xref: /freebsd/sys/netinet/in_mcast.c (revision 61e21613)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/protosw.h>
47 #include <sys/sysctl.h>
48 #include <sys/ktr.h>
49 #include <sys/taskqueue.h>
50 #include <sys/tree.h>
51 
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_dl.h>
55 #include <net/route.h>
56 #include <net/route/nhop.h>
57 #include <net/vnet.h>
58 
59 #include <net/ethernet.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_fib.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_var.h>
66 #include <net/if_private.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/igmp_var.h>
69 
70 #ifndef KTR_IGMPV3
71 #define KTR_IGMPV3 KTR_INET
72 #endif
73 
74 #ifndef __SOCKUNION_DECLARED
75 union sockunion {
76 	struct sockaddr_storage	ss;
77 	struct sockaddr		sa;
78 	struct sockaddr_dl	sdl;
79 	struct sockaddr_in	sin;
80 };
81 typedef union sockunion sockunion_t;
82 #define __SOCKUNION_DECLARED
83 #endif /* __SOCKUNION_DECLARED */
84 
85 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
86     "IPv4 multicast PCB-layer source filter");
87 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
88 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
89 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
90     "IPv4 multicast IGMP-layer source filter");
91 
92 /*
93  * Locking:
94  *
95  * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK,
96  *   IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
97  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
98  *   it can be taken by code in net/if.c also.
99  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
100  *
101  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
102  * any need for in_multi itself to be virtualized -- it is bound to an ifp
103  * anyway no matter what happens.
104  */
105 struct mtx in_multi_list_mtx;
106 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
107 
108 struct mtx in_multi_free_mtx;
109 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
110 
111 struct sx in_multi_sx;
112 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
113 
114 /*
115  * Functions with non-static linkage defined in this file should be
116  * declared in in_var.h:
117  *  imo_multi_filter()
118  *  in_joingroup()
119  *  in_joingroup_locked()
120  *  in_leavegroup()
121  *  in_leavegroup_locked()
122  * and ip_var.h:
123  *  inp_freemoptions()
124  *  inp_getmoptions()
125  *  inp_setmoptions()
126  */
127 static void	imf_commit(struct in_mfilter *);
128 static int	imf_get_source(struct in_mfilter *imf,
129 		    const struct sockaddr_in *psin,
130 		    struct in_msource **);
131 static struct in_msource *
132 		imf_graft(struct in_mfilter *, const uint8_t,
133 		    const struct sockaddr_in *);
134 static void	imf_leave(struct in_mfilter *);
135 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
136 static void	imf_purge(struct in_mfilter *);
137 static void	imf_rollback(struct in_mfilter *);
138 static void	imf_reap(struct in_mfilter *);
139 static struct in_mfilter *
140 		imo_match_group(const struct ip_moptions *,
141 		    const struct ifnet *, const struct sockaddr *);
142 static struct in_msource *
143 		imo_match_source(struct in_mfilter *, const struct sockaddr *);
144 static void	ims_merge(struct ip_msource *ims,
145 		    const struct in_msource *lims, const int rollback);
146 static int	in_getmulti(struct ifnet *, const struct in_addr *,
147 		    struct in_multi **);
148 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
149 		    const int noalloc, struct ip_msource **pims);
150 #ifdef KTR
151 static int	inm_is_ifp_detached(const struct in_multi *);
152 #endif
153 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
154 static void	inm_purge(struct in_multi *);
155 static void	inm_reap(struct in_multi *);
156 static void inm_release(struct in_multi *);
157 static struct ip_moptions *
158 		inp_findmoptions(struct inpcb *);
159 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
160 static int	inp_join_group(struct inpcb *, struct sockopt *);
161 static int	inp_leave_group(struct inpcb *, struct sockopt *);
162 static struct ifnet *
163 		inp_lookup_mcast_ifp(const struct inpcb *,
164 		    const struct sockaddr_in *, const struct in_addr);
165 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
166 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
167 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
168 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
169 
170 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "IPv4 multicast");
173 
174 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
175 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
176     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
177     "Max source filters per group");
178 
179 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
180 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
181     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
182     "Max source filters per socket");
183 
184 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
185 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
186     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
187 
188 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
189     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
190     "Per-interface stack-wide source filters");
191 
192 #ifdef KTR
193 /*
194  * Inline function which wraps assertions for a valid ifp.
195  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
196  * is detached.
197  */
198 static int __inline
199 inm_is_ifp_detached(const struct in_multi *inm)
200 {
201 	struct ifnet *ifp;
202 
203 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
204 	ifp = inm->inm_ifma->ifma_ifp;
205 	if (ifp != NULL) {
206 		/*
207 		 * Sanity check that netinet's notion of ifp is the
208 		 * same as net's.
209 		 */
210 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
211 	}
212 
213 	return (ifp == NULL);
214 }
215 #endif
216 
217 /*
218  * Interface detach can happen in a taskqueue thread context, so we must use a
219  * dedicated thread to avoid deadlocks when draining inm_release tasks.
220  */
221 TASKQUEUE_DEFINE_THREAD(inm_free);
222 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER();
223 static void inm_release_task(void *arg __unused, int pending __unused);
224 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL);
225 
226 void
227 inm_release_wait(void *arg __unused)
228 {
229 
230 	/*
231 	 * Make sure all pending multicast addresses are freed before
232 	 * the VNET or network device is destroyed:
233 	 */
234 	taskqueue_drain(taskqueue_inm_free, &inm_free_task);
235 }
236 #ifdef VIMAGE
237 /* XXX-BZ FIXME, see D24914. */
238 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL);
239 #endif
240 
241 void
242 inm_release_list_deferred(struct in_multi_head *inmh)
243 {
244 
245 	if (SLIST_EMPTY(inmh))
246 		return;
247 	mtx_lock(&in_multi_free_mtx);
248 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
249 	mtx_unlock(&in_multi_free_mtx);
250 	taskqueue_enqueue(taskqueue_inm_free, &inm_free_task);
251 }
252 
253 void
254 inm_disconnect(struct in_multi *inm)
255 {
256 	struct ifnet *ifp;
257 	struct ifmultiaddr *ifma, *ll_ifma;
258 
259 	ifp = inm->inm_ifp;
260 	IF_ADDR_WLOCK_ASSERT(ifp);
261 	ifma = inm->inm_ifma;
262 
263 	if_ref(ifp);
264 	if (ifma->ifma_flags & IFMA_F_ENQUEUED) {
265 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
266 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
267 	}
268 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
269 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
270 		MPASS(ifma != ll_ifma);
271 		ifma->ifma_llifma = NULL;
272 		MPASS(ll_ifma->ifma_llifma == NULL);
273 		MPASS(ll_ifma->ifma_ifp == ifp);
274 		if (--ll_ifma->ifma_refcount == 0) {
275 			if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
276 				CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
277 				ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
278 			}
279 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
280 			if_freemulti(ll_ifma);
281 		}
282 	}
283 }
284 
285 void
286 inm_release_deferred(struct in_multi *inm)
287 {
288 	struct in_multi_head tmp;
289 
290 	IN_MULTI_LIST_LOCK_ASSERT();
291 	MPASS(inm->inm_refcount > 0);
292 	if (--inm->inm_refcount == 0) {
293 		SLIST_INIT(&tmp);
294 		inm_disconnect(inm);
295 		inm->inm_ifma->ifma_protospec = NULL;
296 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
297 		inm_release_list_deferred(&tmp);
298 	}
299 }
300 
301 static void
302 inm_release_task(void *arg __unused, int pending __unused)
303 {
304 	struct in_multi_head inm_free_tmp;
305 	struct in_multi *inm, *tinm;
306 
307 	SLIST_INIT(&inm_free_tmp);
308 	mtx_lock(&in_multi_free_mtx);
309 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
310 	mtx_unlock(&in_multi_free_mtx);
311 	IN_MULTI_LOCK();
312 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
313 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
314 		MPASS(inm);
315 		inm_release(inm);
316 	}
317 	IN_MULTI_UNLOCK();
318 }
319 
320 /*
321  * Initialize an in_mfilter structure to a known state at t0, t1
322  * with an empty source filter list.
323  */
324 static __inline void
325 imf_init(struct in_mfilter *imf, const int st0, const int st1)
326 {
327 	memset(imf, 0, sizeof(struct in_mfilter));
328 	RB_INIT(&imf->imf_sources);
329 	imf->imf_st[0] = st0;
330 	imf->imf_st[1] = st1;
331 }
332 
333 struct in_mfilter *
334 ip_mfilter_alloc(const int mflags, const int st0, const int st1)
335 {
336 	struct in_mfilter *imf;
337 
338 	imf = malloc(sizeof(*imf), M_INMFILTER, mflags);
339 	if (imf != NULL)
340 		imf_init(imf, st0, st1);
341 
342 	return (imf);
343 }
344 
345 void
346 ip_mfilter_free(struct in_mfilter *imf)
347 {
348 
349 	imf_purge(imf);
350 	free(imf, M_INMFILTER);
351 }
352 
353 /*
354  * Function for looking up an in_multi record for an IPv4 multicast address
355  * on a given interface. ifp must be valid. If no record found, return NULL.
356  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
357  */
358 struct in_multi *
359 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
360 {
361 	struct ifmultiaddr *ifma;
362 	struct in_multi *inm;
363 
364 	IN_MULTI_LIST_LOCK_ASSERT();
365 	IF_ADDR_LOCK_ASSERT(ifp);
366 
367 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
368 		inm = inm_ifmultiaddr_get_inm(ifma);
369 		if (inm == NULL)
370 			continue;
371 		if (inm->inm_addr.s_addr == ina.s_addr)
372 			return (inm);
373 	}
374 	return (NULL);
375 }
376 
377 /*
378  * Wrapper for inm_lookup_locked().
379  * The IF_ADDR_LOCK will be taken on ifp and released on return.
380  */
381 struct in_multi *
382 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
383 {
384 	struct epoch_tracker et;
385 	struct in_multi *inm;
386 
387 	IN_MULTI_LIST_LOCK_ASSERT();
388 	NET_EPOCH_ENTER(et);
389 
390 	inm = inm_lookup_locked(ifp, ina);
391 	NET_EPOCH_EXIT(et);
392 
393 	return (inm);
394 }
395 
396 /*
397  * Find an IPv4 multicast group entry for this ip_moptions instance
398  * which matches the specified group, and optionally an interface.
399  * Return its index into the array, or -1 if not found.
400  */
401 static struct in_mfilter *
402 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
403     const struct sockaddr *group)
404 {
405 	const struct sockaddr_in *gsin;
406 	struct in_mfilter *imf;
407 	struct in_multi	*inm;
408 
409 	gsin = (const struct sockaddr_in *)group;
410 
411 	IP_MFILTER_FOREACH(imf, &imo->imo_head) {
412 		inm = imf->imf_inm;
413 		if (inm == NULL)
414 			continue;
415 		if ((ifp == NULL || (inm->inm_ifp == ifp)) &&
416 		    in_hosteq(inm->inm_addr, gsin->sin_addr)) {
417 			break;
418 		}
419 	}
420 	return (imf);
421 }
422 
423 /*
424  * Find an IPv4 multicast source entry for this imo which matches
425  * the given group index for this socket, and source address.
426  *
427  * NOTE: This does not check if the entry is in-mode, merely if
428  * it exists, which may not be the desired behaviour.
429  */
430 static struct in_msource *
431 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src)
432 {
433 	struct ip_msource	 find;
434 	struct ip_msource	*ims;
435 	const sockunion_t	*psa;
436 
437 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
438 
439 	/* Source trees are keyed in host byte order. */
440 	psa = (const sockunion_t *)src;
441 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
442 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
443 
444 	return ((struct in_msource *)ims);
445 }
446 
447 /*
448  * Perform filtering for multicast datagrams on a socket by group and source.
449  *
450  * Returns 0 if a datagram should be allowed through, or various error codes
451  * if the socket was not a member of the group, or the source was muted, etc.
452  */
453 int
454 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
455     const struct sockaddr *group, const struct sockaddr *src)
456 {
457 	struct in_mfilter *imf;
458 	struct in_msource *ims;
459 	int mode;
460 
461 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
462 
463 	imf = imo_match_group(imo, ifp, group);
464 	if (imf == NULL)
465 		return (MCAST_NOTGMEMBER);
466 
467 	/*
468 	 * Check if the source was included in an (S,G) join.
469 	 * Allow reception on exclusive memberships by default,
470 	 * reject reception on inclusive memberships by default.
471 	 * Exclude source only if an in-mode exclude filter exists.
472 	 * Include source only if an in-mode include filter exists.
473 	 * NOTE: We are comparing group state here at IGMP t1 (now)
474 	 * with socket-layer t0 (since last downcall).
475 	 */
476 	mode = imf->imf_st[1];
477 	ims = imo_match_source(imf, src);
478 
479 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
480 	    (ims != NULL && ims->imsl_st[0] == MCAST_EXCLUDE))
481 		return (MCAST_NOTSMEMBER);
482 
483 	return (MCAST_PASS);
484 }
485 
486 /*
487  * Find and return a reference to an in_multi record for (ifp, group),
488  * and bump its reference count.
489  * If one does not exist, try to allocate it, and update link-layer multicast
490  * filters on ifp to listen for group.
491  * Assumes the IN_MULTI lock is held across the call.
492  * Return 0 if successful, otherwise return an appropriate error code.
493  */
494 static int
495 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
496     struct in_multi **pinm)
497 {
498 	struct sockaddr_in	 gsin;
499 	struct ifmultiaddr	*ifma;
500 	struct in_ifinfo	*ii;
501 	struct in_multi		*inm;
502 	int error;
503 
504 	IN_MULTI_LOCK_ASSERT();
505 
506 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
507 	IN_MULTI_LIST_LOCK();
508 	inm = inm_lookup(ifp, *group);
509 	if (inm != NULL) {
510 		/*
511 		 * If we already joined this group, just bump the
512 		 * refcount and return it.
513 		 */
514 		KASSERT(inm->inm_refcount >= 1,
515 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
516 		inm_acquire_locked(inm);
517 		*pinm = inm;
518 	}
519 	IN_MULTI_LIST_UNLOCK();
520 	if (inm != NULL)
521 		return (0);
522 
523 	memset(&gsin, 0, sizeof(gsin));
524 	gsin.sin_family = AF_INET;
525 	gsin.sin_len = sizeof(struct sockaddr_in);
526 	gsin.sin_addr = *group;
527 
528 	/*
529 	 * Check if a link-layer group is already associated
530 	 * with this network-layer group on the given ifnet.
531 	 */
532 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
533 	if (error != 0)
534 		return (error);
535 
536 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
537 	IN_MULTI_LIST_LOCK();
538 	IF_ADDR_WLOCK(ifp);
539 
540 	/*
541 	 * If something other than netinet is occupying the link-layer
542 	 * group, print a meaningful error message and back out of
543 	 * the allocation.
544 	 * Otherwise, bump the refcount on the existing network-layer
545 	 * group association and return it.
546 	 */
547 	if (ifma->ifma_protospec != NULL) {
548 		inm = (struct in_multi *)ifma->ifma_protospec;
549 #ifdef INVARIANTS
550 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
551 		    __func__));
552 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
553 		    ("%s: ifma not AF_INET", __func__));
554 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
555 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
556 		    !in_hosteq(inm->inm_addr, *group)) {
557 			char addrbuf[INET_ADDRSTRLEN];
558 
559 			panic("%s: ifma %p is inconsistent with %p (%s)",
560 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
561 		}
562 #endif
563 		inm_acquire_locked(inm);
564 		*pinm = inm;
565 		goto out_locked;
566 	}
567 
568 	IF_ADDR_WLOCK_ASSERT(ifp);
569 
570 	/*
571 	 * A new in_multi record is needed; allocate and initialize it.
572 	 * We DO NOT perform an IGMP join as the in_ layer may need to
573 	 * push an initial source list down to IGMP to support SSM.
574 	 *
575 	 * The initial source filter state is INCLUDE, {} as per the RFC.
576 	 */
577 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
578 	if (inm == NULL) {
579 		IF_ADDR_WUNLOCK(ifp);
580 		IN_MULTI_LIST_UNLOCK();
581 		if_delmulti_ifma(ifma);
582 		return (ENOMEM);
583 	}
584 	inm->inm_addr = *group;
585 	inm->inm_ifp = ifp;
586 	inm->inm_igi = ii->ii_igmp;
587 	inm->inm_ifma = ifma;
588 	inm->inm_refcount = 1;
589 	inm->inm_state = IGMP_NOT_MEMBER;
590 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
591 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
592 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
593 	RB_INIT(&inm->inm_srcs);
594 
595 	ifma->ifma_protospec = inm;
596 
597 	*pinm = inm;
598  out_locked:
599 	IF_ADDR_WUNLOCK(ifp);
600 	IN_MULTI_LIST_UNLOCK();
601 	return (0);
602 }
603 
604 /*
605  * Drop a reference to an in_multi record.
606  *
607  * If the refcount drops to 0, free the in_multi record and
608  * delete the underlying link-layer membership.
609  */
610 static void
611 inm_release(struct in_multi *inm)
612 {
613 	struct ifmultiaddr *ifma;
614 	struct ifnet *ifp;
615 
616 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
617 	MPASS(inm->inm_refcount == 0);
618 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
619 
620 	ifma = inm->inm_ifma;
621 	ifp = inm->inm_ifp;
622 
623 	/* XXX this access is not covered by IF_ADDR_LOCK */
624 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
625 	if (ifp != NULL) {
626 		CURVNET_SET(ifp->if_vnet);
627 		inm_purge(inm);
628 		free(inm, M_IPMADDR);
629 		if_delmulti_ifma_flags(ifma, 1);
630 		CURVNET_RESTORE();
631 		if_rele(ifp);
632 	} else {
633 		inm_purge(inm);
634 		free(inm, M_IPMADDR);
635 		if_delmulti_ifma_flags(ifma, 1);
636 	}
637 }
638 
639 /*
640  * Clear recorded source entries for a group.
641  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
642  * FIXME: Should reap.
643  */
644 void
645 inm_clear_recorded(struct in_multi *inm)
646 {
647 	struct ip_msource	*ims;
648 
649 	IN_MULTI_LIST_LOCK_ASSERT();
650 
651 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
652 		if (ims->ims_stp) {
653 			ims->ims_stp = 0;
654 			--inm->inm_st[1].iss_rec;
655 		}
656 	}
657 	KASSERT(inm->inm_st[1].iss_rec == 0,
658 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
659 }
660 
661 /*
662  * Record a source as pending for a Source-Group IGMPv3 query.
663  * This lives here as it modifies the shared tree.
664  *
665  * inm is the group descriptor.
666  * naddr is the address of the source to record in network-byte order.
667  *
668  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
669  * lazy-allocate a source node in response to an SG query.
670  * Otherwise, no allocation is performed. This saves some memory
671  * with the trade-off that the source will not be reported to the
672  * router if joined in the window between the query response and
673  * the group actually being joined on the local host.
674  *
675  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
676  * This turns off the allocation of a recorded source entry if
677  * the group has not been joined.
678  *
679  * Return 0 if the source didn't exist or was already marked as recorded.
680  * Return 1 if the source was marked as recorded by this function.
681  * Return <0 if any error occurred (negated errno code).
682  */
683 int
684 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
685 {
686 	struct ip_msource	 find;
687 	struct ip_msource	*ims, *nims;
688 
689 	IN_MULTI_LIST_LOCK_ASSERT();
690 
691 	find.ims_haddr = ntohl(naddr);
692 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
693 	if (ims && ims->ims_stp)
694 		return (0);
695 	if (ims == NULL) {
696 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
697 			return (-ENOSPC);
698 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
699 		    M_NOWAIT | M_ZERO);
700 		if (nims == NULL)
701 			return (-ENOMEM);
702 		nims->ims_haddr = find.ims_haddr;
703 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
704 		++inm->inm_nsrc;
705 		ims = nims;
706 	}
707 
708 	/*
709 	 * Mark the source as recorded and update the recorded
710 	 * source count.
711 	 */
712 	++ims->ims_stp;
713 	++inm->inm_st[1].iss_rec;
714 
715 	return (1);
716 }
717 
718 /*
719  * Return a pointer to an in_msource owned by an in_mfilter,
720  * given its source address.
721  * Lazy-allocate if needed. If this is a new entry its filter state is
722  * undefined at t0.
723  *
724  * imf is the filter set being modified.
725  * haddr is the source address in *host* byte-order.
726  *
727  * SMPng: May be called with locks held; malloc must not block.
728  */
729 static int
730 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
731     struct in_msource **plims)
732 {
733 	struct ip_msource	 find;
734 	struct ip_msource	*ims, *nims;
735 	struct in_msource	*lims;
736 	int			 error;
737 
738 	error = 0;
739 	ims = NULL;
740 	lims = NULL;
741 
742 	/* key is host byte order */
743 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
744 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
745 	lims = (struct in_msource *)ims;
746 	if (lims == NULL) {
747 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
748 			return (ENOSPC);
749 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
750 		    M_NOWAIT | M_ZERO);
751 		if (nims == NULL)
752 			return (ENOMEM);
753 		lims = (struct in_msource *)nims;
754 		lims->ims_haddr = find.ims_haddr;
755 		lims->imsl_st[0] = MCAST_UNDEFINED;
756 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
757 		++imf->imf_nsrc;
758 	}
759 
760 	*plims = lims;
761 
762 	return (error);
763 }
764 
765 /*
766  * Graft a source entry into an existing socket-layer filter set,
767  * maintaining any required invariants and checking allocations.
768  *
769  * The source is marked as being in the new filter mode at t1.
770  *
771  * Return the pointer to the new node, otherwise return NULL.
772  */
773 static struct in_msource *
774 imf_graft(struct in_mfilter *imf, const uint8_t st1,
775     const struct sockaddr_in *psin)
776 {
777 	struct ip_msource	*nims;
778 	struct in_msource	*lims;
779 
780 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
781 	    M_NOWAIT | M_ZERO);
782 	if (nims == NULL)
783 		return (NULL);
784 	lims = (struct in_msource *)nims;
785 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
786 	lims->imsl_st[0] = MCAST_UNDEFINED;
787 	lims->imsl_st[1] = st1;
788 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
789 	++imf->imf_nsrc;
790 
791 	return (lims);
792 }
793 
794 /*
795  * Prune a source entry from an existing socket-layer filter set,
796  * maintaining any required invariants and checking allocations.
797  *
798  * The source is marked as being left at t1, it is not freed.
799  *
800  * Return 0 if no error occurred, otherwise return an errno value.
801  */
802 static int
803 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
804 {
805 	struct ip_msource	 find;
806 	struct ip_msource	*ims;
807 	struct in_msource	*lims;
808 
809 	/* key is host byte order */
810 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
811 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
812 	if (ims == NULL)
813 		return (ENOENT);
814 	lims = (struct in_msource *)ims;
815 	lims->imsl_st[1] = MCAST_UNDEFINED;
816 	return (0);
817 }
818 
819 /*
820  * Revert socket-layer filter set deltas at t1 to t0 state.
821  */
822 static void
823 imf_rollback(struct in_mfilter *imf)
824 {
825 	struct ip_msource	*ims, *tims;
826 	struct in_msource	*lims;
827 
828 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
829 		lims = (struct in_msource *)ims;
830 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
831 			/* no change at t1 */
832 			continue;
833 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
834 			/* revert change to existing source at t1 */
835 			lims->imsl_st[1] = lims->imsl_st[0];
836 		} else {
837 			/* revert source added t1 */
838 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
839 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
840 			free(ims, M_INMFILTER);
841 			imf->imf_nsrc--;
842 		}
843 	}
844 	imf->imf_st[1] = imf->imf_st[0];
845 }
846 
847 /*
848  * Mark socket-layer filter set as INCLUDE {} at t1.
849  */
850 static void
851 imf_leave(struct in_mfilter *imf)
852 {
853 	struct ip_msource	*ims;
854 	struct in_msource	*lims;
855 
856 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
857 		lims = (struct in_msource *)ims;
858 		lims->imsl_st[1] = MCAST_UNDEFINED;
859 	}
860 	imf->imf_st[1] = MCAST_INCLUDE;
861 }
862 
863 /*
864  * Mark socket-layer filter set deltas as committed.
865  */
866 static void
867 imf_commit(struct in_mfilter *imf)
868 {
869 	struct ip_msource	*ims;
870 	struct in_msource	*lims;
871 
872 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
873 		lims = (struct in_msource *)ims;
874 		lims->imsl_st[0] = lims->imsl_st[1];
875 	}
876 	imf->imf_st[0] = imf->imf_st[1];
877 }
878 
879 /*
880  * Reap unreferenced sources from socket-layer filter set.
881  */
882 static void
883 imf_reap(struct in_mfilter *imf)
884 {
885 	struct ip_msource	*ims, *tims;
886 	struct in_msource	*lims;
887 
888 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
889 		lims = (struct in_msource *)ims;
890 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
891 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
892 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
893 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
894 			free(ims, M_INMFILTER);
895 			imf->imf_nsrc--;
896 		}
897 	}
898 }
899 
900 /*
901  * Purge socket-layer filter set.
902  */
903 static void
904 imf_purge(struct in_mfilter *imf)
905 {
906 	struct ip_msource	*ims, *tims;
907 
908 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
909 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
910 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
911 		free(ims, M_INMFILTER);
912 		imf->imf_nsrc--;
913 	}
914 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
915 	KASSERT(RB_EMPTY(&imf->imf_sources),
916 	    ("%s: imf_sources not empty", __func__));
917 }
918 
919 /*
920  * Look up a source filter entry for a multicast group.
921  *
922  * inm is the group descriptor to work with.
923  * haddr is the host-byte-order IPv4 address to look up.
924  * noalloc may be non-zero to suppress allocation of sources.
925  * *pims will be set to the address of the retrieved or allocated source.
926  *
927  * SMPng: NOTE: may be called with locks held.
928  * Return 0 if successful, otherwise return a non-zero error code.
929  */
930 static int
931 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
932     const int noalloc, struct ip_msource **pims)
933 {
934 	struct ip_msource	 find;
935 	struct ip_msource	*ims, *nims;
936 
937 	find.ims_haddr = haddr;
938 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
939 	if (ims == NULL && !noalloc) {
940 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
941 			return (ENOSPC);
942 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
943 		    M_NOWAIT | M_ZERO);
944 		if (nims == NULL)
945 			return (ENOMEM);
946 		nims->ims_haddr = haddr;
947 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
948 		++inm->inm_nsrc;
949 		ims = nims;
950 #ifdef KTR
951 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
952 		    haddr, ims);
953 #endif
954 	}
955 
956 	*pims = ims;
957 	return (0);
958 }
959 
960 /*
961  * Merge socket-layer source into IGMP-layer source.
962  * If rollback is non-zero, perform the inverse of the merge.
963  */
964 static void
965 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
966     const int rollback)
967 {
968 	int n = rollback ? -1 : 1;
969 
970 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
971 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
972 		    __func__, n, ims->ims_haddr);
973 		ims->ims_st[1].ex -= n;
974 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
975 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
976 		    __func__, n, ims->ims_haddr);
977 		ims->ims_st[1].in -= n;
978 	}
979 
980 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
981 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
982 		    __func__, n, ims->ims_haddr);
983 		ims->ims_st[1].ex += n;
984 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
985 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
986 		    __func__, n, ims->ims_haddr);
987 		ims->ims_st[1].in += n;
988 	}
989 }
990 
991 /*
992  * Atomically update the global in_multi state, when a membership's
993  * filter list is being updated in any way.
994  *
995  * imf is the per-inpcb-membership group filter pointer.
996  * A fake imf may be passed for in-kernel consumers.
997  *
998  * XXX This is a candidate for a set-symmetric-difference style loop
999  * which would eliminate the repeated lookup from root of ims nodes,
1000  * as they share the same key space.
1001  *
1002  * If any error occurred this function will back out of refcounts
1003  * and return a non-zero value.
1004  */
1005 static int
1006 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1007 {
1008 	struct ip_msource	*ims, *nims;
1009 	struct in_msource	*lims;
1010 	int			 schanged, error;
1011 	int			 nsrc0, nsrc1;
1012 
1013 	schanged = 0;
1014 	error = 0;
1015 	nsrc1 = nsrc0 = 0;
1016 	IN_MULTI_LIST_LOCK_ASSERT();
1017 
1018 	/*
1019 	 * Update the source filters first, as this may fail.
1020 	 * Maintain count of in-mode filters at t0, t1. These are
1021 	 * used to work out if we transition into ASM mode or not.
1022 	 * Maintain a count of source filters whose state was
1023 	 * actually modified by this operation.
1024 	 */
1025 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1026 		lims = (struct in_msource *)ims;
1027 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1028 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1029 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1030 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1031 		++schanged;
1032 		if (error)
1033 			break;
1034 		ims_merge(nims, lims, 0);
1035 	}
1036 	if (error) {
1037 		struct ip_msource *bims;
1038 
1039 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1040 			lims = (struct in_msource *)ims;
1041 			if (lims->imsl_st[0] == lims->imsl_st[1])
1042 				continue;
1043 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1044 			if (bims == NULL)
1045 				continue;
1046 			ims_merge(bims, lims, 1);
1047 		}
1048 		goto out_reap;
1049 	}
1050 
1051 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1052 	    __func__, nsrc0, nsrc1);
1053 
1054 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1055 	if (imf->imf_st[0] == imf->imf_st[1] &&
1056 	    imf->imf_st[1] == MCAST_INCLUDE) {
1057 		if (nsrc1 == 0) {
1058 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1059 			--inm->inm_st[1].iss_in;
1060 		}
1061 	}
1062 
1063 	/* Handle filter mode transition on socket. */
1064 	if (imf->imf_st[0] != imf->imf_st[1]) {
1065 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1066 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1067 
1068 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1069 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1070 			--inm->inm_st[1].iss_ex;
1071 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1072 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1073 			--inm->inm_st[1].iss_in;
1074 		}
1075 
1076 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1077 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1078 			inm->inm_st[1].iss_ex++;
1079 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1080 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1081 			inm->inm_st[1].iss_in++;
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * Track inm filter state in terms of listener counts.
1087 	 * If there are any exclusive listeners, stack-wide
1088 	 * membership is exclusive.
1089 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1090 	 * If no listeners remain, state is undefined at t1,
1091 	 * and the IGMP lifecycle for this group should finish.
1092 	 */
1093 	if (inm->inm_st[1].iss_ex > 0) {
1094 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1095 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1096 	} else if (inm->inm_st[1].iss_in > 0) {
1097 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1098 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1099 	} else {
1100 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1101 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1102 	}
1103 
1104 	/* Decrement ASM listener count on transition out of ASM mode. */
1105 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1106 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1107 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1108 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1109 			--inm->inm_st[1].iss_asm;
1110 		}
1111 	}
1112 
1113 	/* Increment ASM listener count on transition to ASM mode. */
1114 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1115 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1116 		inm->inm_st[1].iss_asm++;
1117 	}
1118 
1119 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1120 	inm_print(inm);
1121 
1122 out_reap:
1123 	if (schanged > 0) {
1124 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1125 		inm_reap(inm);
1126 	}
1127 	return (error);
1128 }
1129 
1130 /*
1131  * Mark an in_multi's filter set deltas as committed.
1132  * Called by IGMP after a state change has been enqueued.
1133  */
1134 void
1135 inm_commit(struct in_multi *inm)
1136 {
1137 	struct ip_msource	*ims;
1138 
1139 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1140 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1141 	inm_print(inm);
1142 
1143 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1144 		ims->ims_st[0] = ims->ims_st[1];
1145 	}
1146 	inm->inm_st[0] = inm->inm_st[1];
1147 }
1148 
1149 /*
1150  * Reap unreferenced nodes from an in_multi's filter set.
1151  */
1152 static void
1153 inm_reap(struct in_multi *inm)
1154 {
1155 	struct ip_msource	*ims, *tims;
1156 
1157 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1158 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1159 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1160 		    ims->ims_stp != 0)
1161 			continue;
1162 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1163 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1164 		free(ims, M_IPMSOURCE);
1165 		inm->inm_nsrc--;
1166 	}
1167 }
1168 
1169 /*
1170  * Purge all source nodes from an in_multi's filter set.
1171  */
1172 static void
1173 inm_purge(struct in_multi *inm)
1174 {
1175 	struct ip_msource	*ims, *tims;
1176 
1177 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1178 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1179 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1180 		free(ims, M_IPMSOURCE);
1181 		inm->inm_nsrc--;
1182 	}
1183 	mbufq_drain(&inm->inm_scq);
1184 }
1185 
1186 /*
1187  * Join a multicast group; unlocked entry point.
1188  *
1189  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1190  * is not held. Fortunately, ifp is unlikely to have been detached
1191  * at this point, so we assume it's OK to recurse.
1192  */
1193 int
1194 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1195     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1196 {
1197 	int error;
1198 
1199 	IN_MULTI_LOCK();
1200 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1201 	IN_MULTI_UNLOCK();
1202 
1203 	return (error);
1204 }
1205 
1206 /*
1207  * Join a multicast group; real entry point.
1208  *
1209  * Only preserves atomicity at inm level.
1210  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1211  *
1212  * If the IGMP downcall fails, the group is not joined, and an error
1213  * code is returned.
1214  */
1215 int
1216 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1217     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1218 {
1219 	struct in_mfilter	 timf;
1220 	struct in_multi		*inm;
1221 	int			 error;
1222 
1223 	IN_MULTI_LOCK_ASSERT();
1224 	IN_MULTI_LIST_UNLOCK_ASSERT();
1225 
1226 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1227 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1228 
1229 	error = 0;
1230 	inm = NULL;
1231 
1232 	/*
1233 	 * If no imf was specified (i.e. kernel consumer),
1234 	 * fake one up and assume it is an ASM join.
1235 	 */
1236 	if (imf == NULL) {
1237 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1238 		imf = &timf;
1239 	}
1240 
1241 	error = in_getmulti(ifp, gina, &inm);
1242 	if (error) {
1243 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1244 		return (error);
1245 	}
1246 	IN_MULTI_LIST_LOCK();
1247 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1248 	error = inm_merge(inm, imf);
1249 	if (error) {
1250 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1251 		goto out_inm_release;
1252 	}
1253 
1254 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1255 	error = igmp_change_state(inm);
1256 	if (error) {
1257 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1258 		goto out_inm_release;
1259 	}
1260 
1261  out_inm_release:
1262 	if (error) {
1263 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1264 		IF_ADDR_WLOCK(ifp);
1265 		inm_release_deferred(inm);
1266 		IF_ADDR_WUNLOCK(ifp);
1267 	} else {
1268 		*pinm = inm;
1269 	}
1270 	IN_MULTI_LIST_UNLOCK();
1271 
1272 	return (error);
1273 }
1274 
1275 /*
1276  * Leave a multicast group; unlocked entry point.
1277  */
1278 int
1279 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1280 {
1281 	int error;
1282 
1283 	IN_MULTI_LOCK();
1284 	error = in_leavegroup_locked(inm, imf);
1285 	IN_MULTI_UNLOCK();
1286 
1287 	return (error);
1288 }
1289 
1290 /*
1291  * Leave a multicast group; real entry point.
1292  * All source filters will be expunged.
1293  *
1294  * Only preserves atomicity at inm level.
1295  *
1296  * Holding the write lock for the INP which contains imf
1297  * is highly advisable. We can't assert for it as imf does not
1298  * contain a back-pointer to the owning inp.
1299  *
1300  * Note: This is not the same as inm_release(*) as this function also
1301  * makes a state change downcall into IGMP.
1302  */
1303 int
1304 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1305 {
1306 	struct in_mfilter	 timf;
1307 	int			 error;
1308 
1309 	IN_MULTI_LOCK_ASSERT();
1310 	IN_MULTI_LIST_UNLOCK_ASSERT();
1311 
1312 	error = 0;
1313 
1314 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1315 	    inm, ntohl(inm->inm_addr.s_addr),
1316 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1317 	    imf);
1318 
1319 	/*
1320 	 * If no imf was specified (i.e. kernel consumer),
1321 	 * fake one up and assume it is an ASM join.
1322 	 */
1323 	if (imf == NULL) {
1324 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1325 		imf = &timf;
1326 	}
1327 
1328 	/*
1329 	 * Begin state merge transaction at IGMP layer.
1330 	 *
1331 	 * As this particular invocation should not cause any memory
1332 	 * to be allocated, and there is no opportunity to roll back
1333 	 * the transaction, it MUST NOT fail.
1334 	 */
1335 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1336 	IN_MULTI_LIST_LOCK();
1337 	error = inm_merge(inm, imf);
1338 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1339 
1340 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1341 	CURVNET_SET(inm->inm_ifp->if_vnet);
1342 	error = igmp_change_state(inm);
1343 	IF_ADDR_WLOCK(inm->inm_ifp);
1344 	inm_release_deferred(inm);
1345 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1346 	IN_MULTI_LIST_UNLOCK();
1347 	CURVNET_RESTORE();
1348 	if (error)
1349 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1350 
1351 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1352 
1353 	return (error);
1354 }
1355 
1356 /*#ifndef BURN_BRIDGES*/
1357 
1358 /*
1359  * Block or unblock an ASM multicast source on an inpcb.
1360  * This implements the delta-based API described in RFC 3678.
1361  *
1362  * The delta-based API applies only to exclusive-mode memberships.
1363  * An IGMP downcall will be performed.
1364  *
1365  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1366  *
1367  * Return 0 if successful, otherwise return an appropriate error code.
1368  */
1369 static int
1370 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1371 {
1372 	struct epoch_tracker		 et;
1373 	struct group_source_req		 gsr;
1374 	sockunion_t			*gsa, *ssa;
1375 	struct ifnet			*ifp;
1376 	struct in_mfilter		*imf;
1377 	struct ip_moptions		*imo;
1378 	struct in_msource		*ims;
1379 	struct in_multi			*inm;
1380 	uint16_t			 fmode;
1381 	int				 error, doblock;
1382 
1383 	ifp = NULL;
1384 	error = 0;
1385 	doblock = 0;
1386 
1387 	memset(&gsr, 0, sizeof(struct group_source_req));
1388 	gsa = (sockunion_t *)&gsr.gsr_group;
1389 	ssa = (sockunion_t *)&gsr.gsr_source;
1390 
1391 	switch (sopt->sopt_name) {
1392 	case IP_BLOCK_SOURCE:
1393 	case IP_UNBLOCK_SOURCE: {
1394 		struct ip_mreq_source	 mreqs;
1395 
1396 		error = sooptcopyin(sopt, &mreqs,
1397 		    sizeof(struct ip_mreq_source),
1398 		    sizeof(struct ip_mreq_source));
1399 		if (error)
1400 			return (error);
1401 
1402 		gsa->sin.sin_family = AF_INET;
1403 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1404 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1405 
1406 		ssa->sin.sin_family = AF_INET;
1407 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1408 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1409 
1410 		if (!in_nullhost(mreqs.imr_interface)) {
1411 			NET_EPOCH_ENTER(et);
1412 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1413 			/* XXXGL: ifref? */
1414 			NET_EPOCH_EXIT(et);
1415 		}
1416 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1417 			doblock = 1;
1418 
1419 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1420 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1421 		break;
1422 	    }
1423 
1424 	case MCAST_BLOCK_SOURCE:
1425 	case MCAST_UNBLOCK_SOURCE:
1426 		error = sooptcopyin(sopt, &gsr,
1427 		    sizeof(struct group_source_req),
1428 		    sizeof(struct group_source_req));
1429 		if (error)
1430 			return (error);
1431 
1432 		if (gsa->sin.sin_family != AF_INET ||
1433 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1434 			return (EINVAL);
1435 
1436 		if (ssa->sin.sin_family != AF_INET ||
1437 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1438 			return (EINVAL);
1439 
1440 		NET_EPOCH_ENTER(et);
1441 		ifp = ifnet_byindex(gsr.gsr_interface);
1442 		NET_EPOCH_EXIT(et);
1443 		if (ifp == NULL)
1444 			return (EADDRNOTAVAIL);
1445 
1446 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1447 			doblock = 1;
1448 		break;
1449 
1450 	default:
1451 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1452 		    __func__, sopt->sopt_name);
1453 		return (EOPNOTSUPP);
1454 		break;
1455 	}
1456 
1457 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1458 		return (EINVAL);
1459 
1460 	IN_MULTI_LOCK();
1461 
1462 	/*
1463 	 * Check if we are actually a member of this group.
1464 	 */
1465 	imo = inp_findmoptions(inp);
1466 	imf = imo_match_group(imo, ifp, &gsa->sa);
1467 	if (imf == NULL) {
1468 		error = EADDRNOTAVAIL;
1469 		goto out_inp_locked;
1470 	}
1471 	inm = imf->imf_inm;
1472 
1473 	/*
1474 	 * Attempting to use the delta-based API on an
1475 	 * non exclusive-mode membership is an error.
1476 	 */
1477 	fmode = imf->imf_st[0];
1478 	if (fmode != MCAST_EXCLUDE) {
1479 		error = EINVAL;
1480 		goto out_inp_locked;
1481 	}
1482 
1483 	/*
1484 	 * Deal with error cases up-front:
1485 	 *  Asked to block, but already blocked; or
1486 	 *  Asked to unblock, but nothing to unblock.
1487 	 * If adding a new block entry, allocate it.
1488 	 */
1489 	ims = imo_match_source(imf, &ssa->sa);
1490 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1491 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1492 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1493 		error = EADDRNOTAVAIL;
1494 		goto out_inp_locked;
1495 	}
1496 
1497 	INP_WLOCK_ASSERT(inp);
1498 
1499 	/*
1500 	 * Begin state merge transaction at socket layer.
1501 	 */
1502 	if (doblock) {
1503 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1504 		ims = imf_graft(imf, fmode, &ssa->sin);
1505 		if (ims == NULL)
1506 			error = ENOMEM;
1507 	} else {
1508 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1509 		error = imf_prune(imf, &ssa->sin);
1510 	}
1511 
1512 	if (error) {
1513 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1514 		goto out_imf_rollback;
1515 	}
1516 
1517 	/*
1518 	 * Begin state merge transaction at IGMP layer.
1519 	 */
1520 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1521 	IN_MULTI_LIST_LOCK();
1522 	error = inm_merge(inm, imf);
1523 	if (error) {
1524 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1525 		IN_MULTI_LIST_UNLOCK();
1526 		goto out_imf_rollback;
1527 	}
1528 
1529 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1530 	error = igmp_change_state(inm);
1531 	IN_MULTI_LIST_UNLOCK();
1532 	if (error)
1533 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1534 
1535 out_imf_rollback:
1536 	if (error)
1537 		imf_rollback(imf);
1538 	else
1539 		imf_commit(imf);
1540 
1541 	imf_reap(imf);
1542 
1543 out_inp_locked:
1544 	INP_WUNLOCK(inp);
1545 	IN_MULTI_UNLOCK();
1546 	return (error);
1547 }
1548 
1549 /*
1550  * Given an inpcb, return its multicast options structure pointer.  Accepts
1551  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1552  *
1553  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1554  * SMPng: NOTE: Returns with the INP write lock held.
1555  */
1556 static struct ip_moptions *
1557 inp_findmoptions(struct inpcb *inp)
1558 {
1559 	struct ip_moptions	 *imo;
1560 
1561 	INP_WLOCK(inp);
1562 	if (inp->inp_moptions != NULL)
1563 		return (inp->inp_moptions);
1564 
1565 	INP_WUNLOCK(inp);
1566 
1567 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1568 
1569 	imo->imo_multicast_ifp = NULL;
1570 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1571 	imo->imo_multicast_vif = -1;
1572 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1573 	imo->imo_multicast_loop = in_mcast_loop;
1574 	STAILQ_INIT(&imo->imo_head);
1575 
1576 	INP_WLOCK(inp);
1577 	if (inp->inp_moptions != NULL) {
1578 		free(imo, M_IPMOPTS);
1579 		return (inp->inp_moptions);
1580 	}
1581 	inp->inp_moptions = imo;
1582 	return (imo);
1583 }
1584 
1585 void
1586 inp_freemoptions(struct ip_moptions *imo)
1587 {
1588 	struct in_mfilter *imf;
1589 	struct in_multi *inm;
1590 	struct ifnet *ifp;
1591 
1592 	if (imo == NULL)
1593 		return;
1594 
1595 	while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
1596 		ip_mfilter_remove(&imo->imo_head, imf);
1597 
1598 		imf_leave(imf);
1599 		if ((inm = imf->imf_inm) != NULL) {
1600 			if ((ifp = inm->inm_ifp) != NULL) {
1601 				CURVNET_SET(ifp->if_vnet);
1602 				(void)in_leavegroup(inm, imf);
1603 				CURVNET_RESTORE();
1604 			} else {
1605 				(void)in_leavegroup(inm, imf);
1606 			}
1607 		}
1608 		ip_mfilter_free(imf);
1609 	}
1610 	free(imo, M_IPMOPTS);
1611 }
1612 
1613 /*
1614  * Atomically get source filters on a socket for an IPv4 multicast group.
1615  * Called with INP lock held; returns with lock released.
1616  */
1617 static int
1618 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1619 {
1620 	struct epoch_tracker	 et;
1621 	struct __msfilterreq	 msfr;
1622 	sockunion_t		*gsa;
1623 	struct ifnet		*ifp;
1624 	struct ip_moptions	*imo;
1625 	struct in_mfilter	*imf;
1626 	struct ip_msource	*ims;
1627 	struct in_msource	*lims;
1628 	struct sockaddr_in	*psin;
1629 	struct sockaddr_storage	*ptss;
1630 	struct sockaddr_storage	*tss;
1631 	int			 error;
1632 	size_t			 nsrcs, ncsrcs;
1633 
1634 	INP_WLOCK_ASSERT(inp);
1635 
1636 	imo = inp->inp_moptions;
1637 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1638 
1639 	INP_WUNLOCK(inp);
1640 
1641 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1642 	    sizeof(struct __msfilterreq));
1643 	if (error)
1644 		return (error);
1645 
1646 	NET_EPOCH_ENTER(et);
1647 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1648 	NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifnet pointer left */
1649 	if (ifp == NULL)
1650 		return (EINVAL);
1651 
1652 	INP_WLOCK(inp);
1653 
1654 	/*
1655 	 * Lookup group on the socket.
1656 	 */
1657 	gsa = (sockunion_t *)&msfr.msfr_group;
1658 	imf = imo_match_group(imo, ifp, &gsa->sa);
1659 	if (imf == NULL) {
1660 		INP_WUNLOCK(inp);
1661 		return (EADDRNOTAVAIL);
1662 	}
1663 
1664 	/*
1665 	 * Ignore memberships which are in limbo.
1666 	 */
1667 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1668 		INP_WUNLOCK(inp);
1669 		return (EAGAIN);
1670 	}
1671 	msfr.msfr_fmode = imf->imf_st[1];
1672 
1673 	/*
1674 	 * If the user specified a buffer, copy out the source filter
1675 	 * entries to userland gracefully.
1676 	 * We only copy out the number of entries which userland
1677 	 * has asked for, but we always tell userland how big the
1678 	 * buffer really needs to be.
1679 	 */
1680 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1681 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1682 	tss = NULL;
1683 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1684 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1685 		    M_TEMP, M_NOWAIT | M_ZERO);
1686 		if (tss == NULL) {
1687 			INP_WUNLOCK(inp);
1688 			return (ENOBUFS);
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * Count number of sources in-mode at t0.
1694 	 * If buffer space exists and remains, copy out source entries.
1695 	 */
1696 	nsrcs = msfr.msfr_nsrcs;
1697 	ncsrcs = 0;
1698 	ptss = tss;
1699 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1700 		lims = (struct in_msource *)ims;
1701 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1702 		    lims->imsl_st[0] != imf->imf_st[0])
1703 			continue;
1704 		++ncsrcs;
1705 		if (tss != NULL && nsrcs > 0) {
1706 			psin = (struct sockaddr_in *)ptss;
1707 			psin->sin_family = AF_INET;
1708 			psin->sin_len = sizeof(struct sockaddr_in);
1709 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1710 			psin->sin_port = 0;
1711 			++ptss;
1712 			--nsrcs;
1713 		}
1714 	}
1715 
1716 	INP_WUNLOCK(inp);
1717 
1718 	if (tss != NULL) {
1719 		error = copyout(tss, msfr.msfr_srcs,
1720 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1721 		free(tss, M_TEMP);
1722 		if (error)
1723 			return (error);
1724 	}
1725 
1726 	msfr.msfr_nsrcs = ncsrcs;
1727 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1728 
1729 	return (error);
1730 }
1731 
1732 /*
1733  * Return the IP multicast options in response to user getsockopt().
1734  */
1735 int
1736 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1737 {
1738 	struct ip_mreqn		 mreqn;
1739 	struct ip_moptions	*imo;
1740 	struct ifnet		*ifp;
1741 	struct in_ifaddr	*ia;
1742 	int			 error, optval;
1743 	u_char			 coptval;
1744 
1745 	INP_WLOCK(inp);
1746 	imo = inp->inp_moptions;
1747 	/* If socket is neither of type SOCK_RAW or SOCK_DGRAM reject it. */
1748 	if (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1749 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM) {
1750 		INP_WUNLOCK(inp);
1751 		return (EOPNOTSUPP);
1752 	}
1753 
1754 	error = 0;
1755 	switch (sopt->sopt_name) {
1756 	case IP_MULTICAST_VIF:
1757 		if (imo != NULL)
1758 			optval = imo->imo_multicast_vif;
1759 		else
1760 			optval = -1;
1761 		INP_WUNLOCK(inp);
1762 		error = sooptcopyout(sopt, &optval, sizeof(int));
1763 		break;
1764 
1765 	case IP_MULTICAST_IF:
1766 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1767 		if (imo != NULL) {
1768 			ifp = imo->imo_multicast_ifp;
1769 			if (!in_nullhost(imo->imo_multicast_addr)) {
1770 				mreqn.imr_address = imo->imo_multicast_addr;
1771 			} else if (ifp != NULL) {
1772 				struct epoch_tracker et;
1773 
1774 				mreqn.imr_ifindex = ifp->if_index;
1775 				NET_EPOCH_ENTER(et);
1776 				IFP_TO_IA(ifp, ia);
1777 				if (ia != NULL)
1778 					mreqn.imr_address =
1779 					    IA_SIN(ia)->sin_addr;
1780 				NET_EPOCH_EXIT(et);
1781 			}
1782 		}
1783 		INP_WUNLOCK(inp);
1784 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1785 			error = sooptcopyout(sopt, &mreqn,
1786 			    sizeof(struct ip_mreqn));
1787 		} else {
1788 			error = sooptcopyout(sopt, &mreqn.imr_address,
1789 			    sizeof(struct in_addr));
1790 		}
1791 		break;
1792 
1793 	case IP_MULTICAST_TTL:
1794 		if (imo == NULL)
1795 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1796 		else
1797 			optval = coptval = imo->imo_multicast_ttl;
1798 		INP_WUNLOCK(inp);
1799 		if (sopt->sopt_valsize == sizeof(u_char))
1800 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1801 		else
1802 			error = sooptcopyout(sopt, &optval, sizeof(int));
1803 		break;
1804 
1805 	case IP_MULTICAST_LOOP:
1806 		if (imo == NULL)
1807 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1808 		else
1809 			optval = coptval = imo->imo_multicast_loop;
1810 		INP_WUNLOCK(inp);
1811 		if (sopt->sopt_valsize == sizeof(u_char))
1812 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1813 		else
1814 			error = sooptcopyout(sopt, &optval, sizeof(int));
1815 		break;
1816 
1817 	case IP_MSFILTER:
1818 		if (imo == NULL) {
1819 			error = EADDRNOTAVAIL;
1820 			INP_WUNLOCK(inp);
1821 		} else {
1822 			error = inp_get_source_filters(inp, sopt);
1823 		}
1824 		break;
1825 
1826 	default:
1827 		INP_WUNLOCK(inp);
1828 		error = ENOPROTOOPT;
1829 		break;
1830 	}
1831 
1832 	INP_UNLOCK_ASSERT(inp);
1833 
1834 	return (error);
1835 }
1836 
1837 /*
1838  * Look up the ifnet to use for a multicast group membership,
1839  * given the IPv4 address of an interface, and the IPv4 group address.
1840  *
1841  * This routine exists to support legacy multicast applications
1842  * which do not understand that multicast memberships are scoped to
1843  * specific physical links in the networking stack, or which need
1844  * to join link-scope groups before IPv4 addresses are configured.
1845  *
1846  * Use this socket's current FIB number for any required FIB lookup.
1847  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1848  * and use its ifp; usually, this points to the default next-hop.
1849  *
1850  * If the FIB lookup fails, attempt to use the first non-loopback
1851  * interface with multicast capability in the system as a
1852  * last resort. The legacy IPv4 ASM API requires that we do
1853  * this in order to allow groups to be joined when the routing
1854  * table has not yet been populated during boot.
1855  *
1856  * Returns NULL if no ifp could be found, otherwise return referenced ifp.
1857  *
1858  * FUTURE: Implement IPv4 source-address selection.
1859  */
1860 static struct ifnet *
1861 inp_lookup_mcast_ifp(const struct inpcb *inp,
1862     const struct sockaddr_in *gsin, const struct in_addr ina)
1863 {
1864 	struct ifnet *ifp;
1865 	struct nhop_object *nh;
1866 
1867 	NET_EPOCH_ASSERT();
1868 	KASSERT(inp != NULL, ("%s: inp must not be NULL", __func__));
1869 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1870 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1871 	    ("%s: not multicast", __func__));
1872 
1873 	ifp = NULL;
1874 	if (!in_nullhost(ina)) {
1875 		INADDR_TO_IFP(ina, ifp);
1876 		if (ifp != NULL)
1877 			if_ref(ifp);
1878 	} else {
1879 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, gsin->sin_addr, 0, NHR_NONE, 0);
1880 		if (nh != NULL) {
1881 			ifp = nh->nh_ifp;
1882 			if_ref(ifp);
1883 		} else {
1884 			struct in_ifaddr *ia;
1885 			struct ifnet *mifp;
1886 
1887 			mifp = NULL;
1888 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1889 				mifp = ia->ia_ifp;
1890 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1891 				     (mifp->if_flags & IFF_MULTICAST)) {
1892 					ifp = mifp;
1893 					if_ref(ifp);
1894 					break;
1895 				}
1896 			}
1897 		}
1898 	}
1899 
1900 	return (ifp);
1901 }
1902 
1903 /*
1904  * Join an IPv4 multicast group, possibly with a source.
1905  */
1906 static int
1907 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1908 {
1909 	struct group_source_req		 gsr;
1910 	sockunion_t			*gsa, *ssa;
1911 	struct ifnet			*ifp;
1912 	struct in_mfilter		*imf;
1913 	struct ip_moptions		*imo;
1914 	struct in_multi			*inm;
1915 	struct in_msource		*lims;
1916 	struct epoch_tracker		 et;
1917 	int				 error, is_new;
1918 
1919 	ifp = NULL;
1920 	lims = NULL;
1921 	error = 0;
1922 
1923 	memset(&gsr, 0, sizeof(struct group_source_req));
1924 	gsa = (sockunion_t *)&gsr.gsr_group;
1925 	gsa->ss.ss_family = AF_UNSPEC;
1926 	ssa = (sockunion_t *)&gsr.gsr_source;
1927 	ssa->ss.ss_family = AF_UNSPEC;
1928 
1929 	switch (sopt->sopt_name) {
1930 	case IP_ADD_MEMBERSHIP: {
1931 		struct ip_mreqn mreqn;
1932 
1933 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn))
1934 			error = sooptcopyin(sopt, &mreqn,
1935 			    sizeof(struct ip_mreqn), sizeof(struct ip_mreqn));
1936 		else
1937 			error = sooptcopyin(sopt, &mreqn,
1938 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1939 		if (error)
1940 			return (error);
1941 
1942 		gsa->sin.sin_family = AF_INET;
1943 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1944 		gsa->sin.sin_addr = mreqn.imr_multiaddr;
1945 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1946 			return (EINVAL);
1947 
1948 		NET_EPOCH_ENTER(et);
1949 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn) &&
1950 		    mreqn.imr_ifindex != 0)
1951 			ifp = ifnet_byindex_ref(mreqn.imr_ifindex);
1952 		else
1953 			ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1954 			    mreqn.imr_address);
1955 		NET_EPOCH_EXIT(et);
1956 		break;
1957 	}
1958 	case IP_ADD_SOURCE_MEMBERSHIP: {
1959 		struct ip_mreq_source	 mreqs;
1960 
1961 		error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source),
1962 			    sizeof(struct ip_mreq_source));
1963 		if (error)
1964 			return (error);
1965 
1966 		gsa->sin.sin_family = ssa->sin.sin_family = AF_INET;
1967 		gsa->sin.sin_len = ssa->sin.sin_len =
1968 		    sizeof(struct sockaddr_in);
1969 
1970 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1971 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1972 			return (EINVAL);
1973 
1974 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1975 
1976 		NET_EPOCH_ENTER(et);
1977 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1978 		    mreqs.imr_interface);
1979 		NET_EPOCH_EXIT(et);
1980 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1981 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1982 		break;
1983 	}
1984 
1985 	case MCAST_JOIN_GROUP:
1986 	case MCAST_JOIN_SOURCE_GROUP:
1987 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1988 			error = sooptcopyin(sopt, &gsr,
1989 			    sizeof(struct group_req),
1990 			    sizeof(struct group_req));
1991 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1992 			error = sooptcopyin(sopt, &gsr,
1993 			    sizeof(struct group_source_req),
1994 			    sizeof(struct group_source_req));
1995 		}
1996 		if (error)
1997 			return (error);
1998 
1999 		if (gsa->sin.sin_family != AF_INET ||
2000 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2001 			return (EINVAL);
2002 
2003 		/*
2004 		 * Overwrite the port field if present, as the sockaddr
2005 		 * being copied in may be matched with a binary comparison.
2006 		 */
2007 		gsa->sin.sin_port = 0;
2008 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2009 			if (ssa->sin.sin_family != AF_INET ||
2010 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2011 				return (EINVAL);
2012 			ssa->sin.sin_port = 0;
2013 		}
2014 
2015 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2016 			return (EINVAL);
2017 
2018 		NET_EPOCH_ENTER(et);
2019 		ifp = ifnet_byindex_ref(gsr.gsr_interface);
2020 		NET_EPOCH_EXIT(et);
2021 		if (ifp == NULL)
2022 			return (EADDRNOTAVAIL);
2023 		break;
2024 
2025 	default:
2026 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2027 		    __func__, sopt->sopt_name);
2028 		return (EOPNOTSUPP);
2029 		break;
2030 	}
2031 
2032 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2033 		if (ifp != NULL)
2034 			if_rele(ifp);
2035 		return (EADDRNOTAVAIL);
2036 	}
2037 
2038 	IN_MULTI_LOCK();
2039 
2040 	/*
2041 	 * Find the membership in the membership list.
2042 	 */
2043 	imo = inp_findmoptions(inp);
2044 	imf = imo_match_group(imo, ifp, &gsa->sa);
2045 	if (imf == NULL) {
2046 		is_new = 1;
2047 		inm = NULL;
2048 
2049 		if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) {
2050 			error = ENOMEM;
2051 			goto out_inp_locked;
2052 		}
2053 	} else {
2054 		is_new = 0;
2055 		inm = imf->imf_inm;
2056 
2057 		if (ssa->ss.ss_family != AF_UNSPEC) {
2058 			/*
2059 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2060 			 * is an error. On an existing inclusive membership,
2061 			 * it just adds the source to the filter list.
2062 			 */
2063 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2064 				error = EINVAL;
2065 				goto out_inp_locked;
2066 			}
2067 			/*
2068 			 * Throw out duplicates.
2069 			 *
2070 			 * XXX FIXME: This makes a naive assumption that
2071 			 * even if entries exist for *ssa in this imf,
2072 			 * they will be rejected as dupes, even if they
2073 			 * are not valid in the current mode (in-mode).
2074 			 *
2075 			 * in_msource is transactioned just as for anything
2076 			 * else in SSM -- but note naive use of inm_graft()
2077 			 * below for allocating new filter entries.
2078 			 *
2079 			 * This is only an issue if someone mixes the
2080 			 * full-state SSM API with the delta-based API,
2081 			 * which is discouraged in the relevant RFCs.
2082 			 */
2083 			lims = imo_match_source(imf, &ssa->sa);
2084 			if (lims != NULL /*&&
2085 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2086 				error = EADDRNOTAVAIL;
2087 				goto out_inp_locked;
2088 			}
2089 		} else {
2090 			/*
2091 			 * MCAST_JOIN_GROUP on an existing exclusive
2092 			 * membership is an error; return EADDRINUSE
2093 			 * to preserve 4.4BSD API idempotence, and
2094 			 * avoid tedious detour to code below.
2095 			 * NOTE: This is bending RFC 3678 a bit.
2096 			 *
2097 			 * On an existing inclusive membership, this is also
2098 			 * an error; if you want to change filter mode,
2099 			 * you must use the userland API setsourcefilter().
2100 			 * XXX We don't reject this for imf in UNDEFINED
2101 			 * state at t1, because allocation of a filter
2102 			 * is atomic with allocation of a membership.
2103 			 */
2104 			error = EINVAL;
2105 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2106 				error = EADDRINUSE;
2107 			goto out_inp_locked;
2108 		}
2109 	}
2110 
2111 	/*
2112 	 * Begin state merge transaction at socket layer.
2113 	 */
2114 	INP_WLOCK_ASSERT(inp);
2115 
2116 	/*
2117 	 * Graft new source into filter list for this inpcb's
2118 	 * membership of the group. The in_multi may not have
2119 	 * been allocated yet if this is a new membership, however,
2120 	 * the in_mfilter slot will be allocated and must be initialized.
2121 	 *
2122 	 * Note: Grafting of exclusive mode filters doesn't happen
2123 	 * in this path.
2124 	 * XXX: Should check for non-NULL lims (node exists but may
2125 	 * not be in-mode) for interop with full-state API.
2126 	 */
2127 	if (ssa->ss.ss_family != AF_UNSPEC) {
2128 		/* Membership starts in IN mode */
2129 		if (is_new) {
2130 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2131 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE);
2132 			if (imf == NULL) {
2133 				error = ENOMEM;
2134 				goto out_inp_locked;
2135 			}
2136 		} else {
2137 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2138 		}
2139 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2140 		if (lims == NULL) {
2141 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2142 			    __func__);
2143 			error = ENOMEM;
2144 			goto out_inp_locked;
2145 		}
2146 	} else {
2147 		/* No address specified; Membership starts in EX mode */
2148 		if (is_new) {
2149 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2150 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE);
2151 			if (imf == NULL) {
2152 				error = ENOMEM;
2153 				goto out_inp_locked;
2154 			}
2155 		}
2156 	}
2157 
2158 	/*
2159 	 * Begin state merge transaction at IGMP layer.
2160 	 */
2161 	if (is_new) {
2162 		in_pcbref(inp);
2163 		INP_WUNLOCK(inp);
2164 
2165 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2166 		    &imf->imf_inm);
2167 
2168 		INP_WLOCK(inp);
2169 		if (in_pcbrele_wlocked(inp)) {
2170 			error = ENXIO;
2171 			goto out_inp_unlocked;
2172 		}
2173 		if (error) {
2174                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2175                             __func__);
2176 			goto out_inp_locked;
2177 		}
2178 		/*
2179 		 * NOTE: Refcount from in_joingroup_locked()
2180 		 * is protecting membership.
2181 		 */
2182 		ip_mfilter_insert(&imo->imo_head, imf);
2183 	} else {
2184 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2185 		IN_MULTI_LIST_LOCK();
2186 		error = inm_merge(inm, imf);
2187 		if (error) {
2188 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2189 				 __func__);
2190 			IN_MULTI_LIST_UNLOCK();
2191 			imf_rollback(imf);
2192 			imf_reap(imf);
2193 			goto out_inp_locked;
2194 		}
2195 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2196 		error = igmp_change_state(inm);
2197 		IN_MULTI_LIST_UNLOCK();
2198 		if (error) {
2199 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2200 			    __func__);
2201 			imf_rollback(imf);
2202 			imf_reap(imf);
2203 			goto out_inp_locked;
2204 		}
2205 	}
2206 
2207 	imf_commit(imf);
2208 	imf = NULL;
2209 
2210 out_inp_locked:
2211 	INP_WUNLOCK(inp);
2212 out_inp_unlocked:
2213 	IN_MULTI_UNLOCK();
2214 
2215 	if (is_new && imf) {
2216 		if (imf->imf_inm != NULL) {
2217 			IN_MULTI_LIST_LOCK();
2218 			IF_ADDR_WLOCK(ifp);
2219 			inm_release_deferred(imf->imf_inm);
2220 			IF_ADDR_WUNLOCK(ifp);
2221 			IN_MULTI_LIST_UNLOCK();
2222 		}
2223 		ip_mfilter_free(imf);
2224 	}
2225 	if_rele(ifp);
2226 	return (error);
2227 }
2228 
2229 /*
2230  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2231  */
2232 static int
2233 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2234 {
2235 	struct epoch_tracker		 et;
2236 	struct group_source_req		 gsr;
2237 	struct ip_mreq_source		 mreqs;
2238 	sockunion_t			*gsa, *ssa;
2239 	struct ifnet			*ifp;
2240 	struct in_mfilter		*imf;
2241 	struct ip_moptions		*imo;
2242 	struct in_msource		*ims;
2243 	struct in_multi			*inm;
2244 	int				 error;
2245 	bool				 is_final;
2246 
2247 	ifp = NULL;
2248 	error = 0;
2249 	is_final = true;
2250 
2251 	memset(&gsr, 0, sizeof(struct group_source_req));
2252 	gsa = (sockunion_t *)&gsr.gsr_group;
2253 	gsa->ss.ss_family = AF_UNSPEC;
2254 	ssa = (sockunion_t *)&gsr.gsr_source;
2255 	ssa->ss.ss_family = AF_UNSPEC;
2256 
2257 	switch (sopt->sopt_name) {
2258 	case IP_DROP_MEMBERSHIP:
2259 	case IP_DROP_SOURCE_MEMBERSHIP:
2260 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2261 			error = sooptcopyin(sopt, &mreqs,
2262 			    sizeof(struct ip_mreq),
2263 			    sizeof(struct ip_mreq));
2264 			/*
2265 			 * Swap interface and sourceaddr arguments,
2266 			 * as ip_mreq and ip_mreq_source are laid
2267 			 * out differently.
2268 			 */
2269 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2270 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2271 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2272 			error = sooptcopyin(sopt, &mreqs,
2273 			    sizeof(struct ip_mreq_source),
2274 			    sizeof(struct ip_mreq_source));
2275 		}
2276 		if (error)
2277 			return (error);
2278 
2279 		gsa->sin.sin_family = AF_INET;
2280 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2281 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2282 
2283 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2284 			ssa->sin.sin_family = AF_INET;
2285 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2286 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2287 		}
2288 
2289 		/*
2290 		 * Attempt to look up hinted ifp from interface address.
2291 		 * Fallthrough with null ifp iff lookup fails, to
2292 		 * preserve 4.4BSD mcast API idempotence.
2293 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2294 		 * using an IPv4 address as a key is racy.
2295 		 */
2296 		if (!in_nullhost(mreqs.imr_interface)) {
2297 			NET_EPOCH_ENTER(et);
2298 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2299 			/* XXXGL ifref? */
2300 			NET_EPOCH_EXIT(et);
2301 		}
2302 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2303 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2304 
2305 		break;
2306 
2307 	case MCAST_LEAVE_GROUP:
2308 	case MCAST_LEAVE_SOURCE_GROUP:
2309 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2310 			error = sooptcopyin(sopt, &gsr,
2311 			    sizeof(struct group_req),
2312 			    sizeof(struct group_req));
2313 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2314 			error = sooptcopyin(sopt, &gsr,
2315 			    sizeof(struct group_source_req),
2316 			    sizeof(struct group_source_req));
2317 		}
2318 		if (error)
2319 			return (error);
2320 
2321 		if (gsa->sin.sin_family != AF_INET ||
2322 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2323 			return (EINVAL);
2324 
2325 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2326 			if (ssa->sin.sin_family != AF_INET ||
2327 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2328 				return (EINVAL);
2329 		}
2330 
2331 		NET_EPOCH_ENTER(et);
2332 		ifp = ifnet_byindex(gsr.gsr_interface);
2333 		NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2334 		if (ifp == NULL)
2335 			return (EADDRNOTAVAIL);
2336 		break;
2337 
2338 	default:
2339 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2340 		    __func__, sopt->sopt_name);
2341 		return (EOPNOTSUPP);
2342 		break;
2343 	}
2344 
2345 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2346 		return (EINVAL);
2347 
2348 	IN_MULTI_LOCK();
2349 
2350 	/*
2351 	 * Find the membership in the membership list.
2352 	 */
2353 	imo = inp_findmoptions(inp);
2354 	imf = imo_match_group(imo, ifp, &gsa->sa);
2355 	if (imf == NULL) {
2356 		error = EADDRNOTAVAIL;
2357 		goto out_inp_locked;
2358 	}
2359 	inm = imf->imf_inm;
2360 
2361 	if (ssa->ss.ss_family != AF_UNSPEC)
2362 		is_final = false;
2363 
2364 	/*
2365 	 * Begin state merge transaction at socket layer.
2366 	 */
2367 	INP_WLOCK_ASSERT(inp);
2368 
2369 	/*
2370 	 * If we were instructed only to leave a given source, do so.
2371 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2372 	 */
2373 	if (is_final) {
2374 		ip_mfilter_remove(&imo->imo_head, imf);
2375 		imf_leave(imf);
2376 
2377 		/*
2378 		 * Give up the multicast address record to which
2379 		 * the membership points.
2380 		 */
2381 		(void) in_leavegroup_locked(imf->imf_inm, imf);
2382 	} else {
2383 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2384 			error = EADDRNOTAVAIL;
2385 			goto out_inp_locked;
2386 		}
2387 		ims = imo_match_source(imf, &ssa->sa);
2388 		if (ims == NULL) {
2389 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2390 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2391 			error = EADDRNOTAVAIL;
2392 			goto out_inp_locked;
2393 		}
2394 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2395 		error = imf_prune(imf, &ssa->sin);
2396 		if (error) {
2397 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2398 			    __func__);
2399 			goto out_inp_locked;
2400 		}
2401 	}
2402 
2403 	/*
2404 	 * Begin state merge transaction at IGMP layer.
2405 	 */
2406 	if (!is_final) {
2407 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2408 		IN_MULTI_LIST_LOCK();
2409 		error = inm_merge(inm, imf);
2410 		if (error) {
2411 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2412 			    __func__);
2413 			IN_MULTI_LIST_UNLOCK();
2414 			imf_rollback(imf);
2415 			imf_reap(imf);
2416 			goto out_inp_locked;
2417 		}
2418 
2419 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2420 		error = igmp_change_state(inm);
2421 		IN_MULTI_LIST_UNLOCK();
2422 		if (error) {
2423 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2424 			    __func__);
2425 			imf_rollback(imf);
2426 			imf_reap(imf);
2427 			goto out_inp_locked;
2428 		}
2429 	}
2430 	imf_commit(imf);
2431 	imf_reap(imf);
2432 
2433 out_inp_locked:
2434 	INP_WUNLOCK(inp);
2435 
2436 	if (is_final && imf)
2437 		ip_mfilter_free(imf);
2438 
2439 	IN_MULTI_UNLOCK();
2440 	return (error);
2441 }
2442 
2443 /*
2444  * Select the interface for transmitting IPv4 multicast datagrams.
2445  *
2446  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2447  * may be passed to this socket option. An address of INADDR_ANY or an
2448  * interface index of 0 is used to remove a previous selection.
2449  * When no interface is selected, one is chosen for every send.
2450  */
2451 static int
2452 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2453 {
2454 	struct in_addr		 addr;
2455 	struct ip_mreqn		 mreqn;
2456 	struct ifnet		*ifp;
2457 	struct ip_moptions	*imo;
2458 	int			 error;
2459 
2460 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2461 		/*
2462 		 * An interface index was specified using the
2463 		 * Linux-derived ip_mreqn structure.
2464 		 */
2465 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2466 		    sizeof(struct ip_mreqn));
2467 		if (error)
2468 			return (error);
2469 
2470 		if (mreqn.imr_ifindex < 0)
2471 			return (EINVAL);
2472 
2473 		if (mreqn.imr_ifindex == 0) {
2474 			ifp = NULL;
2475 		} else {
2476 			struct epoch_tracker et;
2477 
2478 			NET_EPOCH_ENTER(et);
2479 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2480 			NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2481 			if (ifp == NULL)
2482 				return (EADDRNOTAVAIL);
2483 		}
2484 	} else {
2485 		/*
2486 		 * An interface was specified by IPv4 address.
2487 		 * This is the traditional BSD usage.
2488 		 */
2489 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2490 		    sizeof(struct in_addr));
2491 		if (error)
2492 			return (error);
2493 		if (in_nullhost(addr)) {
2494 			ifp = NULL;
2495 		} else {
2496 			struct epoch_tracker et;
2497 
2498 			NET_EPOCH_ENTER(et);
2499 			INADDR_TO_IFP(addr, ifp);
2500 			/* XXXGL ifref? */
2501 			NET_EPOCH_EXIT(et);
2502 			if (ifp == NULL)
2503 				return (EADDRNOTAVAIL);
2504 		}
2505 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2506 		    ntohl(addr.s_addr));
2507 	}
2508 
2509 	/* Reject interfaces which do not support multicast. */
2510 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2511 		return (EOPNOTSUPP);
2512 
2513 	imo = inp_findmoptions(inp);
2514 	imo->imo_multicast_ifp = ifp;
2515 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2516 	INP_WUNLOCK(inp);
2517 
2518 	return (0);
2519 }
2520 
2521 /*
2522  * Atomically set source filters on a socket for an IPv4 multicast group.
2523  *
2524  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2525  */
2526 static int
2527 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2528 {
2529 	struct epoch_tracker	 et;
2530 	struct __msfilterreq	 msfr;
2531 	sockunion_t		*gsa;
2532 	struct ifnet		*ifp;
2533 	struct in_mfilter	*imf;
2534 	struct ip_moptions	*imo;
2535 	struct in_multi		*inm;
2536 	int			 error;
2537 
2538 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2539 	    sizeof(struct __msfilterreq));
2540 	if (error)
2541 		return (error);
2542 
2543 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2544 		return (ENOBUFS);
2545 
2546 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2547 	     msfr.msfr_fmode != MCAST_INCLUDE))
2548 		return (EINVAL);
2549 
2550 	if (msfr.msfr_group.ss_family != AF_INET ||
2551 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2552 		return (EINVAL);
2553 
2554 	gsa = (sockunion_t *)&msfr.msfr_group;
2555 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2556 		return (EINVAL);
2557 
2558 	gsa->sin.sin_port = 0;	/* ignore port */
2559 
2560 	NET_EPOCH_ENTER(et);
2561 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2562 	NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
2563 	if (ifp == NULL)
2564 		return (EADDRNOTAVAIL);
2565 
2566 	IN_MULTI_LOCK();
2567 
2568 	/*
2569 	 * Take the INP write lock.
2570 	 * Check if this socket is a member of this group.
2571 	 */
2572 	imo = inp_findmoptions(inp);
2573 	imf = imo_match_group(imo, ifp, &gsa->sa);
2574 	if (imf == NULL) {
2575 		error = EADDRNOTAVAIL;
2576 		goto out_inp_locked;
2577 	}
2578 	inm = imf->imf_inm;
2579 
2580 	/*
2581 	 * Begin state merge transaction at socket layer.
2582 	 */
2583 	INP_WLOCK_ASSERT(inp);
2584 
2585 	imf->imf_st[1] = msfr.msfr_fmode;
2586 
2587 	/*
2588 	 * Apply any new source filters, if present.
2589 	 * Make a copy of the user-space source vector so
2590 	 * that we may copy them with a single copyin. This
2591 	 * allows us to deal with page faults up-front.
2592 	 */
2593 	if (msfr.msfr_nsrcs > 0) {
2594 		struct in_msource	*lims;
2595 		struct sockaddr_in	*psin;
2596 		struct sockaddr_storage	*kss, *pkss;
2597 		int			 i;
2598 
2599 		INP_WUNLOCK(inp);
2600 
2601 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2602 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2603 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2604 		    M_TEMP, M_WAITOK);
2605 		error = copyin(msfr.msfr_srcs, kss,
2606 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2607 		if (error) {
2608 			free(kss, M_TEMP);
2609 			return (error);
2610 		}
2611 
2612 		INP_WLOCK(inp);
2613 
2614 		/*
2615 		 * Mark all source filters as UNDEFINED at t1.
2616 		 * Restore new group filter mode, as imf_leave()
2617 		 * will set it to INCLUDE.
2618 		 */
2619 		imf_leave(imf);
2620 		imf->imf_st[1] = msfr.msfr_fmode;
2621 
2622 		/*
2623 		 * Update socket layer filters at t1, lazy-allocating
2624 		 * new entries. This saves a bunch of memory at the
2625 		 * cost of one RB_FIND() per source entry; duplicate
2626 		 * entries in the msfr_nsrcs vector are ignored.
2627 		 * If we encounter an error, rollback transaction.
2628 		 *
2629 		 * XXX This too could be replaced with a set-symmetric
2630 		 * difference like loop to avoid walking from root
2631 		 * every time, as the key space is common.
2632 		 */
2633 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2634 			psin = (struct sockaddr_in *)pkss;
2635 			if (psin->sin_family != AF_INET) {
2636 				error = EAFNOSUPPORT;
2637 				break;
2638 			}
2639 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2640 				error = EINVAL;
2641 				break;
2642 			}
2643 			error = imf_get_source(imf, psin, &lims);
2644 			if (error)
2645 				break;
2646 			lims->imsl_st[1] = imf->imf_st[1];
2647 		}
2648 		free(kss, M_TEMP);
2649 	}
2650 
2651 	if (error)
2652 		goto out_imf_rollback;
2653 
2654 	INP_WLOCK_ASSERT(inp);
2655 
2656 	/*
2657 	 * Begin state merge transaction at IGMP layer.
2658 	 */
2659 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2660 	IN_MULTI_LIST_LOCK();
2661 	error = inm_merge(inm, imf);
2662 	if (error) {
2663 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2664 		IN_MULTI_LIST_UNLOCK();
2665 		goto out_imf_rollback;
2666 	}
2667 
2668 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2669 	error = igmp_change_state(inm);
2670 	IN_MULTI_LIST_UNLOCK();
2671 	if (error)
2672 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2673 
2674 out_imf_rollback:
2675 	if (error)
2676 		imf_rollback(imf);
2677 	else
2678 		imf_commit(imf);
2679 
2680 	imf_reap(imf);
2681 
2682 out_inp_locked:
2683 	INP_WUNLOCK(inp);
2684 	IN_MULTI_UNLOCK();
2685 	return (error);
2686 }
2687 
2688 /*
2689  * Set the IP multicast options in response to user setsockopt().
2690  *
2691  * Many of the socket options handled in this function duplicate the
2692  * functionality of socket options in the regular unicast API. However,
2693  * it is not possible to merge the duplicate code, because the idempotence
2694  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2695  * the effects of these options must be treated as separate and distinct.
2696  *
2697  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2698  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2699  * is refactored to no longer use vifs.
2700  */
2701 int
2702 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2703 {
2704 	struct ip_moptions	*imo;
2705 	int			 error;
2706 
2707 	error = 0;
2708 
2709 	/* If socket is neither of type SOCK_RAW or SOCK_DGRAM, reject it. */
2710 	if (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2711 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)
2712 		return (EOPNOTSUPP);
2713 
2714 	switch (sopt->sopt_name) {
2715 	case IP_MULTICAST_VIF: {
2716 		int vifi;
2717 		/*
2718 		 * Select a multicast VIF for transmission.
2719 		 * Only useful if multicast forwarding is active.
2720 		 */
2721 		if (legal_vif_num == NULL) {
2722 			error = EOPNOTSUPP;
2723 			break;
2724 		}
2725 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2726 		if (error)
2727 			break;
2728 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2729 			error = EINVAL;
2730 			break;
2731 		}
2732 		imo = inp_findmoptions(inp);
2733 		imo->imo_multicast_vif = vifi;
2734 		INP_WUNLOCK(inp);
2735 		break;
2736 	}
2737 
2738 	case IP_MULTICAST_IF:
2739 		error = inp_set_multicast_if(inp, sopt);
2740 		break;
2741 
2742 	case IP_MULTICAST_TTL: {
2743 		u_char ttl;
2744 
2745 		/*
2746 		 * Set the IP time-to-live for outgoing multicast packets.
2747 		 * The original multicast API required a char argument,
2748 		 * which is inconsistent with the rest of the socket API.
2749 		 * We allow either a char or an int.
2750 		 */
2751 		if (sopt->sopt_valsize == sizeof(u_char)) {
2752 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2753 			    sizeof(u_char));
2754 			if (error)
2755 				break;
2756 		} else {
2757 			u_int ittl;
2758 
2759 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2760 			    sizeof(u_int));
2761 			if (error)
2762 				break;
2763 			if (ittl > 255) {
2764 				error = EINVAL;
2765 				break;
2766 			}
2767 			ttl = (u_char)ittl;
2768 		}
2769 		imo = inp_findmoptions(inp);
2770 		imo->imo_multicast_ttl = ttl;
2771 		INP_WUNLOCK(inp);
2772 		break;
2773 	}
2774 
2775 	case IP_MULTICAST_LOOP: {
2776 		u_char loop;
2777 
2778 		/*
2779 		 * Set the loopback flag for outgoing multicast packets.
2780 		 * Must be zero or one.  The original multicast API required a
2781 		 * char argument, which is inconsistent with the rest
2782 		 * of the socket API.  We allow either a char or an int.
2783 		 */
2784 		if (sopt->sopt_valsize == sizeof(u_char)) {
2785 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2786 			    sizeof(u_char));
2787 			if (error)
2788 				break;
2789 		} else {
2790 			u_int iloop;
2791 
2792 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2793 					    sizeof(u_int));
2794 			if (error)
2795 				break;
2796 			loop = (u_char)iloop;
2797 		}
2798 		imo = inp_findmoptions(inp);
2799 		imo->imo_multicast_loop = !!loop;
2800 		INP_WUNLOCK(inp);
2801 		break;
2802 	}
2803 
2804 	case IP_ADD_MEMBERSHIP:
2805 	case IP_ADD_SOURCE_MEMBERSHIP:
2806 	case MCAST_JOIN_GROUP:
2807 	case MCAST_JOIN_SOURCE_GROUP:
2808 		error = inp_join_group(inp, sopt);
2809 		break;
2810 
2811 	case IP_DROP_MEMBERSHIP:
2812 	case IP_DROP_SOURCE_MEMBERSHIP:
2813 	case MCAST_LEAVE_GROUP:
2814 	case MCAST_LEAVE_SOURCE_GROUP:
2815 		error = inp_leave_group(inp, sopt);
2816 		break;
2817 
2818 	case IP_BLOCK_SOURCE:
2819 	case IP_UNBLOCK_SOURCE:
2820 	case MCAST_BLOCK_SOURCE:
2821 	case MCAST_UNBLOCK_SOURCE:
2822 		error = inp_block_unblock_source(inp, sopt);
2823 		break;
2824 
2825 	case IP_MSFILTER:
2826 		error = inp_set_source_filters(inp, sopt);
2827 		break;
2828 
2829 	default:
2830 		error = EOPNOTSUPP;
2831 		break;
2832 	}
2833 
2834 	INP_UNLOCK_ASSERT(inp);
2835 
2836 	return (error);
2837 }
2838 
2839 /*
2840  * Expose IGMP's multicast filter mode and source list(s) to userland,
2841  * keyed by (ifindex, group).
2842  * The filter mode is written out as a uint32_t, followed by
2843  * 0..n of struct in_addr.
2844  * For use by ifmcstat(8).
2845  * SMPng: NOTE: unlocked read of ifindex space.
2846  */
2847 static int
2848 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2849 {
2850 	struct in_addr			 src, group;
2851 	struct epoch_tracker		 et;
2852 	struct ifnet			*ifp;
2853 	struct ifmultiaddr		*ifma;
2854 	struct in_multi			*inm;
2855 	struct ip_msource		*ims;
2856 	int				*name;
2857 	int				 retval;
2858 	u_int				 namelen;
2859 	uint32_t			 fmode, ifindex;
2860 
2861 	name = (int *)arg1;
2862 	namelen = arg2;
2863 
2864 	if (req->newptr != NULL)
2865 		return (EPERM);
2866 
2867 	if (namelen != 2)
2868 		return (EINVAL);
2869 
2870 	group.s_addr = name[1];
2871 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2872 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2873 		    __func__, ntohl(group.s_addr));
2874 		return (EINVAL);
2875 	}
2876 
2877 	ifindex = name[0];
2878 	NET_EPOCH_ENTER(et);
2879 	ifp = ifnet_byindex(ifindex);
2880 	if (ifp == NULL) {
2881 		NET_EPOCH_EXIT(et);
2882 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2883 		    __func__, ifindex);
2884 		return (ENOENT);
2885 	}
2886 
2887 	retval = sysctl_wire_old_buffer(req,
2888 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2889 	if (retval) {
2890 		NET_EPOCH_EXIT(et);
2891 		return (retval);
2892 	}
2893 
2894 	IN_MULTI_LIST_LOCK();
2895 
2896 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2897 		inm = inm_ifmultiaddr_get_inm(ifma);
2898 		if (inm == NULL)
2899 			continue;
2900 		if (!in_hosteq(inm->inm_addr, group))
2901 			continue;
2902 		fmode = inm->inm_st[1].iss_fmode;
2903 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2904 		if (retval != 0)
2905 			break;
2906 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2907 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2908 			    ims->ims_haddr);
2909 			/*
2910 			 * Only copy-out sources which are in-mode.
2911 			 */
2912 			if (fmode != ims_get_mode(inm, ims, 1)) {
2913 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2914 				    __func__);
2915 				continue;
2916 			}
2917 			src.s_addr = htonl(ims->ims_haddr);
2918 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2919 			if (retval != 0)
2920 				break;
2921 		}
2922 	}
2923 
2924 	IN_MULTI_LIST_UNLOCK();
2925 	NET_EPOCH_EXIT(et);
2926 
2927 	return (retval);
2928 }
2929 
2930 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
2931 
2932 static const char *inm_modestrs[] = {
2933 	[MCAST_UNDEFINED] = "un",
2934 	[MCAST_INCLUDE] = "in",
2935 	[MCAST_EXCLUDE] = "ex",
2936 };
2937 _Static_assert(MCAST_UNDEFINED == 0 &&
2938 	       MCAST_EXCLUDE + 1 == nitems(inm_modestrs),
2939 	       "inm_modestrs: no longer matches #defines");
2940 
2941 static const char *
2942 inm_mode_str(const int mode)
2943 {
2944 
2945 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2946 		return (inm_modestrs[mode]);
2947 	return ("??");
2948 }
2949 
2950 static const char *inm_statestrs[] = {
2951 	[IGMP_NOT_MEMBER] = "not-member",
2952 	[IGMP_SILENT_MEMBER] = "silent",
2953 	[IGMP_REPORTING_MEMBER] = "reporting",
2954 	[IGMP_IDLE_MEMBER] = "idle",
2955 	[IGMP_LAZY_MEMBER] = "lazy",
2956 	[IGMP_SLEEPING_MEMBER] = "sleeping",
2957 	[IGMP_AWAKENING_MEMBER] = "awakening",
2958 	[IGMP_G_QUERY_PENDING_MEMBER] = "query-pending",
2959 	[IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending",
2960 	[IGMP_LEAVING_MEMBER] = "leaving",
2961 };
2962 _Static_assert(IGMP_NOT_MEMBER == 0 &&
2963 	       IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs),
2964 	       "inm_statetrs: no longer matches #defines");
2965 
2966 static const char *
2967 inm_state_str(const int state)
2968 {
2969 
2970 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2971 		return (inm_statestrs[state]);
2972 	return ("??");
2973 }
2974 
2975 /*
2976  * Dump an in_multi structure to the console.
2977  */
2978 void
2979 inm_print(const struct in_multi *inm)
2980 {
2981 	int t;
2982 	char addrbuf[INET_ADDRSTRLEN];
2983 
2984 	if ((ktr_mask & KTR_IGMPV3) == 0)
2985 		return;
2986 
2987 	printf("%s: --- begin inm %p ---\n", __func__, inm);
2988 	printf("addr %s ifp %p(%s) ifma %p\n",
2989 	    inet_ntoa_r(inm->inm_addr, addrbuf),
2990 	    inm->inm_ifp,
2991 	    inm->inm_ifp->if_xname,
2992 	    inm->inm_ifma);
2993 	printf("timer %u state %s refcount %u scq.len %u\n",
2994 	    inm->inm_timer,
2995 	    inm_state_str(inm->inm_state),
2996 	    inm->inm_refcount,
2997 	    inm->inm_scq.mq_len);
2998 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2999 	    inm->inm_igi,
3000 	    inm->inm_nsrc,
3001 	    inm->inm_sctimer,
3002 	    inm->inm_scrv);
3003 	for (t = 0; t < 2; t++) {
3004 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3005 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3006 		    inm->inm_st[t].iss_asm,
3007 		    inm->inm_st[t].iss_ex,
3008 		    inm->inm_st[t].iss_in,
3009 		    inm->inm_st[t].iss_rec);
3010 	}
3011 	printf("%s: --- end inm %p ---\n", __func__, inm);
3012 }
3013 
3014 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3015 
3016 void
3017 inm_print(const struct in_multi *inm)
3018 {
3019 
3020 }
3021 
3022 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3023 
3024 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3025