xref: /freebsd/sys/netinet/in_fib_dxr.c (revision e7abe200)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012-2022 Marko Zec
5  * Copyright (c) 2005, 2018 University of Zagreb
6  * Copyright (c) 2005 International Computer Science Institute
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * An implementation of DXR, a simple IPv4 LPM scheme with compact lookup
32  * structures and a trivial search procedure.  More significant bits of
33  * the search key are used to directly index a two-stage trie, while the
34  * remaining bits are used for finding the next hop in a sorted array.
35  * More details in:
36  *
37  * M. Zec, L. Rizzo, M. Mikuc, DXR: towards a billion routing lookups per
38  * second in software, ACM SIGCOMM Computer Communication Review, September
39  * 2012
40  *
41  * M. Zec, M. Mikuc, Pushing the envelope: beyond two billion IP routing
42  * lookups per second on commodity CPUs, IEEE SoftCOM, September 2017, Split
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 #include <sys/ctype.h>
53 #include <sys/epoch.h>
54 #include <sys/malloc.h>
55 #include <sys/module.h>
56 #include <sys/socket.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 
60 #include <vm/uma.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_fib.h>
64 
65 #include <net/route.h>
66 #include <net/route/route_ctl.h>
67 #include <net/route/fib_algo.h>
68 
69 #define	DXR_TRIE_BITS		20
70 
71 CTASSERT(DXR_TRIE_BITS >= 16 && DXR_TRIE_BITS <= 24);
72 
73 /* DXR2: two-stage primary trie, instead of a single direct lookup table */
74 #define	DXR2
75 
76 #if DXR_TRIE_BITS > 16
77 #define	DXR_D			16
78 #else
79 #define	DXR_D			(DXR_TRIE_BITS - 1)
80 #endif
81 
82 #define	D_TBL_SIZE		(1 << DXR_D)
83 #define	DIRECT_TBL_SIZE		(1 << DXR_TRIE_BITS)
84 #define	DXR_RANGE_MASK		(0xffffffffU >> DXR_TRIE_BITS)
85 #define	DXR_RANGE_SHIFT		(32 - DXR_TRIE_BITS)
86 
87 #define	DESC_BASE_BITS		22
88 #define	DESC_FRAGMENTS_BITS	(32 - DESC_BASE_BITS)
89 #define	BASE_MAX		((1 << DESC_BASE_BITS) - 1)
90 #define	RTBL_SIZE_INCR		(BASE_MAX / 64)
91 
92 #if DXR_TRIE_BITS < 24
93 #define	FRAGS_MASK_SHORT	((1 << (23 - DXR_TRIE_BITS)) - 1)
94 #else
95 #define	FRAGS_MASK_SHORT	0
96 #endif
97 #define	FRAGS_PREF_SHORT	(((1 << DESC_FRAGMENTS_BITS) - 1) & \
98 				 ~FRAGS_MASK_SHORT)
99 #define	FRAGS_MARK_XL		(FRAGS_PREF_SHORT - 1)
100 #define	FRAGS_MARK_HIT		(FRAGS_PREF_SHORT - 2)
101 
102 #define	IS_SHORT_FORMAT(x)	((x & FRAGS_PREF_SHORT) == FRAGS_PREF_SHORT)
103 #define	IS_LONG_FORMAT(x)	((x & FRAGS_PREF_SHORT) != FRAGS_PREF_SHORT)
104 #define	IS_XL_FORMAT(x)		(x == FRAGS_MARK_XL)
105 
106 #define	RE_SHORT_MAX_NH		((1 << (DXR_TRIE_BITS - 8)) - 1)
107 
108 #define	CHUNK_HASH_BITS		16
109 #define	CHUNK_HASH_SIZE		(1 << CHUNK_HASH_BITS)
110 #define	CHUNK_HASH_MASK		(CHUNK_HASH_SIZE - 1)
111 
112 #define	TRIE_HASH_BITS		16
113 #define	TRIE_HASH_SIZE		(1 << TRIE_HASH_BITS)
114 #define	TRIE_HASH_MASK		(TRIE_HASH_SIZE - 1)
115 
116 #define	XTBL_SIZE_INCR		(DIRECT_TBL_SIZE / 16)
117 
118 #define	UNUSED_BUCKETS		8
119 
120 /* Lookup structure elements */
121 
122 struct direct_entry {
123 	uint32_t		fragments: DESC_FRAGMENTS_BITS,
124 				base: DESC_BASE_BITS;
125 };
126 
127 struct range_entry_long {
128 	uint32_t		start: DXR_RANGE_SHIFT,
129 				nexthop: DXR_TRIE_BITS;
130 };
131 
132 #if DXR_TRIE_BITS < 24
133 struct range_entry_short {
134 	uint16_t		start: DXR_RANGE_SHIFT - 8,
135 				nexthop: DXR_TRIE_BITS - 8;
136 };
137 #endif
138 
139 /* Auxiliary structures */
140 
141 struct heap_entry {
142 	uint32_t		start;
143 	uint32_t		end;
144 	uint32_t		preflen;
145 	uint32_t		nexthop;
146 };
147 
148 struct chunk_desc {
149 	LIST_ENTRY(chunk_desc)	cd_all_le;
150 	LIST_ENTRY(chunk_desc)	cd_hash_le;
151 	uint32_t		cd_hash;
152 	uint32_t		cd_refcnt;
153 	uint32_t		cd_base;
154 	uint32_t		cd_cur_size;
155 	uint32_t		cd_max_size;
156 };
157 
158 struct trie_desc {
159 	LIST_ENTRY(trie_desc)	td_all_le;
160 	LIST_ENTRY(trie_desc)	td_hash_le;
161 	uint32_t		td_hash;
162 	uint32_t		td_index;
163 	uint32_t		td_refcnt;
164 };
165 
166 struct dxr_aux {
167 	/* Glue to external state */
168 	struct fib_data		*fd;
169 	uint32_t		fibnum;
170 	int			refcnt;
171 
172 	/* Auxiliary build-time tables */
173 	struct direct_entry	direct_tbl[DIRECT_TBL_SIZE];
174 	uint16_t		d_tbl[D_TBL_SIZE];
175 	struct direct_entry	*x_tbl;
176 	union {
177 		struct range_entry_long	re;
178 		uint32_t	fragments;
179 	}			*range_tbl;
180 
181 	/* Auxiliary internal state */
182 	uint32_t		updates_mask[DIRECT_TBL_SIZE / 32];
183 	struct trie_desc	*trietbl[D_TBL_SIZE];
184 	LIST_HEAD(, chunk_desc)	chunk_hashtbl[CHUNK_HASH_SIZE];
185 	LIST_HEAD(, chunk_desc)	all_chunks;
186 	LIST_HEAD(, chunk_desc) unused_chunks[UNUSED_BUCKETS];
187 	LIST_HEAD(, trie_desc)	trie_hashtbl[TRIE_HASH_SIZE];
188 	LIST_HEAD(, trie_desc)	all_trie;
189 	LIST_HEAD(, trie_desc)	unused_trie; /* abuses hash link entry */
190 	struct sockaddr_in	dst;
191 	struct sockaddr_in	mask;
192 	struct heap_entry	heap[33];
193 	uint32_t		prefixes;
194 	uint32_t		updates_low;
195 	uint32_t		updates_high;
196 	uint32_t		unused_chunks_size;
197 	uint32_t		xtbl_size;
198 	uint32_t		all_trie_cnt;
199 	uint32_t		unused_trie_cnt;
200 	uint32_t		trie_rebuilt_prefixes;
201 	uint32_t		heap_index;
202 	uint32_t		d_bits;
203 	uint32_t		rtbl_size;
204 	uint32_t		rtbl_top;
205 	uint32_t		rtbl_work_frags;
206 	uint32_t		work_chunk;
207 };
208 
209 /* Main lookup structure container */
210 
211 struct dxr {
212 	/* Lookup tables */
213 	void			*d;
214 	void			*x;
215 	void			*r;
216 	struct nhop_object	**nh_tbl;
217 
218 	/* Glue to external state */
219 	struct dxr_aux		*aux;
220 	struct fib_data		*fd;
221 	struct epoch_context	epoch_ctx;
222 	uint32_t		fibnum;
223 	uint16_t		d_shift;
224 	uint16_t		x_shift;
225 	uint32_t		x_mask;
226 };
227 
228 static MALLOC_DEFINE(M_DXRLPM, "dxr", "DXR LPM");
229 static MALLOC_DEFINE(M_DXRAUX, "dxr aux", "DXR auxiliary");
230 
231 uma_zone_t chunk_zone;
232 uma_zone_t trie_zone;
233 
234 VNET_DEFINE_STATIC(int, frag_limit) = 100;
235 #define	V_frag_limit	VNET(frag_limit)
236 
237 /* Binary search for a matching address range */
238 #define	DXR_LOOKUP_STAGE					\
239 	if (masked_dst < range[middle].start) {			\
240 		upperbound = middle;				\
241 		middle = (middle + lowerbound) / 2;		\
242 	} else if (masked_dst < range[middle + 1].start)	\
243 		return (range[middle].nexthop);			\
244 	else {							\
245 		lowerbound = middle + 1;			\
246 		middle = (upperbound + middle + 1) / 2;		\
247 	}							\
248 	if (upperbound == lowerbound)				\
249 		return (range[lowerbound].nexthop);
250 
251 static int
252 range_lookup(struct range_entry_long *rt, struct direct_entry de, uint32_t dst)
253 {
254 	uint32_t base;
255 	uint32_t upperbound;
256 	uint32_t middle;
257 	uint32_t lowerbound;
258 	uint32_t masked_dst;
259 
260 	base = de.base;
261 	lowerbound = 0;
262 	masked_dst = dst & DXR_RANGE_MASK;
263 
264 #if DXR_TRIE_BITS < 24
265 	if (__predict_true(IS_SHORT_FORMAT(de.fragments))) {
266 		upperbound = de.fragments & FRAGS_MASK_SHORT;
267 		struct range_entry_short *range =
268 		    (struct range_entry_short *) &rt[base];
269 
270 		masked_dst >>= 8;
271 		middle = upperbound;
272 		upperbound = upperbound * 2 + 1;
273 
274 		for (;;) {
275 			DXR_LOOKUP_STAGE
276 			DXR_LOOKUP_STAGE
277 		}
278 	}
279 #endif
280 
281 	upperbound = de.fragments;
282 	middle = upperbound / 2;
283 	struct range_entry_long *range = &rt[base];
284 	if (__predict_false(IS_XL_FORMAT(de.fragments))) {
285 		upperbound = *((uint32_t *) range);
286 		range++;
287 		middle = upperbound / 2;
288 	}
289 
290 	for (;;) {
291 		DXR_LOOKUP_STAGE
292 		DXR_LOOKUP_STAGE
293 	}
294 }
295 
296 #define DXR_LOOKUP_DEFINE(D)						\
297 	static int inline						\
298 	dxr_lookup_##D(struct dxr *dxr, uint32_t dst)			\
299 	{								\
300 		struct direct_entry de;					\
301 		uint16_t *dt = dxr->d;					\
302 		struct direct_entry *xt = dxr->x;			\
303 									\
304 		de = xt[(dt[dst >> (32 - (D))] << (DXR_TRIE_BITS - (D))) \
305 		    + ((dst >> DXR_RANGE_SHIFT) &			\
306 		    (0xffffffffU >> (32 - DXR_TRIE_BITS + (D))))];	\
307 		if (__predict_true(de.fragments == FRAGS_MARK_HIT))	\
308 			return (de.base);				\
309 		return (range_lookup(dxr->r, de, dst));			\
310 	}								\
311 									\
312 	static struct nhop_object *					\
313 	dxr_fib_lookup_##D(void *algo_data,				\
314 	    const struct flm_lookup_key key, uint32_t scopeid __unused)	\
315 	{								\
316 		struct dxr *dxr = algo_data;				\
317 									\
318 		return (dxr->nh_tbl[dxr_lookup_##D(dxr,			\
319 		    ntohl(key.addr4.s_addr))]);				\
320 	}
321 
322 #ifdef DXR2
323 #if DXR_TRIE_BITS > 16
324 DXR_LOOKUP_DEFINE(16)
325 #endif
326 DXR_LOOKUP_DEFINE(15)
327 DXR_LOOKUP_DEFINE(14)
328 DXR_LOOKUP_DEFINE(13)
329 DXR_LOOKUP_DEFINE(12)
330 DXR_LOOKUP_DEFINE(11)
331 DXR_LOOKUP_DEFINE(10)
332 DXR_LOOKUP_DEFINE(9)
333 #endif /* DXR2 */
334 
335 static int inline
336 dxr_lookup(struct dxr *dxr, uint32_t dst)
337 {
338 	struct direct_entry de;
339 #ifdef DXR2
340 	uint16_t *dt = dxr->d;
341 	struct direct_entry *xt = dxr->x;
342 
343 	de = xt[(dt[dst >> dxr->d_shift] << dxr->x_shift) +
344 	    ((dst >> DXR_RANGE_SHIFT) & dxr->x_mask)];
345 #else /* !DXR2 */
346 	struct direct_entry *dt = dxr->d;
347 
348 	de = dt[dst >> DXR_RANGE_SHIFT];
349 #endif /* !DXR2 */
350 	if (__predict_true(de.fragments == FRAGS_MARK_HIT))
351 		return (de.base);
352 	return (range_lookup(dxr->r, de, dst));
353 }
354 
355 static void
356 initheap(struct dxr_aux *da, uint32_t dst_u32, uint32_t chunk)
357 {
358 	struct heap_entry *fhp = &da->heap[0];
359 	struct rtentry *rt;
360 	struct route_nhop_data rnd;
361 
362 	da->heap_index = 0;
363 	da->dst.sin_addr.s_addr = htonl(dst_u32);
364 	rt = fib4_lookup_rt(da->fibnum, da->dst.sin_addr, 0, NHR_UNLOCKED,
365 	    &rnd);
366 	if (rt != NULL) {
367 		struct in_addr addr;
368 		uint32_t scopeid;
369 
370 		rt_get_inet_prefix_plen(rt, &addr, &fhp->preflen, &scopeid);
371 		fhp->start = ntohl(addr.s_addr);
372 		fhp->end = fhp->start;
373 		if (fhp->preflen < 32)
374 			fhp->end |= (0xffffffffU >> fhp->preflen);
375 		fhp->nexthop = fib_get_nhop_idx(da->fd, rnd.rnd_nhop);
376 	} else {
377 		fhp->preflen = fhp->nexthop = fhp->start = 0;
378 		fhp->end = 0xffffffffU;
379 	}
380 }
381 
382 static uint32_t
383 chunk_size(struct dxr_aux *da, struct direct_entry *fdesc)
384 {
385 
386 	if (IS_SHORT_FORMAT(fdesc->fragments))
387 		return ((fdesc->fragments & FRAGS_MASK_SHORT) + 1);
388 	else if (IS_XL_FORMAT(fdesc->fragments))
389 		return (da->range_tbl[fdesc->base].fragments + 2);
390 	else /* if (IS_LONG_FORMAT(fdesc->fragments)) */
391 		return (fdesc->fragments + 1);
392 }
393 
394 static uint32_t
395 chunk_hash(struct dxr_aux *da, struct direct_entry *fdesc)
396 {
397 	uint32_t size = chunk_size(da, fdesc);
398 	uint32_t *p = (uint32_t *) &da->range_tbl[fdesc->base];
399 	uint32_t *l = (uint32_t *) &da->range_tbl[fdesc->base + size];
400 	uint32_t hash = fdesc->fragments;
401 
402 	for (; p < l; p++)
403 		hash = (hash << 7) + (hash >> 13) + *p;
404 
405 	return (hash + (hash >> 16));
406 }
407 
408 static int
409 chunk_ref(struct dxr_aux *da, uint32_t chunk)
410 {
411 	struct direct_entry *fdesc = &da->direct_tbl[chunk];
412 	struct chunk_desc *cdp, *empty_cdp;
413 	uint32_t base = fdesc->base;
414 	uint32_t size = chunk_size(da, fdesc);
415 	uint32_t hash = chunk_hash(da, fdesc);
416 	int i;
417 
418 	/* Find an existing descriptor */
419 	LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK],
420 	    cd_hash_le) {
421 		if (cdp->cd_hash != hash || cdp->cd_cur_size != size ||
422 		    memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base],
423 		    sizeof(struct range_entry_long) * size))
424 			continue;
425 		da->rtbl_top = fdesc->base;
426 		fdesc->base = cdp->cd_base;
427 		cdp->cd_refcnt++;
428 		return (0);
429 	}
430 
431 	/* No matching chunks found. Find an empty one to recycle. */
432 	for (cdp = NULL, i = size; cdp == NULL && i < UNUSED_BUCKETS; i++)
433 		cdp = LIST_FIRST(&da->unused_chunks[i]);
434 
435 	if (cdp == NULL)
436 		LIST_FOREACH(empty_cdp, &da->unused_chunks[0], cd_hash_le)
437 			if (empty_cdp->cd_max_size >= size && (cdp == NULL ||
438 			    empty_cdp->cd_max_size < cdp->cd_max_size)) {
439 				cdp = empty_cdp;
440 				if (empty_cdp->cd_max_size == size)
441 					break;
442 			}
443 
444 	if (cdp != NULL) {
445 		/* Copy from heap into the recycled chunk */
446 		bcopy(&da->range_tbl[fdesc->base], &da->range_tbl[cdp->cd_base],
447 		    size * sizeof(struct range_entry_long));
448 		fdesc->base = cdp->cd_base;
449 		da->rtbl_top -= size;
450 		da->unused_chunks_size -= cdp->cd_max_size;
451 		if (cdp->cd_max_size > size) {
452 			/* Split the range in two, need a new descriptor */
453 			empty_cdp = uma_zalloc(chunk_zone, M_NOWAIT);
454 			if (empty_cdp == NULL)
455 				return (1);
456 			LIST_INSERT_BEFORE(cdp, empty_cdp, cd_all_le);
457 			empty_cdp->cd_base = cdp->cd_base + size;
458 			empty_cdp->cd_cur_size = 0;
459 			empty_cdp->cd_max_size = cdp->cd_max_size - size;
460 
461 			i = empty_cdp->cd_max_size;
462 			if (i >= UNUSED_BUCKETS)
463 				i = 0;
464 			LIST_INSERT_HEAD(&da->unused_chunks[i], empty_cdp,
465 			    cd_hash_le);
466 
467 			da->unused_chunks_size += empty_cdp->cd_max_size;
468 			cdp->cd_max_size = size;
469 		}
470 		LIST_REMOVE(cdp, cd_hash_le);
471 	} else {
472 		/* Alloc a new descriptor at the top of the heap*/
473 		cdp = uma_zalloc(chunk_zone, M_NOWAIT);
474 		if (cdp == NULL)
475 			return (1);
476 		cdp->cd_max_size = size;
477 		cdp->cd_base = fdesc->base;
478 		LIST_INSERT_HEAD(&da->all_chunks, cdp, cd_all_le);
479 		KASSERT(cdp->cd_base + cdp->cd_max_size == da->rtbl_top,
480 		    ("dxr: %s %d", __FUNCTION__, __LINE__));
481 	}
482 
483 	cdp->cd_hash = hash;
484 	cdp->cd_refcnt = 1;
485 	cdp->cd_cur_size = size;
486 	LIST_INSERT_HEAD(&da->chunk_hashtbl[hash & CHUNK_HASH_MASK], cdp,
487 	    cd_hash_le);
488 	if (da->rtbl_top >= da->rtbl_size) {
489 		if (da->rtbl_top >= BASE_MAX) {
490 			FIB_PRINTF(LOG_ERR, da->fd,
491 			    "structural limit exceeded at %d "
492 			    "range table elements", da->rtbl_top);
493 			return (1);
494 		}
495 		da->rtbl_size += RTBL_SIZE_INCR;
496 		i = (BASE_MAX - da->rtbl_top) * LOG_DEBUG / BASE_MAX;
497 		FIB_PRINTF(i, da->fd, "range table at %d%% structural limit",
498 		    da->rtbl_top * 100 / BASE_MAX);
499 		da->range_tbl = realloc(da->range_tbl,
500 		    sizeof(*da->range_tbl) * da->rtbl_size + FRAGS_PREF_SHORT,
501 		    M_DXRAUX, M_NOWAIT);
502 		if (da->range_tbl == NULL)
503 			return (1);
504 	}
505 
506 	return (0);
507 }
508 
509 static void
510 chunk_unref(struct dxr_aux *da, uint32_t chunk)
511 {
512 	struct direct_entry *fdesc = &da->direct_tbl[chunk];
513 	struct chunk_desc *cdp, *cdp2;
514 	uint32_t base = fdesc->base;
515 	uint32_t size = chunk_size(da, fdesc);
516 	uint32_t hash = chunk_hash(da, fdesc);
517 	int i;
518 
519 	/* Find the corresponding descriptor */
520 	LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK],
521 	    cd_hash_le)
522 		if (cdp->cd_hash == hash && cdp->cd_cur_size == size &&
523 		    memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base],
524 		    sizeof(struct range_entry_long) * size) == 0)
525 			break;
526 
527 	KASSERT(cdp != NULL, ("dxr: dangling chunk"));
528 	if (--cdp->cd_refcnt > 0)
529 		return;
530 
531 	LIST_REMOVE(cdp, cd_hash_le);
532 	da->unused_chunks_size += cdp->cd_max_size;
533 	cdp->cd_cur_size = 0;
534 
535 	/* Attempt to merge with the preceding chunk, if empty */
536 	cdp2 = LIST_NEXT(cdp, cd_all_le);
537 	if (cdp2 != NULL && cdp2->cd_cur_size == 0) {
538 		KASSERT(cdp2->cd_base + cdp2->cd_max_size == cdp->cd_base,
539 		    ("dxr: %s %d", __FUNCTION__, __LINE__));
540 		LIST_REMOVE(cdp, cd_all_le);
541 		LIST_REMOVE(cdp2, cd_hash_le);
542 		cdp2->cd_max_size += cdp->cd_max_size;
543 		uma_zfree(chunk_zone, cdp);
544 		cdp = cdp2;
545 	}
546 
547 	/* Attempt to merge with the subsequent chunk, if empty */
548 	cdp2 = LIST_PREV(cdp, &da->all_chunks, chunk_desc, cd_all_le);
549 	if (cdp2 != NULL && cdp2->cd_cur_size == 0) {
550 		KASSERT(cdp->cd_base + cdp->cd_max_size == cdp2->cd_base,
551 		    ("dxr: %s %d", __FUNCTION__, __LINE__));
552 		LIST_REMOVE(cdp, cd_all_le);
553 		LIST_REMOVE(cdp2, cd_hash_le);
554 		cdp2->cd_max_size += cdp->cd_max_size;
555 		cdp2->cd_base = cdp->cd_base;
556 		uma_zfree(chunk_zone, cdp);
557 		cdp = cdp2;
558 	}
559 
560 	if (cdp->cd_base + cdp->cd_max_size == da->rtbl_top) {
561 		/* Free the chunk on the top of the range heap, trim the heap */
562 		KASSERT(cdp == LIST_FIRST(&da->all_chunks),
563 		    ("dxr: %s %d", __FUNCTION__, __LINE__));
564 		da->rtbl_top -= cdp->cd_max_size;
565 		da->unused_chunks_size -= cdp->cd_max_size;
566 		LIST_REMOVE(cdp, cd_all_le);
567 		uma_zfree(chunk_zone, cdp);
568 		return;
569 	}
570 
571 	i = cdp->cd_max_size;
572 	if (i >= UNUSED_BUCKETS)
573 		i = 0;
574 	LIST_INSERT_HEAD(&da->unused_chunks[i], cdp, cd_hash_le);
575 }
576 
577 #ifdef DXR2
578 static uint32_t
579 trie_hash(struct dxr_aux *da, uint32_t dxr_x, uint32_t index)
580 {
581 	uint32_t i, *val;
582 	uint32_t hash = 0;
583 
584 	for (i = 0; i < (1 << dxr_x); i++) {
585 		hash = (hash << 3) ^ (hash >> 3);
586 		val = (uint32_t *)
587 		    (void *) &da->direct_tbl[(index << dxr_x) + i];
588 		hash += (*val << 5);
589 		hash += (*val >> 5);
590 	}
591 
592 	return (hash + (hash >> 16));
593 }
594 
595 static int
596 trie_ref(struct dxr_aux *da, uint32_t index)
597 {
598 	struct trie_desc *tp;
599 	uint32_t dxr_d = da->d_bits;
600 	uint32_t dxr_x = DXR_TRIE_BITS - dxr_d;
601 	uint32_t hash = trie_hash(da, dxr_x, index);
602 
603 	/* Find an existing descriptor */
604 	LIST_FOREACH(tp, &da->trie_hashtbl[hash & TRIE_HASH_MASK], td_hash_le)
605 		if (tp->td_hash == hash &&
606 		    memcmp(&da->direct_tbl[index << dxr_x],
607 		    &da->x_tbl[tp->td_index << dxr_x],
608 		    sizeof(*da->x_tbl) << dxr_x) == 0) {
609 			tp->td_refcnt++;
610 			da->trietbl[index] = tp;
611 			return(tp->td_index);
612 		}
613 
614 	tp = LIST_FIRST(&da->unused_trie);
615 	if (tp != NULL) {
616 		LIST_REMOVE(tp, td_hash_le);
617 		da->unused_trie_cnt--;
618 	} else {
619 		tp = uma_zalloc(trie_zone, M_NOWAIT);
620 		if (tp == NULL)
621 			return (-1);
622 		LIST_INSERT_HEAD(&da->all_trie, tp, td_all_le);
623 		tp->td_index = da->all_trie_cnt++;
624 	}
625 
626 	tp->td_hash = hash;
627 	tp->td_refcnt = 1;
628 	LIST_INSERT_HEAD(&da->trie_hashtbl[hash & TRIE_HASH_MASK], tp,
629 	   td_hash_le);
630 	memcpy(&da->x_tbl[tp->td_index << dxr_x],
631 	    &da->direct_tbl[index << dxr_x], sizeof(*da->x_tbl) << dxr_x);
632 	da->trietbl[index] = tp;
633 	if (da->all_trie_cnt >= da->xtbl_size >> dxr_x) {
634 		da->xtbl_size += XTBL_SIZE_INCR;
635 		da->x_tbl = realloc(da->x_tbl,
636 		    sizeof(*da->x_tbl) * da->xtbl_size, M_DXRAUX, M_NOWAIT);
637 		if (da->x_tbl == NULL)
638 			return (-1);
639 	}
640 	return(tp->td_index);
641 }
642 
643 static void
644 trie_unref(struct dxr_aux *da, uint32_t index)
645 {
646 	struct trie_desc *tp = da->trietbl[index];
647 
648 	if (tp == NULL)
649 		return;
650 	da->trietbl[index] = NULL;
651 	if (--tp->td_refcnt > 0)
652 		return;
653 
654 	LIST_REMOVE(tp, td_hash_le);
655 	da->unused_trie_cnt++;
656 	if (tp->td_index != da->all_trie_cnt - 1) {
657 		LIST_INSERT_HEAD(&da->unused_trie, tp, td_hash_le);
658 		return;
659 	}
660 
661 	do {
662 		da->all_trie_cnt--;
663 		da->unused_trie_cnt--;
664 		LIST_REMOVE(tp, td_all_le);
665 		uma_zfree(trie_zone, tp);
666 		LIST_FOREACH(tp, &da->unused_trie, td_hash_le)
667 			if (tp->td_index == da->all_trie_cnt - 1) {
668 				LIST_REMOVE(tp, td_hash_le);
669 				break;
670 			}
671 	} while (tp != NULL);
672 }
673 #endif
674 
675 static void
676 heap_inject(struct dxr_aux *da, uint32_t start, uint32_t end, uint32_t preflen,
677     uint32_t nh)
678 {
679 	struct heap_entry *fhp;
680 	int i;
681 
682 	for (i = da->heap_index; i >= 0; i--) {
683 		if (preflen > da->heap[i].preflen)
684 			break;
685 		else if (preflen < da->heap[i].preflen)
686 			da->heap[i + 1] = da->heap[i];
687 		else
688 			return;
689 	}
690 
691 	fhp = &da->heap[i + 1];
692 	fhp->preflen = preflen;
693 	fhp->start = start;
694 	fhp->end = end;
695 	fhp->nexthop = nh;
696 	da->heap_index++;
697 }
698 
699 static int
700 dxr_walk(struct rtentry *rt, void *arg)
701 {
702 	struct dxr_aux *da = arg;
703 	uint32_t chunk = da->work_chunk;
704 	uint32_t first = chunk << DXR_RANGE_SHIFT;
705 	uint32_t last = first | DXR_RANGE_MASK;
706 	struct range_entry_long *fp =
707 	    &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re;
708 	struct heap_entry *fhp = &da->heap[da->heap_index];
709 	uint32_t preflen, nh, start, end, scopeid;
710 	struct in_addr addr;
711 
712 	rt_get_inet_prefix_plen(rt, &addr, &preflen, &scopeid);
713 	start = ntohl(addr.s_addr);
714 	if (start > last)
715 		return (-1);	/* Beyond chunk boundaries, we are done */
716 	if (start < first)
717 		return (0);	/* Skip this route */
718 
719 	end = start;
720 	if (preflen < 32)
721 		end |= (0xffffffffU >> preflen);
722 	nh = fib_get_nhop_idx(da->fd, rt_get_raw_nhop(rt));
723 
724 	if (start == fhp->start)
725 		heap_inject(da, start, end, preflen, nh);
726 	else {
727 		/* start > fhp->start */
728 		while (start > fhp->end) {
729 			uint32_t oend = fhp->end;
730 
731 			if (da->heap_index > 0) {
732 				fhp--;
733 				da->heap_index--;
734 			} else
735 				initheap(da, fhp->end + 1, chunk);
736 			if (fhp->end > oend && fhp->nexthop != fp->nexthop) {
737 				fp++;
738 				da->rtbl_work_frags++;
739 				fp->start = (oend + 1) & DXR_RANGE_MASK;
740 				fp->nexthop = fhp->nexthop;
741 			}
742 		}
743 		if (start > ((chunk << DXR_RANGE_SHIFT) | fp->start) &&
744 		    nh != fp->nexthop) {
745 			fp++;
746 			da->rtbl_work_frags++;
747 			fp->start = start & DXR_RANGE_MASK;
748 		} else if (da->rtbl_work_frags) {
749 			if ((--fp)->nexthop == nh)
750 				da->rtbl_work_frags--;
751 			else
752 				fp++;
753 		}
754 		fp->nexthop = nh;
755 		heap_inject(da, start, end, preflen, nh);
756 	}
757 
758 	return (0);
759 }
760 
761 static int
762 update_chunk(struct dxr_aux *da, uint32_t chunk)
763 {
764 	struct range_entry_long *fp;
765 #if DXR_TRIE_BITS < 24
766 	struct range_entry_short *fps;
767 	uint32_t start, nh, i;
768 #endif
769 	struct heap_entry *fhp;
770 	uint32_t first = chunk << DXR_RANGE_SHIFT;
771 	uint32_t last = first | DXR_RANGE_MASK;
772 
773 	if (da->direct_tbl[chunk].fragments != FRAGS_MARK_HIT)
774 		chunk_unref(da, chunk);
775 
776 	initheap(da, first, chunk);
777 
778 	fp = &da->range_tbl[da->rtbl_top].re;
779 	da->rtbl_work_frags = 0;
780 	fp->start = first & DXR_RANGE_MASK;
781 	fp->nexthop = da->heap[0].nexthop;
782 
783 	da->dst.sin_addr.s_addr = htonl(first);
784 	da->mask.sin_addr.s_addr = htonl(~DXR_RANGE_MASK);
785 
786 	da->work_chunk = chunk;
787 	rib_walk_from(da->fibnum, AF_INET, RIB_FLAG_LOCKED,
788 	    (struct sockaddr *) &da->dst, (struct sockaddr *) &da->mask,
789 	    dxr_walk, da);
790 
791 	/* Flush any remaining objects on the heap */
792 	fp = &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re;
793 	fhp = &da->heap[da->heap_index];
794 	while (fhp->preflen > DXR_TRIE_BITS) {
795 		uint32_t oend = fhp->end;
796 
797 		if (da->heap_index > 0) {
798 			fhp--;
799 			da->heap_index--;
800 		} else
801 			initheap(da, fhp->end + 1, chunk);
802 		if (fhp->end > oend && fhp->nexthop != fp->nexthop) {
803 			/* Have we crossed the upper chunk boundary? */
804 			if (oend >= last)
805 				break;
806 			fp++;
807 			da->rtbl_work_frags++;
808 			fp->start = (oend + 1) & DXR_RANGE_MASK;
809 			fp->nexthop = fhp->nexthop;
810 		}
811 	}
812 
813 	/* Direct hit if the chunk contains only a single fragment */
814 	if (da->rtbl_work_frags == 0) {
815 		da->direct_tbl[chunk].base = fp->nexthop;
816 		da->direct_tbl[chunk].fragments = FRAGS_MARK_HIT;
817 		return (0);
818 	}
819 
820 	da->direct_tbl[chunk].base = da->rtbl_top;
821 	da->direct_tbl[chunk].fragments = da->rtbl_work_frags;
822 
823 #if DXR_TRIE_BITS < 24
824 	/* Check whether the chunk can be more compactly encoded */
825 	fp = &da->range_tbl[da->rtbl_top].re;
826 	for (i = 0; i <= da->rtbl_work_frags; i++, fp++)
827 		if ((fp->start & 0xff) != 0 || fp->nexthop > RE_SHORT_MAX_NH)
828 			break;
829 	if (i == da->rtbl_work_frags + 1) {
830 		fp = &da->range_tbl[da->rtbl_top].re;
831 		fps = (void *) fp;
832 		for (i = 0; i <= da->rtbl_work_frags; i++, fp++, fps++) {
833 			start = fp->start;
834 			nh = fp->nexthop;
835 			fps->start = start >> 8;
836 			fps->nexthop = nh;
837 		}
838 		fps->start = start >> 8;
839 		fps->nexthop = nh;
840 		da->rtbl_work_frags >>= 1;
841 		da->direct_tbl[chunk].fragments =
842 		    da->rtbl_work_frags | FRAGS_PREF_SHORT;
843 	} else
844 #endif
845 	if (da->rtbl_work_frags >= FRAGS_MARK_HIT) {
846 		da->direct_tbl[chunk].fragments = FRAGS_MARK_XL;
847 		memmove(&da->range_tbl[da->rtbl_top + 1],
848 		   &da->range_tbl[da->rtbl_top],
849 		   (da->rtbl_work_frags + 1) * sizeof(*da->range_tbl));
850 		da->range_tbl[da->rtbl_top].fragments = da->rtbl_work_frags;
851 		da->rtbl_work_frags++;
852 	}
853 	da->rtbl_top += (da->rtbl_work_frags + 1);
854 	return (chunk_ref(da, chunk));
855 }
856 
857 static void
858 dxr_build(struct dxr *dxr)
859 {
860 	struct dxr_aux *da = dxr->aux;
861 	struct chunk_desc *cdp;
862 	struct rib_rtable_info rinfo;
863 	struct timeval t0, t1, t2, t3;
864 	uint32_t r_size, dxr_tot_size;
865 	uint32_t i, m, range_rebuild = 0;
866 	uint32_t range_frag;
867 #ifdef DXR2
868 	struct trie_desc *tp;
869 	uint32_t d_tbl_size, dxr_x, d_size, x_size;
870 	uint32_t ti, trie_rebuild = 0, prev_size = 0;
871 	uint32_t trie_frag;
872 #endif
873 
874 	KASSERT(dxr->d == NULL, ("dxr: d not free"));
875 
876 	if (da == NULL) {
877 		da = malloc(sizeof(*dxr->aux), M_DXRAUX, M_NOWAIT);
878 		if (da == NULL)
879 			return;
880 		dxr->aux = da;
881 		da->fibnum = dxr->fibnum;
882 		da->refcnt = 1;
883 		LIST_INIT(&da->all_chunks);
884 		LIST_INIT(&da->all_trie);
885 		da->rtbl_size = RTBL_SIZE_INCR;
886 		da->range_tbl = NULL;
887 		da->xtbl_size = XTBL_SIZE_INCR;
888 		da->x_tbl = NULL;
889 		bzero(&da->dst, sizeof(da->dst));
890 		bzero(&da->mask, sizeof(da->mask));
891 		da->dst.sin_len = sizeof(da->dst);
892 		da->mask.sin_len = sizeof(da->mask);
893 		da->dst.sin_family = AF_INET;
894 		da->mask.sin_family = AF_INET;
895 	}
896 	if (da->range_tbl == NULL) {
897 		da->range_tbl = malloc(sizeof(*da->range_tbl) * da->rtbl_size
898 		    + FRAGS_PREF_SHORT, M_DXRAUX, M_NOWAIT);
899 		if (da->range_tbl == NULL)
900 			return;
901 		range_rebuild = 1;
902 	}
903 #ifdef DXR2
904 	if (da->x_tbl == NULL) {
905 		da->x_tbl = malloc(sizeof(*da->x_tbl) * da->xtbl_size,
906 		    M_DXRAUX, M_NOWAIT);
907 		if (da->x_tbl == NULL)
908 			return;
909 		trie_rebuild = 1;
910 	}
911 #endif
912 	da->fd = dxr->fd;
913 
914 	microuptime(&t0);
915 
916 	dxr->nh_tbl = fib_get_nhop_array(da->fd);
917 	fib_get_rtable_info(fib_get_rh(da->fd), &rinfo);
918 
919 	if (da->updates_low > da->updates_high)
920 		range_rebuild = 1;
921 
922 range_build:
923 	if (range_rebuild) {
924 		/* Bulk cleanup */
925 		bzero(da->chunk_hashtbl, sizeof(da->chunk_hashtbl));
926 		while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) {
927 			LIST_REMOVE(cdp, cd_all_le);
928 			uma_zfree(chunk_zone, cdp);
929 		}
930 		for (i = 0; i < UNUSED_BUCKETS; i++)
931 			LIST_INIT(&da->unused_chunks[i]);
932 		da->unused_chunks_size = 0;
933 		da->rtbl_top = 0;
934 		da->updates_low = 0;
935 		da->updates_high = DIRECT_TBL_SIZE - 1;
936 		memset(da->updates_mask, 0xff, sizeof(da->updates_mask));
937 		for (i = 0; i < DIRECT_TBL_SIZE; i++) {
938 			da->direct_tbl[i].fragments = FRAGS_MARK_HIT;
939 			da->direct_tbl[i].base = 0;
940 		}
941 	}
942 	da->prefixes = rinfo.num_prefixes;
943 
944 	/* DXR: construct direct & range table */
945 	for (i = da->updates_low; i <= da->updates_high; i++) {
946 		m = da->updates_mask[i >> 5] >> (i & 0x1f);
947 		if (m == 0)
948 			i |= 0x1f;
949 		else if (m & 1 && update_chunk(da, i) != 0)
950 			return;
951 	}
952 
953 	range_frag = 0;
954 	if (da->rtbl_top)
955 		range_frag = da->unused_chunks_size * 10000ULL / da->rtbl_top;
956 	if (range_frag > V_frag_limit) {
957 		range_rebuild = 1;
958 		goto range_build;
959 	}
960 
961 	r_size = sizeof(*da->range_tbl) * da->rtbl_top;
962 	microuptime(&t1);
963 
964 #ifdef DXR2
965 	if (range_rebuild ||
966 	    abs(fls(da->prefixes) - fls(da->trie_rebuilt_prefixes)) > 1)
967 		trie_rebuild = 1;
968 
969 trie_build:
970 	if (trie_rebuild) {
971 		da->trie_rebuilt_prefixes = da->prefixes;
972 		da->d_bits = DXR_D;
973 		da->updates_low = 0;
974 		da->updates_high = DIRECT_TBL_SIZE - 1;
975 		if (!range_rebuild)
976 			memset(da->updates_mask, 0xff,
977 			    sizeof(da->updates_mask));
978 	}
979 
980 dxr2_try_squeeze:
981 	if (trie_rebuild) {
982 		/* Bulk cleanup */
983 		bzero(da->trietbl, sizeof(da->trietbl));
984 		bzero(da->trie_hashtbl, sizeof(da->trie_hashtbl));
985 		while ((tp = LIST_FIRST(&da->all_trie)) != NULL) {
986 			LIST_REMOVE(tp, td_all_le);
987 			uma_zfree(trie_zone, tp);
988 		}
989 		LIST_INIT(&da->unused_trie);
990 		da->all_trie_cnt = da->unused_trie_cnt = 0;
991 	}
992 
993 	/* Populate d_tbl, x_tbl */
994 	dxr_x = DXR_TRIE_BITS - da->d_bits;
995 	d_tbl_size = (1 << da->d_bits);
996 
997 	for (i = da->updates_low >> dxr_x; i <= da->updates_high >> dxr_x;
998 	    i++) {
999 		if (!trie_rebuild) {
1000 			m = 0;
1001 			for (int j = 0; j < (1 << dxr_x); j += 32)
1002 				m |= da->updates_mask[((i << dxr_x) + j) >> 5];
1003 			if (m == 0)
1004 				continue;
1005 			trie_unref(da, i);
1006 		}
1007 		ti = trie_ref(da, i);
1008 		if (ti < 0)
1009 			return;
1010 		da->d_tbl[i] = ti;
1011 	}
1012 
1013 	trie_frag = 0;
1014 	if (da->all_trie_cnt)
1015 		trie_frag = da->unused_trie_cnt * 10000ULL / da->all_trie_cnt;
1016 	if (trie_frag > V_frag_limit) {
1017 		trie_rebuild = 1;
1018 		goto trie_build;
1019 	}
1020 
1021 	d_size = sizeof(*da->d_tbl) * d_tbl_size;
1022 	x_size = sizeof(*da->x_tbl) * DIRECT_TBL_SIZE / d_tbl_size
1023 	    * da->all_trie_cnt;
1024 	dxr_tot_size = d_size + x_size + r_size;
1025 
1026 	if (trie_rebuild == 1) {
1027 		/* Try to find a more compact D/X split */
1028 		if (prev_size == 0 || dxr_tot_size <= prev_size)
1029 			da->d_bits--;
1030 		else {
1031 			da->d_bits++;
1032 			trie_rebuild = 2;
1033 		}
1034 		prev_size = dxr_tot_size;
1035 		goto dxr2_try_squeeze;
1036 	}
1037 	microuptime(&t2);
1038 #else /* !DXR2 */
1039 	dxr_tot_size = sizeof(da->direct_tbl) + r_size;
1040 	t2 = t1;
1041 #endif
1042 
1043 	dxr->d = malloc(dxr_tot_size, M_DXRLPM, M_NOWAIT);
1044 	if (dxr->d == NULL)
1045 		return;
1046 #ifdef DXR2
1047 	memcpy(dxr->d, da->d_tbl, d_size);
1048 	dxr->x = ((char *) dxr->d) + d_size;
1049 	memcpy(dxr->x, da->x_tbl, x_size);
1050 	dxr->r = ((char *) dxr->x) + x_size;
1051 	dxr->d_shift = 32 - da->d_bits;
1052 	dxr->x_shift = dxr_x;
1053 	dxr->x_mask = 0xffffffffU >> (32 - dxr_x);
1054 #else /* !DXR2 */
1055 	memcpy(dxr->d, da->direct_tbl, sizeof(da->direct_tbl));
1056 	dxr->r = ((char *) dxr->d) + sizeof(da->direct_tbl);
1057 #endif
1058 	memcpy(dxr->r, da->range_tbl, r_size);
1059 
1060 	if (da->updates_low <= da->updates_high)
1061 		bzero(&da->updates_mask[da->updates_low / 32],
1062 		    (da->updates_high - da->updates_low) / 8 + 1);
1063 	da->updates_low = DIRECT_TBL_SIZE - 1;
1064 	da->updates_high = 0;
1065 	microuptime(&t3);
1066 
1067 #ifdef DXR2
1068 	FIB_PRINTF(LOG_INFO, da->fd, "D%dX%dR, %d prefixes, %d nhops (max)",
1069 	    da->d_bits, dxr_x, rinfo.num_prefixes, rinfo.num_nhops);
1070 #else
1071 	FIB_PRINTF(LOG_INFO, da->fd, "D%dR, %d prefixes, %d nhops (max)",
1072 	    DXR_D, rinfo.num_prefixes, rinfo.num_nhops);
1073 #endif
1074 	i = dxr_tot_size * 100;
1075 	if (rinfo.num_prefixes)
1076 		i /= rinfo.num_prefixes;
1077 	FIB_PRINTF(LOG_INFO, da->fd, "%d.%02d KBytes, %d.%02d Bytes/prefix",
1078 	    dxr_tot_size / 1024, dxr_tot_size * 100 / 1024 % 100,
1079 	    i / 100, i % 100);
1080 #ifdef DXR2
1081 	FIB_PRINTF(LOG_INFO, da->fd,
1082 	    "%d.%02d%% trie, %d.%02d%% range fragmentation",
1083 	    trie_frag / 100, trie_frag % 100,
1084 	    range_frag / 100, range_frag % 100);
1085 #else
1086 	FIB_PRINTF(LOG_INFO, da->fd, "%d.%01d%% range fragmentation",
1087 	    range_frag / 100, range_frag % 100);
1088 #endif
1089 	i = (t1.tv_sec - t0.tv_sec) * 1000000 + t1.tv_usec - t0.tv_usec;
1090 	FIB_PRINTF(LOG_INFO, da->fd, "range table %s in %u.%03u ms",
1091 	    range_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000);
1092 #ifdef DXR2
1093 	i = (t2.tv_sec - t1.tv_sec) * 1000000 + t2.tv_usec - t1.tv_usec;
1094 	FIB_PRINTF(LOG_INFO, da->fd, "trie %s in %u.%03u ms",
1095 	    trie_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000);
1096 #endif
1097 	i = (t3.tv_sec - t2.tv_sec) * 1000000 + t3.tv_usec - t2.tv_usec;
1098 	FIB_PRINTF(LOG_INFO, da->fd, "snapshot forked in %u.%03u ms",
1099 	    i / 1000, i % 1000);
1100 }
1101 
1102 /*
1103  * Glue functions for attaching to FreeBSD 13 fib_algo infrastructure.
1104  */
1105 
1106 static struct nhop_object *
1107 dxr_fib_lookup(void *algo_data, const struct flm_lookup_key key,
1108     uint32_t scopeid)
1109 {
1110 	struct dxr *dxr = algo_data;
1111 
1112 	return (dxr->nh_tbl[dxr_lookup(dxr, ntohl(key.addr4.s_addr))]);
1113 }
1114 
1115 static enum flm_op_result
1116 dxr_init(uint32_t fibnum, struct fib_data *fd, void *old_data, void **data)
1117 {
1118 	struct dxr *old_dxr = old_data;
1119 	struct dxr_aux *da = NULL;
1120 	struct dxr *dxr;
1121 
1122 	dxr = malloc(sizeof(*dxr), M_DXRAUX, M_NOWAIT);
1123 	if (dxr == NULL)
1124 		return (FLM_REBUILD);
1125 
1126 	/* Check whether we may reuse the old auxiliary structures */
1127 	if (old_dxr != NULL && old_dxr->aux != NULL) {
1128 		da = old_dxr->aux;
1129 		atomic_add_int(&da->refcnt, 1);
1130 	}
1131 
1132 	dxr->aux = da;
1133 	dxr->d = NULL;
1134 	dxr->fd = fd;
1135 	dxr->fibnum = fibnum;
1136 	*data = dxr;
1137 
1138 	return (FLM_SUCCESS);
1139 }
1140 
1141 static void
1142 dxr_destroy(void *data)
1143 {
1144 	struct dxr *dxr = data;
1145 	struct dxr_aux *da;
1146 	struct chunk_desc *cdp;
1147 	struct trie_desc *tp;
1148 
1149 	if (dxr->d != NULL)
1150 		free(dxr->d, M_DXRLPM);
1151 
1152 	da = dxr->aux;
1153 	free(dxr, M_DXRAUX);
1154 
1155 	if (da == NULL || atomic_fetchadd_int(&da->refcnt, -1) > 1)
1156 		return;
1157 
1158 	/* Release auxiliary structures */
1159 	while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) {
1160 		LIST_REMOVE(cdp, cd_all_le);
1161 		uma_zfree(chunk_zone, cdp);
1162 	}
1163 	while ((tp = LIST_FIRST(&da->all_trie)) != NULL) {
1164 		LIST_REMOVE(tp, td_all_le);
1165 		uma_zfree(trie_zone, tp);
1166 	}
1167 	free(da->range_tbl, M_DXRAUX);
1168 	free(da->x_tbl, M_DXRAUX);
1169 	free(da, M_DXRAUX);
1170 }
1171 
1172 static void
1173 epoch_dxr_destroy(epoch_context_t ctx)
1174 {
1175 	struct dxr *dxr = __containerof(ctx, struct dxr, epoch_ctx);
1176 
1177 	dxr_destroy(dxr);
1178 }
1179 
1180 static void *
1181 choose_lookup_fn(struct dxr_aux *da)
1182 {
1183 
1184 #ifdef DXR2
1185 	switch (da->d_bits) {
1186 #if DXR_TRIE_BITS > 16
1187 	case 16:
1188 		return (dxr_fib_lookup_16);
1189 #endif
1190 	case 15:
1191 		return (dxr_fib_lookup_15);
1192 	case 14:
1193 		return (dxr_fib_lookup_14);
1194 	case 13:
1195 		return (dxr_fib_lookup_13);
1196 	case 12:
1197 		return (dxr_fib_lookup_12);
1198 	case 11:
1199 		return (dxr_fib_lookup_11);
1200 	case 10:
1201 		return (dxr_fib_lookup_10);
1202 	case 9:
1203 		return (dxr_fib_lookup_9);
1204 	}
1205 #endif /* DXR2 */
1206 	return (dxr_fib_lookup);
1207 }
1208 
1209 static enum flm_op_result
1210 dxr_dump_end(void *data, struct fib_dp *dp)
1211 {
1212 	struct dxr *dxr = data;
1213 	struct dxr_aux *da;
1214 
1215 	dxr_build(dxr);
1216 
1217 	da = dxr->aux;
1218 	if (da == NULL)
1219 		return (FLM_REBUILD);
1220 
1221 	/* Structural limit exceeded, hard error */
1222 	if (da->rtbl_top >= BASE_MAX)
1223 		return (FLM_ERROR);
1224 
1225 	/* A malloc(,, M_NOWAIT) failed somewhere, retry later */
1226 	if (dxr->d == NULL)
1227 		return (FLM_REBUILD);
1228 
1229 	dp->f = choose_lookup_fn(da);
1230 	dp->arg = dxr;
1231 
1232 	return (FLM_SUCCESS);
1233 }
1234 
1235 static enum flm_op_result
1236 dxr_dump_rib_item(struct rtentry *rt, void *data)
1237 {
1238 
1239 	return (FLM_SUCCESS);
1240 }
1241 
1242 static enum flm_op_result
1243 dxr_change_rib_item(struct rib_head *rnh, struct rib_cmd_info *rc,
1244     void *data)
1245 {
1246 
1247 	return (FLM_BATCH);
1248 }
1249 
1250 static enum flm_op_result
1251 dxr_change_rib_batch(struct rib_head *rnh, struct fib_change_queue *q,
1252     void *data)
1253 {
1254 	struct dxr *dxr = data;
1255 	struct dxr *new_dxr;
1256 	struct dxr_aux *da;
1257 	struct fib_dp new_dp;
1258 	enum flm_op_result res;
1259 	uint32_t ip, plen, hmask, start, end, i, ui;
1260 #ifdef INVARIANTS
1261 	struct rib_rtable_info rinfo;
1262 	int update_delta = 0;
1263 #endif
1264 
1265 	KASSERT(data != NULL, ("%s: NULL data", __FUNCTION__));
1266 	KASSERT(q != NULL, ("%s: NULL q", __FUNCTION__));
1267 	KASSERT(q->count < q->size, ("%s: q->count %d q->size %d",
1268 	    __FUNCTION__, q->count, q->size));
1269 
1270 	da = dxr->aux;
1271 	KASSERT(da != NULL, ("%s: NULL dxr->aux", __FUNCTION__));
1272 
1273 	FIB_PRINTF(LOG_INFO, da->fd, "processing %d update(s)", q->count);
1274 	for (ui = 0; ui < q->count; ui++) {
1275 #ifdef INVARIANTS
1276 		if (q->entries[ui].nh_new != NULL)
1277 			update_delta++;
1278 		if (q->entries[ui].nh_old != NULL)
1279 			update_delta--;
1280 #endif
1281 		plen = q->entries[ui].plen;
1282 		ip = ntohl(q->entries[ui].addr4.s_addr);
1283 		if (plen < 32)
1284 			hmask = 0xffffffffU >> plen;
1285 		else
1286 			hmask = 0;
1287 		start = (ip & ~hmask) >> DXR_RANGE_SHIFT;
1288 		end = (ip | hmask) >> DXR_RANGE_SHIFT;
1289 
1290 		if ((start & 0x1f) == 0 && (end & 0x1f) == 0x1f)
1291 			for (i = start >> 5; i <= end >> 5; i++)
1292 				da->updates_mask[i] = 0xffffffffU;
1293 		else
1294 			for (i = start; i <= end; i++)
1295 				da->updates_mask[i >> 5] |= (1 << (i & 0x1f));
1296 		if (start < da->updates_low)
1297 			da->updates_low = start;
1298 		if (end > da->updates_high)
1299 			da->updates_high = end;
1300 	}
1301 
1302 #ifdef INVARIANTS
1303 	fib_get_rtable_info(fib_get_rh(da->fd), &rinfo);
1304 	KASSERT(da->prefixes + update_delta == rinfo.num_prefixes,
1305 	    ("%s: update count mismatch", __FUNCTION__));
1306 #endif
1307 
1308 	res = dxr_init(0, dxr->fd, data, (void **) &new_dxr);
1309 	if (res != FLM_SUCCESS)
1310 		return (res);
1311 
1312 	dxr_build(new_dxr);
1313 
1314 	/* Structural limit exceeded, hard error */
1315 	if (da->rtbl_top >= BASE_MAX) {
1316 		dxr_destroy(new_dxr);
1317 		return (FLM_ERROR);
1318 	}
1319 
1320 	/* A malloc(,, M_NOWAIT) failed somewhere, retry later */
1321 	if (new_dxr->d == NULL) {
1322 		dxr_destroy(new_dxr);
1323 		return (FLM_REBUILD);
1324 	}
1325 
1326 	new_dp.f = choose_lookup_fn(da);
1327 	new_dp.arg = new_dxr;
1328 	if (fib_set_datapath_ptr(dxr->fd, &new_dp)) {
1329 		fib_set_algo_ptr(dxr->fd, new_dxr);
1330 		fib_epoch_call(epoch_dxr_destroy, &dxr->epoch_ctx);
1331 		return (FLM_SUCCESS);
1332 	}
1333 
1334 	dxr_destroy(new_dxr);
1335 	return (FLM_REBUILD);
1336 }
1337 
1338 static uint8_t
1339 dxr_get_pref(const struct rib_rtable_info *rinfo)
1340 {
1341 
1342 	/* Below bsearch4 up to 10 prefixes. Always supersedes dpdk_lpm4. */
1343 	return (251);
1344 }
1345 
1346 SYSCTL_DECL(_net_route_algo);
1347 SYSCTL_NODE(_net_route_algo, OID_AUTO, dxr, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1348     "DXR tunables");
1349 
1350 static int
1351 sysctl_dxr_frag_limit(SYSCTL_HANDLER_ARGS)
1352 {
1353 	char buf[8];
1354 	int error, new, i;
1355 
1356 	snprintf(buf, sizeof(buf), "%d.%02d%%", V_frag_limit / 100,
1357 	    V_frag_limit % 100);
1358 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
1359 	if (error != 0 || req->newptr == NULL)
1360 		return (error);
1361 	if (!isdigit(*buf) && *buf != '.')
1362 		return (EINVAL);
1363 	for (i = 0, new = 0; isdigit(buf[i]) && i < sizeof(buf); i++)
1364 		new = new * 10 + buf[i] - '0';
1365 	new *= 100;
1366 	if (buf[i++] == '.') {
1367 		if (!isdigit(buf[i]))
1368 			return (EINVAL);
1369 		new += (buf[i++] - '0') * 10;
1370 		if (isdigit(buf[i]))
1371 			new += buf[i++] - '0';
1372 	}
1373 	if (new > 1000)
1374 		return (EINVAL);
1375 	V_frag_limit = new;
1376 	snprintf(buf, sizeof(buf), "%d.%02d%%", V_frag_limit / 100,
1377 	    V_frag_limit % 100);
1378 	return (0);
1379 }
1380 
1381 SYSCTL_PROC(_net_route_algo_dxr, OID_AUTO, frag_limit,
1382     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_VNET,
1383     0, 0, sysctl_dxr_frag_limit, "A",
1384     "Fragmentation threshold to full rebuild");
1385 
1386 static struct fib_lookup_module fib_dxr_mod = {
1387 	.flm_name = "dxr",
1388 	.flm_family = AF_INET,
1389 	.flm_init_cb = dxr_init,
1390 	.flm_destroy_cb = dxr_destroy,
1391 	.flm_dump_rib_item_cb = dxr_dump_rib_item,
1392 	.flm_dump_end_cb = dxr_dump_end,
1393 	.flm_change_rib_item_cb = dxr_change_rib_item,
1394 	.flm_change_rib_items_cb = dxr_change_rib_batch,
1395 	.flm_get_pref = dxr_get_pref,
1396 };
1397 
1398 static int
1399 dxr_modevent(module_t mod, int type, void *unused)
1400 {
1401 	int error;
1402 
1403 	switch (type) {
1404 	case MOD_LOAD:
1405 		chunk_zone = uma_zcreate("dxr chunk", sizeof(struct chunk_desc),
1406 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1407 		trie_zone = uma_zcreate("dxr trie", sizeof(struct trie_desc),
1408 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1409 		fib_module_register(&fib_dxr_mod);
1410 		return(0);
1411 	case MOD_UNLOAD:
1412 		error = fib_module_unregister(&fib_dxr_mod);
1413 		if (error)
1414 			return (error);
1415 		uma_zdestroy(chunk_zone);
1416 		uma_zdestroy(trie_zone);
1417 		return(0);
1418 	default:
1419 		return(EOPNOTSUPP);
1420 	}
1421 }
1422 
1423 static moduledata_t dxr_mod = {"fib_dxr", dxr_modevent, 0};
1424 
1425 DECLARE_MODULE(fib_dxr, dxr_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
1426 MODULE_VERSION(fib_dxr, 1);
1427