xref: /freebsd/sys/netinet/in_pcb.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 #define	INPCBLBGROUP_SIZMIN	8
112 #define	INPCBLBGROUP_SIZMAX	256
113 
114 static struct callout	ipport_tick_callout;
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142 
143 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
144 
145 static void	in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148 			    struct in_addr faddr, u_int fport_arg,
149 			    struct in_addr laddr, u_int lport_arg,
150 			    int lookupflags, struct ifnet *ifp);
151 
152 #define RANGECHK(var, min, max) \
153 	if ((var) < (min)) { (var) = (min); } \
154 	else if ((var) > (max)) { (var) = (max); }
155 
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error;
160 
161 	error = sysctl_handle_int(oidp, arg1, arg2, req);
162 	if (error == 0) {
163 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169 	}
170 	return (error);
171 }
172 
173 #undef RANGECHK
174 
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
176     "IP Ports");
177 
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
194 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
195 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
197 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
198 	&VNET_NAME(ipport_reservedhigh), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
200 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
205 	CTLFLAG_VNET | CTLFLAG_RW,
206 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
207 	"allocations before switching to a sequental one");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
209 	CTLFLAG_VNET | CTLFLAG_RW,
210 	&VNET_NAME(ipport_randomtime), 0,
211 	"Minimum time to keep sequental port "
212 	"allocation before switching to a random one");
213 #endif /* INET */
214 
215 /*
216  * in_pcb.c: manage the Protocol Control Blocks.
217  *
218  * NOTE: It is assumed that most of these functions will be called with
219  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
220  * functions often modify hash chains or addresses in pcbs.
221  */
222 
223 static struct inpcblbgroup *
224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
225     uint16_t port, const union in_dependaddr *addr, int size)
226 {
227 	struct inpcblbgroup *grp;
228 	size_t bytes;
229 
230 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
231 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
232 	if (!grp)
233 		return (NULL);
234 	grp->il_vflag = vflag;
235 	grp->il_lport = port;
236 	grp->il_dependladdr = *addr;
237 	grp->il_inpsiz = size;
238 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
239 	return (grp);
240 }
241 
242 static void
243 in_pcblbgroup_free_deferred(epoch_context_t ctx)
244 {
245 	struct inpcblbgroup *grp;
246 
247 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
248 	free(grp, M_PCB);
249 }
250 
251 static void
252 in_pcblbgroup_free(struct inpcblbgroup *grp)
253 {
254 
255 	CK_LIST_REMOVE(grp, il_list);
256 	epoch_call(net_epoch_preempt, &grp->il_epoch_ctx,
257 	    in_pcblbgroup_free_deferred);
258 }
259 
260 static struct inpcblbgroup *
261 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
262     struct inpcblbgroup *old_grp, int size)
263 {
264 	struct inpcblbgroup *grp;
265 	int i;
266 
267 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
268 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
269 	if (grp == NULL)
270 		return (NULL);
271 
272 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
273 	    ("invalid new local group size %d and old local group count %d",
274 	     grp->il_inpsiz, old_grp->il_inpcnt));
275 
276 	for (i = 0; i < old_grp->il_inpcnt; ++i)
277 		grp->il_inp[i] = old_grp->il_inp[i];
278 	grp->il_inpcnt = old_grp->il_inpcnt;
279 	in_pcblbgroup_free(old_grp);
280 	return (grp);
281 }
282 
283 /*
284  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
285  * and shrink group if possible.
286  */
287 static void
288 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
289     int i)
290 {
291 	struct inpcblbgroup *grp, *new_grp;
292 
293 	grp = *grpp;
294 	for (; i + 1 < grp->il_inpcnt; ++i)
295 		grp->il_inp[i] = grp->il_inp[i + 1];
296 	grp->il_inpcnt--;
297 
298 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
299 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
300 		/* Shrink this group. */
301 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
302 		if (new_grp != NULL)
303 			*grpp = new_grp;
304 	}
305 }
306 
307 /*
308  * Add PCB to load balance group for SO_REUSEPORT_LB option.
309  */
310 static int
311 in_pcbinslbgrouphash(struct inpcb *inp)
312 {
313 	const static struct timeval interval = { 60, 0 };
314 	static struct timeval lastprint;
315 	struct inpcbinfo *pcbinfo;
316 	struct inpcblbgrouphead *hdr;
317 	struct inpcblbgroup *grp;
318 	uint32_t idx;
319 
320 	pcbinfo = inp->inp_pcbinfo;
321 
322 	INP_WLOCK_ASSERT(inp);
323 	INP_HASH_WLOCK_ASSERT(pcbinfo);
324 
325 	/*
326 	 * Don't allow jailed socket to join local group.
327 	 */
328 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
329 		return (0);
330 
331 #ifdef INET6
332 	/*
333 	 * Don't allow IPv4 mapped INET6 wild socket.
334 	 */
335 	if ((inp->inp_vflag & INP_IPV4) &&
336 	    inp->inp_laddr.s_addr == INADDR_ANY &&
337 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
338 		return (0);
339 	}
340 #endif
341 
342 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
343 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
344 	CK_LIST_FOREACH(grp, hdr, il_list) {
345 		if (grp->il_vflag == inp->inp_vflag &&
346 		    grp->il_lport == inp->inp_lport &&
347 		    memcmp(&grp->il_dependladdr,
348 		    &inp->inp_inc.inc_ie.ie_dependladdr,
349 		    sizeof(grp->il_dependladdr)) == 0)
350 			break;
351 	}
352 	if (grp == NULL) {
353 		/* Create new load balance group. */
354 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
355 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
356 		    INPCBLBGROUP_SIZMIN);
357 		if (grp == NULL)
358 			return (ENOBUFS);
359 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
360 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
361 			if (ratecheck(&lastprint, &interval))
362 				printf("lb group port %d, limit reached\n",
363 				    ntohs(grp->il_lport));
364 			return (0);
365 		}
366 
367 		/* Expand this local group. */
368 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
369 		if (grp == NULL)
370 			return (ENOBUFS);
371 	}
372 
373 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
374 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
375 	    grp->il_inpcnt));
376 
377 	grp->il_inp[grp->il_inpcnt] = inp;
378 	grp->il_inpcnt++;
379 	return (0);
380 }
381 
382 /*
383  * Remove PCB from load balance group.
384  */
385 static void
386 in_pcbremlbgrouphash(struct inpcb *inp)
387 {
388 	struct inpcbinfo *pcbinfo;
389 	struct inpcblbgrouphead *hdr;
390 	struct inpcblbgroup *grp;
391 	int i;
392 
393 	pcbinfo = inp->inp_pcbinfo;
394 
395 	INP_WLOCK_ASSERT(inp);
396 	INP_HASH_WLOCK_ASSERT(pcbinfo);
397 
398 	hdr = &pcbinfo->ipi_lbgrouphashbase[
399 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
400 	CK_LIST_FOREACH(grp, hdr, il_list) {
401 		for (i = 0; i < grp->il_inpcnt; ++i) {
402 			if (grp->il_inp[i] != inp)
403 				continue;
404 
405 			if (grp->il_inpcnt == 1) {
406 				/* We are the last, free this local group. */
407 				in_pcblbgroup_free(grp);
408 			} else {
409 				/* Pull up inpcbs, shrink group if possible. */
410 				in_pcblbgroup_reorder(hdr, &grp, i);
411 			}
412 			return;
413 		}
414 	}
415 }
416 
417 /*
418  * Different protocols initialize their inpcbs differently - giving
419  * different name to the lock.  But they all are disposed the same.
420  */
421 static void
422 inpcb_fini(void *mem, int size)
423 {
424 	struct inpcb *inp = mem;
425 
426 	INP_LOCK_DESTROY(inp);
427 }
428 
429 /*
430  * Initialize an inpcbinfo -- we should be able to reduce the number of
431  * arguments in time.
432  */
433 void
434 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
435     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
436     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
437 {
438 
439 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
440 
441 	INP_INFO_LOCK_INIT(pcbinfo, name);
442 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
443 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
444 #ifdef VIMAGE
445 	pcbinfo->ipi_vnet = curvnet;
446 #endif
447 	pcbinfo->ipi_listhead = listhead;
448 	CK_LIST_INIT(pcbinfo->ipi_listhead);
449 	pcbinfo->ipi_count = 0;
450 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
451 	    &pcbinfo->ipi_hashmask);
452 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
453 	    &pcbinfo->ipi_porthashmask);
454 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
455 	    &pcbinfo->ipi_lbgrouphashmask);
456 #ifdef PCBGROUP
457 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
458 #endif
459 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
460 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
461 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
462 	uma_zone_set_warning(pcbinfo->ipi_zone,
463 	    "kern.ipc.maxsockets limit reached");
464 }
465 
466 /*
467  * Destroy an inpcbinfo.
468  */
469 void
470 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
471 {
472 
473 	KASSERT(pcbinfo->ipi_count == 0,
474 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
475 
476 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
477 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
478 	    pcbinfo->ipi_porthashmask);
479 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
480 	    pcbinfo->ipi_lbgrouphashmask);
481 #ifdef PCBGROUP
482 	in_pcbgroup_destroy(pcbinfo);
483 #endif
484 	uma_zdestroy(pcbinfo->ipi_zone);
485 	INP_LIST_LOCK_DESTROY(pcbinfo);
486 	INP_HASH_LOCK_DESTROY(pcbinfo);
487 	INP_INFO_LOCK_DESTROY(pcbinfo);
488 }
489 
490 /*
491  * Allocate a PCB and associate it with the socket.
492  * On success return with the PCB locked.
493  */
494 int
495 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
496 {
497 	struct inpcb *inp;
498 	int error;
499 
500 #ifdef INVARIANTS
501 	if (pcbinfo == &V_tcbinfo) {
502 		INP_INFO_RLOCK_ASSERT(pcbinfo);
503 	} else {
504 		INP_INFO_WLOCK_ASSERT(pcbinfo);
505 	}
506 #endif
507 
508 	error = 0;
509 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
510 	if (inp == NULL)
511 		return (ENOBUFS);
512 	bzero(&inp->inp_start_zero, inp_zero_size);
513 	inp->inp_pcbinfo = pcbinfo;
514 	inp->inp_socket = so;
515 	inp->inp_cred = crhold(so->so_cred);
516 	inp->inp_inc.inc_fibnum = so->so_fibnum;
517 #ifdef MAC
518 	error = mac_inpcb_init(inp, M_NOWAIT);
519 	if (error != 0)
520 		goto out;
521 	mac_inpcb_create(so, inp);
522 #endif
523 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
524 	error = ipsec_init_pcbpolicy(inp);
525 	if (error != 0) {
526 #ifdef MAC
527 		mac_inpcb_destroy(inp);
528 #endif
529 		goto out;
530 	}
531 #endif /*IPSEC*/
532 #ifdef INET6
533 	if (INP_SOCKAF(so) == AF_INET6) {
534 		inp->inp_vflag |= INP_IPV6PROTO;
535 		if (V_ip6_v6only)
536 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
537 	}
538 #endif
539 	INP_WLOCK(inp);
540 	INP_LIST_WLOCK(pcbinfo);
541 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
542 	pcbinfo->ipi_count++;
543 	so->so_pcb = (caddr_t)inp;
544 #ifdef INET6
545 	if (V_ip6_auto_flowlabel)
546 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
547 #endif
548 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
549 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
550 
551 	/*
552 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
553 	 * to be cleaned up.
554 	 */
555 	inp->inp_route.ro_flags = RT_LLE_CACHE;
556 	INP_LIST_WUNLOCK(pcbinfo);
557 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
558 out:
559 	if (error != 0) {
560 		crfree(inp->inp_cred);
561 		uma_zfree(pcbinfo->ipi_zone, inp);
562 	}
563 #endif
564 	return (error);
565 }
566 
567 #ifdef INET
568 int
569 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
570 {
571 	int anonport, error;
572 
573 	INP_WLOCK_ASSERT(inp);
574 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
575 
576 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
577 		return (EINVAL);
578 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
579 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
580 	    &inp->inp_lport, cred);
581 	if (error)
582 		return (error);
583 	if (in_pcbinshash(inp) != 0) {
584 		inp->inp_laddr.s_addr = INADDR_ANY;
585 		inp->inp_lport = 0;
586 		return (EAGAIN);
587 	}
588 	if (anonport)
589 		inp->inp_flags |= INP_ANONPORT;
590 	return (0);
591 }
592 #endif
593 
594 /*
595  * Select a local port (number) to use.
596  */
597 #if defined(INET) || defined(INET6)
598 int
599 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
600     struct ucred *cred, int lookupflags)
601 {
602 	struct inpcbinfo *pcbinfo;
603 	struct inpcb *tmpinp;
604 	unsigned short *lastport;
605 	int count, dorandom, error;
606 	u_short aux, first, last, lport;
607 #ifdef INET
608 	struct in_addr laddr;
609 #endif
610 
611 	pcbinfo = inp->inp_pcbinfo;
612 
613 	/*
614 	 * Because no actual state changes occur here, a global write lock on
615 	 * the pcbinfo isn't required.
616 	 */
617 	INP_LOCK_ASSERT(inp);
618 	INP_HASH_LOCK_ASSERT(pcbinfo);
619 
620 	if (inp->inp_flags & INP_HIGHPORT) {
621 		first = V_ipport_hifirstauto;	/* sysctl */
622 		last  = V_ipport_hilastauto;
623 		lastport = &pcbinfo->ipi_lasthi;
624 	} else if (inp->inp_flags & INP_LOWPORT) {
625 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
626 		if (error)
627 			return (error);
628 		first = V_ipport_lowfirstauto;	/* 1023 */
629 		last  = V_ipport_lowlastauto;	/* 600 */
630 		lastport = &pcbinfo->ipi_lastlow;
631 	} else {
632 		first = V_ipport_firstauto;	/* sysctl */
633 		last  = V_ipport_lastauto;
634 		lastport = &pcbinfo->ipi_lastport;
635 	}
636 	/*
637 	 * For UDP(-Lite), use random port allocation as long as the user
638 	 * allows it.  For TCP (and as of yet unknown) connections,
639 	 * use random port allocation only if the user allows it AND
640 	 * ipport_tick() allows it.
641 	 */
642 	if (V_ipport_randomized &&
643 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
644 		pcbinfo == &V_ulitecbinfo))
645 		dorandom = 1;
646 	else
647 		dorandom = 0;
648 	/*
649 	 * It makes no sense to do random port allocation if
650 	 * we have the only port available.
651 	 */
652 	if (first == last)
653 		dorandom = 0;
654 	/* Make sure to not include UDP(-Lite) packets in the count. */
655 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
656 		V_ipport_tcpallocs++;
657 	/*
658 	 * Instead of having two loops further down counting up or down
659 	 * make sure that first is always <= last and go with only one
660 	 * code path implementing all logic.
661 	 */
662 	if (first > last) {
663 		aux = first;
664 		first = last;
665 		last = aux;
666 	}
667 
668 #ifdef INET
669 	/* Make the compiler happy. */
670 	laddr.s_addr = 0;
671 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
672 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
673 		    __func__, inp));
674 		laddr = *laddrp;
675 	}
676 #endif
677 	tmpinp = NULL;	/* Make compiler happy. */
678 	lport = *lportp;
679 
680 	if (dorandom)
681 		*lastport = first + (arc4random() % (last - first));
682 
683 	count = last - first;
684 
685 	do {
686 		if (count-- < 0)	/* completely used? */
687 			return (EADDRNOTAVAIL);
688 		++*lastport;
689 		if (*lastport < first || *lastport > last)
690 			*lastport = first;
691 		lport = htons(*lastport);
692 
693 #ifdef INET6
694 		if ((inp->inp_vflag & INP_IPV6) != 0)
695 			tmpinp = in6_pcblookup_local(pcbinfo,
696 			    &inp->in6p_laddr, lport, lookupflags, cred);
697 #endif
698 #if defined(INET) && defined(INET6)
699 		else
700 #endif
701 #ifdef INET
702 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
703 			    lport, lookupflags, cred);
704 #endif
705 	} while (tmpinp != NULL);
706 
707 #ifdef INET
708 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
709 		laddrp->s_addr = laddr.s_addr;
710 #endif
711 	*lportp = lport;
712 
713 	return (0);
714 }
715 
716 /*
717  * Return cached socket options.
718  */
719 int
720 inp_so_options(const struct inpcb *inp)
721 {
722 	int so_options;
723 
724 	so_options = 0;
725 
726 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
727 		so_options |= SO_REUSEPORT_LB;
728 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
729 		so_options |= SO_REUSEPORT;
730 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
731 		so_options |= SO_REUSEADDR;
732 	return (so_options);
733 }
734 #endif /* INET || INET6 */
735 
736 /*
737  * Check if a new BINDMULTI socket is allowed to be created.
738  *
739  * ni points to the new inp.
740  * oi points to the exisitng inp.
741  *
742  * This checks whether the existing inp also has BINDMULTI and
743  * whether the credentials match.
744  */
745 int
746 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
747 {
748 	/* Check permissions match */
749 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
750 	    (ni->inp_cred->cr_uid !=
751 	    oi->inp_cred->cr_uid))
752 		return (0);
753 
754 	/* Check the existing inp has BINDMULTI set */
755 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
756 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
757 		return (0);
758 
759 	/*
760 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
761 	 * it is and it matches the checks.
762 	 */
763 	return (1);
764 }
765 
766 #ifdef INET
767 /*
768  * Set up a bind operation on a PCB, performing port allocation
769  * as required, but do not actually modify the PCB. Callers can
770  * either complete the bind by setting inp_laddr/inp_lport and
771  * calling in_pcbinshash(), or they can just use the resulting
772  * port and address to authorise the sending of a once-off packet.
773  *
774  * On error, the values of *laddrp and *lportp are not changed.
775  */
776 int
777 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
778     u_short *lportp, struct ucred *cred)
779 {
780 	struct socket *so = inp->inp_socket;
781 	struct sockaddr_in *sin;
782 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
783 	struct in_addr laddr;
784 	u_short lport = 0;
785 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
786 	int error;
787 
788 	/*
789 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
790 	 * so that we don't have to add to the (already messy) code below.
791 	 */
792 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
793 
794 	/*
795 	 * No state changes, so read locks are sufficient here.
796 	 */
797 	INP_LOCK_ASSERT(inp);
798 	INP_HASH_LOCK_ASSERT(pcbinfo);
799 
800 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
801 		return (EADDRNOTAVAIL);
802 	laddr.s_addr = *laddrp;
803 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
804 		return (EINVAL);
805 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
806 		lookupflags = INPLOOKUP_WILDCARD;
807 	if (nam == NULL) {
808 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
809 			return (error);
810 	} else {
811 		sin = (struct sockaddr_in *)nam;
812 		if (nam->sa_len != sizeof (*sin))
813 			return (EINVAL);
814 #ifdef notdef
815 		/*
816 		 * We should check the family, but old programs
817 		 * incorrectly fail to initialize it.
818 		 */
819 		if (sin->sin_family != AF_INET)
820 			return (EAFNOSUPPORT);
821 #endif
822 		error = prison_local_ip4(cred, &sin->sin_addr);
823 		if (error)
824 			return (error);
825 		if (sin->sin_port != *lportp) {
826 			/* Don't allow the port to change. */
827 			if (*lportp != 0)
828 				return (EINVAL);
829 			lport = sin->sin_port;
830 		}
831 		/* NB: lport is left as 0 if the port isn't being changed. */
832 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
833 			/*
834 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
835 			 * allow complete duplication of binding if
836 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
837 			 * and a multicast address is bound on both
838 			 * new and duplicated sockets.
839 			 */
840 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
841 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
842 			/*
843 			 * XXX: How to deal with SO_REUSEPORT_LB here?
844 			 * Treat same as SO_REUSEPORT for now.
845 			 */
846 			if ((so->so_options &
847 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
848 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
849 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
850 			sin->sin_port = 0;		/* yech... */
851 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
852 			/*
853 			 * Is the address a local IP address?
854 			 * If INP_BINDANY is set, then the socket may be bound
855 			 * to any endpoint address, local or not.
856 			 */
857 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
858 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
859 				return (EADDRNOTAVAIL);
860 		}
861 		laddr = sin->sin_addr;
862 		if (lport) {
863 			struct inpcb *t;
864 			struct tcptw *tw;
865 
866 			/* GROSS */
867 			if (ntohs(lport) <= V_ipport_reservedhigh &&
868 			    ntohs(lport) >= V_ipport_reservedlow &&
869 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
870 				return (EACCES);
871 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
872 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
873 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
874 				    lport, INPLOOKUP_WILDCARD, cred);
875 	/*
876 	 * XXX
877 	 * This entire block sorely needs a rewrite.
878 	 */
879 				if (t &&
880 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
881 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
882 				    (so->so_type != SOCK_STREAM ||
883 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
884 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
885 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
886 				     (t->inp_flags2 & INP_REUSEPORT) ||
887 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
888 				    (inp->inp_cred->cr_uid !=
889 				     t->inp_cred->cr_uid))
890 					return (EADDRINUSE);
891 
892 				/*
893 				 * If the socket is a BINDMULTI socket, then
894 				 * the credentials need to match and the
895 				 * original socket also has to have been bound
896 				 * with BINDMULTI.
897 				 */
898 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
899 					return (EADDRINUSE);
900 			}
901 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
902 			    lport, lookupflags, cred);
903 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
904 				/*
905 				 * XXXRW: If an incpb has had its timewait
906 				 * state recycled, we treat the address as
907 				 * being in use (for now).  This is better
908 				 * than a panic, but not desirable.
909 				 */
910 				tw = intotw(t);
911 				if (tw == NULL ||
912 				    ((reuseport & tw->tw_so_options) == 0 &&
913 					(reuseport_lb &
914 				            tw->tw_so_options) == 0)) {
915 					return (EADDRINUSE);
916 				}
917 			} else if (t &&
918 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
919 				   (reuseport & inp_so_options(t)) == 0 &&
920 				   (reuseport_lb & inp_so_options(t)) == 0) {
921 #ifdef INET6
922 				if (ntohl(sin->sin_addr.s_addr) !=
923 				    INADDR_ANY ||
924 				    ntohl(t->inp_laddr.s_addr) !=
925 				    INADDR_ANY ||
926 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
927 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
928 #endif
929 						return (EADDRINUSE);
930 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
931 					return (EADDRINUSE);
932 			}
933 		}
934 	}
935 	if (*lportp != 0)
936 		lport = *lportp;
937 	if (lport == 0) {
938 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
939 		if (error != 0)
940 			return (error);
941 
942 	}
943 	*laddrp = laddr.s_addr;
944 	*lportp = lport;
945 	return (0);
946 }
947 
948 /*
949  * Connect from a socket to a specified address.
950  * Both address and port must be specified in argument sin.
951  * If don't have a local address for this socket yet,
952  * then pick one.
953  */
954 int
955 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
956     struct ucred *cred, struct mbuf *m)
957 {
958 	u_short lport, fport;
959 	in_addr_t laddr, faddr;
960 	int anonport, error;
961 
962 	INP_WLOCK_ASSERT(inp);
963 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
964 
965 	lport = inp->inp_lport;
966 	laddr = inp->inp_laddr.s_addr;
967 	anonport = (lport == 0);
968 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
969 	    NULL, cred);
970 	if (error)
971 		return (error);
972 
973 	/* Do the initial binding of the local address if required. */
974 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
975 		inp->inp_lport = lport;
976 		inp->inp_laddr.s_addr = laddr;
977 		if (in_pcbinshash(inp) != 0) {
978 			inp->inp_laddr.s_addr = INADDR_ANY;
979 			inp->inp_lport = 0;
980 			return (EAGAIN);
981 		}
982 	}
983 
984 	/* Commit the remaining changes. */
985 	inp->inp_lport = lport;
986 	inp->inp_laddr.s_addr = laddr;
987 	inp->inp_faddr.s_addr = faddr;
988 	inp->inp_fport = fport;
989 	in_pcbrehash_mbuf(inp, m);
990 
991 	if (anonport)
992 		inp->inp_flags |= INP_ANONPORT;
993 	return (0);
994 }
995 
996 int
997 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
998 {
999 
1000 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
1001 }
1002 
1003 /*
1004  * Do proper source address selection on an unbound socket in case
1005  * of connect. Take jails into account as well.
1006  */
1007 int
1008 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1009     struct ucred *cred)
1010 {
1011 	struct ifaddr *ifa;
1012 	struct sockaddr *sa;
1013 	struct sockaddr_in *sin;
1014 	struct route sro;
1015 	struct epoch_tracker et;
1016 	int error;
1017 
1018 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1019 	/*
1020 	 * Bypass source address selection and use the primary jail IP
1021 	 * if requested.
1022 	 */
1023 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1024 		return (0);
1025 
1026 	error = 0;
1027 	bzero(&sro, sizeof(sro));
1028 
1029 	sin = (struct sockaddr_in *)&sro.ro_dst;
1030 	sin->sin_family = AF_INET;
1031 	sin->sin_len = sizeof(struct sockaddr_in);
1032 	sin->sin_addr.s_addr = faddr->s_addr;
1033 
1034 	/*
1035 	 * If route is known our src addr is taken from the i/f,
1036 	 * else punt.
1037 	 *
1038 	 * Find out route to destination.
1039 	 */
1040 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1041 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1042 
1043 	/*
1044 	 * If we found a route, use the address corresponding to
1045 	 * the outgoing interface.
1046 	 *
1047 	 * Otherwise assume faddr is reachable on a directly connected
1048 	 * network and try to find a corresponding interface to take
1049 	 * the source address from.
1050 	 */
1051 	NET_EPOCH_ENTER(et);
1052 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1053 		struct in_ifaddr *ia;
1054 		struct ifnet *ifp;
1055 
1056 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1057 					inp->inp_socket->so_fibnum));
1058 		if (ia == NULL) {
1059 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1060 						inp->inp_socket->so_fibnum));
1061 
1062 		}
1063 		if (ia == NULL) {
1064 			error = ENETUNREACH;
1065 			goto done;
1066 		}
1067 
1068 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1069 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1070 			goto done;
1071 		}
1072 
1073 		ifp = ia->ia_ifp;
1074 		ia = NULL;
1075 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1076 
1077 			sa = ifa->ifa_addr;
1078 			if (sa->sa_family != AF_INET)
1079 				continue;
1080 			sin = (struct sockaddr_in *)sa;
1081 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1082 				ia = (struct in_ifaddr *)ifa;
1083 				break;
1084 			}
1085 		}
1086 		if (ia != NULL) {
1087 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1088 			goto done;
1089 		}
1090 
1091 		/* 3. As a last resort return the 'default' jail address. */
1092 		error = prison_get_ip4(cred, laddr);
1093 		goto done;
1094 	}
1095 
1096 	/*
1097 	 * If the outgoing interface on the route found is not
1098 	 * a loopback interface, use the address from that interface.
1099 	 * In case of jails do those three steps:
1100 	 * 1. check if the interface address belongs to the jail. If so use it.
1101 	 * 2. check if we have any address on the outgoing interface
1102 	 *    belonging to this jail. If so use it.
1103 	 * 3. as a last resort return the 'default' jail address.
1104 	 */
1105 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1106 		struct in_ifaddr *ia;
1107 		struct ifnet *ifp;
1108 
1109 		/* If not jailed, use the default returned. */
1110 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1111 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1112 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1113 			goto done;
1114 		}
1115 
1116 		/* Jailed. */
1117 		/* 1. Check if the iface address belongs to the jail. */
1118 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1119 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1120 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1121 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1122 			goto done;
1123 		}
1124 
1125 		/*
1126 		 * 2. Check if we have any address on the outgoing interface
1127 		 *    belonging to this jail.
1128 		 */
1129 		ia = NULL;
1130 		ifp = sro.ro_rt->rt_ifp;
1131 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1132 			sa = ifa->ifa_addr;
1133 			if (sa->sa_family != AF_INET)
1134 				continue;
1135 			sin = (struct sockaddr_in *)sa;
1136 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1137 				ia = (struct in_ifaddr *)ifa;
1138 				break;
1139 			}
1140 		}
1141 		if (ia != NULL) {
1142 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1143 			goto done;
1144 		}
1145 
1146 		/* 3. As a last resort return the 'default' jail address. */
1147 		error = prison_get_ip4(cred, laddr);
1148 		goto done;
1149 	}
1150 
1151 	/*
1152 	 * The outgoing interface is marked with 'loopback net', so a route
1153 	 * to ourselves is here.
1154 	 * Try to find the interface of the destination address and then
1155 	 * take the address from there. That interface is not necessarily
1156 	 * a loopback interface.
1157 	 * In case of jails, check that it is an address of the jail
1158 	 * and if we cannot find, fall back to the 'default' jail address.
1159 	 */
1160 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1161 		struct sockaddr_in sain;
1162 		struct in_ifaddr *ia;
1163 
1164 		bzero(&sain, sizeof(struct sockaddr_in));
1165 		sain.sin_family = AF_INET;
1166 		sain.sin_len = sizeof(struct sockaddr_in);
1167 		sain.sin_addr.s_addr = faddr->s_addr;
1168 
1169 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1170 					inp->inp_socket->so_fibnum));
1171 		if (ia == NULL)
1172 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1173 						inp->inp_socket->so_fibnum));
1174 		if (ia == NULL)
1175 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1176 
1177 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1178 			if (ia == NULL) {
1179 				error = ENETUNREACH;
1180 				goto done;
1181 			}
1182 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1183 			goto done;
1184 		}
1185 
1186 		/* Jailed. */
1187 		if (ia != NULL) {
1188 			struct ifnet *ifp;
1189 
1190 			ifp = ia->ia_ifp;
1191 			ia = NULL;
1192 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1193 				sa = ifa->ifa_addr;
1194 				if (sa->sa_family != AF_INET)
1195 					continue;
1196 				sin = (struct sockaddr_in *)sa;
1197 				if (prison_check_ip4(cred,
1198 				    &sin->sin_addr) == 0) {
1199 					ia = (struct in_ifaddr *)ifa;
1200 					break;
1201 				}
1202 			}
1203 			if (ia != NULL) {
1204 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1205 				goto done;
1206 			}
1207 		}
1208 
1209 		/* 3. As a last resort return the 'default' jail address. */
1210 		error = prison_get_ip4(cred, laddr);
1211 		goto done;
1212 	}
1213 
1214 done:
1215 	NET_EPOCH_EXIT(et);
1216 	if (sro.ro_rt != NULL)
1217 		RTFREE(sro.ro_rt);
1218 	return (error);
1219 }
1220 
1221 /*
1222  * Set up for a connect from a socket to the specified address.
1223  * On entry, *laddrp and *lportp should contain the current local
1224  * address and port for the PCB; these are updated to the values
1225  * that should be placed in inp_laddr and inp_lport to complete
1226  * the connect.
1227  *
1228  * On success, *faddrp and *fportp will be set to the remote address
1229  * and port. These are not updated in the error case.
1230  *
1231  * If the operation fails because the connection already exists,
1232  * *oinpp will be set to the PCB of that connection so that the
1233  * caller can decide to override it. In all other cases, *oinpp
1234  * is set to NULL.
1235  */
1236 int
1237 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1238     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1239     struct inpcb **oinpp, struct ucred *cred)
1240 {
1241 	struct rm_priotracker in_ifa_tracker;
1242 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1243 	struct in_ifaddr *ia;
1244 	struct inpcb *oinp;
1245 	struct in_addr laddr, faddr;
1246 	u_short lport, fport;
1247 	int error;
1248 
1249 	/*
1250 	 * Because a global state change doesn't actually occur here, a read
1251 	 * lock is sufficient.
1252 	 */
1253 	INP_LOCK_ASSERT(inp);
1254 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1255 
1256 	if (oinpp != NULL)
1257 		*oinpp = NULL;
1258 	if (nam->sa_len != sizeof (*sin))
1259 		return (EINVAL);
1260 	if (sin->sin_family != AF_INET)
1261 		return (EAFNOSUPPORT);
1262 	if (sin->sin_port == 0)
1263 		return (EADDRNOTAVAIL);
1264 	laddr.s_addr = *laddrp;
1265 	lport = *lportp;
1266 	faddr = sin->sin_addr;
1267 	fport = sin->sin_port;
1268 
1269 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1270 		/*
1271 		 * If the destination address is INADDR_ANY,
1272 		 * use the primary local address.
1273 		 * If the supplied address is INADDR_BROADCAST,
1274 		 * and the primary interface supports broadcast,
1275 		 * choose the broadcast address for that interface.
1276 		 */
1277 		if (faddr.s_addr == INADDR_ANY) {
1278 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1279 			faddr =
1280 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1281 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1282 			if (cred != NULL &&
1283 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1284 				return (error);
1285 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1286 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1287 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1288 			    IFF_BROADCAST)
1289 				faddr = satosin(&CK_STAILQ_FIRST(
1290 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1291 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1292 		}
1293 	}
1294 	if (laddr.s_addr == INADDR_ANY) {
1295 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1296 		/*
1297 		 * If the destination address is multicast and an outgoing
1298 		 * interface has been set as a multicast option, prefer the
1299 		 * address of that interface as our source address.
1300 		 */
1301 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1302 		    inp->inp_moptions != NULL) {
1303 			struct ip_moptions *imo;
1304 			struct ifnet *ifp;
1305 
1306 			imo = inp->inp_moptions;
1307 			if (imo->imo_multicast_ifp != NULL) {
1308 				ifp = imo->imo_multicast_ifp;
1309 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1310 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1311 					if ((ia->ia_ifp == ifp) &&
1312 					    (cred == NULL ||
1313 					    prison_check_ip4(cred,
1314 					    &ia->ia_addr.sin_addr) == 0))
1315 						break;
1316 				}
1317 				if (ia == NULL)
1318 					error = EADDRNOTAVAIL;
1319 				else {
1320 					laddr = ia->ia_addr.sin_addr;
1321 					error = 0;
1322 				}
1323 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1324 			}
1325 		}
1326 		if (error)
1327 			return (error);
1328 	}
1329 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1330 	    laddr, lport, 0, NULL);
1331 	if (oinp != NULL) {
1332 		if (oinpp != NULL)
1333 			*oinpp = oinp;
1334 		return (EADDRINUSE);
1335 	}
1336 	if (lport == 0) {
1337 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1338 		    cred);
1339 		if (error)
1340 			return (error);
1341 	}
1342 	*laddrp = laddr.s_addr;
1343 	*lportp = lport;
1344 	*faddrp = faddr.s_addr;
1345 	*fportp = fport;
1346 	return (0);
1347 }
1348 
1349 void
1350 in_pcbdisconnect(struct inpcb *inp)
1351 {
1352 
1353 	INP_WLOCK_ASSERT(inp);
1354 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1355 
1356 	inp->inp_faddr.s_addr = INADDR_ANY;
1357 	inp->inp_fport = 0;
1358 	in_pcbrehash(inp);
1359 }
1360 #endif /* INET */
1361 
1362 /*
1363  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1364  * For most protocols, this will be invoked immediately prior to calling
1365  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1366  * socket, in which case in_pcbfree() is deferred.
1367  */
1368 void
1369 in_pcbdetach(struct inpcb *inp)
1370 {
1371 
1372 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1373 
1374 #ifdef RATELIMIT
1375 	if (inp->inp_snd_tag != NULL)
1376 		in_pcbdetach_txrtlmt(inp);
1377 #endif
1378 	inp->inp_socket->so_pcb = NULL;
1379 	inp->inp_socket = NULL;
1380 }
1381 
1382 /*
1383  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1384  * stability of an inpcb pointer despite the inpcb lock being released.  This
1385  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1386  * but where the inpcb lock may already held, or when acquiring a reference
1387  * via a pcbgroup.
1388  *
1389  * in_pcbref() should be used only to provide brief memory stability, and
1390  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1391  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1392  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1393  * lock and rele are the *only* safe operations that may be performed on the
1394  * inpcb.
1395  *
1396  * While the inpcb will not be freed, releasing the inpcb lock means that the
1397  * connection's state may change, so the caller should be careful to
1398  * revalidate any cached state on reacquiring the lock.  Drop the reference
1399  * using in_pcbrele().
1400  */
1401 void
1402 in_pcbref(struct inpcb *inp)
1403 {
1404 
1405 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1406 
1407 	refcount_acquire(&inp->inp_refcount);
1408 }
1409 
1410 /*
1411  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1412  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1413  * return a flag indicating whether or not the inpcb remains valid.  If it is
1414  * valid, we return with the inpcb lock held.
1415  *
1416  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1417  * reference on an inpcb.  Historically more work was done here (actually, in
1418  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1419  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1420  * about memory stability (and continued use of the write lock).
1421  */
1422 int
1423 in_pcbrele_rlocked(struct inpcb *inp)
1424 {
1425 	struct inpcbinfo *pcbinfo;
1426 
1427 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1428 
1429 	INP_RLOCK_ASSERT(inp);
1430 
1431 	if (refcount_release(&inp->inp_refcount) == 0) {
1432 		/*
1433 		 * If the inpcb has been freed, let the caller know, even if
1434 		 * this isn't the last reference.
1435 		 */
1436 		if (inp->inp_flags2 & INP_FREED) {
1437 			INP_RUNLOCK(inp);
1438 			return (1);
1439 		}
1440 		return (0);
1441 	}
1442 
1443 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1444 #ifdef TCPHPTS
1445 	if (inp->inp_in_hpts || inp->inp_in_input) {
1446 		struct tcp_hpts_entry *hpts;
1447 		/*
1448 		 * We should not be on the hpts at
1449 		 * this point in any form. we must
1450 		 * get the lock to be sure.
1451 		 */
1452 		hpts = tcp_hpts_lock(inp);
1453 		if (inp->inp_in_hpts)
1454 			panic("Hpts:%p inp:%p at free still on hpts",
1455 			      hpts, inp);
1456 		mtx_unlock(&hpts->p_mtx);
1457 		hpts = tcp_input_lock(inp);
1458 		if (inp->inp_in_input)
1459 			panic("Hpts:%p inp:%p at free still on input hpts",
1460 			      hpts, inp);
1461 		mtx_unlock(&hpts->p_mtx);
1462 	}
1463 #endif
1464 	INP_RUNLOCK(inp);
1465 	pcbinfo = inp->inp_pcbinfo;
1466 	uma_zfree(pcbinfo->ipi_zone, inp);
1467 	return (1);
1468 }
1469 
1470 int
1471 in_pcbrele_wlocked(struct inpcb *inp)
1472 {
1473 	struct inpcbinfo *pcbinfo;
1474 
1475 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1476 
1477 	INP_WLOCK_ASSERT(inp);
1478 
1479 	if (refcount_release(&inp->inp_refcount) == 0) {
1480 		/*
1481 		 * If the inpcb has been freed, let the caller know, even if
1482 		 * this isn't the last reference.
1483 		 */
1484 		if (inp->inp_flags2 & INP_FREED) {
1485 			INP_WUNLOCK(inp);
1486 			return (1);
1487 		}
1488 		return (0);
1489 	}
1490 
1491 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1492 #ifdef TCPHPTS
1493 	if (inp->inp_in_hpts || inp->inp_in_input) {
1494 		struct tcp_hpts_entry *hpts;
1495 		/*
1496 		 * We should not be on the hpts at
1497 		 * this point in any form. we must
1498 		 * get the lock to be sure.
1499 		 */
1500 		hpts = tcp_hpts_lock(inp);
1501 		if (inp->inp_in_hpts)
1502 			panic("Hpts:%p inp:%p at free still on hpts",
1503 			      hpts, inp);
1504 		mtx_unlock(&hpts->p_mtx);
1505 		hpts = tcp_input_lock(inp);
1506 		if (inp->inp_in_input)
1507 			panic("Hpts:%p inp:%p at free still on input hpts",
1508 			      hpts, inp);
1509 		mtx_unlock(&hpts->p_mtx);
1510 	}
1511 #endif
1512 	INP_WUNLOCK(inp);
1513 	pcbinfo = inp->inp_pcbinfo;
1514 	uma_zfree(pcbinfo->ipi_zone, inp);
1515 	return (1);
1516 }
1517 
1518 /*
1519  * Temporary wrapper.
1520  */
1521 int
1522 in_pcbrele(struct inpcb *inp)
1523 {
1524 
1525 	return (in_pcbrele_wlocked(inp));
1526 }
1527 
1528 void
1529 in_pcblist_rele_rlocked(epoch_context_t ctx)
1530 {
1531 	struct in_pcblist *il;
1532 	struct inpcb *inp;
1533 	struct inpcbinfo *pcbinfo;
1534 	int i, n;
1535 
1536 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1537 	pcbinfo = il->il_pcbinfo;
1538 	n = il->il_count;
1539 	INP_INFO_WLOCK(pcbinfo);
1540 	for (i = 0; i < n; i++) {
1541 		inp = il->il_inp_list[i];
1542 		INP_RLOCK(inp);
1543 		if (!in_pcbrele_rlocked(inp))
1544 			INP_RUNLOCK(inp);
1545 	}
1546 	INP_INFO_WUNLOCK(pcbinfo);
1547 	free(il, M_TEMP);
1548 }
1549 
1550 static void
1551 inpcbport_free(epoch_context_t ctx)
1552 {
1553 	struct inpcbport *phd;
1554 
1555 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1556 	free(phd, M_PCB);
1557 }
1558 
1559 static void
1560 in_pcbfree_deferred(epoch_context_t ctx)
1561 {
1562 	struct inpcb *inp;
1563 	int released __unused;
1564 
1565 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1566 
1567 	INP_WLOCK(inp);
1568 	CURVNET_SET(inp->inp_vnet);
1569 #ifdef INET
1570 	struct ip_moptions *imo = inp->inp_moptions;
1571 	inp->inp_moptions = NULL;
1572 #endif
1573 	/* XXXRW: Do as much as possible here. */
1574 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1575 	if (inp->inp_sp != NULL)
1576 		ipsec_delete_pcbpolicy(inp);
1577 #endif
1578 #ifdef INET6
1579 	struct ip6_moptions *im6o = NULL;
1580 	if (inp->inp_vflag & INP_IPV6PROTO) {
1581 		ip6_freepcbopts(inp->in6p_outputopts);
1582 		im6o = inp->in6p_moptions;
1583 		inp->in6p_moptions = NULL;
1584 	}
1585 #endif
1586 	if (inp->inp_options)
1587 		(void)m_free(inp->inp_options);
1588 	inp->inp_vflag = 0;
1589 	crfree(inp->inp_cred);
1590 #ifdef MAC
1591 	mac_inpcb_destroy(inp);
1592 #endif
1593 	released = in_pcbrele_wlocked(inp);
1594 	MPASS(released);
1595 #ifdef INET6
1596 	ip6_freemoptions(im6o);
1597 #endif
1598 #ifdef INET
1599 	inp_freemoptions(imo);
1600 #endif
1601 	CURVNET_RESTORE();
1602 }
1603 
1604 /*
1605  * Unconditionally schedule an inpcb to be freed by decrementing its
1606  * reference count, which should occur only after the inpcb has been detached
1607  * from its socket.  If another thread holds a temporary reference (acquired
1608  * using in_pcbref()) then the free is deferred until that reference is
1609  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1610  * work, including removal from global lists, is done in this context, where
1611  * the pcbinfo lock is held.
1612  */
1613 void
1614 in_pcbfree(struct inpcb *inp)
1615 {
1616 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1617 
1618 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1619 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1620 	    ("%s: called twice for pcb %p", __func__, inp));
1621 	if (inp->inp_flags2 & INP_FREED) {
1622 		INP_WUNLOCK(inp);
1623 		return;
1624 	}
1625 
1626 #ifdef INVARIANTS
1627 	if (pcbinfo == &V_tcbinfo) {
1628 		INP_INFO_LOCK_ASSERT(pcbinfo);
1629 	} else {
1630 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1631 	}
1632 #endif
1633 	INP_WLOCK_ASSERT(inp);
1634 	INP_LIST_WLOCK(pcbinfo);
1635 	in_pcbremlists(inp);
1636 	INP_LIST_WUNLOCK(pcbinfo);
1637 	RO_INVALIDATE_CACHE(&inp->inp_route);
1638 	/* mark as destruction in progress */
1639 	inp->inp_flags2 |= INP_FREED;
1640 	INP_WUNLOCK(inp);
1641 	epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred);
1642 }
1643 
1644 /*
1645  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1646  * port reservation, and preventing it from being returned by inpcb lookups.
1647  *
1648  * It is used by TCP to mark an inpcb as unused and avoid future packet
1649  * delivery or event notification when a socket remains open but TCP has
1650  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1651  * or a RST on the wire, and allows the port binding to be reused while still
1652  * maintaining the invariant that so_pcb always points to a valid inpcb until
1653  * in_pcbdetach().
1654  *
1655  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1656  * in_pcbnotifyall() and in_pcbpurgeif0()?
1657  */
1658 void
1659 in_pcbdrop(struct inpcb *inp)
1660 {
1661 
1662 	INP_WLOCK_ASSERT(inp);
1663 #ifdef INVARIANTS
1664 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1665 		MPASS(inp->inp_refcount > 1);
1666 #endif
1667 
1668 	/*
1669 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1670 	 * the hash lock...?
1671 	 */
1672 	inp->inp_flags |= INP_DROPPED;
1673 	if (inp->inp_flags & INP_INHASHLIST) {
1674 		struct inpcbport *phd = inp->inp_phd;
1675 
1676 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1677 		in_pcbremlbgrouphash(inp);
1678 		CK_LIST_REMOVE(inp, inp_hash);
1679 		CK_LIST_REMOVE(inp, inp_portlist);
1680 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1681 			CK_LIST_REMOVE(phd, phd_hash);
1682 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
1683 		}
1684 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1685 		inp->inp_flags &= ~INP_INHASHLIST;
1686 #ifdef PCBGROUP
1687 		in_pcbgroup_remove(inp);
1688 #endif
1689 	}
1690 }
1691 
1692 #ifdef INET
1693 /*
1694  * Common routines to return the socket addresses associated with inpcbs.
1695  */
1696 struct sockaddr *
1697 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1698 {
1699 	struct sockaddr_in *sin;
1700 
1701 	sin = malloc(sizeof *sin, M_SONAME,
1702 		M_WAITOK | M_ZERO);
1703 	sin->sin_family = AF_INET;
1704 	sin->sin_len = sizeof(*sin);
1705 	sin->sin_addr = *addr_p;
1706 	sin->sin_port = port;
1707 
1708 	return (struct sockaddr *)sin;
1709 }
1710 
1711 int
1712 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1713 {
1714 	struct inpcb *inp;
1715 	struct in_addr addr;
1716 	in_port_t port;
1717 
1718 	inp = sotoinpcb(so);
1719 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1720 
1721 	INP_RLOCK(inp);
1722 	port = inp->inp_lport;
1723 	addr = inp->inp_laddr;
1724 	INP_RUNLOCK(inp);
1725 
1726 	*nam = in_sockaddr(port, &addr);
1727 	return 0;
1728 }
1729 
1730 int
1731 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1732 {
1733 	struct inpcb *inp;
1734 	struct in_addr addr;
1735 	in_port_t port;
1736 
1737 	inp = sotoinpcb(so);
1738 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1739 
1740 	INP_RLOCK(inp);
1741 	port = inp->inp_fport;
1742 	addr = inp->inp_faddr;
1743 	INP_RUNLOCK(inp);
1744 
1745 	*nam = in_sockaddr(port, &addr);
1746 	return 0;
1747 }
1748 
1749 void
1750 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1751     struct inpcb *(*notify)(struct inpcb *, int))
1752 {
1753 	struct inpcb *inp, *inp_temp;
1754 
1755 	INP_INFO_WLOCK(pcbinfo);
1756 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1757 		INP_WLOCK(inp);
1758 #ifdef INET6
1759 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1760 			INP_WUNLOCK(inp);
1761 			continue;
1762 		}
1763 #endif
1764 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1765 		    inp->inp_socket == NULL) {
1766 			INP_WUNLOCK(inp);
1767 			continue;
1768 		}
1769 		if ((*notify)(inp, errno))
1770 			INP_WUNLOCK(inp);
1771 	}
1772 	INP_INFO_WUNLOCK(pcbinfo);
1773 }
1774 
1775 void
1776 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1777 {
1778 	struct inpcb *inp;
1779 	struct ip_moptions *imo;
1780 	int i, gap;
1781 
1782 	INP_INFO_WLOCK(pcbinfo);
1783 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1784 		INP_WLOCK(inp);
1785 		imo = inp->inp_moptions;
1786 		if ((inp->inp_vflag & INP_IPV4) &&
1787 		    imo != NULL) {
1788 			/*
1789 			 * Unselect the outgoing interface if it is being
1790 			 * detached.
1791 			 */
1792 			if (imo->imo_multicast_ifp == ifp)
1793 				imo->imo_multicast_ifp = NULL;
1794 
1795 			/*
1796 			 * Drop multicast group membership if we joined
1797 			 * through the interface being detached.
1798 			 *
1799 			 * XXX This can all be deferred to an epoch_call
1800 			 */
1801 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1802 			    i++) {
1803 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1804 					IN_MULTI_LOCK_ASSERT();
1805 					in_leavegroup_locked(imo->imo_membership[i], NULL);
1806 					gap++;
1807 				} else if (gap != 0)
1808 					imo->imo_membership[i - gap] =
1809 					    imo->imo_membership[i];
1810 			}
1811 			imo->imo_num_memberships -= gap;
1812 		}
1813 		INP_WUNLOCK(inp);
1814 	}
1815 	INP_INFO_WUNLOCK(pcbinfo);
1816 }
1817 
1818 /*
1819  * Lookup a PCB based on the local address and port.  Caller must hold the
1820  * hash lock.  No inpcb locks or references are acquired.
1821  */
1822 #define INP_LOOKUP_MAPPED_PCB_COST	3
1823 struct inpcb *
1824 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1825     u_short lport, int lookupflags, struct ucred *cred)
1826 {
1827 	struct inpcb *inp;
1828 #ifdef INET6
1829 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1830 #else
1831 	int matchwild = 3;
1832 #endif
1833 	int wildcard;
1834 
1835 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1836 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1837 
1838 	INP_HASH_LOCK_ASSERT(pcbinfo);
1839 
1840 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1841 		struct inpcbhead *head;
1842 		/*
1843 		 * Look for an unconnected (wildcard foreign addr) PCB that
1844 		 * matches the local address and port we're looking for.
1845 		 */
1846 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1847 		    0, pcbinfo->ipi_hashmask)];
1848 		CK_LIST_FOREACH(inp, head, inp_hash) {
1849 #ifdef INET6
1850 			/* XXX inp locking */
1851 			if ((inp->inp_vflag & INP_IPV4) == 0)
1852 				continue;
1853 #endif
1854 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1855 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1856 			    inp->inp_lport == lport) {
1857 				/*
1858 				 * Found?
1859 				 */
1860 				if (cred == NULL ||
1861 				    prison_equal_ip4(cred->cr_prison,
1862 					inp->inp_cred->cr_prison))
1863 					return (inp);
1864 			}
1865 		}
1866 		/*
1867 		 * Not found.
1868 		 */
1869 		return (NULL);
1870 	} else {
1871 		struct inpcbporthead *porthash;
1872 		struct inpcbport *phd;
1873 		struct inpcb *match = NULL;
1874 		/*
1875 		 * Best fit PCB lookup.
1876 		 *
1877 		 * First see if this local port is in use by looking on the
1878 		 * port hash list.
1879 		 */
1880 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1881 		    pcbinfo->ipi_porthashmask)];
1882 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1883 			if (phd->phd_port == lport)
1884 				break;
1885 		}
1886 		if (phd != NULL) {
1887 			/*
1888 			 * Port is in use by one or more PCBs. Look for best
1889 			 * fit.
1890 			 */
1891 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1892 				wildcard = 0;
1893 				if (cred != NULL &&
1894 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1895 					cred->cr_prison))
1896 					continue;
1897 #ifdef INET6
1898 				/* XXX inp locking */
1899 				if ((inp->inp_vflag & INP_IPV4) == 0)
1900 					continue;
1901 				/*
1902 				 * We never select the PCB that has
1903 				 * INP_IPV6 flag and is bound to :: if
1904 				 * we have another PCB which is bound
1905 				 * to 0.0.0.0.  If a PCB has the
1906 				 * INP_IPV6 flag, then we set its cost
1907 				 * higher than IPv4 only PCBs.
1908 				 *
1909 				 * Note that the case only happens
1910 				 * when a socket is bound to ::, under
1911 				 * the condition that the use of the
1912 				 * mapped address is allowed.
1913 				 */
1914 				if ((inp->inp_vflag & INP_IPV6) != 0)
1915 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1916 #endif
1917 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1918 					wildcard++;
1919 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1920 					if (laddr.s_addr == INADDR_ANY)
1921 						wildcard++;
1922 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1923 						continue;
1924 				} else {
1925 					if (laddr.s_addr != INADDR_ANY)
1926 						wildcard++;
1927 				}
1928 				if (wildcard < matchwild) {
1929 					match = inp;
1930 					matchwild = wildcard;
1931 					if (matchwild == 0)
1932 						break;
1933 				}
1934 			}
1935 		}
1936 		return (match);
1937 	}
1938 }
1939 #undef INP_LOOKUP_MAPPED_PCB_COST
1940 
1941 static struct inpcb *
1942 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1943     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1944     uint16_t fport, int lookupflags)
1945 {
1946 	struct inpcb *local_wild;
1947 	const struct inpcblbgrouphead *hdr;
1948 	struct inpcblbgroup *grp;
1949 	uint32_t idx;
1950 
1951 	INP_HASH_LOCK_ASSERT(pcbinfo);
1952 
1953 	hdr = &pcbinfo->ipi_lbgrouphashbase[
1954 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
1955 
1956 	/*
1957 	 * Order of socket selection:
1958 	 * 1. non-wild.
1959 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1960 	 *
1961 	 * NOTE:
1962 	 * - Load balanced group does not contain jailed sockets
1963 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1964 	 */
1965 	local_wild = NULL;
1966 	CK_LIST_FOREACH(grp, hdr, il_list) {
1967 #ifdef INET6
1968 		if (!(grp->il_vflag & INP_IPV4))
1969 			continue;
1970 #endif
1971 		if (grp->il_lport != lport)
1972 			continue;
1973 
1974 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
1975 		    grp->il_inpcnt;
1976 		if (grp->il_laddr.s_addr == laddr->s_addr)
1977 			return (grp->il_inp[idx]);
1978 		if (grp->il_laddr.s_addr == INADDR_ANY &&
1979 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
1980 			local_wild = grp->il_inp[idx];
1981 	}
1982 	return (local_wild);
1983 }
1984 
1985 #ifdef PCBGROUP
1986 /*
1987  * Lookup PCB in hash list, using pcbgroup tables.
1988  */
1989 static struct inpcb *
1990 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1991     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1992     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1993 {
1994 	struct inpcbhead *head;
1995 	struct inpcb *inp, *tmpinp;
1996 	u_short fport = fport_arg, lport = lport_arg;
1997 	bool locked;
1998 
1999 	/*
2000 	 * First look for an exact match.
2001 	 */
2002 	tmpinp = NULL;
2003 	INP_GROUP_LOCK(pcbgroup);
2004 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2005 	    pcbgroup->ipg_hashmask)];
2006 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2007 #ifdef INET6
2008 		/* XXX inp locking */
2009 		if ((inp->inp_vflag & INP_IPV4) == 0)
2010 			continue;
2011 #endif
2012 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2013 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2014 		    inp->inp_fport == fport &&
2015 		    inp->inp_lport == lport) {
2016 			/*
2017 			 * XXX We should be able to directly return
2018 			 * the inp here, without any checks.
2019 			 * Well unless both bound with SO_REUSEPORT?
2020 			 */
2021 			if (prison_flag(inp->inp_cred, PR_IP4))
2022 				goto found;
2023 			if (tmpinp == NULL)
2024 				tmpinp = inp;
2025 		}
2026 	}
2027 	if (tmpinp != NULL) {
2028 		inp = tmpinp;
2029 		goto found;
2030 	}
2031 
2032 #ifdef	RSS
2033 	/*
2034 	 * For incoming connections, we may wish to do a wildcard
2035 	 * match for an RSS-local socket.
2036 	 */
2037 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2038 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2039 #ifdef INET6
2040 		struct inpcb *local_wild_mapped = NULL;
2041 #endif
2042 		struct inpcb *jail_wild = NULL;
2043 		struct inpcbhead *head;
2044 		int injail;
2045 
2046 		/*
2047 		 * Order of socket selection - we always prefer jails.
2048 		 *      1. jailed, non-wild.
2049 		 *      2. jailed, wild.
2050 		 *      3. non-jailed, non-wild.
2051 		 *      4. non-jailed, wild.
2052 		 */
2053 
2054 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2055 		    lport, 0, pcbgroup->ipg_hashmask)];
2056 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2057 #ifdef INET6
2058 			/* XXX inp locking */
2059 			if ((inp->inp_vflag & INP_IPV4) == 0)
2060 				continue;
2061 #endif
2062 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2063 			    inp->inp_lport != lport)
2064 				continue;
2065 
2066 			injail = prison_flag(inp->inp_cred, PR_IP4);
2067 			if (injail) {
2068 				if (prison_check_ip4(inp->inp_cred,
2069 				    &laddr) != 0)
2070 					continue;
2071 			} else {
2072 				if (local_exact != NULL)
2073 					continue;
2074 			}
2075 
2076 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2077 				if (injail)
2078 					goto found;
2079 				else
2080 					local_exact = inp;
2081 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2082 #ifdef INET6
2083 				/* XXX inp locking, NULL check */
2084 				if (inp->inp_vflag & INP_IPV6PROTO)
2085 					local_wild_mapped = inp;
2086 				else
2087 #endif
2088 					if (injail)
2089 						jail_wild = inp;
2090 					else
2091 						local_wild = inp;
2092 			}
2093 		} /* LIST_FOREACH */
2094 
2095 		inp = jail_wild;
2096 		if (inp == NULL)
2097 			inp = local_exact;
2098 		if (inp == NULL)
2099 			inp = local_wild;
2100 #ifdef INET6
2101 		if (inp == NULL)
2102 			inp = local_wild_mapped;
2103 #endif
2104 		if (inp != NULL)
2105 			goto found;
2106 	}
2107 #endif
2108 
2109 	/*
2110 	 * Then look for a wildcard match, if requested.
2111 	 */
2112 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2113 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2114 #ifdef INET6
2115 		struct inpcb *local_wild_mapped = NULL;
2116 #endif
2117 		struct inpcb *jail_wild = NULL;
2118 		struct inpcbhead *head;
2119 		int injail;
2120 
2121 		/*
2122 		 * Order of socket selection - we always prefer jails.
2123 		 *      1. jailed, non-wild.
2124 		 *      2. jailed, wild.
2125 		 *      3. non-jailed, non-wild.
2126 		 *      4. non-jailed, wild.
2127 		 */
2128 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2129 		    0, pcbinfo->ipi_wildmask)];
2130 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2131 #ifdef INET6
2132 			/* XXX inp locking */
2133 			if ((inp->inp_vflag & INP_IPV4) == 0)
2134 				continue;
2135 #endif
2136 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2137 			    inp->inp_lport != lport)
2138 				continue;
2139 
2140 			injail = prison_flag(inp->inp_cred, PR_IP4);
2141 			if (injail) {
2142 				if (prison_check_ip4(inp->inp_cred,
2143 				    &laddr) != 0)
2144 					continue;
2145 			} else {
2146 				if (local_exact != NULL)
2147 					continue;
2148 			}
2149 
2150 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2151 				if (injail)
2152 					goto found;
2153 				else
2154 					local_exact = inp;
2155 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2156 #ifdef INET6
2157 				/* XXX inp locking, NULL check */
2158 				if (inp->inp_vflag & INP_IPV6PROTO)
2159 					local_wild_mapped = inp;
2160 				else
2161 #endif
2162 					if (injail)
2163 						jail_wild = inp;
2164 					else
2165 						local_wild = inp;
2166 			}
2167 		} /* LIST_FOREACH */
2168 		inp = jail_wild;
2169 		if (inp == NULL)
2170 			inp = local_exact;
2171 		if (inp == NULL)
2172 			inp = local_wild;
2173 #ifdef INET6
2174 		if (inp == NULL)
2175 			inp = local_wild_mapped;
2176 #endif
2177 		if (inp != NULL)
2178 			goto found;
2179 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2180 	INP_GROUP_UNLOCK(pcbgroup);
2181 	return (NULL);
2182 
2183 found:
2184 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2185 		locked = INP_TRY_WLOCK(inp);
2186 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2187 		locked = INP_TRY_RLOCK(inp);
2188 	else
2189 		panic("%s: locking bug", __func__);
2190 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2191 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2192 			INP_WUNLOCK(inp);
2193 		else
2194 			INP_RUNLOCK(inp);
2195 		return (NULL);
2196 	} else if (!locked)
2197 		in_pcbref(inp);
2198 	INP_GROUP_UNLOCK(pcbgroup);
2199 	if (!locked) {
2200 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2201 			INP_WLOCK(inp);
2202 			if (in_pcbrele_wlocked(inp))
2203 				return (NULL);
2204 		} else {
2205 			INP_RLOCK(inp);
2206 			if (in_pcbrele_rlocked(inp))
2207 				return (NULL);
2208 		}
2209 	}
2210 #ifdef INVARIANTS
2211 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2212 		INP_WLOCK_ASSERT(inp);
2213 	else
2214 		INP_RLOCK_ASSERT(inp);
2215 #endif
2216 	return (inp);
2217 }
2218 #endif /* PCBGROUP */
2219 
2220 /*
2221  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2222  * that the caller has locked the hash list, and will not perform any further
2223  * locking or reference operations on either the hash list or the connection.
2224  */
2225 static struct inpcb *
2226 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2227     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2228     struct ifnet *ifp)
2229 {
2230 	struct inpcbhead *head;
2231 	struct inpcb *inp, *tmpinp;
2232 	u_short fport = fport_arg, lport = lport_arg;
2233 
2234 #ifdef INVARIANTS
2235 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2236 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2237 	if (!mtx_owned(&pcbinfo->ipi_hash_lock))
2238 		MPASS(in_epoch_verbose(net_epoch_preempt, 1));
2239 #endif
2240 	/*
2241 	 * First look for an exact match.
2242 	 */
2243 	tmpinp = NULL;
2244 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2245 	    pcbinfo->ipi_hashmask)];
2246 	CK_LIST_FOREACH(inp, head, inp_hash) {
2247 #ifdef INET6
2248 		/* XXX inp locking */
2249 		if ((inp->inp_vflag & INP_IPV4) == 0)
2250 			continue;
2251 #endif
2252 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2253 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2254 		    inp->inp_fport == fport &&
2255 		    inp->inp_lport == lport) {
2256 			/*
2257 			 * XXX We should be able to directly return
2258 			 * the inp here, without any checks.
2259 			 * Well unless both bound with SO_REUSEPORT?
2260 			 */
2261 			if (prison_flag(inp->inp_cred, PR_IP4))
2262 				return (inp);
2263 			if (tmpinp == NULL)
2264 				tmpinp = inp;
2265 		}
2266 	}
2267 	if (tmpinp != NULL)
2268 		return (tmpinp);
2269 
2270 	/*
2271 	 * Then look in lb group (for wildcard match).
2272 	 */
2273 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2274 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2275 		    fport, lookupflags);
2276 		if (inp != NULL)
2277 			return (inp);
2278 	}
2279 
2280 	/*
2281 	 * Then look for a wildcard match, if requested.
2282 	 */
2283 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2284 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2285 #ifdef INET6
2286 		struct inpcb *local_wild_mapped = NULL;
2287 #endif
2288 		struct inpcb *jail_wild = NULL;
2289 		int injail;
2290 
2291 		/*
2292 		 * Order of socket selection - we always prefer jails.
2293 		 *      1. jailed, non-wild.
2294 		 *      2. jailed, wild.
2295 		 *      3. non-jailed, non-wild.
2296 		 *      4. non-jailed, wild.
2297 		 */
2298 
2299 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2300 		    0, pcbinfo->ipi_hashmask)];
2301 		CK_LIST_FOREACH(inp, head, inp_hash) {
2302 #ifdef INET6
2303 			/* XXX inp locking */
2304 			if ((inp->inp_vflag & INP_IPV4) == 0)
2305 				continue;
2306 #endif
2307 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2308 			    inp->inp_lport != lport)
2309 				continue;
2310 
2311 			injail = prison_flag(inp->inp_cred, PR_IP4);
2312 			if (injail) {
2313 				if (prison_check_ip4(inp->inp_cred,
2314 				    &laddr) != 0)
2315 					continue;
2316 			} else {
2317 				if (local_exact != NULL)
2318 					continue;
2319 			}
2320 
2321 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2322 				if (injail)
2323 					return (inp);
2324 				else
2325 					local_exact = inp;
2326 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2327 #ifdef INET6
2328 				/* XXX inp locking, NULL check */
2329 				if (inp->inp_vflag & INP_IPV6PROTO)
2330 					local_wild_mapped = inp;
2331 				else
2332 #endif
2333 					if (injail)
2334 						jail_wild = inp;
2335 					else
2336 						local_wild = inp;
2337 			}
2338 		} /* LIST_FOREACH */
2339 		if (jail_wild != NULL)
2340 			return (jail_wild);
2341 		if (local_exact != NULL)
2342 			return (local_exact);
2343 		if (local_wild != NULL)
2344 			return (local_wild);
2345 #ifdef INET6
2346 		if (local_wild_mapped != NULL)
2347 			return (local_wild_mapped);
2348 #endif
2349 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2350 
2351 	return (NULL);
2352 }
2353 
2354 /*
2355  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2356  * hash list lock, and will return the inpcb locked (i.e., requires
2357  * INPLOOKUP_LOCKPCB).
2358  */
2359 static struct inpcb *
2360 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2361     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2362     struct ifnet *ifp)
2363 {
2364 	struct inpcb *inp;
2365 
2366 	INP_HASH_RLOCK(pcbinfo);
2367 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2368 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2369 	if (inp != NULL) {
2370 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2371 			INP_WLOCK(inp);
2372 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2373 				INP_WUNLOCK(inp);
2374 				inp = NULL;
2375 			}
2376 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2377 			INP_RLOCK(inp);
2378 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2379 				INP_RUNLOCK(inp);
2380 				inp = NULL;
2381 			}
2382 		} else
2383 			panic("%s: locking bug", __func__);
2384 #ifdef INVARIANTS
2385 		if (inp != NULL) {
2386 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2387 				INP_WLOCK_ASSERT(inp);
2388 			else
2389 				INP_RLOCK_ASSERT(inp);
2390 		}
2391 #endif
2392 	}
2393 	INP_HASH_RUNLOCK(pcbinfo);
2394 	return (inp);
2395 }
2396 
2397 /*
2398  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2399  * from which a pre-calculated hash value may be extracted.
2400  *
2401  * Possibly more of this logic should be in in_pcbgroup.c.
2402  */
2403 struct inpcb *
2404 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2405     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2406 {
2407 #if defined(PCBGROUP) && !defined(RSS)
2408 	struct inpcbgroup *pcbgroup;
2409 #endif
2410 
2411 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2412 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2413 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2414 	    ("%s: LOCKPCB not set", __func__));
2415 
2416 	/*
2417 	 * When not using RSS, use connection groups in preference to the
2418 	 * reservation table when looking up 4-tuples.  When using RSS, just
2419 	 * use the reservation table, due to the cost of the Toeplitz hash
2420 	 * in software.
2421 	 *
2422 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2423 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2424 	 * in software.
2425 	 */
2426 #if defined(PCBGROUP) && !defined(RSS)
2427 	if (in_pcbgroup_enabled(pcbinfo)) {
2428 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2429 		    fport);
2430 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2431 		    laddr, lport, lookupflags, ifp));
2432 	}
2433 #endif
2434 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2435 	    lookupflags, ifp));
2436 }
2437 
2438 struct inpcb *
2439 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2440     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2441     struct ifnet *ifp, struct mbuf *m)
2442 {
2443 #ifdef PCBGROUP
2444 	struct inpcbgroup *pcbgroup;
2445 #endif
2446 
2447 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2448 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2449 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2450 	    ("%s: LOCKPCB not set", __func__));
2451 
2452 #ifdef PCBGROUP
2453 	/*
2454 	 * If we can use a hardware-generated hash to look up the connection
2455 	 * group, use that connection group to find the inpcb.  Otherwise
2456 	 * fall back on a software hash -- or the reservation table if we're
2457 	 * using RSS.
2458 	 *
2459 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2460 	 */
2461 	if (in_pcbgroup_enabled(pcbinfo) &&
2462 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2463 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2464 		    m->m_pkthdr.flowid);
2465 		if (pcbgroup != NULL)
2466 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2467 			    fport, laddr, lport, lookupflags, ifp));
2468 #ifndef RSS
2469 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2470 		    fport);
2471 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2472 		    laddr, lport, lookupflags, ifp));
2473 #endif
2474 	}
2475 #endif
2476 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2477 	    lookupflags, ifp));
2478 }
2479 #endif /* INET */
2480 
2481 /*
2482  * Insert PCB onto various hash lists.
2483  */
2484 static int
2485 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2486 {
2487 	struct inpcbhead *pcbhash;
2488 	struct inpcbporthead *pcbporthash;
2489 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2490 	struct inpcbport *phd;
2491 	u_int32_t hashkey_faddr;
2492 	int so_options;
2493 
2494 	INP_WLOCK_ASSERT(inp);
2495 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2496 
2497 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2498 	    ("in_pcbinshash: INP_INHASHLIST"));
2499 
2500 #ifdef INET6
2501 	if (inp->inp_vflag & INP_IPV6)
2502 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2503 	else
2504 #endif
2505 	hashkey_faddr = inp->inp_faddr.s_addr;
2506 
2507 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2508 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2509 
2510 	pcbporthash = &pcbinfo->ipi_porthashbase[
2511 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2512 
2513 	/*
2514 	 * Add entry to load balance group.
2515 	 * Only do this if SO_REUSEPORT_LB is set.
2516 	 */
2517 	so_options = inp_so_options(inp);
2518 	if (so_options & SO_REUSEPORT_LB) {
2519 		int ret = in_pcbinslbgrouphash(inp);
2520 		if (ret) {
2521 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2522 			return (ret);
2523 		}
2524 	}
2525 
2526 	/*
2527 	 * Go through port list and look for a head for this lport.
2528 	 */
2529 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2530 		if (phd->phd_port == inp->inp_lport)
2531 			break;
2532 	}
2533 	/*
2534 	 * If none exists, malloc one and tack it on.
2535 	 */
2536 	if (phd == NULL) {
2537 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2538 		if (phd == NULL) {
2539 			return (ENOBUFS); /* XXX */
2540 		}
2541 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2542 		phd->phd_port = inp->inp_lport;
2543 		CK_LIST_INIT(&phd->phd_pcblist);
2544 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2545 	}
2546 	inp->inp_phd = phd;
2547 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2548 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2549 	inp->inp_flags |= INP_INHASHLIST;
2550 #ifdef PCBGROUP
2551 	if (do_pcbgroup_update)
2552 		in_pcbgroup_update(inp);
2553 #endif
2554 	return (0);
2555 }
2556 
2557 /*
2558  * For now, there are two public interfaces to insert an inpcb into the hash
2559  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2560  * is used only in the TCP syncache, where in_pcbinshash is called before the
2561  * full 4-tuple is set for the inpcb, and we don't want to install in the
2562  * pcbgroup until later.
2563  *
2564  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2565  * connection groups, and partially initialised inpcbs should not be exposed
2566  * to either reservation hash tables or pcbgroups.
2567  */
2568 int
2569 in_pcbinshash(struct inpcb *inp)
2570 {
2571 
2572 	return (in_pcbinshash_internal(inp, 1));
2573 }
2574 
2575 int
2576 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2577 {
2578 
2579 	return (in_pcbinshash_internal(inp, 0));
2580 }
2581 
2582 /*
2583  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2584  * changed. NOTE: This does not handle the case of the lport changing (the
2585  * hashed port list would have to be updated as well), so the lport must
2586  * not change after in_pcbinshash() has been called.
2587  */
2588 void
2589 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2590 {
2591 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2592 	struct inpcbhead *head;
2593 	u_int32_t hashkey_faddr;
2594 
2595 	INP_WLOCK_ASSERT(inp);
2596 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2597 
2598 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2599 	    ("in_pcbrehash: !INP_INHASHLIST"));
2600 
2601 #ifdef INET6
2602 	if (inp->inp_vflag & INP_IPV6)
2603 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2604 	else
2605 #endif
2606 	hashkey_faddr = inp->inp_faddr.s_addr;
2607 
2608 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2609 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2610 
2611 	CK_LIST_REMOVE(inp, inp_hash);
2612 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2613 
2614 #ifdef PCBGROUP
2615 	if (m != NULL)
2616 		in_pcbgroup_update_mbuf(inp, m);
2617 	else
2618 		in_pcbgroup_update(inp);
2619 #endif
2620 }
2621 
2622 void
2623 in_pcbrehash(struct inpcb *inp)
2624 {
2625 
2626 	in_pcbrehash_mbuf(inp, NULL);
2627 }
2628 
2629 /*
2630  * Remove PCB from various lists.
2631  */
2632 static void
2633 in_pcbremlists(struct inpcb *inp)
2634 {
2635 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2636 
2637 #ifdef INVARIANTS
2638 	if (pcbinfo == &V_tcbinfo) {
2639 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2640 	} else {
2641 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2642 	}
2643 #endif
2644 
2645 	INP_WLOCK_ASSERT(inp);
2646 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2647 
2648 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2649 	if (inp->inp_flags & INP_INHASHLIST) {
2650 		struct inpcbport *phd = inp->inp_phd;
2651 
2652 		INP_HASH_WLOCK(pcbinfo);
2653 
2654 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2655 		in_pcbremlbgrouphash(inp);
2656 
2657 		CK_LIST_REMOVE(inp, inp_hash);
2658 		CK_LIST_REMOVE(inp, inp_portlist);
2659 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2660 			CK_LIST_REMOVE(phd, phd_hash);
2661 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
2662 		}
2663 		INP_HASH_WUNLOCK(pcbinfo);
2664 		inp->inp_flags &= ~INP_INHASHLIST;
2665 	}
2666 	CK_LIST_REMOVE(inp, inp_list);
2667 	pcbinfo->ipi_count--;
2668 #ifdef PCBGROUP
2669 	in_pcbgroup_remove(inp);
2670 #endif
2671 }
2672 
2673 /*
2674  * Check for alternatives when higher level complains
2675  * about service problems.  For now, invalidate cached
2676  * routing information.  If the route was created dynamically
2677  * (by a redirect), time to try a default gateway again.
2678  */
2679 void
2680 in_losing(struct inpcb *inp)
2681 {
2682 
2683 	RO_INVALIDATE_CACHE(&inp->inp_route);
2684 	return;
2685 }
2686 
2687 /*
2688  * A set label operation has occurred at the socket layer, propagate the
2689  * label change into the in_pcb for the socket.
2690  */
2691 void
2692 in_pcbsosetlabel(struct socket *so)
2693 {
2694 #ifdef MAC
2695 	struct inpcb *inp;
2696 
2697 	inp = sotoinpcb(so);
2698 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2699 
2700 	INP_WLOCK(inp);
2701 	SOCK_LOCK(so);
2702 	mac_inpcb_sosetlabel(so, inp);
2703 	SOCK_UNLOCK(so);
2704 	INP_WUNLOCK(inp);
2705 #endif
2706 }
2707 
2708 /*
2709  * ipport_tick runs once per second, determining if random port allocation
2710  * should be continued.  If more than ipport_randomcps ports have been
2711  * allocated in the last second, then we return to sequential port
2712  * allocation. We return to random allocation only once we drop below
2713  * ipport_randomcps for at least ipport_randomtime seconds.
2714  */
2715 static void
2716 ipport_tick(void *xtp)
2717 {
2718 	VNET_ITERATOR_DECL(vnet_iter);
2719 
2720 	VNET_LIST_RLOCK_NOSLEEP();
2721 	VNET_FOREACH(vnet_iter) {
2722 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2723 		if (V_ipport_tcpallocs <=
2724 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2725 			if (V_ipport_stoprandom > 0)
2726 				V_ipport_stoprandom--;
2727 		} else
2728 			V_ipport_stoprandom = V_ipport_randomtime;
2729 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2730 		CURVNET_RESTORE();
2731 	}
2732 	VNET_LIST_RUNLOCK_NOSLEEP();
2733 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2734 }
2735 
2736 static void
2737 ip_fini(void *xtp)
2738 {
2739 
2740 	callout_stop(&ipport_tick_callout);
2741 }
2742 
2743 /*
2744  * The ipport_callout should start running at about the time we attach the
2745  * inet or inet6 domains.
2746  */
2747 static void
2748 ipport_tick_init(const void *unused __unused)
2749 {
2750 
2751 	/* Start ipport_tick. */
2752 	callout_init(&ipport_tick_callout, 1);
2753 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2754 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2755 		SHUTDOWN_PRI_DEFAULT);
2756 }
2757 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2758     ipport_tick_init, NULL);
2759 
2760 void
2761 inp_wlock(struct inpcb *inp)
2762 {
2763 
2764 	INP_WLOCK(inp);
2765 }
2766 
2767 void
2768 inp_wunlock(struct inpcb *inp)
2769 {
2770 
2771 	INP_WUNLOCK(inp);
2772 }
2773 
2774 void
2775 inp_rlock(struct inpcb *inp)
2776 {
2777 
2778 	INP_RLOCK(inp);
2779 }
2780 
2781 void
2782 inp_runlock(struct inpcb *inp)
2783 {
2784 
2785 	INP_RUNLOCK(inp);
2786 }
2787 
2788 #ifdef INVARIANT_SUPPORT
2789 void
2790 inp_lock_assert(struct inpcb *inp)
2791 {
2792 
2793 	INP_WLOCK_ASSERT(inp);
2794 }
2795 
2796 void
2797 inp_unlock_assert(struct inpcb *inp)
2798 {
2799 
2800 	INP_UNLOCK_ASSERT(inp);
2801 }
2802 #endif
2803 
2804 void
2805 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2806 {
2807 	struct inpcb *inp;
2808 
2809 	INP_INFO_WLOCK(&V_tcbinfo);
2810 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2811 		INP_WLOCK(inp);
2812 		func(inp, arg);
2813 		INP_WUNLOCK(inp);
2814 	}
2815 	INP_INFO_WUNLOCK(&V_tcbinfo);
2816 }
2817 
2818 struct socket *
2819 inp_inpcbtosocket(struct inpcb *inp)
2820 {
2821 
2822 	INP_WLOCK_ASSERT(inp);
2823 	return (inp->inp_socket);
2824 }
2825 
2826 struct tcpcb *
2827 inp_inpcbtotcpcb(struct inpcb *inp)
2828 {
2829 
2830 	INP_WLOCK_ASSERT(inp);
2831 	return ((struct tcpcb *)inp->inp_ppcb);
2832 }
2833 
2834 int
2835 inp_ip_tos_get(const struct inpcb *inp)
2836 {
2837 
2838 	return (inp->inp_ip_tos);
2839 }
2840 
2841 void
2842 inp_ip_tos_set(struct inpcb *inp, int val)
2843 {
2844 
2845 	inp->inp_ip_tos = val;
2846 }
2847 
2848 void
2849 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2850     uint32_t *faddr, uint16_t *fp)
2851 {
2852 
2853 	INP_LOCK_ASSERT(inp);
2854 	*laddr = inp->inp_laddr.s_addr;
2855 	*faddr = inp->inp_faddr.s_addr;
2856 	*lp = inp->inp_lport;
2857 	*fp = inp->inp_fport;
2858 }
2859 
2860 struct inpcb *
2861 so_sotoinpcb(struct socket *so)
2862 {
2863 
2864 	return (sotoinpcb(so));
2865 }
2866 
2867 struct tcpcb *
2868 so_sototcpcb(struct socket *so)
2869 {
2870 
2871 	return (sototcpcb(so));
2872 }
2873 
2874 /*
2875  * Create an external-format (``xinpcb'') structure using the information in
2876  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2877  * reduce the spew of irrelevant information over this interface, to isolate
2878  * user code from changes in the kernel structure, and potentially to provide
2879  * information-hiding if we decide that some of this information should be
2880  * hidden from users.
2881  */
2882 void
2883 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2884 {
2885 
2886 	bzero(xi, sizeof(*xi));
2887 	xi->xi_len = sizeof(struct xinpcb);
2888 	if (inp->inp_socket)
2889 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2890 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2891 	xi->inp_gencnt = inp->inp_gencnt;
2892 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2893 	xi->inp_flow = inp->inp_flow;
2894 	xi->inp_flowid = inp->inp_flowid;
2895 	xi->inp_flowtype = inp->inp_flowtype;
2896 	xi->inp_flags = inp->inp_flags;
2897 	xi->inp_flags2 = inp->inp_flags2;
2898 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2899 	xi->in6p_cksum = inp->in6p_cksum;
2900 	xi->in6p_hops = inp->in6p_hops;
2901 	xi->inp_ip_tos = inp->inp_ip_tos;
2902 	xi->inp_vflag = inp->inp_vflag;
2903 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2904 	xi->inp_ip_p = inp->inp_ip_p;
2905 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2906 }
2907 
2908 #ifdef DDB
2909 static void
2910 db_print_indent(int indent)
2911 {
2912 	int i;
2913 
2914 	for (i = 0; i < indent; i++)
2915 		db_printf(" ");
2916 }
2917 
2918 static void
2919 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2920 {
2921 	char faddr_str[48], laddr_str[48];
2922 
2923 	db_print_indent(indent);
2924 	db_printf("%s at %p\n", name, inc);
2925 
2926 	indent += 2;
2927 
2928 #ifdef INET6
2929 	if (inc->inc_flags & INC_ISIPV6) {
2930 		/* IPv6. */
2931 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2932 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2933 	} else
2934 #endif
2935 	{
2936 		/* IPv4. */
2937 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2938 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2939 	}
2940 	db_print_indent(indent);
2941 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2942 	    ntohs(inc->inc_lport));
2943 	db_print_indent(indent);
2944 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2945 	    ntohs(inc->inc_fport));
2946 }
2947 
2948 static void
2949 db_print_inpflags(int inp_flags)
2950 {
2951 	int comma;
2952 
2953 	comma = 0;
2954 	if (inp_flags & INP_RECVOPTS) {
2955 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2956 		comma = 1;
2957 	}
2958 	if (inp_flags & INP_RECVRETOPTS) {
2959 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2960 		comma = 1;
2961 	}
2962 	if (inp_flags & INP_RECVDSTADDR) {
2963 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2964 		comma = 1;
2965 	}
2966 	if (inp_flags & INP_ORIGDSTADDR) {
2967 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2968 		comma = 1;
2969 	}
2970 	if (inp_flags & INP_HDRINCL) {
2971 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2972 		comma = 1;
2973 	}
2974 	if (inp_flags & INP_HIGHPORT) {
2975 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2976 		comma = 1;
2977 	}
2978 	if (inp_flags & INP_LOWPORT) {
2979 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2980 		comma = 1;
2981 	}
2982 	if (inp_flags & INP_ANONPORT) {
2983 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2984 		comma = 1;
2985 	}
2986 	if (inp_flags & INP_RECVIF) {
2987 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2988 		comma = 1;
2989 	}
2990 	if (inp_flags & INP_MTUDISC) {
2991 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2992 		comma = 1;
2993 	}
2994 	if (inp_flags & INP_RECVTTL) {
2995 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2996 		comma = 1;
2997 	}
2998 	if (inp_flags & INP_DONTFRAG) {
2999 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3000 		comma = 1;
3001 	}
3002 	if (inp_flags & INP_RECVTOS) {
3003 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3004 		comma = 1;
3005 	}
3006 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3007 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3008 		comma = 1;
3009 	}
3010 	if (inp_flags & IN6P_PKTINFO) {
3011 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3012 		comma = 1;
3013 	}
3014 	if (inp_flags & IN6P_HOPLIMIT) {
3015 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3016 		comma = 1;
3017 	}
3018 	if (inp_flags & IN6P_HOPOPTS) {
3019 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3020 		comma = 1;
3021 	}
3022 	if (inp_flags & IN6P_DSTOPTS) {
3023 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3024 		comma = 1;
3025 	}
3026 	if (inp_flags & IN6P_RTHDR) {
3027 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3028 		comma = 1;
3029 	}
3030 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3031 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3032 		comma = 1;
3033 	}
3034 	if (inp_flags & IN6P_TCLASS) {
3035 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3036 		comma = 1;
3037 	}
3038 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3039 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3040 		comma = 1;
3041 	}
3042 	if (inp_flags & INP_TIMEWAIT) {
3043 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3044 		comma  = 1;
3045 	}
3046 	if (inp_flags & INP_ONESBCAST) {
3047 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3048 		comma  = 1;
3049 	}
3050 	if (inp_flags & INP_DROPPED) {
3051 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3052 		comma  = 1;
3053 	}
3054 	if (inp_flags & INP_SOCKREF) {
3055 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3056 		comma  = 1;
3057 	}
3058 	if (inp_flags & IN6P_RFC2292) {
3059 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3060 		comma = 1;
3061 	}
3062 	if (inp_flags & IN6P_MTU) {
3063 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3064 		comma = 1;
3065 	}
3066 }
3067 
3068 static void
3069 db_print_inpvflag(u_char inp_vflag)
3070 {
3071 	int comma;
3072 
3073 	comma = 0;
3074 	if (inp_vflag & INP_IPV4) {
3075 		db_printf("%sINP_IPV4", comma ? ", " : "");
3076 		comma  = 1;
3077 	}
3078 	if (inp_vflag & INP_IPV6) {
3079 		db_printf("%sINP_IPV6", comma ? ", " : "");
3080 		comma  = 1;
3081 	}
3082 	if (inp_vflag & INP_IPV6PROTO) {
3083 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3084 		comma  = 1;
3085 	}
3086 }
3087 
3088 static void
3089 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3090 {
3091 
3092 	db_print_indent(indent);
3093 	db_printf("%s at %p\n", name, inp);
3094 
3095 	indent += 2;
3096 
3097 	db_print_indent(indent);
3098 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3099 
3100 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3101 
3102 	db_print_indent(indent);
3103 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3104 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3105 
3106 	db_print_indent(indent);
3107 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3108 	   inp->inp_label, inp->inp_flags);
3109 	db_print_inpflags(inp->inp_flags);
3110 	db_printf(")\n");
3111 
3112 	db_print_indent(indent);
3113 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3114 	    inp->inp_vflag);
3115 	db_print_inpvflag(inp->inp_vflag);
3116 	db_printf(")\n");
3117 
3118 	db_print_indent(indent);
3119 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3120 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3121 
3122 	db_print_indent(indent);
3123 #ifdef INET6
3124 	if (inp->inp_vflag & INP_IPV6) {
3125 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3126 		    "in6p_moptions: %p\n", inp->in6p_options,
3127 		    inp->in6p_outputopts, inp->in6p_moptions);
3128 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3129 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3130 		    inp->in6p_hops);
3131 	} else
3132 #endif
3133 	{
3134 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3135 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3136 		    inp->inp_options, inp->inp_moptions);
3137 	}
3138 
3139 	db_print_indent(indent);
3140 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3141 	    (uintmax_t)inp->inp_gencnt);
3142 }
3143 
3144 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3145 {
3146 	struct inpcb *inp;
3147 
3148 	if (!have_addr) {
3149 		db_printf("usage: show inpcb <addr>\n");
3150 		return;
3151 	}
3152 	inp = (struct inpcb *)addr;
3153 
3154 	db_print_inpcb(inp, "inpcb", 0);
3155 }
3156 #endif /* DDB */
3157 
3158 #ifdef RATELIMIT
3159 /*
3160  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3161  * if any.
3162  */
3163 int
3164 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3165 {
3166 	union if_snd_tag_modify_params params = {
3167 		.rate_limit.max_rate = max_pacing_rate,
3168 	};
3169 	struct m_snd_tag *mst;
3170 	struct ifnet *ifp;
3171 	int error;
3172 
3173 	mst = inp->inp_snd_tag;
3174 	if (mst == NULL)
3175 		return (EINVAL);
3176 
3177 	ifp = mst->ifp;
3178 	if (ifp == NULL)
3179 		return (EINVAL);
3180 
3181 	if (ifp->if_snd_tag_modify == NULL) {
3182 		error = EOPNOTSUPP;
3183 	} else {
3184 		error = ifp->if_snd_tag_modify(mst, &params);
3185 	}
3186 	return (error);
3187 }
3188 
3189 /*
3190  * Query existing TX rate limit based on the existing
3191  * "inp->inp_snd_tag", if any.
3192  */
3193 int
3194 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3195 {
3196 	union if_snd_tag_query_params params = { };
3197 	struct m_snd_tag *mst;
3198 	struct ifnet *ifp;
3199 	int error;
3200 
3201 	mst = inp->inp_snd_tag;
3202 	if (mst == NULL)
3203 		return (EINVAL);
3204 
3205 	ifp = mst->ifp;
3206 	if (ifp == NULL)
3207 		return (EINVAL);
3208 
3209 	if (ifp->if_snd_tag_query == NULL) {
3210 		error = EOPNOTSUPP;
3211 	} else {
3212 		error = ifp->if_snd_tag_query(mst, &params);
3213 		if (error == 0 &&  p_max_pacing_rate != NULL)
3214 			*p_max_pacing_rate = params.rate_limit.max_rate;
3215 	}
3216 	return (error);
3217 }
3218 
3219 /*
3220  * Query existing TX queue level based on the existing
3221  * "inp->inp_snd_tag", if any.
3222  */
3223 int
3224 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3225 {
3226 	union if_snd_tag_query_params params = { };
3227 	struct m_snd_tag *mst;
3228 	struct ifnet *ifp;
3229 	int error;
3230 
3231 	mst = inp->inp_snd_tag;
3232 	if (mst == NULL)
3233 		return (EINVAL);
3234 
3235 	ifp = mst->ifp;
3236 	if (ifp == NULL)
3237 		return (EINVAL);
3238 
3239 	if (ifp->if_snd_tag_query == NULL)
3240 		return (EOPNOTSUPP);
3241 
3242 	error = ifp->if_snd_tag_query(mst, &params);
3243 	if (error == 0 &&  p_txqueue_level != NULL)
3244 		*p_txqueue_level = params.rate_limit.queue_level;
3245 	return (error);
3246 }
3247 
3248 /*
3249  * Allocate a new TX rate limit send tag from the network interface
3250  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3251  */
3252 int
3253 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3254     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
3255 {
3256 	union if_snd_tag_alloc_params params = {
3257 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3258 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3259 		.rate_limit.hdr.flowid = flowid,
3260 		.rate_limit.hdr.flowtype = flowtype,
3261 		.rate_limit.max_rate = max_pacing_rate,
3262 	};
3263 	int error;
3264 
3265 	INP_WLOCK_ASSERT(inp);
3266 
3267 	if (inp->inp_snd_tag != NULL)
3268 		return (EINVAL);
3269 
3270 	if (ifp->if_snd_tag_alloc == NULL) {
3271 		error = EOPNOTSUPP;
3272 	} else {
3273 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3274 
3275 		/*
3276 		 * At success increment the refcount on
3277 		 * the send tag's network interface:
3278 		 */
3279 		if (error == 0)
3280 			if_ref(inp->inp_snd_tag->ifp);
3281 	}
3282 	return (error);
3283 }
3284 
3285 /*
3286  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3287  * if any:
3288  */
3289 void
3290 in_pcbdetach_txrtlmt(struct inpcb *inp)
3291 {
3292 	struct m_snd_tag *mst;
3293 	struct ifnet *ifp;
3294 
3295 	INP_WLOCK_ASSERT(inp);
3296 
3297 	mst = inp->inp_snd_tag;
3298 	inp->inp_snd_tag = NULL;
3299 
3300 	if (mst == NULL)
3301 		return;
3302 
3303 	ifp = mst->ifp;
3304 	if (ifp == NULL)
3305 		return;
3306 
3307 	/*
3308 	 * If the device was detached while we still had reference(s)
3309 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3310 	 * stubs.
3311 	 */
3312 	ifp->if_snd_tag_free(mst);
3313 
3314 	/* release reference count on network interface */
3315 	if_rele(ifp);
3316 }
3317 
3318 /*
3319  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3320  * is set in the fast path and will attach/detach/modify the TX rate
3321  * limit send tag based on the socket's so_max_pacing_rate value.
3322  */
3323 void
3324 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3325 {
3326 	struct socket *socket;
3327 	uint32_t max_pacing_rate;
3328 	bool did_upgrade;
3329 	int error;
3330 
3331 	if (inp == NULL)
3332 		return;
3333 
3334 	socket = inp->inp_socket;
3335 	if (socket == NULL)
3336 		return;
3337 
3338 	if (!INP_WLOCKED(inp)) {
3339 		/*
3340 		 * NOTE: If the write locking fails, we need to bail
3341 		 * out and use the non-ratelimited ring for the
3342 		 * transmit until there is a new chance to get the
3343 		 * write lock.
3344 		 */
3345 		if (!INP_TRY_UPGRADE(inp))
3346 			return;
3347 		did_upgrade = 1;
3348 	} else {
3349 		did_upgrade = 0;
3350 	}
3351 
3352 	/*
3353 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3354 	 * because atomic updates are not required since the variable
3355 	 * is checked at every mbuf we send. It is assumed that the
3356 	 * variable read itself will be atomic.
3357 	 */
3358 	max_pacing_rate = socket->so_max_pacing_rate;
3359 
3360 	/*
3361 	 * NOTE: When attaching to a network interface a reference is
3362 	 * made to ensure the network interface doesn't go away until
3363 	 * all ratelimit connections are gone. The network interface
3364 	 * pointers compared below represent valid network interfaces,
3365 	 * except when comparing towards NULL.
3366 	 */
3367 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3368 		error = 0;
3369 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3370 		if (inp->inp_snd_tag != NULL)
3371 			in_pcbdetach_txrtlmt(inp);
3372 		error = 0;
3373 	} else if (inp->inp_snd_tag == NULL) {
3374 		/*
3375 		 * In order to utilize packet pacing with RSS, we need
3376 		 * to wait until there is a valid RSS hash before we
3377 		 * can proceed:
3378 		 */
3379 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3380 			error = EAGAIN;
3381 		} else {
3382 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3383 			    mb->m_pkthdr.flowid, max_pacing_rate);
3384 		}
3385 	} else {
3386 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3387 	}
3388 	if (error == 0 || error == EOPNOTSUPP)
3389 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3390 	if (did_upgrade)
3391 		INP_DOWNGRADE(inp);
3392 }
3393 
3394 /*
3395  * Track route changes for TX rate limiting.
3396  */
3397 void
3398 in_pcboutput_eagain(struct inpcb *inp)
3399 {
3400 	struct socket *socket;
3401 	bool did_upgrade;
3402 
3403 	if (inp == NULL)
3404 		return;
3405 
3406 	socket = inp->inp_socket;
3407 	if (socket == NULL)
3408 		return;
3409 
3410 	if (inp->inp_snd_tag == NULL)
3411 		return;
3412 
3413 	if (!INP_WLOCKED(inp)) {
3414 		/*
3415 		 * NOTE: If the write locking fails, we need to bail
3416 		 * out and use the non-ratelimited ring for the
3417 		 * transmit until there is a new chance to get the
3418 		 * write lock.
3419 		 */
3420 		if (!INP_TRY_UPGRADE(inp))
3421 			return;
3422 		did_upgrade = 1;
3423 	} else {
3424 		did_upgrade = 0;
3425 	}
3426 
3427 	/* detach rate limiting */
3428 	in_pcbdetach_txrtlmt(inp);
3429 
3430 	/* make sure new mbuf send tag allocation is made */
3431 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3432 
3433 	if (did_upgrade)
3434 		INP_DOWNGRADE(inp);
3435 }
3436 #endif /* RATELIMIT */
3437