xref: /freebsd/sys/netinet/in_mcast.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Bruce Simpson.
5  * Copyright (c) 2005 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * IPv4 multicast socket, group, and socket option processing module.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/taskqueue.h>
54 #include <sys/tree.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <net/route/nhop.h>
61 #include <net/vnet.h>
62 
63 #include <net/ethernet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_fib.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/igmp_var.h>
72 
73 #ifndef KTR_IGMPV3
74 #define KTR_IGMPV3 KTR_INET
75 #endif
76 
77 #ifndef __SOCKUNION_DECLARED
78 union sockunion {
79 	struct sockaddr_storage	ss;
80 	struct sockaddr		sa;
81 	struct sockaddr_dl	sdl;
82 	struct sockaddr_in	sin;
83 };
84 typedef union sockunion sockunion_t;
85 #define __SOCKUNION_DECLARED
86 #endif /* __SOCKUNION_DECLARED */
87 
88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
89     "IPv4 multicast PCB-layer source filter");
90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
93     "IPv4 multicast IGMP-layer source filter");
94 
95 /*
96  * Locking:
97  *
98  * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK,
99  *   IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
100  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
101  *   it can be taken by code in net/if.c also.
102  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
103  *
104  * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
105  * any need for in_multi itself to be virtualized -- it is bound to an ifp
106  * anyway no matter what happens.
107  */
108 struct mtx in_multi_list_mtx;
109 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
110 
111 struct mtx in_multi_free_mtx;
112 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
113 
114 struct sx in_multi_sx;
115 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
116 
117 int ifma_restart;
118 
119 /*
120  * Functions with non-static linkage defined in this file should be
121  * declared in in_var.h:
122  *  imo_multi_filter()
123  *  in_addmulti()
124  *  in_delmulti()
125  *  in_joingroup()
126  *  in_joingroup_locked()
127  *  in_leavegroup()
128  *  in_leavegroup_locked()
129  * and ip_var.h:
130  *  inp_freemoptions()
131  *  inp_getmoptions()
132  *  inp_setmoptions()
133  *
134  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
135  * and in_delmulti().
136  */
137 static void	imf_commit(struct in_mfilter *);
138 static int	imf_get_source(struct in_mfilter *imf,
139 		    const struct sockaddr_in *psin,
140 		    struct in_msource **);
141 static struct in_msource *
142 		imf_graft(struct in_mfilter *, const uint8_t,
143 		    const struct sockaddr_in *);
144 static void	imf_leave(struct in_mfilter *);
145 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
146 static void	imf_purge(struct in_mfilter *);
147 static void	imf_rollback(struct in_mfilter *);
148 static void	imf_reap(struct in_mfilter *);
149 static struct in_mfilter *
150 		imo_match_group(const struct ip_moptions *,
151 		    const struct ifnet *, const struct sockaddr *);
152 static struct in_msource *
153 		imo_match_source(struct in_mfilter *, const struct sockaddr *);
154 static void	ims_merge(struct ip_msource *ims,
155 		    const struct in_msource *lims, const int rollback);
156 static int	in_getmulti(struct ifnet *, const struct in_addr *,
157 		    struct in_multi **);
158 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
159 		    const int noalloc, struct ip_msource **pims);
160 #ifdef KTR
161 static int	inm_is_ifp_detached(const struct in_multi *);
162 #endif
163 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
164 static void	inm_purge(struct in_multi *);
165 static void	inm_reap(struct in_multi *);
166 static void inm_release(struct in_multi *);
167 static struct ip_moptions *
168 		inp_findmoptions(struct inpcb *);
169 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
170 static int	inp_join_group(struct inpcb *, struct sockopt *);
171 static int	inp_leave_group(struct inpcb *, struct sockopt *);
172 static struct ifnet *
173 		inp_lookup_mcast_ifp(const struct inpcb *,
174 		    const struct sockaddr_in *, const struct in_addr);
175 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
176 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
177 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
178 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
179 
180 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast,
181     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
182     "IPv4 multicast");
183 
184 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
185 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
186     CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
187     "Max source filters per group");
188 
189 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
190 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
191     CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
192     "Max source filters per socket");
193 
194 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
195 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
196     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
197 
198 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
199     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
200     "Per-interface stack-wide source filters");
201 
202 #ifdef KTR
203 /*
204  * Inline function which wraps assertions for a valid ifp.
205  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
206  * is detached.
207  */
208 static int __inline
209 inm_is_ifp_detached(const struct in_multi *inm)
210 {
211 	struct ifnet *ifp;
212 
213 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
214 	ifp = inm->inm_ifma->ifma_ifp;
215 	if (ifp != NULL) {
216 		/*
217 		 * Sanity check that netinet's notion of ifp is the
218 		 * same as net's.
219 		 */
220 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
221 	}
222 
223 	return (ifp == NULL);
224 }
225 #endif
226 
227 static struct task free_task;
228 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER();
229 static void inm_release_task(void *arg __unused, int pending __unused);
230 
231 static void
232 inm_init(void)
233 {
234 	TASK_INIT(&free_task, 0, inm_release_task, NULL);
235 }
236 SYSINIT(inm_init, SI_SUB_TASKQ, SI_ORDER_ANY, inm_init, NULL);
237 
238 void
239 inm_release_list_deferred(struct in_multi_head *inmh)
240 {
241 
242 	if (SLIST_EMPTY(inmh))
243 		return;
244 	mtx_lock(&in_multi_free_mtx);
245 	SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
246 	mtx_unlock(&in_multi_free_mtx);
247 	taskqueue_enqueue(taskqueue_thread, &free_task);
248 }
249 
250 void
251 inm_disconnect(struct in_multi *inm)
252 {
253 	struct ifnet *ifp;
254 	struct ifmultiaddr *ifma, *ll_ifma;
255 
256 	ifp = inm->inm_ifp;
257 	IF_ADDR_WLOCK_ASSERT(ifp);
258 	ifma = inm->inm_ifma;
259 
260 	if_ref(ifp);
261 	if (ifma->ifma_flags & IFMA_F_ENQUEUED) {
262 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
263 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
264 	}
265 	MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
266 	if ((ll_ifma = ifma->ifma_llifma) != NULL) {
267 		MPASS(ifma != ll_ifma);
268 		ifma->ifma_llifma = NULL;
269 		MPASS(ll_ifma->ifma_llifma == NULL);
270 		MPASS(ll_ifma->ifma_ifp == ifp);
271 		if (--ll_ifma->ifma_refcount == 0) {
272 			if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
273 				CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
274 				ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
275 			}
276 			MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
277 			if_freemulti(ll_ifma);
278 			ifma_restart = true;
279 		}
280 	}
281 }
282 
283 void
284 inm_release_deferred(struct in_multi *inm)
285 {
286 	struct in_multi_head tmp;
287 
288 	IN_MULTI_LIST_LOCK_ASSERT();
289 	MPASS(inm->inm_refcount > 0);
290 	if (--inm->inm_refcount == 0) {
291 		SLIST_INIT(&tmp);
292 		inm_disconnect(inm);
293 		inm->inm_ifma->ifma_protospec = NULL;
294 		SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
295 		inm_release_list_deferred(&tmp);
296 	}
297 }
298 
299 static void
300 inm_release_task(void *arg __unused, int pending __unused)
301 {
302 	struct in_multi_head inm_free_tmp;
303 	struct in_multi *inm, *tinm;
304 
305 	SLIST_INIT(&inm_free_tmp);
306 	mtx_lock(&in_multi_free_mtx);
307 	SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
308 	mtx_unlock(&in_multi_free_mtx);
309 	IN_MULTI_LOCK();
310 	SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
311 		SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
312 		MPASS(inm);
313 		inm_release(inm);
314 	}
315 	IN_MULTI_UNLOCK();
316 }
317 
318 /*
319  * Initialize an in_mfilter structure to a known state at t0, t1
320  * with an empty source filter list.
321  */
322 static __inline void
323 imf_init(struct in_mfilter *imf, const int st0, const int st1)
324 {
325 	memset(imf, 0, sizeof(struct in_mfilter));
326 	RB_INIT(&imf->imf_sources);
327 	imf->imf_st[0] = st0;
328 	imf->imf_st[1] = st1;
329 }
330 
331 struct in_mfilter *
332 ip_mfilter_alloc(const int mflags, const int st0, const int st1)
333 {
334 	struct in_mfilter *imf;
335 
336 	imf = malloc(sizeof(*imf), M_INMFILTER, mflags);
337 	if (imf != NULL)
338 		imf_init(imf, st0, st1);
339 
340 	return (imf);
341 }
342 
343 void
344 ip_mfilter_free(struct in_mfilter *imf)
345 {
346 
347 	imf_purge(imf);
348 	free(imf, M_INMFILTER);
349 }
350 
351 /*
352  * Function for looking up an in_multi record for an IPv4 multicast address
353  * on a given interface. ifp must be valid. If no record found, return NULL.
354  * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
355  */
356 struct in_multi *
357 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
358 {
359 	struct ifmultiaddr *ifma;
360 	struct in_multi *inm;
361 
362 	IN_MULTI_LIST_LOCK_ASSERT();
363 	IF_ADDR_LOCK_ASSERT(ifp);
364 
365 	inm = NULL;
366 	CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
367 		if (ifma->ifma_addr->sa_family != AF_INET ||
368 			ifma->ifma_protospec == NULL)
369 			continue;
370 		inm = (struct in_multi *)ifma->ifma_protospec;
371 		if (inm->inm_addr.s_addr == ina.s_addr)
372 			break;
373 		inm = NULL;
374 	}
375 	return (inm);
376 }
377 
378 /*
379  * Wrapper for inm_lookup_locked().
380  * The IF_ADDR_LOCK will be taken on ifp and released on return.
381  */
382 struct in_multi *
383 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
384 {
385 	struct epoch_tracker et;
386 	struct in_multi *inm;
387 
388 	IN_MULTI_LIST_LOCK_ASSERT();
389 	NET_EPOCH_ENTER(et);
390 
391 	inm = inm_lookup_locked(ifp, ina);
392 	NET_EPOCH_EXIT(et);
393 
394 	return (inm);
395 }
396 
397 /*
398  * Find an IPv4 multicast group entry for this ip_moptions instance
399  * which matches the specified group, and optionally an interface.
400  * Return its index into the array, or -1 if not found.
401  */
402 static struct in_mfilter *
403 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
404     const struct sockaddr *group)
405 {
406 	const struct sockaddr_in *gsin;
407 	struct in_mfilter *imf;
408 	struct in_multi	*inm;
409 
410 	gsin = (const struct sockaddr_in *)group;
411 
412 	IP_MFILTER_FOREACH(imf, &imo->imo_head) {
413 		inm = imf->imf_inm;
414 		if (inm == NULL)
415 			continue;
416 		if ((ifp == NULL || (inm->inm_ifp == ifp)) &&
417 		    in_hosteq(inm->inm_addr, gsin->sin_addr)) {
418 			break;
419 		}
420 	}
421 	return (imf);
422 }
423 
424 /*
425  * Find an IPv4 multicast source entry for this imo which matches
426  * the given group index for this socket, and source address.
427  *
428  * NOTE: This does not check if the entry is in-mode, merely if
429  * it exists, which may not be the desired behaviour.
430  */
431 static struct in_msource *
432 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src)
433 {
434 	struct ip_msource	 find;
435 	struct ip_msource	*ims;
436 	const sockunion_t	*psa;
437 
438 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
439 
440 	/* Source trees are keyed in host byte order. */
441 	psa = (const sockunion_t *)src;
442 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
443 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
444 
445 	return ((struct in_msource *)ims);
446 }
447 
448 /*
449  * Perform filtering for multicast datagrams on a socket by group and source.
450  *
451  * Returns 0 if a datagram should be allowed through, or various error codes
452  * if the socket was not a member of the group, or the source was muted, etc.
453  */
454 int
455 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
456     const struct sockaddr *group, const struct sockaddr *src)
457 {
458 	struct in_mfilter *imf;
459 	struct in_msource *ims;
460 	int mode;
461 
462 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
463 
464 	imf = imo_match_group(imo, ifp, group);
465 	if (imf == NULL)
466 		return (MCAST_NOTGMEMBER);
467 
468 	/*
469 	 * Check if the source was included in an (S,G) join.
470 	 * Allow reception on exclusive memberships by default,
471 	 * reject reception on inclusive memberships by default.
472 	 * Exclude source only if an in-mode exclude filter exists.
473 	 * Include source only if an in-mode include filter exists.
474 	 * NOTE: We are comparing group state here at IGMP t1 (now)
475 	 * with socket-layer t0 (since last downcall).
476 	 */
477 	mode = imf->imf_st[1];
478 	ims = imo_match_source(imf, src);
479 
480 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
481 	    (ims != NULL && ims->imsl_st[0] != mode))
482 		return (MCAST_NOTSMEMBER);
483 
484 	return (MCAST_PASS);
485 }
486 
487 /*
488  * Find and return a reference to an in_multi record for (ifp, group),
489  * and bump its reference count.
490  * If one does not exist, try to allocate it, and update link-layer multicast
491  * filters on ifp to listen for group.
492  * Assumes the IN_MULTI lock is held across the call.
493  * Return 0 if successful, otherwise return an appropriate error code.
494  */
495 static int
496 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
497     struct in_multi **pinm)
498 {
499 	struct sockaddr_in	 gsin;
500 	struct ifmultiaddr	*ifma;
501 	struct in_ifinfo	*ii;
502 	struct in_multi		*inm;
503 	int error;
504 
505 	IN_MULTI_LOCK_ASSERT();
506 
507 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
508 	IN_MULTI_LIST_LOCK();
509 	inm = inm_lookup(ifp, *group);
510 	if (inm != NULL) {
511 		/*
512 		 * If we already joined this group, just bump the
513 		 * refcount and return it.
514 		 */
515 		KASSERT(inm->inm_refcount >= 1,
516 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
517 		inm_acquire_locked(inm);
518 		*pinm = inm;
519 	}
520 	IN_MULTI_LIST_UNLOCK();
521 	if (inm != NULL)
522 		return (0);
523 
524 	memset(&gsin, 0, sizeof(gsin));
525 	gsin.sin_family = AF_INET;
526 	gsin.sin_len = sizeof(struct sockaddr_in);
527 	gsin.sin_addr = *group;
528 
529 	/*
530 	 * Check if a link-layer group is already associated
531 	 * with this network-layer group on the given ifnet.
532 	 */
533 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
534 	if (error != 0)
535 		return (error);
536 
537 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
538 	IN_MULTI_LIST_LOCK();
539 	IF_ADDR_WLOCK(ifp);
540 
541 	/*
542 	 * If something other than netinet is occupying the link-layer
543 	 * group, print a meaningful error message and back out of
544 	 * the allocation.
545 	 * Otherwise, bump the refcount on the existing network-layer
546 	 * group association and return it.
547 	 */
548 	if (ifma->ifma_protospec != NULL) {
549 		inm = (struct in_multi *)ifma->ifma_protospec;
550 #ifdef INVARIANTS
551 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
552 		    __func__));
553 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
554 		    ("%s: ifma not AF_INET", __func__));
555 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
556 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
557 		    !in_hosteq(inm->inm_addr, *group)) {
558 			char addrbuf[INET_ADDRSTRLEN];
559 
560 			panic("%s: ifma %p is inconsistent with %p (%s)",
561 			    __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
562 		}
563 #endif
564 		inm_acquire_locked(inm);
565 		*pinm = inm;
566 		goto out_locked;
567 	}
568 
569 	IF_ADDR_WLOCK_ASSERT(ifp);
570 
571 	/*
572 	 * A new in_multi record is needed; allocate and initialize it.
573 	 * We DO NOT perform an IGMP join as the in_ layer may need to
574 	 * push an initial source list down to IGMP to support SSM.
575 	 *
576 	 * The initial source filter state is INCLUDE, {} as per the RFC.
577 	 */
578 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
579 	if (inm == NULL) {
580 		IF_ADDR_WUNLOCK(ifp);
581 		IN_MULTI_LIST_UNLOCK();
582 		if_delmulti_ifma(ifma);
583 		return (ENOMEM);
584 	}
585 	inm->inm_addr = *group;
586 	inm->inm_ifp = ifp;
587 	inm->inm_igi = ii->ii_igmp;
588 	inm->inm_ifma = ifma;
589 	inm->inm_refcount = 1;
590 	inm->inm_state = IGMP_NOT_MEMBER;
591 	mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
592 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
593 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
594 	RB_INIT(&inm->inm_srcs);
595 
596 	ifma->ifma_protospec = inm;
597 
598 	*pinm = inm;
599  out_locked:
600 	IF_ADDR_WUNLOCK(ifp);
601 	IN_MULTI_LIST_UNLOCK();
602 	return (0);
603 }
604 
605 /*
606  * Drop a reference to an in_multi record.
607  *
608  * If the refcount drops to 0, free the in_multi record and
609  * delete the underlying link-layer membership.
610  */
611 static void
612 inm_release(struct in_multi *inm)
613 {
614 	struct ifmultiaddr *ifma;
615 	struct ifnet *ifp;
616 
617 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
618 	MPASS(inm->inm_refcount == 0);
619 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
620 
621 	ifma = inm->inm_ifma;
622 	ifp = inm->inm_ifp;
623 
624 	/* XXX this access is not covered by IF_ADDR_LOCK */
625 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
626 	if (ifp != NULL) {
627 		CURVNET_SET(ifp->if_vnet);
628 		inm_purge(inm);
629 		free(inm, M_IPMADDR);
630 		if_delmulti_ifma_flags(ifma, 1);
631 		CURVNET_RESTORE();
632 		if_rele(ifp);
633 	} else {
634 		inm_purge(inm);
635 		free(inm, M_IPMADDR);
636 		if_delmulti_ifma_flags(ifma, 1);
637 	}
638 }
639 
640 /*
641  * Clear recorded source entries for a group.
642  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
643  * FIXME: Should reap.
644  */
645 void
646 inm_clear_recorded(struct in_multi *inm)
647 {
648 	struct ip_msource	*ims;
649 
650 	IN_MULTI_LIST_LOCK_ASSERT();
651 
652 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
653 		if (ims->ims_stp) {
654 			ims->ims_stp = 0;
655 			--inm->inm_st[1].iss_rec;
656 		}
657 	}
658 	KASSERT(inm->inm_st[1].iss_rec == 0,
659 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
660 }
661 
662 /*
663  * Record a source as pending for a Source-Group IGMPv3 query.
664  * This lives here as it modifies the shared tree.
665  *
666  * inm is the group descriptor.
667  * naddr is the address of the source to record in network-byte order.
668  *
669  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
670  * lazy-allocate a source node in response to an SG query.
671  * Otherwise, no allocation is performed. This saves some memory
672  * with the trade-off that the source will not be reported to the
673  * router if joined in the window between the query response and
674  * the group actually being joined on the local host.
675  *
676  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
677  * This turns off the allocation of a recorded source entry if
678  * the group has not been joined.
679  *
680  * Return 0 if the source didn't exist or was already marked as recorded.
681  * Return 1 if the source was marked as recorded by this function.
682  * Return <0 if any error occurred (negated errno code).
683  */
684 int
685 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
686 {
687 	struct ip_msource	 find;
688 	struct ip_msource	*ims, *nims;
689 
690 	IN_MULTI_LIST_LOCK_ASSERT();
691 
692 	find.ims_haddr = ntohl(naddr);
693 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
694 	if (ims && ims->ims_stp)
695 		return (0);
696 	if (ims == NULL) {
697 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
698 			return (-ENOSPC);
699 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
700 		    M_NOWAIT | M_ZERO);
701 		if (nims == NULL)
702 			return (-ENOMEM);
703 		nims->ims_haddr = find.ims_haddr;
704 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
705 		++inm->inm_nsrc;
706 		ims = nims;
707 	}
708 
709 	/*
710 	 * Mark the source as recorded and update the recorded
711 	 * source count.
712 	 */
713 	++ims->ims_stp;
714 	++inm->inm_st[1].iss_rec;
715 
716 	return (1);
717 }
718 
719 /*
720  * Return a pointer to an in_msource owned by an in_mfilter,
721  * given its source address.
722  * Lazy-allocate if needed. If this is a new entry its filter state is
723  * undefined at t0.
724  *
725  * imf is the filter set being modified.
726  * haddr is the source address in *host* byte-order.
727  *
728  * SMPng: May be called with locks held; malloc must not block.
729  */
730 static int
731 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
732     struct in_msource **plims)
733 {
734 	struct ip_msource	 find;
735 	struct ip_msource	*ims, *nims;
736 	struct in_msource	*lims;
737 	int			 error;
738 
739 	error = 0;
740 	ims = NULL;
741 	lims = NULL;
742 
743 	/* key is host byte order */
744 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
745 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
746 	lims = (struct in_msource *)ims;
747 	if (lims == NULL) {
748 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
749 			return (ENOSPC);
750 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
751 		    M_NOWAIT | M_ZERO);
752 		if (nims == NULL)
753 			return (ENOMEM);
754 		lims = (struct in_msource *)nims;
755 		lims->ims_haddr = find.ims_haddr;
756 		lims->imsl_st[0] = MCAST_UNDEFINED;
757 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
758 		++imf->imf_nsrc;
759 	}
760 
761 	*plims = lims;
762 
763 	return (error);
764 }
765 
766 /*
767  * Graft a source entry into an existing socket-layer filter set,
768  * maintaining any required invariants and checking allocations.
769  *
770  * The source is marked as being in the new filter mode at t1.
771  *
772  * Return the pointer to the new node, otherwise return NULL.
773  */
774 static struct in_msource *
775 imf_graft(struct in_mfilter *imf, const uint8_t st1,
776     const struct sockaddr_in *psin)
777 {
778 	struct ip_msource	*nims;
779 	struct in_msource	*lims;
780 
781 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
782 	    M_NOWAIT | M_ZERO);
783 	if (nims == NULL)
784 		return (NULL);
785 	lims = (struct in_msource *)nims;
786 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
787 	lims->imsl_st[0] = MCAST_UNDEFINED;
788 	lims->imsl_st[1] = st1;
789 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
790 	++imf->imf_nsrc;
791 
792 	return (lims);
793 }
794 
795 /*
796  * Prune a source entry from an existing socket-layer filter set,
797  * maintaining any required invariants and checking allocations.
798  *
799  * The source is marked as being left at t1, it is not freed.
800  *
801  * Return 0 if no error occurred, otherwise return an errno value.
802  */
803 static int
804 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
805 {
806 	struct ip_msource	 find;
807 	struct ip_msource	*ims;
808 	struct in_msource	*lims;
809 
810 	/* key is host byte order */
811 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
812 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
813 	if (ims == NULL)
814 		return (ENOENT);
815 	lims = (struct in_msource *)ims;
816 	lims->imsl_st[1] = MCAST_UNDEFINED;
817 	return (0);
818 }
819 
820 /*
821  * Revert socket-layer filter set deltas at t1 to t0 state.
822  */
823 static void
824 imf_rollback(struct in_mfilter *imf)
825 {
826 	struct ip_msource	*ims, *tims;
827 	struct in_msource	*lims;
828 
829 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
830 		lims = (struct in_msource *)ims;
831 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
832 			/* no change at t1 */
833 			continue;
834 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
835 			/* revert change to existing source at t1 */
836 			lims->imsl_st[1] = lims->imsl_st[0];
837 		} else {
838 			/* revert source added t1 */
839 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
840 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
841 			free(ims, M_INMFILTER);
842 			imf->imf_nsrc--;
843 		}
844 	}
845 	imf->imf_st[1] = imf->imf_st[0];
846 }
847 
848 /*
849  * Mark socket-layer filter set as INCLUDE {} at t1.
850  */
851 static void
852 imf_leave(struct in_mfilter *imf)
853 {
854 	struct ip_msource	*ims;
855 	struct in_msource	*lims;
856 
857 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
858 		lims = (struct in_msource *)ims;
859 		lims->imsl_st[1] = MCAST_UNDEFINED;
860 	}
861 	imf->imf_st[1] = MCAST_INCLUDE;
862 }
863 
864 /*
865  * Mark socket-layer filter set deltas as committed.
866  */
867 static void
868 imf_commit(struct in_mfilter *imf)
869 {
870 	struct ip_msource	*ims;
871 	struct in_msource	*lims;
872 
873 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
874 		lims = (struct in_msource *)ims;
875 		lims->imsl_st[0] = lims->imsl_st[1];
876 	}
877 	imf->imf_st[0] = imf->imf_st[1];
878 }
879 
880 /*
881  * Reap unreferenced sources from socket-layer filter set.
882  */
883 static void
884 imf_reap(struct in_mfilter *imf)
885 {
886 	struct ip_msource	*ims, *tims;
887 	struct in_msource	*lims;
888 
889 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
890 		lims = (struct in_msource *)ims;
891 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
892 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
893 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
894 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
895 			free(ims, M_INMFILTER);
896 			imf->imf_nsrc--;
897 		}
898 	}
899 }
900 
901 /*
902  * Purge socket-layer filter set.
903  */
904 static void
905 imf_purge(struct in_mfilter *imf)
906 {
907 	struct ip_msource	*ims, *tims;
908 
909 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
910 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
911 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
912 		free(ims, M_INMFILTER);
913 		imf->imf_nsrc--;
914 	}
915 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
916 	KASSERT(RB_EMPTY(&imf->imf_sources),
917 	    ("%s: imf_sources not empty", __func__));
918 }
919 
920 /*
921  * Look up a source filter entry for a multicast group.
922  *
923  * inm is the group descriptor to work with.
924  * haddr is the host-byte-order IPv4 address to look up.
925  * noalloc may be non-zero to suppress allocation of sources.
926  * *pims will be set to the address of the retrieved or allocated source.
927  *
928  * SMPng: NOTE: may be called with locks held.
929  * Return 0 if successful, otherwise return a non-zero error code.
930  */
931 static int
932 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
933     const int noalloc, struct ip_msource **pims)
934 {
935 	struct ip_msource	 find;
936 	struct ip_msource	*ims, *nims;
937 
938 	find.ims_haddr = haddr;
939 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
940 	if (ims == NULL && !noalloc) {
941 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
942 			return (ENOSPC);
943 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
944 		    M_NOWAIT | M_ZERO);
945 		if (nims == NULL)
946 			return (ENOMEM);
947 		nims->ims_haddr = haddr;
948 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
949 		++inm->inm_nsrc;
950 		ims = nims;
951 #ifdef KTR
952 		CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
953 		    haddr, ims);
954 #endif
955 	}
956 
957 	*pims = ims;
958 	return (0);
959 }
960 
961 /*
962  * Merge socket-layer source into IGMP-layer source.
963  * If rollback is non-zero, perform the inverse of the merge.
964  */
965 static void
966 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
967     const int rollback)
968 {
969 	int n = rollback ? -1 : 1;
970 
971 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
972 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
973 		    __func__, n, ims->ims_haddr);
974 		ims->ims_st[1].ex -= n;
975 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
976 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
977 		    __func__, n, ims->ims_haddr);
978 		ims->ims_st[1].in -= n;
979 	}
980 
981 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
982 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
983 		    __func__, n, ims->ims_haddr);
984 		ims->ims_st[1].ex += n;
985 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
986 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
987 		    __func__, n, ims->ims_haddr);
988 		ims->ims_st[1].in += n;
989 	}
990 }
991 
992 /*
993  * Atomically update the global in_multi state, when a membership's
994  * filter list is being updated in any way.
995  *
996  * imf is the per-inpcb-membership group filter pointer.
997  * A fake imf may be passed for in-kernel consumers.
998  *
999  * XXX This is a candidate for a set-symmetric-difference style loop
1000  * which would eliminate the repeated lookup from root of ims nodes,
1001  * as they share the same key space.
1002  *
1003  * If any error occurred this function will back out of refcounts
1004  * and return a non-zero value.
1005  */
1006 static int
1007 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1008 {
1009 	struct ip_msource	*ims, *nims;
1010 	struct in_msource	*lims;
1011 	int			 schanged, error;
1012 	int			 nsrc0, nsrc1;
1013 
1014 	schanged = 0;
1015 	error = 0;
1016 	nsrc1 = nsrc0 = 0;
1017 	IN_MULTI_LIST_LOCK_ASSERT();
1018 
1019 	/*
1020 	 * Update the source filters first, as this may fail.
1021 	 * Maintain count of in-mode filters at t0, t1. These are
1022 	 * used to work out if we transition into ASM mode or not.
1023 	 * Maintain a count of source filters whose state was
1024 	 * actually modified by this operation.
1025 	 */
1026 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1027 		lims = (struct in_msource *)ims;
1028 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1029 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1030 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1031 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1032 		++schanged;
1033 		if (error)
1034 			break;
1035 		ims_merge(nims, lims, 0);
1036 	}
1037 	if (error) {
1038 		struct ip_msource *bims;
1039 
1040 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1041 			lims = (struct in_msource *)ims;
1042 			if (lims->imsl_st[0] == lims->imsl_st[1])
1043 				continue;
1044 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1045 			if (bims == NULL)
1046 				continue;
1047 			ims_merge(bims, lims, 1);
1048 		}
1049 		goto out_reap;
1050 	}
1051 
1052 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1053 	    __func__, nsrc0, nsrc1);
1054 
1055 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1056 	if (imf->imf_st[0] == imf->imf_st[1] &&
1057 	    imf->imf_st[1] == MCAST_INCLUDE) {
1058 		if (nsrc1 == 0) {
1059 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1060 			--inm->inm_st[1].iss_in;
1061 		}
1062 	}
1063 
1064 	/* Handle filter mode transition on socket. */
1065 	if (imf->imf_st[0] != imf->imf_st[1]) {
1066 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1067 		    __func__, imf->imf_st[0], imf->imf_st[1]);
1068 
1069 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1070 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1071 			--inm->inm_st[1].iss_ex;
1072 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1073 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1074 			--inm->inm_st[1].iss_in;
1075 		}
1076 
1077 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1078 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1079 			inm->inm_st[1].iss_ex++;
1080 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1081 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1082 			inm->inm_st[1].iss_in++;
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * Track inm filter state in terms of listener counts.
1088 	 * If there are any exclusive listeners, stack-wide
1089 	 * membership is exclusive.
1090 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1091 	 * If no listeners remain, state is undefined at t1,
1092 	 * and the IGMP lifecycle for this group should finish.
1093 	 */
1094 	if (inm->inm_st[1].iss_ex > 0) {
1095 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1096 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1097 	} else if (inm->inm_st[1].iss_in > 0) {
1098 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1099 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1100 	} else {
1101 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1102 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1103 	}
1104 
1105 	/* Decrement ASM listener count on transition out of ASM mode. */
1106 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1107 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1108 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1109 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1110 			--inm->inm_st[1].iss_asm;
1111 		}
1112 	}
1113 
1114 	/* Increment ASM listener count on transition to ASM mode. */
1115 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1116 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1117 		inm->inm_st[1].iss_asm++;
1118 	}
1119 
1120 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1121 	inm_print(inm);
1122 
1123 out_reap:
1124 	if (schanged > 0) {
1125 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1126 		inm_reap(inm);
1127 	}
1128 	return (error);
1129 }
1130 
1131 /*
1132  * Mark an in_multi's filter set deltas as committed.
1133  * Called by IGMP after a state change has been enqueued.
1134  */
1135 void
1136 inm_commit(struct in_multi *inm)
1137 {
1138 	struct ip_msource	*ims;
1139 
1140 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1141 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1142 	inm_print(inm);
1143 
1144 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1145 		ims->ims_st[0] = ims->ims_st[1];
1146 	}
1147 	inm->inm_st[0] = inm->inm_st[1];
1148 }
1149 
1150 /*
1151  * Reap unreferenced nodes from an in_multi's filter set.
1152  */
1153 static void
1154 inm_reap(struct in_multi *inm)
1155 {
1156 	struct ip_msource	*ims, *tims;
1157 
1158 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1159 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1160 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1161 		    ims->ims_stp != 0)
1162 			continue;
1163 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1164 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1165 		free(ims, M_IPMSOURCE);
1166 		inm->inm_nsrc--;
1167 	}
1168 }
1169 
1170 /*
1171  * Purge all source nodes from an in_multi's filter set.
1172  */
1173 static void
1174 inm_purge(struct in_multi *inm)
1175 {
1176 	struct ip_msource	*ims, *tims;
1177 
1178 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1179 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1180 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1181 		free(ims, M_IPMSOURCE);
1182 		inm->inm_nsrc--;
1183 	}
1184 }
1185 
1186 /*
1187  * Join a multicast group; unlocked entry point.
1188  *
1189  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1190  * is not held. Fortunately, ifp is unlikely to have been detached
1191  * at this point, so we assume it's OK to recurse.
1192  */
1193 int
1194 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1195     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1196 {
1197 	int error;
1198 
1199 	IN_MULTI_LOCK();
1200 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1201 	IN_MULTI_UNLOCK();
1202 
1203 	return (error);
1204 }
1205 
1206 /*
1207  * Join a multicast group; real entry point.
1208  *
1209  * Only preserves atomicity at inm level.
1210  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1211  *
1212  * If the IGMP downcall fails, the group is not joined, and an error
1213  * code is returned.
1214  */
1215 int
1216 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1217     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1218 {
1219 	struct in_mfilter	 timf;
1220 	struct in_multi		*inm;
1221 	int			 error;
1222 
1223 	IN_MULTI_LOCK_ASSERT();
1224 	IN_MULTI_LIST_UNLOCK_ASSERT();
1225 
1226 	CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1227 	    ntohl(gina->s_addr), ifp, ifp->if_xname);
1228 
1229 	error = 0;
1230 	inm = NULL;
1231 
1232 	/*
1233 	 * If no imf was specified (i.e. kernel consumer),
1234 	 * fake one up and assume it is an ASM join.
1235 	 */
1236 	if (imf == NULL) {
1237 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1238 		imf = &timf;
1239 	}
1240 
1241 	error = in_getmulti(ifp, gina, &inm);
1242 	if (error) {
1243 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1244 		return (error);
1245 	}
1246 	IN_MULTI_LIST_LOCK();
1247 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1248 	error = inm_merge(inm, imf);
1249 	if (error) {
1250 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1251 		goto out_inm_release;
1252 	}
1253 
1254 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1255 	error = igmp_change_state(inm);
1256 	if (error) {
1257 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1258 		goto out_inm_release;
1259 	}
1260 
1261  out_inm_release:
1262 	if (error) {
1263 
1264 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1265 		IF_ADDR_WLOCK(ifp);
1266 		inm_release_deferred(inm);
1267 		IF_ADDR_WUNLOCK(ifp);
1268 	} else {
1269 		*pinm = inm;
1270 	}
1271 	IN_MULTI_LIST_UNLOCK();
1272 
1273 	return (error);
1274 }
1275 
1276 /*
1277  * Leave a multicast group; unlocked entry point.
1278  */
1279 int
1280 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1281 {
1282 	int error;
1283 
1284 	IN_MULTI_LOCK();
1285 	error = in_leavegroup_locked(inm, imf);
1286 	IN_MULTI_UNLOCK();
1287 
1288 	return (error);
1289 }
1290 
1291 /*
1292  * Leave a multicast group; real entry point.
1293  * All source filters will be expunged.
1294  *
1295  * Only preserves atomicity at inm level.
1296  *
1297  * Holding the write lock for the INP which contains imf
1298  * is highly advisable. We can't assert for it as imf does not
1299  * contain a back-pointer to the owning inp.
1300  *
1301  * Note: This is not the same as inm_release(*) as this function also
1302  * makes a state change downcall into IGMP.
1303  */
1304 int
1305 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1306 {
1307 	struct in_mfilter	 timf;
1308 	int			 error;
1309 
1310 	IN_MULTI_LOCK_ASSERT();
1311 	IN_MULTI_LIST_UNLOCK_ASSERT();
1312 
1313 	error = 0;
1314 
1315 	CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1316 	    inm, ntohl(inm->inm_addr.s_addr),
1317 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1318 	    imf);
1319 
1320 	/*
1321 	 * If no imf was specified (i.e. kernel consumer),
1322 	 * fake one up and assume it is an ASM join.
1323 	 */
1324 	if (imf == NULL) {
1325 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1326 		imf = &timf;
1327 	}
1328 
1329 	/*
1330 	 * Begin state merge transaction at IGMP layer.
1331 	 *
1332 	 * As this particular invocation should not cause any memory
1333 	 * to be allocated, and there is no opportunity to roll back
1334 	 * the transaction, it MUST NOT fail.
1335 	 */
1336 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1337 	IN_MULTI_LIST_LOCK();
1338 	error = inm_merge(inm, imf);
1339 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1340 
1341 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1342 	CURVNET_SET(inm->inm_ifp->if_vnet);
1343 	error = igmp_change_state(inm);
1344 	IF_ADDR_WLOCK(inm->inm_ifp);
1345 	inm_release_deferred(inm);
1346 	IF_ADDR_WUNLOCK(inm->inm_ifp);
1347 	IN_MULTI_LIST_UNLOCK();
1348 	CURVNET_RESTORE();
1349 	if (error)
1350 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1351 
1352 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1353 
1354 	return (error);
1355 }
1356 
1357 /*#ifndef BURN_BRIDGES*/
1358 /*
1359  * Join an IPv4 multicast group in (*,G) exclusive mode.
1360  * The group must be a 224.0.0.0/24 link-scope group.
1361  * This KPI is for legacy kernel consumers only.
1362  */
1363 struct in_multi *
1364 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1365 {
1366 	struct in_multi *pinm;
1367 	int error;
1368 #ifdef INVARIANTS
1369 	char addrbuf[INET_ADDRSTRLEN];
1370 #endif
1371 
1372 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1373 	    ("%s: %s not in 224.0.0.0/24", __func__,
1374 	    inet_ntoa_r(*ap, addrbuf)));
1375 
1376 	error = in_joingroup(ifp, ap, NULL, &pinm);
1377 	if (error != 0)
1378 		pinm = NULL;
1379 
1380 	return (pinm);
1381 }
1382 
1383 /*
1384  * Block or unblock an ASM multicast source on an inpcb.
1385  * This implements the delta-based API described in RFC 3678.
1386  *
1387  * The delta-based API applies only to exclusive-mode memberships.
1388  * An IGMP downcall will be performed.
1389  *
1390  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1391  *
1392  * Return 0 if successful, otherwise return an appropriate error code.
1393  */
1394 static int
1395 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1396 {
1397 	struct group_source_req		 gsr;
1398 	struct rm_priotracker		 in_ifa_tracker;
1399 	sockunion_t			*gsa, *ssa;
1400 	struct ifnet			*ifp;
1401 	struct in_mfilter		*imf;
1402 	struct ip_moptions		*imo;
1403 	struct in_msource		*ims;
1404 	struct in_multi			*inm;
1405 	uint16_t			 fmode;
1406 	int				 error, doblock;
1407 
1408 	ifp = NULL;
1409 	error = 0;
1410 	doblock = 0;
1411 
1412 	memset(&gsr, 0, sizeof(struct group_source_req));
1413 	gsa = (sockunion_t *)&gsr.gsr_group;
1414 	ssa = (sockunion_t *)&gsr.gsr_source;
1415 
1416 	switch (sopt->sopt_name) {
1417 	case IP_BLOCK_SOURCE:
1418 	case IP_UNBLOCK_SOURCE: {
1419 		struct ip_mreq_source	 mreqs;
1420 
1421 		error = sooptcopyin(sopt, &mreqs,
1422 		    sizeof(struct ip_mreq_source),
1423 		    sizeof(struct ip_mreq_source));
1424 		if (error)
1425 			return (error);
1426 
1427 		gsa->sin.sin_family = AF_INET;
1428 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1429 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1430 
1431 		ssa->sin.sin_family = AF_INET;
1432 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1433 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1434 
1435 		if (!in_nullhost(mreqs.imr_interface)) {
1436 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1437 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1438 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1439 		}
1440 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1441 			doblock = 1;
1442 
1443 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1444 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1445 		break;
1446 	    }
1447 
1448 	case MCAST_BLOCK_SOURCE:
1449 	case MCAST_UNBLOCK_SOURCE:
1450 		error = sooptcopyin(sopt, &gsr,
1451 		    sizeof(struct group_source_req),
1452 		    sizeof(struct group_source_req));
1453 		if (error)
1454 			return (error);
1455 
1456 		if (gsa->sin.sin_family != AF_INET ||
1457 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1458 			return (EINVAL);
1459 
1460 		if (ssa->sin.sin_family != AF_INET ||
1461 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1462 			return (EINVAL);
1463 
1464 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1465 			return (EADDRNOTAVAIL);
1466 
1467 		ifp = ifnet_byindex(gsr.gsr_interface);
1468 
1469 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1470 			doblock = 1;
1471 		break;
1472 
1473 	default:
1474 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1475 		    __func__, sopt->sopt_name);
1476 		return (EOPNOTSUPP);
1477 		break;
1478 	}
1479 
1480 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1481 		return (EINVAL);
1482 
1483 	IN_MULTI_LOCK();
1484 
1485 	/*
1486 	 * Check if we are actually a member of this group.
1487 	 */
1488 	imo = inp_findmoptions(inp);
1489 	imf = imo_match_group(imo, ifp, &gsa->sa);
1490 	if (imf == NULL) {
1491 		error = EADDRNOTAVAIL;
1492 		goto out_inp_locked;
1493 	}
1494 	inm = imf->imf_inm;
1495 
1496 	/*
1497 	 * Attempting to use the delta-based API on an
1498 	 * non exclusive-mode membership is an error.
1499 	 */
1500 	fmode = imf->imf_st[0];
1501 	if (fmode != MCAST_EXCLUDE) {
1502 		error = EINVAL;
1503 		goto out_inp_locked;
1504 	}
1505 
1506 	/*
1507 	 * Deal with error cases up-front:
1508 	 *  Asked to block, but already blocked; or
1509 	 *  Asked to unblock, but nothing to unblock.
1510 	 * If adding a new block entry, allocate it.
1511 	 */
1512 	ims = imo_match_source(imf, &ssa->sa);
1513 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1514 		CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1515 		    ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1516 		error = EADDRNOTAVAIL;
1517 		goto out_inp_locked;
1518 	}
1519 
1520 	INP_WLOCK_ASSERT(inp);
1521 
1522 	/*
1523 	 * Begin state merge transaction at socket layer.
1524 	 */
1525 	if (doblock) {
1526 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1527 		ims = imf_graft(imf, fmode, &ssa->sin);
1528 		if (ims == NULL)
1529 			error = ENOMEM;
1530 	} else {
1531 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1532 		error = imf_prune(imf, &ssa->sin);
1533 	}
1534 
1535 	if (error) {
1536 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1537 		goto out_imf_rollback;
1538 	}
1539 
1540 	/*
1541 	 * Begin state merge transaction at IGMP layer.
1542 	 */
1543 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1544 	IN_MULTI_LIST_LOCK();
1545 	error = inm_merge(inm, imf);
1546 	if (error) {
1547 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1548 		IN_MULTI_LIST_UNLOCK();
1549 		goto out_imf_rollback;
1550 	}
1551 
1552 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1553 	error = igmp_change_state(inm);
1554 	IN_MULTI_LIST_UNLOCK();
1555 	if (error)
1556 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1557 
1558 out_imf_rollback:
1559 	if (error)
1560 		imf_rollback(imf);
1561 	else
1562 		imf_commit(imf);
1563 
1564 	imf_reap(imf);
1565 
1566 out_inp_locked:
1567 	INP_WUNLOCK(inp);
1568 	IN_MULTI_UNLOCK();
1569 	return (error);
1570 }
1571 
1572 /*
1573  * Given an inpcb, return its multicast options structure pointer.  Accepts
1574  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1575  *
1576  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1577  * SMPng: NOTE: Returns with the INP write lock held.
1578  */
1579 static struct ip_moptions *
1580 inp_findmoptions(struct inpcb *inp)
1581 {
1582 	struct ip_moptions	 *imo;
1583 
1584 	INP_WLOCK(inp);
1585 	if (inp->inp_moptions != NULL)
1586 		return (inp->inp_moptions);
1587 
1588 	INP_WUNLOCK(inp);
1589 
1590 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1591 
1592 	imo->imo_multicast_ifp = NULL;
1593 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1594 	imo->imo_multicast_vif = -1;
1595 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1596 	imo->imo_multicast_loop = in_mcast_loop;
1597 	STAILQ_INIT(&imo->imo_head);
1598 
1599 	INP_WLOCK(inp);
1600 	if (inp->inp_moptions != NULL) {
1601 		free(imo, M_IPMOPTS);
1602 		return (inp->inp_moptions);
1603 	}
1604 	inp->inp_moptions = imo;
1605 	return (imo);
1606 }
1607 
1608 static void
1609 inp_gcmoptions(struct ip_moptions *imo)
1610 {
1611 	struct in_mfilter *imf;
1612 	struct in_multi *inm;
1613 	struct ifnet *ifp;
1614 
1615 	while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
1616 		ip_mfilter_remove(&imo->imo_head, imf);
1617 
1618 		imf_leave(imf);
1619 		if ((inm = imf->imf_inm) != NULL) {
1620 			if ((ifp = inm->inm_ifp) != NULL) {
1621 				CURVNET_SET(ifp->if_vnet);
1622 				(void)in_leavegroup(inm, imf);
1623 				CURVNET_RESTORE();
1624 			} else {
1625 				(void)in_leavegroup(inm, imf);
1626 			}
1627 		}
1628 		ip_mfilter_free(imf);
1629 	}
1630 	free(imo, M_IPMOPTS);
1631 }
1632 
1633 /*
1634  * Discard the IP multicast options (and source filters).  To minimize
1635  * the amount of work done while holding locks such as the INP's
1636  * pcbinfo lock (which is used in the receive path), the free
1637  * operation is deferred to the epoch callback task.
1638  */
1639 void
1640 inp_freemoptions(struct ip_moptions *imo)
1641 {
1642 	if (imo == NULL)
1643 		return;
1644 	inp_gcmoptions(imo);
1645 }
1646 
1647 /*
1648  * Atomically get source filters on a socket for an IPv4 multicast group.
1649  * Called with INP lock held; returns with lock released.
1650  */
1651 static int
1652 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1653 {
1654 	struct __msfilterreq	 msfr;
1655 	sockunion_t		*gsa;
1656 	struct ifnet		*ifp;
1657 	struct ip_moptions	*imo;
1658 	struct in_mfilter	*imf;
1659 	struct ip_msource	*ims;
1660 	struct in_msource	*lims;
1661 	struct sockaddr_in	*psin;
1662 	struct sockaddr_storage	*ptss;
1663 	struct sockaddr_storage	*tss;
1664 	int			 error;
1665 	size_t			 nsrcs, ncsrcs;
1666 
1667 	INP_WLOCK_ASSERT(inp);
1668 
1669 	imo = inp->inp_moptions;
1670 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1671 
1672 	INP_WUNLOCK(inp);
1673 
1674 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1675 	    sizeof(struct __msfilterreq));
1676 	if (error)
1677 		return (error);
1678 
1679 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1680 		return (EINVAL);
1681 
1682 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1683 	if (ifp == NULL)
1684 		return (EINVAL);
1685 
1686 	INP_WLOCK(inp);
1687 
1688 	/*
1689 	 * Lookup group on the socket.
1690 	 */
1691 	gsa = (sockunion_t *)&msfr.msfr_group;
1692 	imf = imo_match_group(imo, ifp, &gsa->sa);
1693 	if (imf == NULL) {
1694 		INP_WUNLOCK(inp);
1695 		return (EADDRNOTAVAIL);
1696 	}
1697 
1698 	/*
1699 	 * Ignore memberships which are in limbo.
1700 	 */
1701 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1702 		INP_WUNLOCK(inp);
1703 		return (EAGAIN);
1704 	}
1705 	msfr.msfr_fmode = imf->imf_st[1];
1706 
1707 	/*
1708 	 * If the user specified a buffer, copy out the source filter
1709 	 * entries to userland gracefully.
1710 	 * We only copy out the number of entries which userland
1711 	 * has asked for, but we always tell userland how big the
1712 	 * buffer really needs to be.
1713 	 */
1714 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1715 		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1716 	tss = NULL;
1717 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1718 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1719 		    M_TEMP, M_NOWAIT | M_ZERO);
1720 		if (tss == NULL) {
1721 			INP_WUNLOCK(inp);
1722 			return (ENOBUFS);
1723 		}
1724 	}
1725 
1726 	/*
1727 	 * Count number of sources in-mode at t0.
1728 	 * If buffer space exists and remains, copy out source entries.
1729 	 */
1730 	nsrcs = msfr.msfr_nsrcs;
1731 	ncsrcs = 0;
1732 	ptss = tss;
1733 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1734 		lims = (struct in_msource *)ims;
1735 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1736 		    lims->imsl_st[0] != imf->imf_st[0])
1737 			continue;
1738 		++ncsrcs;
1739 		if (tss != NULL && nsrcs > 0) {
1740 			psin = (struct sockaddr_in *)ptss;
1741 			psin->sin_family = AF_INET;
1742 			psin->sin_len = sizeof(struct sockaddr_in);
1743 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1744 			psin->sin_port = 0;
1745 			++ptss;
1746 			--nsrcs;
1747 		}
1748 	}
1749 
1750 	INP_WUNLOCK(inp);
1751 
1752 	if (tss != NULL) {
1753 		error = copyout(tss, msfr.msfr_srcs,
1754 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1755 		free(tss, M_TEMP);
1756 		if (error)
1757 			return (error);
1758 	}
1759 
1760 	msfr.msfr_nsrcs = ncsrcs;
1761 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1762 
1763 	return (error);
1764 }
1765 
1766 /*
1767  * Return the IP multicast options in response to user getsockopt().
1768  */
1769 int
1770 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1771 {
1772 	struct rm_priotracker	 in_ifa_tracker;
1773 	struct ip_mreqn		 mreqn;
1774 	struct ip_moptions	*imo;
1775 	struct ifnet		*ifp;
1776 	struct in_ifaddr	*ia;
1777 	int			 error, optval;
1778 	u_char			 coptval;
1779 
1780 	INP_WLOCK(inp);
1781 	imo = inp->inp_moptions;
1782 	/*
1783 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1784 	 * or is a divert socket, reject it.
1785 	 */
1786 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1787 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1788 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1789 		INP_WUNLOCK(inp);
1790 		return (EOPNOTSUPP);
1791 	}
1792 
1793 	error = 0;
1794 	switch (sopt->sopt_name) {
1795 	case IP_MULTICAST_VIF:
1796 		if (imo != NULL)
1797 			optval = imo->imo_multicast_vif;
1798 		else
1799 			optval = -1;
1800 		INP_WUNLOCK(inp);
1801 		error = sooptcopyout(sopt, &optval, sizeof(int));
1802 		break;
1803 
1804 	case IP_MULTICAST_IF:
1805 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1806 		if (imo != NULL) {
1807 			ifp = imo->imo_multicast_ifp;
1808 			if (!in_nullhost(imo->imo_multicast_addr)) {
1809 				mreqn.imr_address = imo->imo_multicast_addr;
1810 			} else if (ifp != NULL) {
1811 				struct epoch_tracker et;
1812 
1813 				mreqn.imr_ifindex = ifp->if_index;
1814 				NET_EPOCH_ENTER(et);
1815 				IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1816 				if (ia != NULL)
1817 					mreqn.imr_address =
1818 					    IA_SIN(ia)->sin_addr;
1819 				NET_EPOCH_EXIT(et);
1820 			}
1821 		}
1822 		INP_WUNLOCK(inp);
1823 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1824 			error = sooptcopyout(sopt, &mreqn,
1825 			    sizeof(struct ip_mreqn));
1826 		} else {
1827 			error = sooptcopyout(sopt, &mreqn.imr_address,
1828 			    sizeof(struct in_addr));
1829 		}
1830 		break;
1831 
1832 	case IP_MULTICAST_TTL:
1833 		if (imo == NULL)
1834 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1835 		else
1836 			optval = coptval = imo->imo_multicast_ttl;
1837 		INP_WUNLOCK(inp);
1838 		if (sopt->sopt_valsize == sizeof(u_char))
1839 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1840 		else
1841 			error = sooptcopyout(sopt, &optval, sizeof(int));
1842 		break;
1843 
1844 	case IP_MULTICAST_LOOP:
1845 		if (imo == NULL)
1846 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1847 		else
1848 			optval = coptval = imo->imo_multicast_loop;
1849 		INP_WUNLOCK(inp);
1850 		if (sopt->sopt_valsize == sizeof(u_char))
1851 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1852 		else
1853 			error = sooptcopyout(sopt, &optval, sizeof(int));
1854 		break;
1855 
1856 	case IP_MSFILTER:
1857 		if (imo == NULL) {
1858 			error = EADDRNOTAVAIL;
1859 			INP_WUNLOCK(inp);
1860 		} else {
1861 			error = inp_get_source_filters(inp, sopt);
1862 		}
1863 		break;
1864 
1865 	default:
1866 		INP_WUNLOCK(inp);
1867 		error = ENOPROTOOPT;
1868 		break;
1869 	}
1870 
1871 	INP_UNLOCK_ASSERT(inp);
1872 
1873 	return (error);
1874 }
1875 
1876 /*
1877  * Look up the ifnet to use for a multicast group membership,
1878  * given the IPv4 address of an interface, and the IPv4 group address.
1879  *
1880  * This routine exists to support legacy multicast applications
1881  * which do not understand that multicast memberships are scoped to
1882  * specific physical links in the networking stack, or which need
1883  * to join link-scope groups before IPv4 addresses are configured.
1884  *
1885  * If inp is non-NULL, use this socket's current FIB number for any
1886  * required FIB lookup.
1887  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1888  * and use its ifp; usually, this points to the default next-hop.
1889  *
1890  * If the FIB lookup fails, attempt to use the first non-loopback
1891  * interface with multicast capability in the system as a
1892  * last resort. The legacy IPv4 ASM API requires that we do
1893  * this in order to allow groups to be joined when the routing
1894  * table has not yet been populated during boot.
1895  *
1896  * Returns NULL if no ifp could be found.
1897  *
1898  * FUTURE: Implement IPv4 source-address selection.
1899  */
1900 static struct ifnet *
1901 inp_lookup_mcast_ifp(const struct inpcb *inp,
1902     const struct sockaddr_in *gsin, const struct in_addr ina)
1903 {
1904 	struct rm_priotracker in_ifa_tracker;
1905 	struct ifnet *ifp;
1906 	struct nhop_object *nh;
1907 	uint32_t fibnum;
1908 
1909 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1910 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1911 	    ("%s: not multicast", __func__));
1912 
1913 	ifp = NULL;
1914 	if (!in_nullhost(ina)) {
1915 		IN_IFADDR_RLOCK(&in_ifa_tracker);
1916 		INADDR_TO_IFP(ina, ifp);
1917 		IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1918 	} else {
1919 		fibnum = inp ? inp->inp_inc.inc_fibnum : 0;
1920 		nh = fib4_lookup(fibnum, gsin->sin_addr, 0, 0, 0);
1921 		if (nh != NULL)
1922 			ifp = nh->nh_ifp;
1923 		else {
1924 			struct in_ifaddr *ia;
1925 			struct ifnet *mifp;
1926 
1927 			mifp = NULL;
1928 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1929 			CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1930 				mifp = ia->ia_ifp;
1931 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1932 				     (mifp->if_flags & IFF_MULTICAST)) {
1933 					ifp = mifp;
1934 					break;
1935 				}
1936 			}
1937 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1938 		}
1939 	}
1940 
1941 	return (ifp);
1942 }
1943 
1944 /*
1945  * Join an IPv4 multicast group, possibly with a source.
1946  */
1947 static int
1948 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1949 {
1950 	struct group_source_req		 gsr;
1951 	sockunion_t			*gsa, *ssa;
1952 	struct ifnet			*ifp;
1953 	struct in_mfilter		*imf;
1954 	struct ip_moptions		*imo;
1955 	struct in_multi			*inm;
1956 	struct in_msource		*lims;
1957 	int				 error, is_new;
1958 
1959 	ifp = NULL;
1960 	lims = NULL;
1961 	error = 0;
1962 
1963 	memset(&gsr, 0, sizeof(struct group_source_req));
1964 	gsa = (sockunion_t *)&gsr.gsr_group;
1965 	gsa->ss.ss_family = AF_UNSPEC;
1966 	ssa = (sockunion_t *)&gsr.gsr_source;
1967 	ssa->ss.ss_family = AF_UNSPEC;
1968 
1969 	switch (sopt->sopt_name) {
1970 	case IP_ADD_MEMBERSHIP: {
1971 		struct ip_mreqn mreqn;
1972 
1973 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn))
1974 			error = sooptcopyin(sopt, &mreqn,
1975 			    sizeof(struct ip_mreqn), sizeof(struct ip_mreqn));
1976 		else
1977 			error = sooptcopyin(sopt, &mreqn,
1978 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1979 		if (error)
1980 			return (error);
1981 
1982 		gsa->sin.sin_family = AF_INET;
1983 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1984 		gsa->sin.sin_addr = mreqn.imr_multiaddr;
1985 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1986 			return (EINVAL);
1987 
1988 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn) &&
1989 		    mreqn.imr_ifindex != 0)
1990 			ifp = ifnet_byindex(mreqn.imr_ifindex);
1991 		else
1992 			ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1993 			    mreqn.imr_address);
1994 		break;
1995 	}
1996 	case IP_ADD_SOURCE_MEMBERSHIP: {
1997 		struct ip_mreq_source	 mreqs;
1998 
1999 		error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source),
2000 			    sizeof(struct ip_mreq_source));
2001 		if (error)
2002 			return (error);
2003 
2004 		gsa->sin.sin_family = ssa->sin.sin_family = AF_INET;
2005 		gsa->sin.sin_len = ssa->sin.sin_len =
2006 		    sizeof(struct sockaddr_in);
2007 
2008 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2009 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2010 			return (EINVAL);
2011 
2012 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2013 
2014 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2015 		    mreqs.imr_interface);
2016 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2017 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2018 		break;
2019 	}
2020 
2021 	case MCAST_JOIN_GROUP:
2022 	case MCAST_JOIN_SOURCE_GROUP:
2023 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2024 			error = sooptcopyin(sopt, &gsr,
2025 			    sizeof(struct group_req),
2026 			    sizeof(struct group_req));
2027 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2028 			error = sooptcopyin(sopt, &gsr,
2029 			    sizeof(struct group_source_req),
2030 			    sizeof(struct group_source_req));
2031 		}
2032 		if (error)
2033 			return (error);
2034 
2035 		if (gsa->sin.sin_family != AF_INET ||
2036 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2037 			return (EINVAL);
2038 
2039 		/*
2040 		 * Overwrite the port field if present, as the sockaddr
2041 		 * being copied in may be matched with a binary comparison.
2042 		 */
2043 		gsa->sin.sin_port = 0;
2044 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2045 			if (ssa->sin.sin_family != AF_INET ||
2046 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2047 				return (EINVAL);
2048 			ssa->sin.sin_port = 0;
2049 		}
2050 
2051 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2052 			return (EINVAL);
2053 
2054 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2055 			return (EADDRNOTAVAIL);
2056 		ifp = ifnet_byindex(gsr.gsr_interface);
2057 		break;
2058 
2059 	default:
2060 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2061 		    __func__, sopt->sopt_name);
2062 		return (EOPNOTSUPP);
2063 		break;
2064 	}
2065 
2066 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2067 		return (EADDRNOTAVAIL);
2068 
2069 	IN_MULTI_LOCK();
2070 
2071 	/*
2072 	 * Find the membership in the membership list.
2073 	 */
2074 	imo = inp_findmoptions(inp);
2075 	imf = imo_match_group(imo, ifp, &gsa->sa);
2076 	if (imf == NULL) {
2077 		is_new = 1;
2078 		inm = NULL;
2079 
2080 		if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) {
2081 			error = ENOMEM;
2082 			goto out_inp_locked;
2083 		}
2084 	} else {
2085 		is_new = 0;
2086 		inm = imf->imf_inm;
2087 
2088 		if (ssa->ss.ss_family != AF_UNSPEC) {
2089 			/*
2090 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2091 			 * is an error. On an existing inclusive membership,
2092 			 * it just adds the source to the filter list.
2093 			 */
2094 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2095 				error = EINVAL;
2096 				goto out_inp_locked;
2097 			}
2098 			/*
2099 			 * Throw out duplicates.
2100 			 *
2101 			 * XXX FIXME: This makes a naive assumption that
2102 			 * even if entries exist for *ssa in this imf,
2103 			 * they will be rejected as dupes, even if they
2104 			 * are not valid in the current mode (in-mode).
2105 			 *
2106 			 * in_msource is transactioned just as for anything
2107 			 * else in SSM -- but note naive use of inm_graft()
2108 			 * below for allocating new filter entries.
2109 			 *
2110 			 * This is only an issue if someone mixes the
2111 			 * full-state SSM API with the delta-based API,
2112 			 * which is discouraged in the relevant RFCs.
2113 			 */
2114 			lims = imo_match_source(imf, &ssa->sa);
2115 			if (lims != NULL /*&&
2116 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2117 				error = EADDRNOTAVAIL;
2118 				goto out_inp_locked;
2119 			}
2120 		} else {
2121 			/*
2122 			 * MCAST_JOIN_GROUP on an existing exclusive
2123 			 * membership is an error; return EADDRINUSE
2124 			 * to preserve 4.4BSD API idempotence, and
2125 			 * avoid tedious detour to code below.
2126 			 * NOTE: This is bending RFC 3678 a bit.
2127 			 *
2128 			 * On an existing inclusive membership, this is also
2129 			 * an error; if you want to change filter mode,
2130 			 * you must use the userland API setsourcefilter().
2131 			 * XXX We don't reject this for imf in UNDEFINED
2132 			 * state at t1, because allocation of a filter
2133 			 * is atomic with allocation of a membership.
2134 			 */
2135 			error = EINVAL;
2136 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2137 				error = EADDRINUSE;
2138 			goto out_inp_locked;
2139 		}
2140 	}
2141 
2142 	/*
2143 	 * Begin state merge transaction at socket layer.
2144 	 */
2145 	INP_WLOCK_ASSERT(inp);
2146 
2147 	/*
2148 	 * Graft new source into filter list for this inpcb's
2149 	 * membership of the group. The in_multi may not have
2150 	 * been allocated yet if this is a new membership, however,
2151 	 * the in_mfilter slot will be allocated and must be initialized.
2152 	 *
2153 	 * Note: Grafting of exclusive mode filters doesn't happen
2154 	 * in this path.
2155 	 * XXX: Should check for non-NULL lims (node exists but may
2156 	 * not be in-mode) for interop with full-state API.
2157 	 */
2158 	if (ssa->ss.ss_family != AF_UNSPEC) {
2159 		/* Membership starts in IN mode */
2160 		if (is_new) {
2161 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2162 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE);
2163 			if (imf == NULL) {
2164 				error = ENOMEM;
2165 				goto out_inp_locked;
2166 			}
2167 		} else {
2168 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2169 		}
2170 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2171 		if (lims == NULL) {
2172 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2173 			    __func__);
2174 			error = ENOMEM;
2175 			goto out_inp_locked;
2176 		}
2177 	} else {
2178 		/* No address specified; Membership starts in EX mode */
2179 		if (is_new) {
2180 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2181 			imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE);
2182 			if (imf == NULL) {
2183 				error = ENOMEM;
2184 				goto out_inp_locked;
2185 			}
2186 		}
2187 	}
2188 
2189 	/*
2190 	 * Begin state merge transaction at IGMP layer.
2191 	 */
2192 	if (is_new) {
2193 		in_pcbref(inp);
2194 		INP_WUNLOCK(inp);
2195 
2196 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2197 		    &imf->imf_inm);
2198 
2199 		INP_WLOCK(inp);
2200 		if (in_pcbrele_wlocked(inp)) {
2201 			error = ENXIO;
2202 			goto out_inp_unlocked;
2203 		}
2204 		if (error) {
2205                         CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2206                             __func__);
2207 			goto out_inp_locked;
2208 		}
2209 		/*
2210 		 * NOTE: Refcount from in_joingroup_locked()
2211 		 * is protecting membership.
2212 		 */
2213 		ip_mfilter_insert(&imo->imo_head, imf);
2214 	} else {
2215 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2216 		IN_MULTI_LIST_LOCK();
2217 		error = inm_merge(inm, imf);
2218 		if (error) {
2219 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2220 				 __func__);
2221 			IN_MULTI_LIST_UNLOCK();
2222 			imf_rollback(imf);
2223 			imf_reap(imf);
2224 			goto out_inp_locked;
2225 		}
2226 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2227 		error = igmp_change_state(inm);
2228 		IN_MULTI_LIST_UNLOCK();
2229 		if (error) {
2230 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2231 			    __func__);
2232 			imf_rollback(imf);
2233 			imf_reap(imf);
2234 			goto out_inp_locked;
2235 		}
2236 	}
2237 
2238 	imf_commit(imf);
2239 	imf = NULL;
2240 
2241 out_inp_locked:
2242 	INP_WUNLOCK(inp);
2243 out_inp_unlocked:
2244 	IN_MULTI_UNLOCK();
2245 
2246 	if (is_new && imf) {
2247 		if (imf->imf_inm != NULL) {
2248 			IN_MULTI_LIST_LOCK();
2249 			IF_ADDR_WLOCK(ifp);
2250 			inm_release_deferred(imf->imf_inm);
2251 			IF_ADDR_WUNLOCK(ifp);
2252 			IN_MULTI_LIST_UNLOCK();
2253 		}
2254 		ip_mfilter_free(imf);
2255 	}
2256 	return (error);
2257 }
2258 
2259 /*
2260  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2261  */
2262 static int
2263 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2264 {
2265 	struct group_source_req		 gsr;
2266 	struct ip_mreq_source		 mreqs;
2267 	struct rm_priotracker		 in_ifa_tracker;
2268 	sockunion_t			*gsa, *ssa;
2269 	struct ifnet			*ifp;
2270 	struct in_mfilter		*imf;
2271 	struct ip_moptions		*imo;
2272 	struct in_msource		*ims;
2273 	struct in_multi			*inm;
2274 	int				 error;
2275 	bool				 is_final;
2276 
2277 	ifp = NULL;
2278 	error = 0;
2279 	is_final = true;
2280 
2281 	memset(&gsr, 0, sizeof(struct group_source_req));
2282 	gsa = (sockunion_t *)&gsr.gsr_group;
2283 	gsa->ss.ss_family = AF_UNSPEC;
2284 	ssa = (sockunion_t *)&gsr.gsr_source;
2285 	ssa->ss.ss_family = AF_UNSPEC;
2286 
2287 	switch (sopt->sopt_name) {
2288 	case IP_DROP_MEMBERSHIP:
2289 	case IP_DROP_SOURCE_MEMBERSHIP:
2290 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2291 			error = sooptcopyin(sopt, &mreqs,
2292 			    sizeof(struct ip_mreq),
2293 			    sizeof(struct ip_mreq));
2294 			/*
2295 			 * Swap interface and sourceaddr arguments,
2296 			 * as ip_mreq and ip_mreq_source are laid
2297 			 * out differently.
2298 			 */
2299 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2300 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2301 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2302 			error = sooptcopyin(sopt, &mreqs,
2303 			    sizeof(struct ip_mreq_source),
2304 			    sizeof(struct ip_mreq_source));
2305 		}
2306 		if (error)
2307 			return (error);
2308 
2309 		gsa->sin.sin_family = AF_INET;
2310 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2311 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2312 
2313 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2314 			ssa->sin.sin_family = AF_INET;
2315 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2316 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2317 		}
2318 
2319 		/*
2320 		 * Attempt to look up hinted ifp from interface address.
2321 		 * Fallthrough with null ifp iff lookup fails, to
2322 		 * preserve 4.4BSD mcast API idempotence.
2323 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2324 		 * using an IPv4 address as a key is racy.
2325 		 */
2326 		if (!in_nullhost(mreqs.imr_interface)) {
2327 			IN_IFADDR_RLOCK(&in_ifa_tracker);
2328 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2329 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2330 		}
2331 		CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2332 		    __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2333 
2334 		break;
2335 
2336 	case MCAST_LEAVE_GROUP:
2337 	case MCAST_LEAVE_SOURCE_GROUP:
2338 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2339 			error = sooptcopyin(sopt, &gsr,
2340 			    sizeof(struct group_req),
2341 			    sizeof(struct group_req));
2342 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2343 			error = sooptcopyin(sopt, &gsr,
2344 			    sizeof(struct group_source_req),
2345 			    sizeof(struct group_source_req));
2346 		}
2347 		if (error)
2348 			return (error);
2349 
2350 		if (gsa->sin.sin_family != AF_INET ||
2351 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2352 			return (EINVAL);
2353 
2354 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2355 			if (ssa->sin.sin_family != AF_INET ||
2356 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2357 				return (EINVAL);
2358 		}
2359 
2360 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2361 			return (EADDRNOTAVAIL);
2362 
2363 		ifp = ifnet_byindex(gsr.gsr_interface);
2364 
2365 		if (ifp == NULL)
2366 			return (EADDRNOTAVAIL);
2367 		break;
2368 
2369 	default:
2370 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2371 		    __func__, sopt->sopt_name);
2372 		return (EOPNOTSUPP);
2373 		break;
2374 	}
2375 
2376 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2377 		return (EINVAL);
2378 
2379 	IN_MULTI_LOCK();
2380 
2381 	/*
2382 	 * Find the membership in the membership list.
2383 	 */
2384 	imo = inp_findmoptions(inp);
2385 	imf = imo_match_group(imo, ifp, &gsa->sa);
2386 	if (imf == NULL) {
2387 		error = EADDRNOTAVAIL;
2388 		goto out_inp_locked;
2389 	}
2390 	inm = imf->imf_inm;
2391 
2392 	if (ssa->ss.ss_family != AF_UNSPEC)
2393 		is_final = false;
2394 
2395 	/*
2396 	 * Begin state merge transaction at socket layer.
2397 	 */
2398 	INP_WLOCK_ASSERT(inp);
2399 
2400 	/*
2401 	 * If we were instructed only to leave a given source, do so.
2402 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2403 	 */
2404 	if (is_final) {
2405 		ip_mfilter_remove(&imo->imo_head, imf);
2406 		imf_leave(imf);
2407 
2408 		/*
2409 		 * Give up the multicast address record to which
2410 		 * the membership points.
2411 		 */
2412 		(void) in_leavegroup_locked(imf->imf_inm, imf);
2413 	} else {
2414 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2415 			error = EADDRNOTAVAIL;
2416 			goto out_inp_locked;
2417 		}
2418 		ims = imo_match_source(imf, &ssa->sa);
2419 		if (ims == NULL) {
2420 			CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2421 			    __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2422 			error = EADDRNOTAVAIL;
2423 			goto out_inp_locked;
2424 		}
2425 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2426 		error = imf_prune(imf, &ssa->sin);
2427 		if (error) {
2428 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2429 			    __func__);
2430 			goto out_inp_locked;
2431 		}
2432 	}
2433 
2434 	/*
2435 	 * Begin state merge transaction at IGMP layer.
2436 	 */
2437 	if (!is_final) {
2438 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2439 		IN_MULTI_LIST_LOCK();
2440 		error = inm_merge(inm, imf);
2441 		if (error) {
2442 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2443 			    __func__);
2444 			IN_MULTI_LIST_UNLOCK();
2445 			imf_rollback(imf);
2446 			imf_reap(imf);
2447 			goto out_inp_locked;
2448 		}
2449 
2450 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2451 		error = igmp_change_state(inm);
2452 		IN_MULTI_LIST_UNLOCK();
2453 		if (error) {
2454 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2455 			    __func__);
2456 			imf_rollback(imf);
2457 			imf_reap(imf);
2458 			goto out_inp_locked;
2459 		}
2460 	}
2461 	imf_commit(imf);
2462 	imf_reap(imf);
2463 
2464 out_inp_locked:
2465 	INP_WUNLOCK(inp);
2466 
2467 	if (is_final && imf)
2468 		ip_mfilter_free(imf);
2469 
2470 	IN_MULTI_UNLOCK();
2471 	return (error);
2472 }
2473 
2474 /*
2475  * Select the interface for transmitting IPv4 multicast datagrams.
2476  *
2477  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2478  * may be passed to this socket option. An address of INADDR_ANY or an
2479  * interface index of 0 is used to remove a previous selection.
2480  * When no interface is selected, one is chosen for every send.
2481  */
2482 static int
2483 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2484 {
2485 	struct rm_priotracker	 in_ifa_tracker;
2486 	struct in_addr		 addr;
2487 	struct ip_mreqn		 mreqn;
2488 	struct ifnet		*ifp;
2489 	struct ip_moptions	*imo;
2490 	int			 error;
2491 
2492 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2493 		/*
2494 		 * An interface index was specified using the
2495 		 * Linux-derived ip_mreqn structure.
2496 		 */
2497 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2498 		    sizeof(struct ip_mreqn));
2499 		if (error)
2500 			return (error);
2501 
2502 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2503 			return (EINVAL);
2504 
2505 		if (mreqn.imr_ifindex == 0) {
2506 			ifp = NULL;
2507 		} else {
2508 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2509 			if (ifp == NULL)
2510 				return (EADDRNOTAVAIL);
2511 		}
2512 	} else {
2513 		/*
2514 		 * An interface was specified by IPv4 address.
2515 		 * This is the traditional BSD usage.
2516 		 */
2517 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2518 		    sizeof(struct in_addr));
2519 		if (error)
2520 			return (error);
2521 		if (in_nullhost(addr)) {
2522 			ifp = NULL;
2523 		} else {
2524 			IN_IFADDR_RLOCK(&in_ifa_tracker);
2525 			INADDR_TO_IFP(addr, ifp);
2526 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2527 			if (ifp == NULL)
2528 				return (EADDRNOTAVAIL);
2529 		}
2530 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2531 		    ntohl(addr.s_addr));
2532 	}
2533 
2534 	/* Reject interfaces which do not support multicast. */
2535 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2536 		return (EOPNOTSUPP);
2537 
2538 	imo = inp_findmoptions(inp);
2539 	imo->imo_multicast_ifp = ifp;
2540 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2541 	INP_WUNLOCK(inp);
2542 
2543 	return (0);
2544 }
2545 
2546 /*
2547  * Atomically set source filters on a socket for an IPv4 multicast group.
2548  *
2549  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2550  */
2551 static int
2552 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2553 {
2554 	struct __msfilterreq	 msfr;
2555 	sockunion_t		*gsa;
2556 	struct ifnet		*ifp;
2557 	struct in_mfilter	*imf;
2558 	struct ip_moptions	*imo;
2559 	struct in_multi		*inm;
2560 	int			 error;
2561 
2562 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2563 	    sizeof(struct __msfilterreq));
2564 	if (error)
2565 		return (error);
2566 
2567 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2568 		return (ENOBUFS);
2569 
2570 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2571 	     msfr.msfr_fmode != MCAST_INCLUDE))
2572 		return (EINVAL);
2573 
2574 	if (msfr.msfr_group.ss_family != AF_INET ||
2575 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2576 		return (EINVAL);
2577 
2578 	gsa = (sockunion_t *)&msfr.msfr_group;
2579 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2580 		return (EINVAL);
2581 
2582 	gsa->sin.sin_port = 0;	/* ignore port */
2583 
2584 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2585 		return (EADDRNOTAVAIL);
2586 
2587 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2588 	if (ifp == NULL)
2589 		return (EADDRNOTAVAIL);
2590 
2591 	IN_MULTI_LOCK();
2592 
2593 	/*
2594 	 * Take the INP write lock.
2595 	 * Check if this socket is a member of this group.
2596 	 */
2597 	imo = inp_findmoptions(inp);
2598 	imf = imo_match_group(imo, ifp, &gsa->sa);
2599 	if (imf == NULL) {
2600 		error = EADDRNOTAVAIL;
2601 		goto out_inp_locked;
2602 	}
2603 	inm = imf->imf_inm;
2604 
2605 	/*
2606 	 * Begin state merge transaction at socket layer.
2607 	 */
2608 	INP_WLOCK_ASSERT(inp);
2609 
2610 	imf->imf_st[1] = msfr.msfr_fmode;
2611 
2612 	/*
2613 	 * Apply any new source filters, if present.
2614 	 * Make a copy of the user-space source vector so
2615 	 * that we may copy them with a single copyin. This
2616 	 * allows us to deal with page faults up-front.
2617 	 */
2618 	if (msfr.msfr_nsrcs > 0) {
2619 		struct in_msource	*lims;
2620 		struct sockaddr_in	*psin;
2621 		struct sockaddr_storage	*kss, *pkss;
2622 		int			 i;
2623 
2624 		INP_WUNLOCK(inp);
2625 
2626 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2627 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2628 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2629 		    M_TEMP, M_WAITOK);
2630 		error = copyin(msfr.msfr_srcs, kss,
2631 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2632 		if (error) {
2633 			free(kss, M_TEMP);
2634 			return (error);
2635 		}
2636 
2637 		INP_WLOCK(inp);
2638 
2639 		/*
2640 		 * Mark all source filters as UNDEFINED at t1.
2641 		 * Restore new group filter mode, as imf_leave()
2642 		 * will set it to INCLUDE.
2643 		 */
2644 		imf_leave(imf);
2645 		imf->imf_st[1] = msfr.msfr_fmode;
2646 
2647 		/*
2648 		 * Update socket layer filters at t1, lazy-allocating
2649 		 * new entries. This saves a bunch of memory at the
2650 		 * cost of one RB_FIND() per source entry; duplicate
2651 		 * entries in the msfr_nsrcs vector are ignored.
2652 		 * If we encounter an error, rollback transaction.
2653 		 *
2654 		 * XXX This too could be replaced with a set-symmetric
2655 		 * difference like loop to avoid walking from root
2656 		 * every time, as the key space is common.
2657 		 */
2658 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2659 			psin = (struct sockaddr_in *)pkss;
2660 			if (psin->sin_family != AF_INET) {
2661 				error = EAFNOSUPPORT;
2662 				break;
2663 			}
2664 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2665 				error = EINVAL;
2666 				break;
2667 			}
2668 			error = imf_get_source(imf, psin, &lims);
2669 			if (error)
2670 				break;
2671 			lims->imsl_st[1] = imf->imf_st[1];
2672 		}
2673 		free(kss, M_TEMP);
2674 	}
2675 
2676 	if (error)
2677 		goto out_imf_rollback;
2678 
2679 	INP_WLOCK_ASSERT(inp);
2680 
2681 	/*
2682 	 * Begin state merge transaction at IGMP layer.
2683 	 */
2684 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2685 	IN_MULTI_LIST_LOCK();
2686 	error = inm_merge(inm, imf);
2687 	if (error) {
2688 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2689 		IN_MULTI_LIST_UNLOCK();
2690 		goto out_imf_rollback;
2691 	}
2692 
2693 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2694 	error = igmp_change_state(inm);
2695 	IN_MULTI_LIST_UNLOCK();
2696 	if (error)
2697 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2698 
2699 out_imf_rollback:
2700 	if (error)
2701 		imf_rollback(imf);
2702 	else
2703 		imf_commit(imf);
2704 
2705 	imf_reap(imf);
2706 
2707 out_inp_locked:
2708 	INP_WUNLOCK(inp);
2709 	IN_MULTI_UNLOCK();
2710 	return (error);
2711 }
2712 
2713 /*
2714  * Set the IP multicast options in response to user setsockopt().
2715  *
2716  * Many of the socket options handled in this function duplicate the
2717  * functionality of socket options in the regular unicast API. However,
2718  * it is not possible to merge the duplicate code, because the idempotence
2719  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2720  * the effects of these options must be treated as separate and distinct.
2721  *
2722  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2723  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2724  * is refactored to no longer use vifs.
2725  */
2726 int
2727 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2728 {
2729 	struct ip_moptions	*imo;
2730 	int			 error;
2731 	struct epoch_tracker	et;
2732 
2733 	error = 0;
2734 
2735 	/*
2736 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2737 	 * or is a divert socket, reject it.
2738 	 */
2739 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2740 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2741 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2742 		return (EOPNOTSUPP);
2743 
2744 	switch (sopt->sopt_name) {
2745 	case IP_MULTICAST_VIF: {
2746 		int vifi;
2747 		/*
2748 		 * Select a multicast VIF for transmission.
2749 		 * Only useful if multicast forwarding is active.
2750 		 */
2751 		if (legal_vif_num == NULL) {
2752 			error = EOPNOTSUPP;
2753 			break;
2754 		}
2755 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2756 		if (error)
2757 			break;
2758 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2759 			error = EINVAL;
2760 			break;
2761 		}
2762 		imo = inp_findmoptions(inp);
2763 		imo->imo_multicast_vif = vifi;
2764 		INP_WUNLOCK(inp);
2765 		break;
2766 	}
2767 
2768 	case IP_MULTICAST_IF:
2769 		error = inp_set_multicast_if(inp, sopt);
2770 		break;
2771 
2772 	case IP_MULTICAST_TTL: {
2773 		u_char ttl;
2774 
2775 		/*
2776 		 * Set the IP time-to-live for outgoing multicast packets.
2777 		 * The original multicast API required a char argument,
2778 		 * which is inconsistent with the rest of the socket API.
2779 		 * We allow either a char or an int.
2780 		 */
2781 		if (sopt->sopt_valsize == sizeof(u_char)) {
2782 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2783 			    sizeof(u_char));
2784 			if (error)
2785 				break;
2786 		} else {
2787 			u_int ittl;
2788 
2789 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2790 			    sizeof(u_int));
2791 			if (error)
2792 				break;
2793 			if (ittl > 255) {
2794 				error = EINVAL;
2795 				break;
2796 			}
2797 			ttl = (u_char)ittl;
2798 		}
2799 		imo = inp_findmoptions(inp);
2800 		imo->imo_multicast_ttl = ttl;
2801 		INP_WUNLOCK(inp);
2802 		break;
2803 	}
2804 
2805 	case IP_MULTICAST_LOOP: {
2806 		u_char loop;
2807 
2808 		/*
2809 		 * Set the loopback flag for outgoing multicast packets.
2810 		 * Must be zero or one.  The original multicast API required a
2811 		 * char argument, which is inconsistent with the rest
2812 		 * of the socket API.  We allow either a char or an int.
2813 		 */
2814 		if (sopt->sopt_valsize == sizeof(u_char)) {
2815 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2816 			    sizeof(u_char));
2817 			if (error)
2818 				break;
2819 		} else {
2820 			u_int iloop;
2821 
2822 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2823 					    sizeof(u_int));
2824 			if (error)
2825 				break;
2826 			loop = (u_char)iloop;
2827 		}
2828 		imo = inp_findmoptions(inp);
2829 		imo->imo_multicast_loop = !!loop;
2830 		INP_WUNLOCK(inp);
2831 		break;
2832 	}
2833 
2834 	case IP_ADD_MEMBERSHIP:
2835 	case IP_ADD_SOURCE_MEMBERSHIP:
2836 	case MCAST_JOIN_GROUP:
2837 	case MCAST_JOIN_SOURCE_GROUP:
2838 		NET_EPOCH_ENTER(et);
2839 		error = inp_join_group(inp, sopt);
2840 		NET_EPOCH_EXIT(et);
2841 		break;
2842 
2843 	case IP_DROP_MEMBERSHIP:
2844 	case IP_DROP_SOURCE_MEMBERSHIP:
2845 	case MCAST_LEAVE_GROUP:
2846 	case MCAST_LEAVE_SOURCE_GROUP:
2847 		error = inp_leave_group(inp, sopt);
2848 		break;
2849 
2850 	case IP_BLOCK_SOURCE:
2851 	case IP_UNBLOCK_SOURCE:
2852 	case MCAST_BLOCK_SOURCE:
2853 	case MCAST_UNBLOCK_SOURCE:
2854 		error = inp_block_unblock_source(inp, sopt);
2855 		break;
2856 
2857 	case IP_MSFILTER:
2858 		error = inp_set_source_filters(inp, sopt);
2859 		break;
2860 
2861 	default:
2862 		error = EOPNOTSUPP;
2863 		break;
2864 	}
2865 
2866 	INP_UNLOCK_ASSERT(inp);
2867 
2868 	return (error);
2869 }
2870 
2871 /*
2872  * Expose IGMP's multicast filter mode and source list(s) to userland,
2873  * keyed by (ifindex, group).
2874  * The filter mode is written out as a uint32_t, followed by
2875  * 0..n of struct in_addr.
2876  * For use by ifmcstat(8).
2877  * SMPng: NOTE: unlocked read of ifindex space.
2878  */
2879 static int
2880 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2881 {
2882 	struct in_addr			 src, group;
2883 	struct epoch_tracker		 et;
2884 	struct ifnet			*ifp;
2885 	struct ifmultiaddr		*ifma;
2886 	struct in_multi			*inm;
2887 	struct ip_msource		*ims;
2888 	int				*name;
2889 	int				 retval;
2890 	u_int				 namelen;
2891 	uint32_t			 fmode, ifindex;
2892 
2893 	name = (int *)arg1;
2894 	namelen = arg2;
2895 
2896 	if (req->newptr != NULL)
2897 		return (EPERM);
2898 
2899 	if (namelen != 2)
2900 		return (EINVAL);
2901 
2902 	ifindex = name[0];
2903 	if (ifindex <= 0 || ifindex > V_if_index) {
2904 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2905 		    __func__, ifindex);
2906 		return (ENOENT);
2907 	}
2908 
2909 	group.s_addr = name[1];
2910 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2911 		CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2912 		    __func__, ntohl(group.s_addr));
2913 		return (EINVAL);
2914 	}
2915 
2916 	NET_EPOCH_ENTER(et);
2917 	ifp = ifnet_byindex(ifindex);
2918 	if (ifp == NULL) {
2919 		NET_EPOCH_EXIT(et);
2920 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2921 		    __func__, ifindex);
2922 		return (ENOENT);
2923 	}
2924 
2925 	retval = sysctl_wire_old_buffer(req,
2926 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2927 	if (retval) {
2928 		NET_EPOCH_EXIT(et);
2929 		return (retval);
2930 	}
2931 
2932 	IN_MULTI_LIST_LOCK();
2933 
2934 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2935 		if (ifma->ifma_addr->sa_family != AF_INET ||
2936 		    ifma->ifma_protospec == NULL)
2937 			continue;
2938 		inm = (struct in_multi *)ifma->ifma_protospec;
2939 		if (!in_hosteq(inm->inm_addr, group))
2940 			continue;
2941 		fmode = inm->inm_st[1].iss_fmode;
2942 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2943 		if (retval != 0)
2944 			break;
2945 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2946 			CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2947 			    ims->ims_haddr);
2948 			/*
2949 			 * Only copy-out sources which are in-mode.
2950 			 */
2951 			if (fmode != ims_get_mode(inm, ims, 1)) {
2952 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2953 				    __func__);
2954 				continue;
2955 			}
2956 			src.s_addr = htonl(ims->ims_haddr);
2957 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2958 			if (retval != 0)
2959 				break;
2960 		}
2961 	}
2962 
2963 	IN_MULTI_LIST_UNLOCK();
2964 	NET_EPOCH_EXIT(et);
2965 
2966 	return (retval);
2967 }
2968 
2969 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
2970 
2971 static const char *inm_modestrs[] = {
2972 	[MCAST_UNDEFINED] = "un",
2973 	[MCAST_INCLUDE] = "in",
2974 	[MCAST_EXCLUDE] = "ex",
2975 };
2976 _Static_assert(MCAST_UNDEFINED == 0 &&
2977 	       MCAST_EXCLUDE + 1 == nitems(inm_modestrs),
2978 	       "inm_modestrs: no longer matches #defines");
2979 
2980 static const char *
2981 inm_mode_str(const int mode)
2982 {
2983 
2984 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2985 		return (inm_modestrs[mode]);
2986 	return ("??");
2987 }
2988 
2989 static const char *inm_statestrs[] = {
2990 	[IGMP_NOT_MEMBER] = "not-member",
2991 	[IGMP_SILENT_MEMBER] = "silent",
2992 	[IGMP_REPORTING_MEMBER] = "reporting",
2993 	[IGMP_IDLE_MEMBER] = "idle",
2994 	[IGMP_LAZY_MEMBER] = "lazy",
2995 	[IGMP_SLEEPING_MEMBER] = "sleeping",
2996 	[IGMP_AWAKENING_MEMBER] = "awakening",
2997 	[IGMP_G_QUERY_PENDING_MEMBER] = "query-pending",
2998 	[IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending",
2999 	[IGMP_LEAVING_MEMBER] = "leaving",
3000 };
3001 _Static_assert(IGMP_NOT_MEMBER == 0 &&
3002 	       IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs),
3003 	       "inm_statetrs: no longer matches #defines");
3004 
3005 static const char *
3006 inm_state_str(const int state)
3007 {
3008 
3009 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3010 		return (inm_statestrs[state]);
3011 	return ("??");
3012 }
3013 
3014 /*
3015  * Dump an in_multi structure to the console.
3016  */
3017 void
3018 inm_print(const struct in_multi *inm)
3019 {
3020 	int t;
3021 	char addrbuf[INET_ADDRSTRLEN];
3022 
3023 	if ((ktr_mask & KTR_IGMPV3) == 0)
3024 		return;
3025 
3026 	printf("%s: --- begin inm %p ---\n", __func__, inm);
3027 	printf("addr %s ifp %p(%s) ifma %p\n",
3028 	    inet_ntoa_r(inm->inm_addr, addrbuf),
3029 	    inm->inm_ifp,
3030 	    inm->inm_ifp->if_xname,
3031 	    inm->inm_ifma);
3032 	printf("timer %u state %s refcount %u scq.len %u\n",
3033 	    inm->inm_timer,
3034 	    inm_state_str(inm->inm_state),
3035 	    inm->inm_refcount,
3036 	    inm->inm_scq.mq_len);
3037 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3038 	    inm->inm_igi,
3039 	    inm->inm_nsrc,
3040 	    inm->inm_sctimer,
3041 	    inm->inm_scrv);
3042 	for (t = 0; t < 2; t++) {
3043 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3044 		    inm_mode_str(inm->inm_st[t].iss_fmode),
3045 		    inm->inm_st[t].iss_asm,
3046 		    inm->inm_st[t].iss_ex,
3047 		    inm->inm_st[t].iss_in,
3048 		    inm->inm_st[t].iss_rec);
3049 	}
3050 	printf("%s: --- end inm %p ---\n", __func__, inm);
3051 }
3052 
3053 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3054 
3055 void
3056 inm_print(const struct in_multi *inm)
3057 {
3058 
3059 }
3060 
3061 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3062 
3063 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3064