/DFS.
2251 			 */
2252 			nstate = IEEE80211_S_CAC;
2253 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2254 			     "%s: override %s -> %s (DFS)\n", __func__,
2255 			     ieee80211_state_name[ostate],
2256 			     ieee80211_state_name[nstate]);
2257 		}
2258 		break;
2259 	case IEEE80211_S_INIT:
2260 		/* cancel any scan in progress */
2261 		ieee80211_cancel_scan(vap);
2262 		if (ostate == IEEE80211_S_INIT ) {
2263 			/* XXX don't believe this */
2264 			/* INIT -> INIT. nothing to do */
2265 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2266 		}
2267 		/* fall thru... */
2268 	default:
2269 		break;
2270 	}
2271 	/* defer the state change to a thread */
2272 	vap->iv_nstate = nstate;
2273 	vap->iv_nstate_arg = arg;
2274 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2275 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2276 	return EINPROGRESS;
2277 }
2278 
2279 int
2280 ieee80211_new_state(struct ieee80211vap *vap,
2281 	enum ieee80211_state nstate, int arg)
2282 {
2283 	struct ieee80211com *ic = vap->iv_ic;
2284 	int rc;
2285 
2286 	IEEE80211_LOCK(ic);
2287 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2288 	IEEE80211_UNLOCK(ic);
2289 	return rc;
2290 }
2291