xref: /freebsd/sys/netinet/in_mcast.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 2007-2009 Bruce Simpson.
3  * Copyright (c) 2005 Robert N. M. Watson.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote
15  *    products derived from this software without specific prior written
16  *    permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * IPv4 multicast socket, group, and socket option processing module.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/protosw.h>
47 #include <sys/sysctl.h>
48 #include <sys/ktr.h>
49 #include <sys/taskqueue.h>
50 #include <sys/tree.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/route.h>
55 #include <net/vnet.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_pcb.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/igmp_var.h>
63 
64 #ifndef KTR_IGMPV3
65 #define KTR_IGMPV3 KTR_INET
66 #endif
67 
68 #ifndef __SOCKUNION_DECLARED
69 union sockunion {
70 	struct sockaddr_storage	ss;
71 	struct sockaddr		sa;
72 	struct sockaddr_dl	sdl;
73 	struct sockaddr_in	sin;
74 };
75 typedef union sockunion sockunion_t;
76 #define __SOCKUNION_DECLARED
77 #endif /* __SOCKUNION_DECLARED */
78 
79 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
80     "IPv4 multicast PCB-layer source filter");
81 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
82 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
83 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
84     "IPv4 multicast IGMP-layer source filter");
85 
86 /*
87  * Locking:
88  * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
89  * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
90  *   it can be taken by code in net/if.c also.
91  * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
92  *
93  * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
94  * any need for in_multi itself to be virtualized -- it is bound to an ifp
95  * anyway no matter what happens.
96  */
97 struct mtx in_multi_mtx;
98 MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
99 
100 /*
101  * Functions with non-static linkage defined in this file should be
102  * declared in in_var.h:
103  *  imo_multi_filter()
104  *  in_addmulti()
105  *  in_delmulti()
106  *  in_joingroup()
107  *  in_joingroup_locked()
108  *  in_leavegroup()
109  *  in_leavegroup_locked()
110  * and ip_var.h:
111  *  inp_freemoptions()
112  *  inp_getmoptions()
113  *  inp_setmoptions()
114  *
115  * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
116  * and in_delmulti().
117  */
118 static void	imf_commit(struct in_mfilter *);
119 static int	imf_get_source(struct in_mfilter *imf,
120 		    const struct sockaddr_in *psin,
121 		    struct in_msource **);
122 static struct in_msource *
123 		imf_graft(struct in_mfilter *, const uint8_t,
124 		    const struct sockaddr_in *);
125 static void	imf_leave(struct in_mfilter *);
126 static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
127 static void	imf_purge(struct in_mfilter *);
128 static void	imf_rollback(struct in_mfilter *);
129 static void	imf_reap(struct in_mfilter *);
130 static int	imo_grow(struct ip_moptions *);
131 static size_t	imo_match_group(const struct ip_moptions *,
132 		    const struct ifnet *, const struct sockaddr *);
133 static struct in_msource *
134 		imo_match_source(const struct ip_moptions *, const size_t,
135 		    const struct sockaddr *);
136 static void	ims_merge(struct ip_msource *ims,
137 		    const struct in_msource *lims, const int rollback);
138 static int	in_getmulti(struct ifnet *, const struct in_addr *,
139 		    struct in_multi **);
140 static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
141 		    const int noalloc, struct ip_msource **pims);
142 static int	inm_is_ifp_detached(const struct in_multi *);
143 static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
144 static void	inm_purge(struct in_multi *);
145 static void	inm_reap(struct in_multi *);
146 static struct ip_moptions *
147 		inp_findmoptions(struct inpcb *);
148 static void	inp_freemoptions_internal(struct ip_moptions *);
149 static void	inp_gcmoptions(void *, int);
150 static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
151 static int	inp_join_group(struct inpcb *, struct sockopt *);
152 static int	inp_leave_group(struct inpcb *, struct sockopt *);
153 static struct ifnet *
154 		inp_lookup_mcast_ifp(const struct inpcb *,
155 		    const struct sockaddr_in *, const struct in_addr);
156 static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
157 static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
158 static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
159 static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
160 
161 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
162     "IPv4 multicast");
163 
164 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
165 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
166     CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0,
167     "Max source filters per group");
168 TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc);
169 
170 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
171 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
172     CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0,
173     "Max source filters per socket");
174 TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc);
175 
176 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
177 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
178     &in_mcast_loop, 0, "Loopback multicast datagrams by default");
179 TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop);
180 
181 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
182     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
183     "Per-interface stack-wide source filters");
184 
185 static STAILQ_HEAD(, ip_moptions) imo_gc_list =
186     STAILQ_HEAD_INITIALIZER(imo_gc_list);
187 static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL);
188 
189 /*
190  * Inline function which wraps assertions for a valid ifp.
191  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
192  * is detached.
193  */
194 static int __inline
195 inm_is_ifp_detached(const struct in_multi *inm)
196 {
197 	struct ifnet *ifp;
198 
199 	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
200 	ifp = inm->inm_ifma->ifma_ifp;
201 	if (ifp != NULL) {
202 		/*
203 		 * Sanity check that netinet's notion of ifp is the
204 		 * same as net's.
205 		 */
206 		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
207 	}
208 
209 	return (ifp == NULL);
210 }
211 
212 /*
213  * Initialize an in_mfilter structure to a known state at t0, t1
214  * with an empty source filter list.
215  */
216 static __inline void
217 imf_init(struct in_mfilter *imf, const int st0, const int st1)
218 {
219 	memset(imf, 0, sizeof(struct in_mfilter));
220 	RB_INIT(&imf->imf_sources);
221 	imf->imf_st[0] = st0;
222 	imf->imf_st[1] = st1;
223 }
224 
225 /*
226  * Resize the ip_moptions vector to the next power-of-two minus 1.
227  * May be called with locks held; do not sleep.
228  */
229 static int
230 imo_grow(struct ip_moptions *imo)
231 {
232 	struct in_multi		**nmships;
233 	struct in_multi		**omships;
234 	struct in_mfilter	 *nmfilters;
235 	struct in_mfilter	 *omfilters;
236 	size_t			  idx;
237 	size_t			  newmax;
238 	size_t			  oldmax;
239 
240 	nmships = NULL;
241 	nmfilters = NULL;
242 	omships = imo->imo_membership;
243 	omfilters = imo->imo_mfilters;
244 	oldmax = imo->imo_max_memberships;
245 	newmax = ((oldmax + 1) * 2) - 1;
246 
247 	if (newmax <= IP_MAX_MEMBERSHIPS) {
248 		nmships = (struct in_multi **)realloc(omships,
249 		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
250 		nmfilters = (struct in_mfilter *)realloc(omfilters,
251 		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
252 		if (nmships != NULL && nmfilters != NULL) {
253 			/* Initialize newly allocated source filter heads. */
254 			for (idx = oldmax; idx < newmax; idx++) {
255 				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
256 				    MCAST_EXCLUDE);
257 			}
258 			imo->imo_max_memberships = newmax;
259 			imo->imo_membership = nmships;
260 			imo->imo_mfilters = nmfilters;
261 		}
262 	}
263 
264 	if (nmships == NULL || nmfilters == NULL) {
265 		if (nmships != NULL)
266 			free(nmships, M_IPMOPTS);
267 		if (nmfilters != NULL)
268 			free(nmfilters, M_INMFILTER);
269 		return (ETOOMANYREFS);
270 	}
271 
272 	return (0);
273 }
274 
275 /*
276  * Find an IPv4 multicast group entry for this ip_moptions instance
277  * which matches the specified group, and optionally an interface.
278  * Return its index into the array, or -1 if not found.
279  */
280 static size_t
281 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
282     const struct sockaddr *group)
283 {
284 	const struct sockaddr_in *gsin;
285 	struct in_multi	**pinm;
286 	int		  idx;
287 	int		  nmships;
288 
289 	gsin = (const struct sockaddr_in *)group;
290 
291 	/* The imo_membership array may be lazy allocated. */
292 	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
293 		return (-1);
294 
295 	nmships = imo->imo_num_memberships;
296 	pinm = &imo->imo_membership[0];
297 	for (idx = 0; idx < nmships; idx++, pinm++) {
298 		if (*pinm == NULL)
299 			continue;
300 		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
301 		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
302 			break;
303 		}
304 	}
305 	if (idx >= nmships)
306 		idx = -1;
307 
308 	return (idx);
309 }
310 
311 /*
312  * Find an IPv4 multicast source entry for this imo which matches
313  * the given group index for this socket, and source address.
314  *
315  * NOTE: This does not check if the entry is in-mode, merely if
316  * it exists, which may not be the desired behaviour.
317  */
318 static struct in_msource *
319 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
320     const struct sockaddr *src)
321 {
322 	struct ip_msource	 find;
323 	struct in_mfilter	*imf;
324 	struct ip_msource	*ims;
325 	const sockunion_t	*psa;
326 
327 	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
328 	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
329 	    ("%s: invalid index %d\n", __func__, (int)gidx));
330 
331 	/* The imo_mfilters array may be lazy allocated. */
332 	if (imo->imo_mfilters == NULL)
333 		return (NULL);
334 	imf = &imo->imo_mfilters[gidx];
335 
336 	/* Source trees are keyed in host byte order. */
337 	psa = (const sockunion_t *)src;
338 	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
339 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
340 
341 	return ((struct in_msource *)ims);
342 }
343 
344 /*
345  * Perform filtering for multicast datagrams on a socket by group and source.
346  *
347  * Returns 0 if a datagram should be allowed through, or various error codes
348  * if the socket was not a member of the group, or the source was muted, etc.
349  */
350 int
351 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
352     const struct sockaddr *group, const struct sockaddr *src)
353 {
354 	size_t gidx;
355 	struct in_msource *ims;
356 	int mode;
357 
358 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
359 
360 	gidx = imo_match_group(imo, ifp, group);
361 	if (gidx == -1)
362 		return (MCAST_NOTGMEMBER);
363 
364 	/*
365 	 * Check if the source was included in an (S,G) join.
366 	 * Allow reception on exclusive memberships by default,
367 	 * reject reception on inclusive memberships by default.
368 	 * Exclude source only if an in-mode exclude filter exists.
369 	 * Include source only if an in-mode include filter exists.
370 	 * NOTE: We are comparing group state here at IGMP t1 (now)
371 	 * with socket-layer t0 (since last downcall).
372 	 */
373 	mode = imo->imo_mfilters[gidx].imf_st[1];
374 	ims = imo_match_source(imo, gidx, src);
375 
376 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
377 	    (ims != NULL && ims->imsl_st[0] != mode))
378 		return (MCAST_NOTSMEMBER);
379 
380 	return (MCAST_PASS);
381 }
382 
383 /*
384  * Find and return a reference to an in_multi record for (ifp, group),
385  * and bump its reference count.
386  * If one does not exist, try to allocate it, and update link-layer multicast
387  * filters on ifp to listen for group.
388  * Assumes the IN_MULTI lock is held across the call.
389  * Return 0 if successful, otherwise return an appropriate error code.
390  */
391 static int
392 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
393     struct in_multi **pinm)
394 {
395 	struct sockaddr_in	 gsin;
396 	struct ifmultiaddr	*ifma;
397 	struct in_ifinfo	*ii;
398 	struct in_multi		*inm;
399 	int error;
400 
401 	IN_MULTI_LOCK_ASSERT();
402 
403 	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
404 
405 	inm = inm_lookup(ifp, *group);
406 	if (inm != NULL) {
407 		/*
408 		 * If we already joined this group, just bump the
409 		 * refcount and return it.
410 		 */
411 		KASSERT(inm->inm_refcount >= 1,
412 		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
413 		++inm->inm_refcount;
414 		*pinm = inm;
415 		return (0);
416 	}
417 
418 	memset(&gsin, 0, sizeof(gsin));
419 	gsin.sin_family = AF_INET;
420 	gsin.sin_len = sizeof(struct sockaddr_in);
421 	gsin.sin_addr = *group;
422 
423 	/*
424 	 * Check if a link-layer group is already associated
425 	 * with this network-layer group on the given ifnet.
426 	 */
427 	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
428 	if (error != 0)
429 		return (error);
430 
431 	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
432 	IF_ADDR_WLOCK(ifp);
433 
434 	/*
435 	 * If something other than netinet is occupying the link-layer
436 	 * group, print a meaningful error message and back out of
437 	 * the allocation.
438 	 * Otherwise, bump the refcount on the existing network-layer
439 	 * group association and return it.
440 	 */
441 	if (ifma->ifma_protospec != NULL) {
442 		inm = (struct in_multi *)ifma->ifma_protospec;
443 #ifdef INVARIANTS
444 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
445 		    __func__));
446 		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
447 		    ("%s: ifma not AF_INET", __func__));
448 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
449 		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
450 		    !in_hosteq(inm->inm_addr, *group))
451 			panic("%s: ifma %p is inconsistent with %p (%s)",
452 			    __func__, ifma, inm, inet_ntoa(*group));
453 #endif
454 		++inm->inm_refcount;
455 		*pinm = inm;
456 		IF_ADDR_WUNLOCK(ifp);
457 		return (0);
458 	}
459 
460 	IF_ADDR_WLOCK_ASSERT(ifp);
461 
462 	/*
463 	 * A new in_multi record is needed; allocate and initialize it.
464 	 * We DO NOT perform an IGMP join as the in_ layer may need to
465 	 * push an initial source list down to IGMP to support SSM.
466 	 *
467 	 * The initial source filter state is INCLUDE, {} as per the RFC.
468 	 */
469 	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
470 	if (inm == NULL) {
471 		if_delmulti_ifma(ifma);
472 		IF_ADDR_WUNLOCK(ifp);
473 		return (ENOMEM);
474 	}
475 	inm->inm_addr = *group;
476 	inm->inm_ifp = ifp;
477 	inm->inm_igi = ii->ii_igmp;
478 	inm->inm_ifma = ifma;
479 	inm->inm_refcount = 1;
480 	inm->inm_state = IGMP_NOT_MEMBER;
481 
482 	/*
483 	 * Pending state-changes per group are subject to a bounds check.
484 	 */
485 	IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
486 
487 	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
488 	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
489 	RB_INIT(&inm->inm_srcs);
490 
491 	ifma->ifma_protospec = inm;
492 
493 	*pinm = inm;
494 
495 	IF_ADDR_WUNLOCK(ifp);
496 	return (0);
497 }
498 
499 /*
500  * Drop a reference to an in_multi record.
501  *
502  * If the refcount drops to 0, free the in_multi record and
503  * delete the underlying link-layer membership.
504  */
505 void
506 inm_release_locked(struct in_multi *inm)
507 {
508 	struct ifmultiaddr *ifma;
509 
510 	IN_MULTI_LOCK_ASSERT();
511 
512 	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
513 
514 	if (--inm->inm_refcount > 0) {
515 		CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
516 		    inm->inm_refcount);
517 		return;
518 	}
519 
520 	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
521 
522 	ifma = inm->inm_ifma;
523 
524 	/* XXX this access is not covered by IF_ADDR_LOCK */
525 	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
526 	KASSERT(ifma->ifma_protospec == inm,
527 	    ("%s: ifma_protospec != inm", __func__));
528 	ifma->ifma_protospec = NULL;
529 
530 	inm_purge(inm);
531 
532 	free(inm, M_IPMADDR);
533 
534 	if_delmulti_ifma(ifma);
535 }
536 
537 /*
538  * Clear recorded source entries for a group.
539  * Used by the IGMP code. Caller must hold the IN_MULTI lock.
540  * FIXME: Should reap.
541  */
542 void
543 inm_clear_recorded(struct in_multi *inm)
544 {
545 	struct ip_msource	*ims;
546 
547 	IN_MULTI_LOCK_ASSERT();
548 
549 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
550 		if (ims->ims_stp) {
551 			ims->ims_stp = 0;
552 			--inm->inm_st[1].iss_rec;
553 		}
554 	}
555 	KASSERT(inm->inm_st[1].iss_rec == 0,
556 	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
557 }
558 
559 /*
560  * Record a source as pending for a Source-Group IGMPv3 query.
561  * This lives here as it modifies the shared tree.
562  *
563  * inm is the group descriptor.
564  * naddr is the address of the source to record in network-byte order.
565  *
566  * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
567  * lazy-allocate a source node in response to an SG query.
568  * Otherwise, no allocation is performed. This saves some memory
569  * with the trade-off that the source will not be reported to the
570  * router if joined in the window between the query response and
571  * the group actually being joined on the local host.
572  *
573  * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
574  * This turns off the allocation of a recorded source entry if
575  * the group has not been joined.
576  *
577  * Return 0 if the source didn't exist or was already marked as recorded.
578  * Return 1 if the source was marked as recorded by this function.
579  * Return <0 if any error occured (negated errno code).
580  */
581 int
582 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
583 {
584 	struct ip_msource	 find;
585 	struct ip_msource	*ims, *nims;
586 
587 	IN_MULTI_LOCK_ASSERT();
588 
589 	find.ims_haddr = ntohl(naddr);
590 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
591 	if (ims && ims->ims_stp)
592 		return (0);
593 	if (ims == NULL) {
594 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
595 			return (-ENOSPC);
596 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
597 		    M_NOWAIT | M_ZERO);
598 		if (nims == NULL)
599 			return (-ENOMEM);
600 		nims->ims_haddr = find.ims_haddr;
601 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
602 		++inm->inm_nsrc;
603 		ims = nims;
604 	}
605 
606 	/*
607 	 * Mark the source as recorded and update the recorded
608 	 * source count.
609 	 */
610 	++ims->ims_stp;
611 	++inm->inm_st[1].iss_rec;
612 
613 	return (1);
614 }
615 
616 /*
617  * Return a pointer to an in_msource owned by an in_mfilter,
618  * given its source address.
619  * Lazy-allocate if needed. If this is a new entry its filter state is
620  * undefined at t0.
621  *
622  * imf is the filter set being modified.
623  * haddr is the source address in *host* byte-order.
624  *
625  * SMPng: May be called with locks held; malloc must not block.
626  */
627 static int
628 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
629     struct in_msource **plims)
630 {
631 	struct ip_msource	 find;
632 	struct ip_msource	*ims, *nims;
633 	struct in_msource	*lims;
634 	int			 error;
635 
636 	error = 0;
637 	ims = NULL;
638 	lims = NULL;
639 
640 	/* key is host byte order */
641 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
642 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
643 	lims = (struct in_msource *)ims;
644 	if (lims == NULL) {
645 		if (imf->imf_nsrc == in_mcast_maxsocksrc)
646 			return (ENOSPC);
647 		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
648 		    M_NOWAIT | M_ZERO);
649 		if (nims == NULL)
650 			return (ENOMEM);
651 		lims = (struct in_msource *)nims;
652 		lims->ims_haddr = find.ims_haddr;
653 		lims->imsl_st[0] = MCAST_UNDEFINED;
654 		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
655 		++imf->imf_nsrc;
656 	}
657 
658 	*plims = lims;
659 
660 	return (error);
661 }
662 
663 /*
664  * Graft a source entry into an existing socket-layer filter set,
665  * maintaining any required invariants and checking allocations.
666  *
667  * The source is marked as being in the new filter mode at t1.
668  *
669  * Return the pointer to the new node, otherwise return NULL.
670  */
671 static struct in_msource *
672 imf_graft(struct in_mfilter *imf, const uint8_t st1,
673     const struct sockaddr_in *psin)
674 {
675 	struct ip_msource	*nims;
676 	struct in_msource	*lims;
677 
678 	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
679 	    M_NOWAIT | M_ZERO);
680 	if (nims == NULL)
681 		return (NULL);
682 	lims = (struct in_msource *)nims;
683 	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
684 	lims->imsl_st[0] = MCAST_UNDEFINED;
685 	lims->imsl_st[1] = st1;
686 	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
687 	++imf->imf_nsrc;
688 
689 	return (lims);
690 }
691 
692 /*
693  * Prune a source entry from an existing socket-layer filter set,
694  * maintaining any required invariants and checking allocations.
695  *
696  * The source is marked as being left at t1, it is not freed.
697  *
698  * Return 0 if no error occurred, otherwise return an errno value.
699  */
700 static int
701 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
702 {
703 	struct ip_msource	 find;
704 	struct ip_msource	*ims;
705 	struct in_msource	*lims;
706 
707 	/* key is host byte order */
708 	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
709 	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
710 	if (ims == NULL)
711 		return (ENOENT);
712 	lims = (struct in_msource *)ims;
713 	lims->imsl_st[1] = MCAST_UNDEFINED;
714 	return (0);
715 }
716 
717 /*
718  * Revert socket-layer filter set deltas at t1 to t0 state.
719  */
720 static void
721 imf_rollback(struct in_mfilter *imf)
722 {
723 	struct ip_msource	*ims, *tims;
724 	struct in_msource	*lims;
725 
726 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
727 		lims = (struct in_msource *)ims;
728 		if (lims->imsl_st[0] == lims->imsl_st[1]) {
729 			/* no change at t1 */
730 			continue;
731 		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
732 			/* revert change to existing source at t1 */
733 			lims->imsl_st[1] = lims->imsl_st[0];
734 		} else {
735 			/* revert source added t1 */
736 			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
737 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
738 			free(ims, M_INMFILTER);
739 			imf->imf_nsrc--;
740 		}
741 	}
742 	imf->imf_st[1] = imf->imf_st[0];
743 }
744 
745 /*
746  * Mark socket-layer filter set as INCLUDE {} at t1.
747  */
748 static void
749 imf_leave(struct in_mfilter *imf)
750 {
751 	struct ip_msource	*ims;
752 	struct in_msource	*lims;
753 
754 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
755 		lims = (struct in_msource *)ims;
756 		lims->imsl_st[1] = MCAST_UNDEFINED;
757 	}
758 	imf->imf_st[1] = MCAST_INCLUDE;
759 }
760 
761 /*
762  * Mark socket-layer filter set deltas as committed.
763  */
764 static void
765 imf_commit(struct in_mfilter *imf)
766 {
767 	struct ip_msource	*ims;
768 	struct in_msource	*lims;
769 
770 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
771 		lims = (struct in_msource *)ims;
772 		lims->imsl_st[0] = lims->imsl_st[1];
773 	}
774 	imf->imf_st[0] = imf->imf_st[1];
775 }
776 
777 /*
778  * Reap unreferenced sources from socket-layer filter set.
779  */
780 static void
781 imf_reap(struct in_mfilter *imf)
782 {
783 	struct ip_msource	*ims, *tims;
784 	struct in_msource	*lims;
785 
786 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
787 		lims = (struct in_msource *)ims;
788 		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
789 		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
790 			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
791 			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
792 			free(ims, M_INMFILTER);
793 			imf->imf_nsrc--;
794 		}
795 	}
796 }
797 
798 /*
799  * Purge socket-layer filter set.
800  */
801 static void
802 imf_purge(struct in_mfilter *imf)
803 {
804 	struct ip_msource	*ims, *tims;
805 
806 	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
807 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
808 		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
809 		free(ims, M_INMFILTER);
810 		imf->imf_nsrc--;
811 	}
812 	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
813 	KASSERT(RB_EMPTY(&imf->imf_sources),
814 	    ("%s: imf_sources not empty", __func__));
815 }
816 
817 /*
818  * Look up a source filter entry for a multicast group.
819  *
820  * inm is the group descriptor to work with.
821  * haddr is the host-byte-order IPv4 address to look up.
822  * noalloc may be non-zero to suppress allocation of sources.
823  * *pims will be set to the address of the retrieved or allocated source.
824  *
825  * SMPng: NOTE: may be called with locks held.
826  * Return 0 if successful, otherwise return a non-zero error code.
827  */
828 static int
829 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
830     const int noalloc, struct ip_msource **pims)
831 {
832 	struct ip_msource	 find;
833 	struct ip_msource	*ims, *nims;
834 #ifdef KTR
835 	struct in_addr ia;
836 #endif
837 
838 	find.ims_haddr = haddr;
839 	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
840 	if (ims == NULL && !noalloc) {
841 		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
842 			return (ENOSPC);
843 		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
844 		    M_NOWAIT | M_ZERO);
845 		if (nims == NULL)
846 			return (ENOMEM);
847 		nims->ims_haddr = haddr;
848 		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
849 		++inm->inm_nsrc;
850 		ims = nims;
851 #ifdef KTR
852 		ia.s_addr = htonl(haddr);
853 		CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__,
854 		    inet_ntoa(ia), ims);
855 #endif
856 	}
857 
858 	*pims = ims;
859 	return (0);
860 }
861 
862 /*
863  * Merge socket-layer source into IGMP-layer source.
864  * If rollback is non-zero, perform the inverse of the merge.
865  */
866 static void
867 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
868     const int rollback)
869 {
870 	int n = rollback ? -1 : 1;
871 #ifdef KTR
872 	struct in_addr ia;
873 
874 	ia.s_addr = htonl(ims->ims_haddr);
875 #endif
876 
877 	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
878 		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s",
879 		    __func__, n, inet_ntoa(ia));
880 		ims->ims_st[1].ex -= n;
881 	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
882 		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s",
883 		    __func__, n, inet_ntoa(ia));
884 		ims->ims_st[1].in -= n;
885 	}
886 
887 	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
888 		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s",
889 		    __func__, n, inet_ntoa(ia));
890 		ims->ims_st[1].ex += n;
891 	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
892 		CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s",
893 		    __func__, n, inet_ntoa(ia));
894 		ims->ims_st[1].in += n;
895 	}
896 }
897 
898 /*
899  * Atomically update the global in_multi state, when a membership's
900  * filter list is being updated in any way.
901  *
902  * imf is the per-inpcb-membership group filter pointer.
903  * A fake imf may be passed for in-kernel consumers.
904  *
905  * XXX This is a candidate for a set-symmetric-difference style loop
906  * which would eliminate the repeated lookup from root of ims nodes,
907  * as they share the same key space.
908  *
909  * If any error occurred this function will back out of refcounts
910  * and return a non-zero value.
911  */
912 static int
913 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
914 {
915 	struct ip_msource	*ims, *nims;
916 	struct in_msource	*lims;
917 	int			 schanged, error;
918 	int			 nsrc0, nsrc1;
919 
920 	schanged = 0;
921 	error = 0;
922 	nsrc1 = nsrc0 = 0;
923 
924 	/*
925 	 * Update the source filters first, as this may fail.
926 	 * Maintain count of in-mode filters at t0, t1. These are
927 	 * used to work out if we transition into ASM mode or not.
928 	 * Maintain a count of source filters whose state was
929 	 * actually modified by this operation.
930 	 */
931 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
932 		lims = (struct in_msource *)ims;
933 		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
934 		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
935 		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
936 		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
937 		++schanged;
938 		if (error)
939 			break;
940 		ims_merge(nims, lims, 0);
941 	}
942 	if (error) {
943 		struct ip_msource *bims;
944 
945 		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
946 			lims = (struct in_msource *)ims;
947 			if (lims->imsl_st[0] == lims->imsl_st[1])
948 				continue;
949 			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
950 			if (bims == NULL)
951 				continue;
952 			ims_merge(bims, lims, 1);
953 		}
954 		goto out_reap;
955 	}
956 
957 	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
958 	    __func__, nsrc0, nsrc1);
959 
960 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
961 	if (imf->imf_st[0] == imf->imf_st[1] &&
962 	    imf->imf_st[1] == MCAST_INCLUDE) {
963 		if (nsrc1 == 0) {
964 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
965 			--inm->inm_st[1].iss_in;
966 		}
967 	}
968 
969 	/* Handle filter mode transition on socket. */
970 	if (imf->imf_st[0] != imf->imf_st[1]) {
971 		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
972 		    __func__, imf->imf_st[0], imf->imf_st[1]);
973 
974 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
975 			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
976 			--inm->inm_st[1].iss_ex;
977 		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
978 			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
979 			--inm->inm_st[1].iss_in;
980 		}
981 
982 		if (imf->imf_st[1] == MCAST_EXCLUDE) {
983 			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
984 			inm->inm_st[1].iss_ex++;
985 		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
986 			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
987 			inm->inm_st[1].iss_in++;
988 		}
989 	}
990 
991 	/*
992 	 * Track inm filter state in terms of listener counts.
993 	 * If there are any exclusive listeners, stack-wide
994 	 * membership is exclusive.
995 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
996 	 * If no listeners remain, state is undefined at t1,
997 	 * and the IGMP lifecycle for this group should finish.
998 	 */
999 	if (inm->inm_st[1].iss_ex > 0) {
1000 		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1001 		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1002 	} else if (inm->inm_st[1].iss_in > 0) {
1003 		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1004 		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1005 	} else {
1006 		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1007 		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1008 	}
1009 
1010 	/* Decrement ASM listener count on transition out of ASM mode. */
1011 	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1012 		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1013 		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1014 			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1015 			--inm->inm_st[1].iss_asm;
1016 	}
1017 
1018 	/* Increment ASM listener count on transition to ASM mode. */
1019 	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1020 		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1021 		inm->inm_st[1].iss_asm++;
1022 	}
1023 
1024 	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1025 	inm_print(inm);
1026 
1027 out_reap:
1028 	if (schanged > 0) {
1029 		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1030 		inm_reap(inm);
1031 	}
1032 	return (error);
1033 }
1034 
1035 /*
1036  * Mark an in_multi's filter set deltas as committed.
1037  * Called by IGMP after a state change has been enqueued.
1038  */
1039 void
1040 inm_commit(struct in_multi *inm)
1041 {
1042 	struct ip_msource	*ims;
1043 
1044 	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1045 	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1046 	inm_print(inm);
1047 
1048 	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1049 		ims->ims_st[0] = ims->ims_st[1];
1050 	}
1051 	inm->inm_st[0] = inm->inm_st[1];
1052 }
1053 
1054 /*
1055  * Reap unreferenced nodes from an in_multi's filter set.
1056  */
1057 static void
1058 inm_reap(struct in_multi *inm)
1059 {
1060 	struct ip_msource	*ims, *tims;
1061 
1062 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1063 		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1064 		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1065 		    ims->ims_stp != 0)
1066 			continue;
1067 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1068 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1069 		free(ims, M_IPMSOURCE);
1070 		inm->inm_nsrc--;
1071 	}
1072 }
1073 
1074 /*
1075  * Purge all source nodes from an in_multi's filter set.
1076  */
1077 static void
1078 inm_purge(struct in_multi *inm)
1079 {
1080 	struct ip_msource	*ims, *tims;
1081 
1082 	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1083 		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1084 		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1085 		free(ims, M_IPMSOURCE);
1086 		inm->inm_nsrc--;
1087 	}
1088 }
1089 
1090 /*
1091  * Join a multicast group; unlocked entry point.
1092  *
1093  * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1094  * is not held. Fortunately, ifp is unlikely to have been detached
1095  * at this point, so we assume it's OK to recurse.
1096  */
1097 int
1098 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1099     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1100 {
1101 	int error;
1102 
1103 	IN_MULTI_LOCK();
1104 	error = in_joingroup_locked(ifp, gina, imf, pinm);
1105 	IN_MULTI_UNLOCK();
1106 
1107 	return (error);
1108 }
1109 
1110 /*
1111  * Join a multicast group; real entry point.
1112  *
1113  * Only preserves atomicity at inm level.
1114  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1115  *
1116  * If the IGMP downcall fails, the group is not joined, and an error
1117  * code is returned.
1118  */
1119 int
1120 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1121     /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1122 {
1123 	struct in_mfilter	 timf;
1124 	struct in_multi		*inm;
1125 	int			 error;
1126 
1127 	IN_MULTI_LOCK_ASSERT();
1128 
1129 	CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__,
1130 	    inet_ntoa(*gina), ifp, ifp->if_xname);
1131 
1132 	error = 0;
1133 	inm = NULL;
1134 
1135 	/*
1136 	 * If no imf was specified (i.e. kernel consumer),
1137 	 * fake one up and assume it is an ASM join.
1138 	 */
1139 	if (imf == NULL) {
1140 		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1141 		imf = &timf;
1142 	}
1143 
1144 	error = in_getmulti(ifp, gina, &inm);
1145 	if (error) {
1146 		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1147 		return (error);
1148 	}
1149 
1150 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1151 	error = inm_merge(inm, imf);
1152 	if (error) {
1153 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1154 		goto out_inm_release;
1155 	}
1156 
1157 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1158 	error = igmp_change_state(inm);
1159 	if (error) {
1160 		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1161 		goto out_inm_release;
1162 	}
1163 
1164 out_inm_release:
1165 	if (error) {
1166 		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1167 		inm_release_locked(inm);
1168 	} else {
1169 		*pinm = inm;
1170 	}
1171 
1172 	return (error);
1173 }
1174 
1175 /*
1176  * Leave a multicast group; unlocked entry point.
1177  */
1178 int
1179 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1180 {
1181 	int error;
1182 
1183 	IN_MULTI_LOCK();
1184 	error = in_leavegroup_locked(inm, imf);
1185 	IN_MULTI_UNLOCK();
1186 
1187 	return (error);
1188 }
1189 
1190 /*
1191  * Leave a multicast group; real entry point.
1192  * All source filters will be expunged.
1193  *
1194  * Only preserves atomicity at inm level.
1195  *
1196  * Holding the write lock for the INP which contains imf
1197  * is highly advisable. We can't assert for it as imf does not
1198  * contain a back-pointer to the owning inp.
1199  *
1200  * Note: This is not the same as inm_release(*) as this function also
1201  * makes a state change downcall into IGMP.
1202  */
1203 int
1204 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1205 {
1206 	struct in_mfilter	 timf;
1207 	int			 error;
1208 
1209 	error = 0;
1210 
1211 	IN_MULTI_LOCK_ASSERT();
1212 
1213 	CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__,
1214 	    inm, inet_ntoa(inm->inm_addr),
1215 	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1216 	    imf);
1217 
1218 	/*
1219 	 * If no imf was specified (i.e. kernel consumer),
1220 	 * fake one up and assume it is an ASM join.
1221 	 */
1222 	if (imf == NULL) {
1223 		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1224 		imf = &timf;
1225 	}
1226 
1227 	/*
1228 	 * Begin state merge transaction at IGMP layer.
1229 	 *
1230 	 * As this particular invocation should not cause any memory
1231 	 * to be allocated, and there is no opportunity to roll back
1232 	 * the transaction, it MUST NOT fail.
1233 	 */
1234 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1235 	error = inm_merge(inm, imf);
1236 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1237 
1238 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1239 	CURVNET_SET(inm->inm_ifp->if_vnet);
1240 	error = igmp_change_state(inm);
1241 	CURVNET_RESTORE();
1242 	if (error)
1243 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1244 
1245 	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1246 	inm_release_locked(inm);
1247 
1248 	return (error);
1249 }
1250 
1251 /*#ifndef BURN_BRIDGES*/
1252 /*
1253  * Join an IPv4 multicast group in (*,G) exclusive mode.
1254  * The group must be a 224.0.0.0/24 link-scope group.
1255  * This KPI is for legacy kernel consumers only.
1256  */
1257 struct in_multi *
1258 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1259 {
1260 	struct in_multi *pinm;
1261 	int error;
1262 
1263 	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1264 	    ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap)));
1265 
1266 	error = in_joingroup(ifp, ap, NULL, &pinm);
1267 	if (error != 0)
1268 		pinm = NULL;
1269 
1270 	return (pinm);
1271 }
1272 
1273 /*
1274  * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1275  * This KPI is for legacy kernel consumers only.
1276  */
1277 void
1278 in_delmulti(struct in_multi *inm)
1279 {
1280 
1281 	(void)in_leavegroup(inm, NULL);
1282 }
1283 /*#endif*/
1284 
1285 /*
1286  * Block or unblock an ASM multicast source on an inpcb.
1287  * This implements the delta-based API described in RFC 3678.
1288  *
1289  * The delta-based API applies only to exclusive-mode memberships.
1290  * An IGMP downcall will be performed.
1291  *
1292  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1293  *
1294  * Return 0 if successful, otherwise return an appropriate error code.
1295  */
1296 static int
1297 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1298 {
1299 	struct group_source_req		 gsr;
1300 	sockunion_t			*gsa, *ssa;
1301 	struct ifnet			*ifp;
1302 	struct in_mfilter		*imf;
1303 	struct ip_moptions		*imo;
1304 	struct in_msource		*ims;
1305 	struct in_multi			*inm;
1306 	size_t				 idx;
1307 	uint16_t			 fmode;
1308 	int				 error, doblock;
1309 
1310 	ifp = NULL;
1311 	error = 0;
1312 	doblock = 0;
1313 
1314 	memset(&gsr, 0, sizeof(struct group_source_req));
1315 	gsa = (sockunion_t *)&gsr.gsr_group;
1316 	ssa = (sockunion_t *)&gsr.gsr_source;
1317 
1318 	switch (sopt->sopt_name) {
1319 	case IP_BLOCK_SOURCE:
1320 	case IP_UNBLOCK_SOURCE: {
1321 		struct ip_mreq_source	 mreqs;
1322 
1323 		error = sooptcopyin(sopt, &mreqs,
1324 		    sizeof(struct ip_mreq_source),
1325 		    sizeof(struct ip_mreq_source));
1326 		if (error)
1327 			return (error);
1328 
1329 		gsa->sin.sin_family = AF_INET;
1330 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1331 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1332 
1333 		ssa->sin.sin_family = AF_INET;
1334 		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1335 		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1336 
1337 		if (!in_nullhost(mreqs.imr_interface))
1338 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1339 
1340 		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1341 			doblock = 1;
1342 
1343 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1344 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1345 		break;
1346 	    }
1347 
1348 	case MCAST_BLOCK_SOURCE:
1349 	case MCAST_UNBLOCK_SOURCE:
1350 		error = sooptcopyin(sopt, &gsr,
1351 		    sizeof(struct group_source_req),
1352 		    sizeof(struct group_source_req));
1353 		if (error)
1354 			return (error);
1355 
1356 		if (gsa->sin.sin_family != AF_INET ||
1357 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1358 			return (EINVAL);
1359 
1360 		if (ssa->sin.sin_family != AF_INET ||
1361 		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1362 			return (EINVAL);
1363 
1364 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1365 			return (EADDRNOTAVAIL);
1366 
1367 		ifp = ifnet_byindex(gsr.gsr_interface);
1368 
1369 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1370 			doblock = 1;
1371 		break;
1372 
1373 	default:
1374 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1375 		    __func__, sopt->sopt_name);
1376 		return (EOPNOTSUPP);
1377 		break;
1378 	}
1379 
1380 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1381 		return (EINVAL);
1382 
1383 	/*
1384 	 * Check if we are actually a member of this group.
1385 	 */
1386 	imo = inp_findmoptions(inp);
1387 	idx = imo_match_group(imo, ifp, &gsa->sa);
1388 	if (idx == -1 || imo->imo_mfilters == NULL) {
1389 		error = EADDRNOTAVAIL;
1390 		goto out_inp_locked;
1391 	}
1392 
1393 	KASSERT(imo->imo_mfilters != NULL,
1394 	    ("%s: imo_mfilters not allocated", __func__));
1395 	imf = &imo->imo_mfilters[idx];
1396 	inm = imo->imo_membership[idx];
1397 
1398 	/*
1399 	 * Attempting to use the delta-based API on an
1400 	 * non exclusive-mode membership is an error.
1401 	 */
1402 	fmode = imf->imf_st[0];
1403 	if (fmode != MCAST_EXCLUDE) {
1404 		error = EINVAL;
1405 		goto out_inp_locked;
1406 	}
1407 
1408 	/*
1409 	 * Deal with error cases up-front:
1410 	 *  Asked to block, but already blocked; or
1411 	 *  Asked to unblock, but nothing to unblock.
1412 	 * If adding a new block entry, allocate it.
1413 	 */
1414 	ims = imo_match_source(imo, idx, &ssa->sa);
1415 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1416 		CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
1417 		    inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not ");
1418 		error = EADDRNOTAVAIL;
1419 		goto out_inp_locked;
1420 	}
1421 
1422 	INP_WLOCK_ASSERT(inp);
1423 
1424 	/*
1425 	 * Begin state merge transaction at socket layer.
1426 	 */
1427 	if (doblock) {
1428 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1429 		ims = imf_graft(imf, fmode, &ssa->sin);
1430 		if (ims == NULL)
1431 			error = ENOMEM;
1432 	} else {
1433 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1434 		error = imf_prune(imf, &ssa->sin);
1435 	}
1436 
1437 	if (error) {
1438 		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1439 		goto out_imf_rollback;
1440 	}
1441 
1442 	/*
1443 	 * Begin state merge transaction at IGMP layer.
1444 	 */
1445 	IN_MULTI_LOCK();
1446 
1447 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1448 	error = inm_merge(inm, imf);
1449 	if (error) {
1450 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1451 		goto out_imf_rollback;
1452 	}
1453 
1454 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1455 	error = igmp_change_state(inm);
1456 	if (error)
1457 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1458 
1459 	IN_MULTI_UNLOCK();
1460 
1461 out_imf_rollback:
1462 	if (error)
1463 		imf_rollback(imf);
1464 	else
1465 		imf_commit(imf);
1466 
1467 	imf_reap(imf);
1468 
1469 out_inp_locked:
1470 	INP_WUNLOCK(inp);
1471 	return (error);
1472 }
1473 
1474 /*
1475  * Given an inpcb, return its multicast options structure pointer.  Accepts
1476  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1477  *
1478  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1479  * SMPng: NOTE: Returns with the INP write lock held.
1480  */
1481 static struct ip_moptions *
1482 inp_findmoptions(struct inpcb *inp)
1483 {
1484 	struct ip_moptions	 *imo;
1485 	struct in_multi		**immp;
1486 	struct in_mfilter	 *imfp;
1487 	size_t			  idx;
1488 
1489 	INP_WLOCK(inp);
1490 	if (inp->inp_moptions != NULL)
1491 		return (inp->inp_moptions);
1492 
1493 	INP_WUNLOCK(inp);
1494 
1495 	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1496 	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1497 	    M_WAITOK | M_ZERO);
1498 	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1499 	    M_INMFILTER, M_WAITOK);
1500 
1501 	imo->imo_multicast_ifp = NULL;
1502 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1503 	imo->imo_multicast_vif = -1;
1504 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1505 	imo->imo_multicast_loop = in_mcast_loop;
1506 	imo->imo_num_memberships = 0;
1507 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1508 	imo->imo_membership = immp;
1509 
1510 	/* Initialize per-group source filters. */
1511 	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1512 		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1513 	imo->imo_mfilters = imfp;
1514 
1515 	INP_WLOCK(inp);
1516 	if (inp->inp_moptions != NULL) {
1517 		free(imfp, M_INMFILTER);
1518 		free(immp, M_IPMOPTS);
1519 		free(imo, M_IPMOPTS);
1520 		return (inp->inp_moptions);
1521 	}
1522 	inp->inp_moptions = imo;
1523 	return (imo);
1524 }
1525 
1526 /*
1527  * Discard the IP multicast options (and source filters).  To minimize
1528  * the amount of work done while holding locks such as the INP's
1529  * pcbinfo lock (which is used in the receive path), the free
1530  * operation is performed asynchronously in a separate task.
1531  *
1532  * SMPng: NOTE: assumes INP write lock is held.
1533  */
1534 void
1535 inp_freemoptions(struct ip_moptions *imo)
1536 {
1537 
1538 	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1539 	IN_MULTI_LOCK();
1540 	STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link);
1541 	IN_MULTI_UNLOCK();
1542 	taskqueue_enqueue(taskqueue_thread, &imo_gc_task);
1543 }
1544 
1545 static void
1546 inp_freemoptions_internal(struct ip_moptions *imo)
1547 {
1548 	struct in_mfilter	*imf;
1549 	size_t			 idx, nmships;
1550 
1551 	nmships = imo->imo_num_memberships;
1552 	for (idx = 0; idx < nmships; ++idx) {
1553 		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1554 		if (imf)
1555 			imf_leave(imf);
1556 		(void)in_leavegroup(imo->imo_membership[idx], imf);
1557 		if (imf)
1558 			imf_purge(imf);
1559 	}
1560 
1561 	if (imo->imo_mfilters)
1562 		free(imo->imo_mfilters, M_INMFILTER);
1563 	free(imo->imo_membership, M_IPMOPTS);
1564 	free(imo, M_IPMOPTS);
1565 }
1566 
1567 static void
1568 inp_gcmoptions(void *context, int pending)
1569 {
1570 	struct ip_moptions *imo;
1571 
1572 	IN_MULTI_LOCK();
1573 	while (!STAILQ_EMPTY(&imo_gc_list)) {
1574 		imo = STAILQ_FIRST(&imo_gc_list);
1575 		STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link);
1576 		IN_MULTI_UNLOCK();
1577 		inp_freemoptions_internal(imo);
1578 		IN_MULTI_LOCK();
1579 	}
1580 	IN_MULTI_UNLOCK();
1581 }
1582 
1583 /*
1584  * Atomically get source filters on a socket for an IPv4 multicast group.
1585  * Called with INP lock held; returns with lock released.
1586  */
1587 static int
1588 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1589 {
1590 	struct __msfilterreq	 msfr;
1591 	sockunion_t		*gsa;
1592 	struct ifnet		*ifp;
1593 	struct ip_moptions	*imo;
1594 	struct in_mfilter	*imf;
1595 	struct ip_msource	*ims;
1596 	struct in_msource	*lims;
1597 	struct sockaddr_in	*psin;
1598 	struct sockaddr_storage	*ptss;
1599 	struct sockaddr_storage	*tss;
1600 	int			 error;
1601 	size_t			 idx, nsrcs, ncsrcs;
1602 
1603 	INP_WLOCK_ASSERT(inp);
1604 
1605 	imo = inp->inp_moptions;
1606 	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1607 
1608 	INP_WUNLOCK(inp);
1609 
1610 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1611 	    sizeof(struct __msfilterreq));
1612 	if (error)
1613 		return (error);
1614 
1615 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1616 		return (EINVAL);
1617 
1618 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1619 	if (ifp == NULL)
1620 		return (EINVAL);
1621 
1622 	INP_WLOCK(inp);
1623 
1624 	/*
1625 	 * Lookup group on the socket.
1626 	 */
1627 	gsa = (sockunion_t *)&msfr.msfr_group;
1628 	idx = imo_match_group(imo, ifp, &gsa->sa);
1629 	if (idx == -1 || imo->imo_mfilters == NULL) {
1630 		INP_WUNLOCK(inp);
1631 		return (EADDRNOTAVAIL);
1632 	}
1633 	imf = &imo->imo_mfilters[idx];
1634 
1635 	/*
1636 	 * Ignore memberships which are in limbo.
1637 	 */
1638 	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1639 		INP_WUNLOCK(inp);
1640 		return (EAGAIN);
1641 	}
1642 	msfr.msfr_fmode = imf->imf_st[1];
1643 
1644 	/*
1645 	 * If the user specified a buffer, copy out the source filter
1646 	 * entries to userland gracefully.
1647 	 * We only copy out the number of entries which userland
1648 	 * has asked for, but we always tell userland how big the
1649 	 * buffer really needs to be.
1650 	 */
1651 	tss = NULL;
1652 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1653 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1654 		    M_TEMP, M_NOWAIT | M_ZERO);
1655 		if (tss == NULL) {
1656 			INP_WUNLOCK(inp);
1657 			return (ENOBUFS);
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * Count number of sources in-mode at t0.
1663 	 * If buffer space exists and remains, copy out source entries.
1664 	 */
1665 	nsrcs = msfr.msfr_nsrcs;
1666 	ncsrcs = 0;
1667 	ptss = tss;
1668 	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1669 		lims = (struct in_msource *)ims;
1670 		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1671 		    lims->imsl_st[0] != imf->imf_st[0])
1672 			continue;
1673 		++ncsrcs;
1674 		if (tss != NULL && nsrcs > 0) {
1675 			psin = (struct sockaddr_in *)ptss;
1676 			psin->sin_family = AF_INET;
1677 			psin->sin_len = sizeof(struct sockaddr_in);
1678 			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1679 			psin->sin_port = 0;
1680 			++ptss;
1681 			--nsrcs;
1682 		}
1683 	}
1684 
1685 	INP_WUNLOCK(inp);
1686 
1687 	if (tss != NULL) {
1688 		error = copyout(tss, msfr.msfr_srcs,
1689 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1690 		free(tss, M_TEMP);
1691 		if (error)
1692 			return (error);
1693 	}
1694 
1695 	msfr.msfr_nsrcs = ncsrcs;
1696 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1697 
1698 	return (error);
1699 }
1700 
1701 /*
1702  * Return the IP multicast options in response to user getsockopt().
1703  */
1704 int
1705 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1706 {
1707 	struct ip_mreqn		 mreqn;
1708 	struct ip_moptions	*imo;
1709 	struct ifnet		*ifp;
1710 	struct in_ifaddr	*ia;
1711 	int			 error, optval;
1712 	u_char			 coptval;
1713 
1714 	INP_WLOCK(inp);
1715 	imo = inp->inp_moptions;
1716 	/*
1717 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1718 	 * or is a divert socket, reject it.
1719 	 */
1720 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1721 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1722 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1723 		INP_WUNLOCK(inp);
1724 		return (EOPNOTSUPP);
1725 	}
1726 
1727 	error = 0;
1728 	switch (sopt->sopt_name) {
1729 	case IP_MULTICAST_VIF:
1730 		if (imo != NULL)
1731 			optval = imo->imo_multicast_vif;
1732 		else
1733 			optval = -1;
1734 		INP_WUNLOCK(inp);
1735 		error = sooptcopyout(sopt, &optval, sizeof(int));
1736 		break;
1737 
1738 	case IP_MULTICAST_IF:
1739 		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1740 		if (imo != NULL) {
1741 			ifp = imo->imo_multicast_ifp;
1742 			if (!in_nullhost(imo->imo_multicast_addr)) {
1743 				mreqn.imr_address = imo->imo_multicast_addr;
1744 			} else if (ifp != NULL) {
1745 				mreqn.imr_ifindex = ifp->if_index;
1746 				IFP_TO_IA(ifp, ia);
1747 				if (ia != NULL) {
1748 					mreqn.imr_address =
1749 					    IA_SIN(ia)->sin_addr;
1750 					ifa_free(&ia->ia_ifa);
1751 				}
1752 			}
1753 		}
1754 		INP_WUNLOCK(inp);
1755 		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1756 			error = sooptcopyout(sopt, &mreqn,
1757 			    sizeof(struct ip_mreqn));
1758 		} else {
1759 			error = sooptcopyout(sopt, &mreqn.imr_address,
1760 			    sizeof(struct in_addr));
1761 		}
1762 		break;
1763 
1764 	case IP_MULTICAST_TTL:
1765 		if (imo == 0)
1766 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1767 		else
1768 			optval = coptval = imo->imo_multicast_ttl;
1769 		INP_WUNLOCK(inp);
1770 		if (sopt->sopt_valsize == sizeof(u_char))
1771 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1772 		else
1773 			error = sooptcopyout(sopt, &optval, sizeof(int));
1774 		break;
1775 
1776 	case IP_MULTICAST_LOOP:
1777 		if (imo == 0)
1778 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1779 		else
1780 			optval = coptval = imo->imo_multicast_loop;
1781 		INP_WUNLOCK(inp);
1782 		if (sopt->sopt_valsize == sizeof(u_char))
1783 			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1784 		else
1785 			error = sooptcopyout(sopt, &optval, sizeof(int));
1786 		break;
1787 
1788 	case IP_MSFILTER:
1789 		if (imo == NULL) {
1790 			error = EADDRNOTAVAIL;
1791 			INP_WUNLOCK(inp);
1792 		} else {
1793 			error = inp_get_source_filters(inp, sopt);
1794 		}
1795 		break;
1796 
1797 	default:
1798 		INP_WUNLOCK(inp);
1799 		error = ENOPROTOOPT;
1800 		break;
1801 	}
1802 
1803 	INP_UNLOCK_ASSERT(inp);
1804 
1805 	return (error);
1806 }
1807 
1808 /*
1809  * Look up the ifnet to use for a multicast group membership,
1810  * given the IPv4 address of an interface, and the IPv4 group address.
1811  *
1812  * This routine exists to support legacy multicast applications
1813  * which do not understand that multicast memberships are scoped to
1814  * specific physical links in the networking stack, or which need
1815  * to join link-scope groups before IPv4 addresses are configured.
1816  *
1817  * If inp is non-NULL, use this socket's current FIB number for any
1818  * required FIB lookup.
1819  * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1820  * and use its ifp; usually, this points to the default next-hop.
1821  *
1822  * If the FIB lookup fails, attempt to use the first non-loopback
1823  * interface with multicast capability in the system as a
1824  * last resort. The legacy IPv4 ASM API requires that we do
1825  * this in order to allow groups to be joined when the routing
1826  * table has not yet been populated during boot.
1827  *
1828  * Returns NULL if no ifp could be found.
1829  *
1830  * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1831  * FUTURE: Implement IPv4 source-address selection.
1832  */
1833 static struct ifnet *
1834 inp_lookup_mcast_ifp(const struct inpcb *inp,
1835     const struct sockaddr_in *gsin, const struct in_addr ina)
1836 {
1837 	struct ifnet *ifp;
1838 
1839 	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1840 	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1841 	    ("%s: not multicast", __func__));
1842 
1843 	ifp = NULL;
1844 	if (!in_nullhost(ina)) {
1845 		INADDR_TO_IFP(ina, ifp);
1846 	} else {
1847 		struct route ro;
1848 
1849 		ro.ro_rt = NULL;
1850 		memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
1851 		in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1852 		if (ro.ro_rt != NULL) {
1853 			ifp = ro.ro_rt->rt_ifp;
1854 			KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1855 			RTFREE(ro.ro_rt);
1856 		} else {
1857 			struct in_ifaddr *ia;
1858 			struct ifnet *mifp;
1859 
1860 			mifp = NULL;
1861 			IN_IFADDR_RLOCK();
1862 			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1863 				mifp = ia->ia_ifp;
1864 				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1865 				     (mifp->if_flags & IFF_MULTICAST)) {
1866 					ifp = mifp;
1867 					break;
1868 				}
1869 			}
1870 			IN_IFADDR_RUNLOCK();
1871 		}
1872 	}
1873 
1874 	return (ifp);
1875 }
1876 
1877 /*
1878  * Join an IPv4 multicast group, possibly with a source.
1879  */
1880 static int
1881 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1882 {
1883 	struct group_source_req		 gsr;
1884 	sockunion_t			*gsa, *ssa;
1885 	struct ifnet			*ifp;
1886 	struct in_mfilter		*imf;
1887 	struct ip_moptions		*imo;
1888 	struct in_multi			*inm;
1889 	struct in_msource		*lims;
1890 	size_t				 idx;
1891 	int				 error, is_new;
1892 
1893 	ifp = NULL;
1894 	imf = NULL;
1895 	lims = NULL;
1896 	error = 0;
1897 	is_new = 0;
1898 
1899 	memset(&gsr, 0, sizeof(struct group_source_req));
1900 	gsa = (sockunion_t *)&gsr.gsr_group;
1901 	gsa->ss.ss_family = AF_UNSPEC;
1902 	ssa = (sockunion_t *)&gsr.gsr_source;
1903 	ssa->ss.ss_family = AF_UNSPEC;
1904 
1905 	switch (sopt->sopt_name) {
1906 	case IP_ADD_MEMBERSHIP:
1907 	case IP_ADD_SOURCE_MEMBERSHIP: {
1908 		struct ip_mreq_source	 mreqs;
1909 
1910 		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
1911 			error = sooptcopyin(sopt, &mreqs,
1912 			    sizeof(struct ip_mreq),
1913 			    sizeof(struct ip_mreq));
1914 			/*
1915 			 * Do argument switcharoo from ip_mreq into
1916 			 * ip_mreq_source to avoid using two instances.
1917 			 */
1918 			mreqs.imr_interface = mreqs.imr_sourceaddr;
1919 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
1920 		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1921 			error = sooptcopyin(sopt, &mreqs,
1922 			    sizeof(struct ip_mreq_source),
1923 			    sizeof(struct ip_mreq_source));
1924 		}
1925 		if (error)
1926 			return (error);
1927 
1928 		gsa->sin.sin_family = AF_INET;
1929 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1930 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1931 
1932 		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1933 			ssa->sin.sin_family = AF_INET;
1934 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
1935 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1936 		}
1937 
1938 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1939 			return (EINVAL);
1940 
1941 		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1942 		    mreqs.imr_interface);
1943 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1944 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1945 		break;
1946 	}
1947 
1948 	case MCAST_JOIN_GROUP:
1949 	case MCAST_JOIN_SOURCE_GROUP:
1950 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1951 			error = sooptcopyin(sopt, &gsr,
1952 			    sizeof(struct group_req),
1953 			    sizeof(struct group_req));
1954 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1955 			error = sooptcopyin(sopt, &gsr,
1956 			    sizeof(struct group_source_req),
1957 			    sizeof(struct group_source_req));
1958 		}
1959 		if (error)
1960 			return (error);
1961 
1962 		if (gsa->sin.sin_family != AF_INET ||
1963 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1964 			return (EINVAL);
1965 
1966 		/*
1967 		 * Overwrite the port field if present, as the sockaddr
1968 		 * being copied in may be matched with a binary comparison.
1969 		 */
1970 		gsa->sin.sin_port = 0;
1971 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1972 			if (ssa->sin.sin_family != AF_INET ||
1973 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1974 				return (EINVAL);
1975 			ssa->sin.sin_port = 0;
1976 		}
1977 
1978 		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1979 			return (EINVAL);
1980 
1981 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1982 			return (EADDRNOTAVAIL);
1983 		ifp = ifnet_byindex(gsr.gsr_interface);
1984 		break;
1985 
1986 	default:
1987 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1988 		    __func__, sopt->sopt_name);
1989 		return (EOPNOTSUPP);
1990 		break;
1991 	}
1992 
1993 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1994 		return (EADDRNOTAVAIL);
1995 
1996 	imo = inp_findmoptions(inp);
1997 	idx = imo_match_group(imo, ifp, &gsa->sa);
1998 	if (idx == -1) {
1999 		is_new = 1;
2000 	} else {
2001 		inm = imo->imo_membership[idx];
2002 		imf = &imo->imo_mfilters[idx];
2003 		if (ssa->ss.ss_family != AF_UNSPEC) {
2004 			/*
2005 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2006 			 * is an error. On an existing inclusive membership,
2007 			 * it just adds the source to the filter list.
2008 			 */
2009 			if (imf->imf_st[1] != MCAST_INCLUDE) {
2010 				error = EINVAL;
2011 				goto out_inp_locked;
2012 			}
2013 			/*
2014 			 * Throw out duplicates.
2015 			 *
2016 			 * XXX FIXME: This makes a naive assumption that
2017 			 * even if entries exist for *ssa in this imf,
2018 			 * they will be rejected as dupes, even if they
2019 			 * are not valid in the current mode (in-mode).
2020 			 *
2021 			 * in_msource is transactioned just as for anything
2022 			 * else in SSM -- but note naive use of inm_graft()
2023 			 * below for allocating new filter entries.
2024 			 *
2025 			 * This is only an issue if someone mixes the
2026 			 * full-state SSM API with the delta-based API,
2027 			 * which is discouraged in the relevant RFCs.
2028 			 */
2029 			lims = imo_match_source(imo, idx, &ssa->sa);
2030 			if (lims != NULL /*&&
2031 			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2032 				error = EADDRNOTAVAIL;
2033 				goto out_inp_locked;
2034 			}
2035 		} else {
2036 			/*
2037 			 * MCAST_JOIN_GROUP on an existing exclusive
2038 			 * membership is an error; return EADDRINUSE
2039 			 * to preserve 4.4BSD API idempotence, and
2040 			 * avoid tedious detour to code below.
2041 			 * NOTE: This is bending RFC 3678 a bit.
2042 			 *
2043 			 * On an existing inclusive membership, this is also
2044 			 * an error; if you want to change filter mode,
2045 			 * you must use the userland API setsourcefilter().
2046 			 * XXX We don't reject this for imf in UNDEFINED
2047 			 * state at t1, because allocation of a filter
2048 			 * is atomic with allocation of a membership.
2049 			 */
2050 			error = EINVAL;
2051 			if (imf->imf_st[1] == MCAST_EXCLUDE)
2052 				error = EADDRINUSE;
2053 			goto out_inp_locked;
2054 		}
2055 	}
2056 
2057 	/*
2058 	 * Begin state merge transaction at socket layer.
2059 	 */
2060 	INP_WLOCK_ASSERT(inp);
2061 
2062 	if (is_new) {
2063 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2064 			error = imo_grow(imo);
2065 			if (error)
2066 				goto out_inp_locked;
2067 		}
2068 		/*
2069 		 * Allocate the new slot upfront so we can deal with
2070 		 * grafting the new source filter in same code path
2071 		 * as for join-source on existing membership.
2072 		 */
2073 		idx = imo->imo_num_memberships;
2074 		imo->imo_membership[idx] = NULL;
2075 		imo->imo_num_memberships++;
2076 		KASSERT(imo->imo_mfilters != NULL,
2077 		    ("%s: imf_mfilters vector was not allocated", __func__));
2078 		imf = &imo->imo_mfilters[idx];
2079 		KASSERT(RB_EMPTY(&imf->imf_sources),
2080 		    ("%s: imf_sources not empty", __func__));
2081 	}
2082 
2083 	/*
2084 	 * Graft new source into filter list for this inpcb's
2085 	 * membership of the group. The in_multi may not have
2086 	 * been allocated yet if this is a new membership, however,
2087 	 * the in_mfilter slot will be allocated and must be initialized.
2088 	 *
2089 	 * Note: Grafting of exclusive mode filters doesn't happen
2090 	 * in this path.
2091 	 * XXX: Should check for non-NULL lims (node exists but may
2092 	 * not be in-mode) for interop with full-state API.
2093 	 */
2094 	if (ssa->ss.ss_family != AF_UNSPEC) {
2095 		/* Membership starts in IN mode */
2096 		if (is_new) {
2097 			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2098 			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2099 		} else {
2100 			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2101 		}
2102 		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2103 		if (lims == NULL) {
2104 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2105 			    __func__);
2106 			error = ENOMEM;
2107 			goto out_imo_free;
2108 		}
2109 	} else {
2110 		/* No address specified; Membership starts in EX mode */
2111 		if (is_new) {
2112 			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2113 			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2114 		}
2115 	}
2116 
2117 	/*
2118 	 * Begin state merge transaction at IGMP layer.
2119 	 */
2120 	IN_MULTI_LOCK();
2121 
2122 	if (is_new) {
2123 		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2124 		    &inm);
2125 		if (error)
2126 			goto out_imo_free;
2127 		imo->imo_membership[idx] = inm;
2128 	} else {
2129 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2130 		error = inm_merge(inm, imf);
2131 		if (error) {
2132 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2133 			    __func__);
2134 			goto out_imf_rollback;
2135 		}
2136 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2137 		error = igmp_change_state(inm);
2138 		if (error) {
2139 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2140 			    __func__);
2141 			goto out_imf_rollback;
2142 		}
2143 	}
2144 
2145 	IN_MULTI_UNLOCK();
2146 
2147 out_imf_rollback:
2148 	INP_WLOCK_ASSERT(inp);
2149 	if (error) {
2150 		imf_rollback(imf);
2151 		if (is_new)
2152 			imf_purge(imf);
2153 		else
2154 			imf_reap(imf);
2155 	} else {
2156 		imf_commit(imf);
2157 	}
2158 
2159 out_imo_free:
2160 	if (error && is_new) {
2161 		imo->imo_membership[idx] = NULL;
2162 		--imo->imo_num_memberships;
2163 	}
2164 
2165 out_inp_locked:
2166 	INP_WUNLOCK(inp);
2167 	return (error);
2168 }
2169 
2170 /*
2171  * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2172  */
2173 static int
2174 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2175 {
2176 	struct group_source_req		 gsr;
2177 	struct ip_mreq_source		 mreqs;
2178 	sockunion_t			*gsa, *ssa;
2179 	struct ifnet			*ifp;
2180 	struct in_mfilter		*imf;
2181 	struct ip_moptions		*imo;
2182 	struct in_msource		*ims;
2183 	struct in_multi			*inm;
2184 	size_t				 idx;
2185 	int				 error, is_final;
2186 
2187 	ifp = NULL;
2188 	error = 0;
2189 	is_final = 1;
2190 
2191 	memset(&gsr, 0, sizeof(struct group_source_req));
2192 	gsa = (sockunion_t *)&gsr.gsr_group;
2193 	gsa->ss.ss_family = AF_UNSPEC;
2194 	ssa = (sockunion_t *)&gsr.gsr_source;
2195 	ssa->ss.ss_family = AF_UNSPEC;
2196 
2197 	switch (sopt->sopt_name) {
2198 	case IP_DROP_MEMBERSHIP:
2199 	case IP_DROP_SOURCE_MEMBERSHIP:
2200 		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2201 			error = sooptcopyin(sopt, &mreqs,
2202 			    sizeof(struct ip_mreq),
2203 			    sizeof(struct ip_mreq));
2204 			/*
2205 			 * Swap interface and sourceaddr arguments,
2206 			 * as ip_mreq and ip_mreq_source are laid
2207 			 * out differently.
2208 			 */
2209 			mreqs.imr_interface = mreqs.imr_sourceaddr;
2210 			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2211 		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2212 			error = sooptcopyin(sopt, &mreqs,
2213 			    sizeof(struct ip_mreq_source),
2214 			    sizeof(struct ip_mreq_source));
2215 		}
2216 		if (error)
2217 			return (error);
2218 
2219 		gsa->sin.sin_family = AF_INET;
2220 		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2221 		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2222 
2223 		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2224 			ssa->sin.sin_family = AF_INET;
2225 			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2226 			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2227 		}
2228 
2229 		/*
2230 		 * Attempt to look up hinted ifp from interface address.
2231 		 * Fallthrough with null ifp iff lookup fails, to
2232 		 * preserve 4.4BSD mcast API idempotence.
2233 		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2234 		 * using an IPv4 address as a key is racy.
2235 		 */
2236 		if (!in_nullhost(mreqs.imr_interface))
2237 			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2238 
2239 		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
2240 		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
2241 
2242 		break;
2243 
2244 	case MCAST_LEAVE_GROUP:
2245 	case MCAST_LEAVE_SOURCE_GROUP:
2246 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2247 			error = sooptcopyin(sopt, &gsr,
2248 			    sizeof(struct group_req),
2249 			    sizeof(struct group_req));
2250 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2251 			error = sooptcopyin(sopt, &gsr,
2252 			    sizeof(struct group_source_req),
2253 			    sizeof(struct group_source_req));
2254 		}
2255 		if (error)
2256 			return (error);
2257 
2258 		if (gsa->sin.sin_family != AF_INET ||
2259 		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2260 			return (EINVAL);
2261 
2262 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2263 			if (ssa->sin.sin_family != AF_INET ||
2264 			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2265 				return (EINVAL);
2266 		}
2267 
2268 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2269 			return (EADDRNOTAVAIL);
2270 
2271 		ifp = ifnet_byindex(gsr.gsr_interface);
2272 
2273 		if (ifp == NULL)
2274 			return (EADDRNOTAVAIL);
2275 		break;
2276 
2277 	default:
2278 		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2279 		    __func__, sopt->sopt_name);
2280 		return (EOPNOTSUPP);
2281 		break;
2282 	}
2283 
2284 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2285 		return (EINVAL);
2286 
2287 	/*
2288 	 * Find the membership in the membership array.
2289 	 */
2290 	imo = inp_findmoptions(inp);
2291 	idx = imo_match_group(imo, ifp, &gsa->sa);
2292 	if (idx == -1) {
2293 		error = EADDRNOTAVAIL;
2294 		goto out_inp_locked;
2295 	}
2296 	inm = imo->imo_membership[idx];
2297 	imf = &imo->imo_mfilters[idx];
2298 
2299 	if (ssa->ss.ss_family != AF_UNSPEC)
2300 		is_final = 0;
2301 
2302 	/*
2303 	 * Begin state merge transaction at socket layer.
2304 	 */
2305 	INP_WLOCK_ASSERT(inp);
2306 
2307 	/*
2308 	 * If we were instructed only to leave a given source, do so.
2309 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2310 	 */
2311 	if (is_final) {
2312 		imf_leave(imf);
2313 	} else {
2314 		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2315 			error = EADDRNOTAVAIL;
2316 			goto out_inp_locked;
2317 		}
2318 		ims = imo_match_source(imo, idx, &ssa->sa);
2319 		if (ims == NULL) {
2320 			CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
2321 			    inet_ntoa(ssa->sin.sin_addr), "not ");
2322 			error = EADDRNOTAVAIL;
2323 			goto out_inp_locked;
2324 		}
2325 		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2326 		error = imf_prune(imf, &ssa->sin);
2327 		if (error) {
2328 			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2329 			    __func__);
2330 			goto out_inp_locked;
2331 		}
2332 	}
2333 
2334 	/*
2335 	 * Begin state merge transaction at IGMP layer.
2336 	 */
2337 	IN_MULTI_LOCK();
2338 
2339 	if (is_final) {
2340 		/*
2341 		 * Give up the multicast address record to which
2342 		 * the membership points.
2343 		 */
2344 		(void)in_leavegroup_locked(inm, imf);
2345 	} else {
2346 		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2347 		error = inm_merge(inm, imf);
2348 		if (error) {
2349 			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2350 			    __func__);
2351 			goto out_imf_rollback;
2352 		}
2353 
2354 		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2355 		error = igmp_change_state(inm);
2356 		if (error) {
2357 			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2358 			    __func__);
2359 		}
2360 	}
2361 
2362 	IN_MULTI_UNLOCK();
2363 
2364 out_imf_rollback:
2365 	if (error)
2366 		imf_rollback(imf);
2367 	else
2368 		imf_commit(imf);
2369 
2370 	imf_reap(imf);
2371 
2372 	if (is_final) {
2373 		/* Remove the gap in the membership and filter array. */
2374 		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2375 			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2376 			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2377 		}
2378 		imo->imo_num_memberships--;
2379 	}
2380 
2381 out_inp_locked:
2382 	INP_WUNLOCK(inp);
2383 	return (error);
2384 }
2385 
2386 /*
2387  * Select the interface for transmitting IPv4 multicast datagrams.
2388  *
2389  * Either an instance of struct in_addr or an instance of struct ip_mreqn
2390  * may be passed to this socket option. An address of INADDR_ANY or an
2391  * interface index of 0 is used to remove a previous selection.
2392  * When no interface is selected, one is chosen for every send.
2393  */
2394 static int
2395 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2396 {
2397 	struct in_addr		 addr;
2398 	struct ip_mreqn		 mreqn;
2399 	struct ifnet		*ifp;
2400 	struct ip_moptions	*imo;
2401 	int			 error;
2402 
2403 	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2404 		/*
2405 		 * An interface index was specified using the
2406 		 * Linux-derived ip_mreqn structure.
2407 		 */
2408 		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2409 		    sizeof(struct ip_mreqn));
2410 		if (error)
2411 			return (error);
2412 
2413 		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2414 			return (EINVAL);
2415 
2416 		if (mreqn.imr_ifindex == 0) {
2417 			ifp = NULL;
2418 		} else {
2419 			ifp = ifnet_byindex(mreqn.imr_ifindex);
2420 			if (ifp == NULL)
2421 				return (EADDRNOTAVAIL);
2422 		}
2423 	} else {
2424 		/*
2425 		 * An interface was specified by IPv4 address.
2426 		 * This is the traditional BSD usage.
2427 		 */
2428 		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2429 		    sizeof(struct in_addr));
2430 		if (error)
2431 			return (error);
2432 		if (in_nullhost(addr)) {
2433 			ifp = NULL;
2434 		} else {
2435 			INADDR_TO_IFP(addr, ifp);
2436 			if (ifp == NULL)
2437 				return (EADDRNOTAVAIL);
2438 		}
2439 		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp,
2440 		    inet_ntoa(addr));
2441 	}
2442 
2443 	/* Reject interfaces which do not support multicast. */
2444 	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2445 		return (EOPNOTSUPP);
2446 
2447 	imo = inp_findmoptions(inp);
2448 	imo->imo_multicast_ifp = ifp;
2449 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2450 	INP_WUNLOCK(inp);
2451 
2452 	return (0);
2453 }
2454 
2455 /*
2456  * Atomically set source filters on a socket for an IPv4 multicast group.
2457  *
2458  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2459  */
2460 static int
2461 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2462 {
2463 	struct __msfilterreq	 msfr;
2464 	sockunion_t		*gsa;
2465 	struct ifnet		*ifp;
2466 	struct in_mfilter	*imf;
2467 	struct ip_moptions	*imo;
2468 	struct in_multi		*inm;
2469 	size_t			 idx;
2470 	int			 error;
2471 
2472 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2473 	    sizeof(struct __msfilterreq));
2474 	if (error)
2475 		return (error);
2476 
2477 	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2478 		return (ENOBUFS);
2479 
2480 	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2481 	     msfr.msfr_fmode != MCAST_INCLUDE))
2482 		return (EINVAL);
2483 
2484 	if (msfr.msfr_group.ss_family != AF_INET ||
2485 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2486 		return (EINVAL);
2487 
2488 	gsa = (sockunion_t *)&msfr.msfr_group;
2489 	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2490 		return (EINVAL);
2491 
2492 	gsa->sin.sin_port = 0;	/* ignore port */
2493 
2494 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2495 		return (EADDRNOTAVAIL);
2496 
2497 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2498 	if (ifp == NULL)
2499 		return (EADDRNOTAVAIL);
2500 
2501 	/*
2502 	 * Take the INP write lock.
2503 	 * Check if this socket is a member of this group.
2504 	 */
2505 	imo = inp_findmoptions(inp);
2506 	idx = imo_match_group(imo, ifp, &gsa->sa);
2507 	if (idx == -1 || imo->imo_mfilters == NULL) {
2508 		error = EADDRNOTAVAIL;
2509 		goto out_inp_locked;
2510 	}
2511 	inm = imo->imo_membership[idx];
2512 	imf = &imo->imo_mfilters[idx];
2513 
2514 	/*
2515 	 * Begin state merge transaction at socket layer.
2516 	 */
2517 	INP_WLOCK_ASSERT(inp);
2518 
2519 	imf->imf_st[1] = msfr.msfr_fmode;
2520 
2521 	/*
2522 	 * Apply any new source filters, if present.
2523 	 * Make a copy of the user-space source vector so
2524 	 * that we may copy them with a single copyin. This
2525 	 * allows us to deal with page faults up-front.
2526 	 */
2527 	if (msfr.msfr_nsrcs > 0) {
2528 		struct in_msource	*lims;
2529 		struct sockaddr_in	*psin;
2530 		struct sockaddr_storage	*kss, *pkss;
2531 		int			 i;
2532 
2533 		INP_WUNLOCK(inp);
2534 
2535 		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2536 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2537 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2538 		    M_TEMP, M_WAITOK);
2539 		error = copyin(msfr.msfr_srcs, kss,
2540 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2541 		if (error) {
2542 			free(kss, M_TEMP);
2543 			return (error);
2544 		}
2545 
2546 		INP_WLOCK(inp);
2547 
2548 		/*
2549 		 * Mark all source filters as UNDEFINED at t1.
2550 		 * Restore new group filter mode, as imf_leave()
2551 		 * will set it to INCLUDE.
2552 		 */
2553 		imf_leave(imf);
2554 		imf->imf_st[1] = msfr.msfr_fmode;
2555 
2556 		/*
2557 		 * Update socket layer filters at t1, lazy-allocating
2558 		 * new entries. This saves a bunch of memory at the
2559 		 * cost of one RB_FIND() per source entry; duplicate
2560 		 * entries in the msfr_nsrcs vector are ignored.
2561 		 * If we encounter an error, rollback transaction.
2562 		 *
2563 		 * XXX This too could be replaced with a set-symmetric
2564 		 * difference like loop to avoid walking from root
2565 		 * every time, as the key space is common.
2566 		 */
2567 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2568 			psin = (struct sockaddr_in *)pkss;
2569 			if (psin->sin_family != AF_INET) {
2570 				error = EAFNOSUPPORT;
2571 				break;
2572 			}
2573 			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2574 				error = EINVAL;
2575 				break;
2576 			}
2577 			error = imf_get_source(imf, psin, &lims);
2578 			if (error)
2579 				break;
2580 			lims->imsl_st[1] = imf->imf_st[1];
2581 		}
2582 		free(kss, M_TEMP);
2583 	}
2584 
2585 	if (error)
2586 		goto out_imf_rollback;
2587 
2588 	INP_WLOCK_ASSERT(inp);
2589 	IN_MULTI_LOCK();
2590 
2591 	/*
2592 	 * Begin state merge transaction at IGMP layer.
2593 	 */
2594 	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2595 	error = inm_merge(inm, imf);
2596 	if (error) {
2597 		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2598 		goto out_imf_rollback;
2599 	}
2600 
2601 	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2602 	error = igmp_change_state(inm);
2603 	if (error)
2604 		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2605 
2606 	IN_MULTI_UNLOCK();
2607 
2608 out_imf_rollback:
2609 	if (error)
2610 		imf_rollback(imf);
2611 	else
2612 		imf_commit(imf);
2613 
2614 	imf_reap(imf);
2615 
2616 out_inp_locked:
2617 	INP_WUNLOCK(inp);
2618 	return (error);
2619 }
2620 
2621 /*
2622  * Set the IP multicast options in response to user setsockopt().
2623  *
2624  * Many of the socket options handled in this function duplicate the
2625  * functionality of socket options in the regular unicast API. However,
2626  * it is not possible to merge the duplicate code, because the idempotence
2627  * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2628  * the effects of these options must be treated as separate and distinct.
2629  *
2630  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2631  * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2632  * is refactored to no longer use vifs.
2633  */
2634 int
2635 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2636 {
2637 	struct ip_moptions	*imo;
2638 	int			 error;
2639 
2640 	error = 0;
2641 
2642 	/*
2643 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2644 	 * or is a divert socket, reject it.
2645 	 */
2646 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2647 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2648 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2649 		return (EOPNOTSUPP);
2650 
2651 	switch (sopt->sopt_name) {
2652 	case IP_MULTICAST_VIF: {
2653 		int vifi;
2654 		/*
2655 		 * Select a multicast VIF for transmission.
2656 		 * Only useful if multicast forwarding is active.
2657 		 */
2658 		if (legal_vif_num == NULL) {
2659 			error = EOPNOTSUPP;
2660 			break;
2661 		}
2662 		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2663 		if (error)
2664 			break;
2665 		if (!legal_vif_num(vifi) && (vifi != -1)) {
2666 			error = EINVAL;
2667 			break;
2668 		}
2669 		imo = inp_findmoptions(inp);
2670 		imo->imo_multicast_vif = vifi;
2671 		INP_WUNLOCK(inp);
2672 		break;
2673 	}
2674 
2675 	case IP_MULTICAST_IF:
2676 		error = inp_set_multicast_if(inp, sopt);
2677 		break;
2678 
2679 	case IP_MULTICAST_TTL: {
2680 		u_char ttl;
2681 
2682 		/*
2683 		 * Set the IP time-to-live for outgoing multicast packets.
2684 		 * The original multicast API required a char argument,
2685 		 * which is inconsistent with the rest of the socket API.
2686 		 * We allow either a char or an int.
2687 		 */
2688 		if (sopt->sopt_valsize == sizeof(u_char)) {
2689 			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2690 			    sizeof(u_char));
2691 			if (error)
2692 				break;
2693 		} else {
2694 			u_int ittl;
2695 
2696 			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2697 			    sizeof(u_int));
2698 			if (error)
2699 				break;
2700 			if (ittl > 255) {
2701 				error = EINVAL;
2702 				break;
2703 			}
2704 			ttl = (u_char)ittl;
2705 		}
2706 		imo = inp_findmoptions(inp);
2707 		imo->imo_multicast_ttl = ttl;
2708 		INP_WUNLOCK(inp);
2709 		break;
2710 	}
2711 
2712 	case IP_MULTICAST_LOOP: {
2713 		u_char loop;
2714 
2715 		/*
2716 		 * Set the loopback flag for outgoing multicast packets.
2717 		 * Must be zero or one.  The original multicast API required a
2718 		 * char argument, which is inconsistent with the rest
2719 		 * of the socket API.  We allow either a char or an int.
2720 		 */
2721 		if (sopt->sopt_valsize == sizeof(u_char)) {
2722 			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2723 			    sizeof(u_char));
2724 			if (error)
2725 				break;
2726 		} else {
2727 			u_int iloop;
2728 
2729 			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2730 					    sizeof(u_int));
2731 			if (error)
2732 				break;
2733 			loop = (u_char)iloop;
2734 		}
2735 		imo = inp_findmoptions(inp);
2736 		imo->imo_multicast_loop = !!loop;
2737 		INP_WUNLOCK(inp);
2738 		break;
2739 	}
2740 
2741 	case IP_ADD_MEMBERSHIP:
2742 	case IP_ADD_SOURCE_MEMBERSHIP:
2743 	case MCAST_JOIN_GROUP:
2744 	case MCAST_JOIN_SOURCE_GROUP:
2745 		error = inp_join_group(inp, sopt);
2746 		break;
2747 
2748 	case IP_DROP_MEMBERSHIP:
2749 	case IP_DROP_SOURCE_MEMBERSHIP:
2750 	case MCAST_LEAVE_GROUP:
2751 	case MCAST_LEAVE_SOURCE_GROUP:
2752 		error = inp_leave_group(inp, sopt);
2753 		break;
2754 
2755 	case IP_BLOCK_SOURCE:
2756 	case IP_UNBLOCK_SOURCE:
2757 	case MCAST_BLOCK_SOURCE:
2758 	case MCAST_UNBLOCK_SOURCE:
2759 		error = inp_block_unblock_source(inp, sopt);
2760 		break;
2761 
2762 	case IP_MSFILTER:
2763 		error = inp_set_source_filters(inp, sopt);
2764 		break;
2765 
2766 	default:
2767 		error = EOPNOTSUPP;
2768 		break;
2769 	}
2770 
2771 	INP_UNLOCK_ASSERT(inp);
2772 
2773 	return (error);
2774 }
2775 
2776 /*
2777  * Expose IGMP's multicast filter mode and source list(s) to userland,
2778  * keyed by (ifindex, group).
2779  * The filter mode is written out as a uint32_t, followed by
2780  * 0..n of struct in_addr.
2781  * For use by ifmcstat(8).
2782  * SMPng: NOTE: unlocked read of ifindex space.
2783  */
2784 static int
2785 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2786 {
2787 	struct in_addr			 src, group;
2788 	struct ifnet			*ifp;
2789 	struct ifmultiaddr		*ifma;
2790 	struct in_multi			*inm;
2791 	struct ip_msource		*ims;
2792 	int				*name;
2793 	int				 retval;
2794 	u_int				 namelen;
2795 	uint32_t			 fmode, ifindex;
2796 
2797 	name = (int *)arg1;
2798 	namelen = arg2;
2799 
2800 	if (req->newptr != NULL)
2801 		return (EPERM);
2802 
2803 	if (namelen != 2)
2804 		return (EINVAL);
2805 
2806 	ifindex = name[0];
2807 	if (ifindex <= 0 || ifindex > V_if_index) {
2808 		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2809 		    __func__, ifindex);
2810 		return (ENOENT);
2811 	}
2812 
2813 	group.s_addr = name[1];
2814 	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2815 		CTR2(KTR_IGMPV3, "%s: group %s is not multicast",
2816 		    __func__, inet_ntoa(group));
2817 		return (EINVAL);
2818 	}
2819 
2820 	ifp = ifnet_byindex(ifindex);
2821 	if (ifp == NULL) {
2822 		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2823 		    __func__, ifindex);
2824 		return (ENOENT);
2825 	}
2826 
2827 	retval = sysctl_wire_old_buffer(req,
2828 	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2829 	if (retval)
2830 		return (retval);
2831 
2832 	IN_MULTI_LOCK();
2833 
2834 	IF_ADDR_RLOCK(ifp);
2835 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2836 		if (ifma->ifma_addr->sa_family != AF_INET ||
2837 		    ifma->ifma_protospec == NULL)
2838 			continue;
2839 		inm = (struct in_multi *)ifma->ifma_protospec;
2840 		if (!in_hosteq(inm->inm_addr, group))
2841 			continue;
2842 		fmode = inm->inm_st[1].iss_fmode;
2843 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2844 		if (retval != 0)
2845 			break;
2846 		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2847 #ifdef KTR
2848 			struct in_addr ina;
2849 			ina.s_addr = htonl(ims->ims_haddr);
2850 			CTR2(KTR_IGMPV3, "%s: visit node %s", __func__,
2851 			    inet_ntoa(ina));
2852 #endif
2853 			/*
2854 			 * Only copy-out sources which are in-mode.
2855 			 */
2856 			if (fmode != ims_get_mode(inm, ims, 1)) {
2857 				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2858 				    __func__);
2859 				continue;
2860 			}
2861 			src.s_addr = htonl(ims->ims_haddr);
2862 			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2863 			if (retval != 0)
2864 				break;
2865 		}
2866 	}
2867 	IF_ADDR_RUNLOCK(ifp);
2868 
2869 	IN_MULTI_UNLOCK();
2870 
2871 	return (retval);
2872 }
2873 
2874 #ifdef KTR
2875 
2876 static const char *inm_modestrs[] = { "un", "in", "ex" };
2877 
2878 static const char *
2879 inm_mode_str(const int mode)
2880 {
2881 
2882 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2883 		return (inm_modestrs[mode]);
2884 	return ("??");
2885 }
2886 
2887 static const char *inm_statestrs[] = {
2888 	"not-member",
2889 	"silent",
2890 	"idle",
2891 	"lazy",
2892 	"sleeping",
2893 	"awakening",
2894 	"query-pending",
2895 	"sg-query-pending",
2896 	"leaving"
2897 };
2898 
2899 static const char *
2900 inm_state_str(const int state)
2901 {
2902 
2903 	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2904 		return (inm_statestrs[state]);
2905 	return ("??");
2906 }
2907 
2908 /*
2909  * Dump an in_multi structure to the console.
2910  */
2911 void
2912 inm_print(const struct in_multi *inm)
2913 {
2914 	int t;
2915 
2916 	if ((ktr_mask & KTR_IGMPV3) == 0)
2917 		return;
2918 
2919 	printf("%s: --- begin inm %p ---\n", __func__, inm);
2920 	printf("addr %s ifp %p(%s) ifma %p\n",
2921 	    inet_ntoa(inm->inm_addr),
2922 	    inm->inm_ifp,
2923 	    inm->inm_ifp->if_xname,
2924 	    inm->inm_ifma);
2925 	printf("timer %u state %s refcount %u scq.len %u\n",
2926 	    inm->inm_timer,
2927 	    inm_state_str(inm->inm_state),
2928 	    inm->inm_refcount,
2929 	    inm->inm_scq.ifq_len);
2930 	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2931 	    inm->inm_igi,
2932 	    inm->inm_nsrc,
2933 	    inm->inm_sctimer,
2934 	    inm->inm_scrv);
2935 	for (t = 0; t < 2; t++) {
2936 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2937 		    inm_mode_str(inm->inm_st[t].iss_fmode),
2938 		    inm->inm_st[t].iss_asm,
2939 		    inm->inm_st[t].iss_ex,
2940 		    inm->inm_st[t].iss_in,
2941 		    inm->inm_st[t].iss_rec);
2942 	}
2943 	printf("%s: --- end inm %p ---\n", __func__, inm);
2944 }
2945 
2946 #else /* !KTR */
2947 
2948 void
2949 inm_print(const struct in_multi *inm)
2950 {
2951 
2952 }
2953 
2954 #endif /* KTR */
2955 
2956 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
2957