xref: /freebsd/sys/netinet/cc/cc_dctcp.c (revision 4d846d26)
1 /*-
2  * Copyright (c) 2007-2008
3  *	Swinburne University of Technology, Melbourne, Australia
4  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
5  * Copyright (c) 2014 Midori Kato <katoon@sfc.wide.ad.jp>
6  * Copyright (c) 2014 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * An implementation of the DCTCP algorithm for FreeBSD, based on
33  * "Data Center TCP (DCTCP)" by M. Alizadeh, A. Greenberg, D. A. Maltz,
34  * J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.,
35  * in ACM Conference on SIGCOMM 2010, New York, USA,
36  * Originally released as the contribution of Microsoft Research project.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/vnet.h>
52 
53 #include <net/route.h>
54 #include <net/route/nhop.h>
55 
56 #include <netinet/in_pcb.h>
57 #include <netinet/tcp.h>
58 #include <netinet/tcp_seq.h>
59 #include <netinet/tcp_var.h>
60 #include <netinet/cc/cc.h>
61 #include <netinet/cc/cc_module.h>
62 
63 #define DCTCP_SHIFT 10
64 #define MAX_ALPHA_VALUE (1<<DCTCP_SHIFT)
65 VNET_DEFINE_STATIC(uint32_t, dctcp_alpha) = MAX_ALPHA_VALUE;
66 #define V_dctcp_alpha	    VNET(dctcp_alpha)
67 VNET_DEFINE_STATIC(uint32_t, dctcp_shift_g) = 4;
68 #define	V_dctcp_shift_g	    VNET(dctcp_shift_g)
69 VNET_DEFINE_STATIC(uint32_t, dctcp_slowstart) = 0;
70 #define	V_dctcp_slowstart   VNET(dctcp_slowstart)
71 VNET_DEFINE_STATIC(uint32_t, dctcp_ect1) = 0;
72 #define	V_dctcp_ect1	    VNET(dctcp_ect1)
73 
74 struct dctcp {
75 	uint32_t bytes_ecn;	  /* # of marked bytes during a RTT */
76 	uint32_t bytes_total;	  /* # of acked bytes during a RTT */
77 	int      alpha;		  /* the fraction of marked bytes */
78 	int      ce_prev;	  /* CE state of the last segment */
79 	tcp_seq  save_sndnxt;	  /* end sequence number of the current window */
80 	int      ece_curr;	  /* ECE flag in this segment */
81 	int      ece_prev;	  /* ECE flag in the last segment */
82 	uint32_t num_cong_events; /* # of congestion events */
83 };
84 
85 static void	dctcp_ack_received(struct cc_var *ccv, uint16_t type);
86 static void	dctcp_after_idle(struct cc_var *ccv);
87 static void	dctcp_cb_destroy(struct cc_var *ccv);
88 static int	dctcp_cb_init(struct cc_var *ccv, void *ptr);
89 static void	dctcp_cong_signal(struct cc_var *ccv, uint32_t type);
90 static void	dctcp_conn_init(struct cc_var *ccv);
91 static void	dctcp_post_recovery(struct cc_var *ccv);
92 static void	dctcp_ecnpkt_handler(struct cc_var *ccv);
93 static void	dctcp_update_alpha(struct cc_var *ccv);
94 static size_t	dctcp_data_sz(void);
95 
96 struct cc_algo dctcp_cc_algo = {
97 	.name = "dctcp",
98 	.ack_received = dctcp_ack_received,
99 	.cb_destroy = dctcp_cb_destroy,
100 	.cb_init = dctcp_cb_init,
101 	.cong_signal = dctcp_cong_signal,
102 	.conn_init = dctcp_conn_init,
103 	.post_recovery = dctcp_post_recovery,
104 	.ecnpkt_handler = dctcp_ecnpkt_handler,
105 	.after_idle = dctcp_after_idle,
106 	.cc_data_sz = dctcp_data_sz,
107 };
108 
109 static void
110 dctcp_ack_received(struct cc_var *ccv, uint16_t type)
111 {
112 	struct dctcp *dctcp_data;
113 	int bytes_acked = 0;
114 
115 	dctcp_data = ccv->cc_data;
116 
117 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
118 		/*
119 		 * DCTCP doesn't treat receipt of ECN marked packet as a
120 		 * congestion event. Thus, DCTCP always executes the ACK
121 		 * processing out of congestion recovery.
122 		 */
123 		if (IN_CONGRECOVERY(CCV(ccv, t_flags))) {
124 			EXIT_CONGRECOVERY(CCV(ccv, t_flags));
125 			newreno_cc_ack_received(ccv, type);
126 			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
127 		} else
128 			newreno_cc_ack_received(ccv, type);
129 
130 		if (type == CC_DUPACK)
131 			bytes_acked = min(ccv->bytes_this_ack, CCV(ccv, t_maxseg));
132 
133 		if (type == CC_ACK)
134 			bytes_acked = ccv->bytes_this_ack;
135 
136 		/* Update total bytes. */
137 		dctcp_data->bytes_total += bytes_acked;
138 
139 		/* Update total marked bytes. */
140 		if (dctcp_data->ece_curr) {
141 			//XXRMS: For fluid-model DCTCP, update
142 			//cwnd here during for RTT fairness
143 			if (!dctcp_data->ece_prev
144 			    && bytes_acked > CCV(ccv, t_maxseg)) {
145 				dctcp_data->bytes_ecn +=
146 				    (bytes_acked - CCV(ccv, t_maxseg));
147 			} else
148 				dctcp_data->bytes_ecn += bytes_acked;
149 			dctcp_data->ece_prev = 1;
150 		} else {
151 			if (dctcp_data->ece_prev
152 			    && bytes_acked > CCV(ccv, t_maxseg))
153 				dctcp_data->bytes_ecn += CCV(ccv, t_maxseg);
154 			dctcp_data->ece_prev = 0;
155 		}
156 		dctcp_data->ece_curr = 0;
157 
158 		/*
159 		 * Update the fraction of marked bytes at the end of
160 		 * current window size.
161 		 */
162 		if (!IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
163 		    SEQ_GT(ccv->curack, dctcp_data->save_sndnxt))
164 			dctcp_update_alpha(ccv);
165 	} else
166 		newreno_cc_ack_received(ccv, type);
167 }
168 
169 static size_t
170 dctcp_data_sz(void)
171 {
172 	return (sizeof(struct dctcp));
173 }
174 
175 static void
176 dctcp_after_idle(struct cc_var *ccv)
177 {
178 	struct dctcp *dctcp_data;
179 
180 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
181 		dctcp_data = ccv->cc_data;
182 
183 		/* Initialize internal parameters after idle time */
184 		dctcp_data->bytes_ecn = 0;
185 		dctcp_data->bytes_total = 0;
186 		dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
187 		dctcp_data->alpha = V_dctcp_alpha;
188 		dctcp_data->ece_curr = 0;
189 		dctcp_data->ece_prev = 0;
190 		dctcp_data->num_cong_events = 0;
191 	}
192 
193 	newreno_cc_after_idle(ccv);
194 }
195 
196 static void
197 dctcp_cb_destroy(struct cc_var *ccv)
198 {
199 	free(ccv->cc_data, M_CC_MEM);
200 }
201 
202 static int
203 dctcp_cb_init(struct cc_var *ccv, void *ptr)
204 {
205 	struct dctcp *dctcp_data;
206 
207 	INP_WLOCK_ASSERT(tptoinpcb(ccv->ccvc.tcp));
208 	if (ptr == NULL) {
209 		dctcp_data = malloc(sizeof(struct dctcp), M_CC_MEM, M_NOWAIT|M_ZERO);
210 		if (dctcp_data == NULL)
211 			return (ENOMEM);
212 	} else
213 		dctcp_data = ptr;
214 	/* Initialize some key variables with sensible defaults. */
215 	dctcp_data->bytes_ecn = 0;
216 	dctcp_data->bytes_total = 0;
217 	/*
218 	 * When alpha is set to 0 in the beginning, DCTCP sender transfers as
219 	 * much data as possible until the value converges which may expand the
220 	 * queueing delay at the switch. When alpha is set to 1, queueing delay
221 	 * is kept small.
222 	 * Throughput-sensitive applications should have alpha = 0
223 	 * Latency-sensitive applications should have alpha = 1
224 	 *
225 	 * Note: DCTCP draft suggests initial alpha to be 1 but we've decided to
226 	 * keep it 0 as default.
227 	 */
228 	dctcp_data->alpha = V_dctcp_alpha;
229 	dctcp_data->save_sndnxt = 0;
230 	dctcp_data->ce_prev = 0;
231 	dctcp_data->ece_curr = 0;
232 	dctcp_data->ece_prev = 0;
233 	dctcp_data->num_cong_events = 0;
234 
235 	ccv->cc_data = dctcp_data;
236 	return (0);
237 }
238 
239 /*
240  * Perform any necessary tasks before we enter congestion recovery.
241  */
242 static void
243 dctcp_cong_signal(struct cc_var *ccv, uint32_t type)
244 {
245 	struct dctcp *dctcp_data;
246 	u_int cwin, mss;
247 
248 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
249 		dctcp_data = ccv->cc_data;
250 		cwin = CCV(ccv, snd_cwnd);
251 		mss = tcp_maxseg(ccv->ccvc.tcp);
252 
253 		switch (type) {
254 		case CC_NDUPACK:
255 			if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
256 				if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
257 					CCV(ccv, snd_ssthresh) =
258 					    max(cwin / 2, 2 * mss);
259 					dctcp_data->num_cong_events++;
260 				} else {
261 					/* cwnd has already updated as congestion
262 					 * recovery. Reverse cwnd value using
263 					 * snd_cwnd_prev and recalculate snd_ssthresh
264 					 */
265 					cwin = CCV(ccv, snd_cwnd_prev);
266 					CCV(ccv, snd_ssthresh) =
267 					    max(cwin / 2, 2 * mss);
268 				}
269 				ENTER_RECOVERY(CCV(ccv, t_flags));
270 			}
271 			break;
272 		case CC_ECN:
273 			/*
274 			 * Save current snd_cwnd when the host encounters both
275 			 * congestion recovery and fast recovery.
276 			 */
277 			CCV(ccv, snd_cwnd_prev) = cwin;
278 			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
279 				if (V_dctcp_slowstart &&
280 				    dctcp_data->num_cong_events++ == 0) {
281 					CCV(ccv, snd_ssthresh) =
282 					    max(cwin / 2, 2 * mss);
283 					dctcp_data->alpha = MAX_ALPHA_VALUE;
284 					dctcp_data->bytes_ecn = 0;
285 					dctcp_data->bytes_total = 0;
286 					dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
287 				} else
288 					CCV(ccv, snd_ssthresh) =
289 					    max((cwin - (((uint64_t)cwin *
290 					    dctcp_data->alpha) >> (DCTCP_SHIFT+1))),
291 					    2 * mss);
292 				CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
293 				ENTER_CONGRECOVERY(CCV(ccv, t_flags));
294 			}
295 			dctcp_data->ece_curr = 1;
296 			break;
297 		case CC_RTO:
298 			CCV(ccv, snd_ssthresh) = max(min(CCV(ccv, snd_wnd),
299 							 CCV(ccv, snd_cwnd)) / 2 / mss,
300 						     2) * mss;
301 			CCV(ccv, snd_cwnd) = mss;
302 			dctcp_update_alpha(ccv);
303 			dctcp_data->save_sndnxt += CCV(ccv, t_maxseg);
304 			dctcp_data->num_cong_events++;
305 			break;
306 		}
307 	} else
308 		newreno_cc_cong_signal(ccv, type);
309 }
310 
311 static void
312 dctcp_conn_init(struct cc_var *ccv)
313 {
314 	struct dctcp *dctcp_data;
315 
316 	dctcp_data = ccv->cc_data;
317 
318 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
319 		dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
320 		if (V_dctcp_ect1)
321 			CCV(ccv, t_flags2) |= TF2_ECN_USE_ECT1;
322 	}
323 }
324 
325 /*
326  * Perform any necessary tasks before we exit congestion recovery.
327  */
328 static void
329 dctcp_post_recovery(struct cc_var *ccv)
330 {
331 	newreno_cc_post_recovery(ccv);
332 
333 	if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT)
334 		dctcp_update_alpha(ccv);
335 }
336 
337 /*
338  * Execute an additional ECN processing using ECN field in IP header
339  * and the CWR bit in TCP header.
340  */
341 static void
342 dctcp_ecnpkt_handler(struct cc_var *ccv)
343 {
344 	struct dctcp *dctcp_data;
345 	uint32_t ccflag;
346 	int acknow;
347 
348 	dctcp_data = ccv->cc_data;
349 	ccflag = ccv->flags;
350 	acknow = 0;
351 
352 	/*
353 	 * DCTCP responds with an ACK immediately when the CE state
354 	 * in between this segment and the last segment has changed.
355 	 */
356 	if (ccflag & CCF_IPHDR_CE) {
357 		if (!dctcp_data->ce_prev) {
358 			acknow = 1;
359 			dctcp_data->ce_prev = 1;
360 			CCV(ccv, t_flags2) |= TF2_ECN_SND_ECE;
361 		}
362 	} else {
363 		if (dctcp_data->ce_prev) {
364 			acknow = 1;
365 			dctcp_data->ce_prev = 0;
366 			CCV(ccv, t_flags2) &= ~TF2_ECN_SND_ECE;
367 		}
368 	}
369 
370 	if ((acknow) || (ccflag & CCF_TCPHDR_CWR)) {
371 		ccv->flags |= CCF_ACKNOW;
372 	} else {
373 		ccv->flags &= ~CCF_ACKNOW;
374 	}
375 }
376 
377 /*
378  * Update the fraction of marked bytes represented as 'alpha'.
379  * Also initialize several internal parameters at the end of this function.
380  */
381 static void
382 dctcp_update_alpha(struct cc_var *ccv)
383 {
384 	struct dctcp *dctcp_data;
385 	int alpha_prev;
386 
387 	dctcp_data = ccv->cc_data;
388 	alpha_prev = dctcp_data->alpha;
389 	dctcp_data->bytes_total = max(dctcp_data->bytes_total, 1);
390 
391 	/*
392 	 * Update alpha: alpha = (1 - g) * alpha + g * M.
393 	 * Here:
394 	 * g is weight factor
395 	 *	recommaded to be set to 1/16
396 	 *	small g = slow convergence between competitive DCTCP flows
397 	 *	large g = impacts low utilization of bandwidth at switches
398 	 * M is fraction of marked segments in last RTT
399 	 *	updated every RTT
400 	 * Alpha must be round to 0 - MAX_ALPHA_VALUE.
401 	 */
402 	dctcp_data->alpha = ulmin(alpha_prev - (alpha_prev >> V_dctcp_shift_g) +
403 	    ((uint64_t)dctcp_data->bytes_ecn << (DCTCP_SHIFT - V_dctcp_shift_g)) /
404 	    dctcp_data->bytes_total, MAX_ALPHA_VALUE);
405 
406 	/* Initialize internal parameters for next alpha calculation */
407 	dctcp_data->bytes_ecn = 0;
408 	dctcp_data->bytes_total = 0;
409 	dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
410 }
411 
412 static int
413 dctcp_alpha_handler(SYSCTL_HANDLER_ARGS)
414 {
415 	uint32_t new;
416 	int error;
417 
418 	new = V_dctcp_alpha;
419 	error = sysctl_handle_int(oidp, &new, 0, req);
420 	if (error == 0 && req->newptr != NULL) {
421 		if (new > MAX_ALPHA_VALUE)
422 			error = EINVAL;
423 		else
424 			V_dctcp_alpha = new;
425 	}
426 
427 	return (error);
428 }
429 
430 static int
431 dctcp_shift_g_handler(SYSCTL_HANDLER_ARGS)
432 {
433 	uint32_t new;
434 	int error;
435 
436 	new = V_dctcp_shift_g;
437 	error = sysctl_handle_int(oidp, &new, 0, req);
438 	if (error == 0 && req->newptr != NULL) {
439 		if (new > DCTCP_SHIFT)
440 			error = EINVAL;
441 		else
442 			V_dctcp_shift_g = new;
443 	}
444 
445 	return (error);
446 }
447 
448 static int
449 dctcp_slowstart_handler(SYSCTL_HANDLER_ARGS)
450 {
451 	uint32_t new;
452 	int error;
453 
454 	new = V_dctcp_slowstart;
455 	error = sysctl_handle_int(oidp, &new, 0, req);
456 	if (error == 0 && req->newptr != NULL) {
457 		if (new > 1)
458 			error = EINVAL;
459 		else
460 			V_dctcp_slowstart = new;
461 	}
462 
463 	return (error);
464 }
465 
466 SYSCTL_DECL(_net_inet_tcp_cc_dctcp);
467 SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, dctcp,
468     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
469     "dctcp congestion control related settings");
470 
471 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, alpha,
472     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
473     &VNET_NAME(dctcp_alpha), 0, &dctcp_alpha_handler, "IU",
474     "dctcp alpha parameter at start of session");
475 
476 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, shift_g,
477     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
478     &VNET_NAME(dctcp_shift_g), 4, &dctcp_shift_g_handler, "IU",
479     "dctcp shift parameter");
480 
481 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, slowstart,
482     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
483     &VNET_NAME(dctcp_slowstart), 0, &dctcp_slowstart_handler, "IU",
484     "half CWND reduction after the first slow start");
485 
486 SYSCTL_UINT(_net_inet_tcp_cc_dctcp, OID_AUTO, ect1,
487     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
488     &VNET_NAME(dctcp_ect1), 0,
489     "Send DCTCP segments with ÍP ECT(0) or ECT(1)");
490 
491 DECLARE_CC_MODULE(dctcp, &dctcp_cc_algo);
492 MODULE_VERSION(dctcp, 2);
493