xref: /freebsd/sys/netinet/in_pcb.c (revision 10ff414c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_route.h"
50 #include "opt_rss.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/callout.h>
58 #include <sys/eventhandler.h>
59 #include <sys/domain.h>
60 #include <sys/protosw.h>
61 #include <sys/rmlock.h>
62 #include <sys/smp.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sockio.h>
66 #include <sys/priv.h>
67 #include <sys/proc.h>
68 #include <sys/refcount.h>
69 #include <sys/jail.h>
70 #include <sys/kernel.h>
71 #include <sys/sysctl.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 #include <vm/vm.h>
79 
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/if_types.h>
83 #include <net/if_llatbl.h>
84 #include <net/route.h>
85 #include <net/rss_config.h>
86 #include <net/vnet.h>
87 
88 #if defined(INET) || defined(INET6)
89 #include <netinet/in.h>
90 #include <netinet/in_pcb.h>
91 #ifdef INET
92 #include <netinet/in_var.h>
93 #include <netinet/in_fib.h>
94 #endif
95 #include <netinet/ip_var.h>
96 #include <netinet/tcp_var.h>
97 #ifdef TCPHPTS
98 #include <netinet/tcp_hpts.h>
99 #endif
100 #include <netinet/udp.h>
101 #include <netinet/udp_var.h>
102 #ifdef INET6
103 #include <netinet/ip6.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet6/in6_var.h>
106 #include <netinet6/ip6_var.h>
107 #endif /* INET6 */
108 #include <net/route/nhop.h>
109 #endif
110 
111 #include <netipsec/ipsec_support.h>
112 
113 #include <security/mac/mac_framework.h>
114 
115 #define	INPCBLBGROUP_SIZMIN	8
116 #define	INPCBLBGROUP_SIZMAX	256
117 
118 static struct callout	ipport_tick_callout;
119 
120 /*
121  * These configure the range of local port addresses assigned to
122  * "unspecified" outgoing connections/packets/whatever.
123  */
124 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
125 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
126 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
127 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
128 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
129 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
130 
131 /*
132  * Reserved ports accessible only to root. There are significant
133  * security considerations that must be accounted for when changing these,
134  * but the security benefits can be great. Please be careful.
135  */
136 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
137 VNET_DEFINE(int, ipport_reservedlow);
138 
139 /* Variables dealing with random ephemeral port allocation. */
140 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
141 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
142 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
143 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
144 VNET_DEFINE(int, ipport_tcpallocs);
145 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
146 
147 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
148 
149 static void	in_pcbremlists(struct inpcb *inp);
150 #ifdef INET
151 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
152 			    struct in_addr faddr, u_int fport_arg,
153 			    struct in_addr laddr, u_int lport_arg,
154 			    int lookupflags, struct ifnet *ifp,
155 			    uint8_t numa_domain);
156 
157 #define RANGECHK(var, min, max) \
158 	if ((var) < (min)) { (var) = (min); } \
159 	else if ((var) > (max)) { (var) = (max); }
160 
161 static int
162 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
163 {
164 	int error;
165 
166 	error = sysctl_handle_int(oidp, arg1, arg2, req);
167 	if (error == 0) {
168 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
169 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
170 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
171 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
172 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
173 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
174 	}
175 	return (error);
176 }
177 
178 #undef RANGECHK
179 
180 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
181     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
182     "IP Ports");
183 
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
185     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
186     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
187     "");
188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
189     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
190     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
191     "");
192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
193     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
194     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
195     "");
196 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
197     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
198     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
199     "");
200 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
201     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
202     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
203     "");
204 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
205     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
206     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
207     "");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
209 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
210 	&VNET_NAME(ipport_reservedhigh), 0, "");
211 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
212 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
213 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
214 	CTLFLAG_VNET | CTLFLAG_RW,
215 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
216 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
217 	CTLFLAG_VNET | CTLFLAG_RW,
218 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
219 	"allocations before switching to a sequental one");
220 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
221 	CTLFLAG_VNET | CTLFLAG_RW,
222 	&VNET_NAME(ipport_randomtime), 0,
223 	"Minimum time to keep sequental port "
224 	"allocation before switching to a random one");
225 
226 #ifdef RATELIMIT
227 counter_u64_t rate_limit_new;
228 counter_u64_t rate_limit_chg;
229 counter_u64_t rate_limit_active;
230 counter_u64_t rate_limit_alloc_fail;
231 counter_u64_t rate_limit_set_ok;
232 
233 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
234     "IP Rate Limiting");
235 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
236     &rate_limit_active, "Active rate limited connections");
237 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
238    &rate_limit_alloc_fail, "Rate limited connection failures");
239 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
240    &rate_limit_set_ok, "Rate limited setting succeeded");
241 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
242    &rate_limit_new, "Total Rate limit new attempts");
243 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
244    &rate_limit_chg, "Total Rate limited change attempts");
245 
246 #endif /* RATELIMIT */
247 
248 #endif /* INET */
249 
250 /*
251  * in_pcb.c: manage the Protocol Control Blocks.
252  *
253  * NOTE: It is assumed that most of these functions will be called with
254  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
255  * functions often modify hash chains or addresses in pcbs.
256  */
257 
258 static struct inpcblbgroup *
259 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
260     uint16_t port, const union in_dependaddr *addr, int size,
261     uint8_t numa_domain)
262 {
263 	struct inpcblbgroup *grp;
264 	size_t bytes;
265 
266 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
267 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
268 	if (!grp)
269 		return (NULL);
270 	grp->il_vflag = vflag;
271 	grp->il_lport = port;
272 	grp->il_numa_domain = numa_domain;
273 	grp->il_dependladdr = *addr;
274 	grp->il_inpsiz = size;
275 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
276 	return (grp);
277 }
278 
279 static void
280 in_pcblbgroup_free_deferred(epoch_context_t ctx)
281 {
282 	struct inpcblbgroup *grp;
283 
284 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
285 	free(grp, M_PCB);
286 }
287 
288 static void
289 in_pcblbgroup_free(struct inpcblbgroup *grp)
290 {
291 
292 	CK_LIST_REMOVE(grp, il_list);
293 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
294 }
295 
296 static struct inpcblbgroup *
297 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
298     struct inpcblbgroup *old_grp, int size)
299 {
300 	struct inpcblbgroup *grp;
301 	int i;
302 
303 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
304 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
305 	    old_grp->il_numa_domain);
306 	if (grp == NULL)
307 		return (NULL);
308 
309 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
310 	    ("invalid new local group size %d and old local group count %d",
311 	     grp->il_inpsiz, old_grp->il_inpcnt));
312 
313 	for (i = 0; i < old_grp->il_inpcnt; ++i)
314 		grp->il_inp[i] = old_grp->il_inp[i];
315 	grp->il_inpcnt = old_grp->il_inpcnt;
316 	in_pcblbgroup_free(old_grp);
317 	return (grp);
318 }
319 
320 /*
321  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
322  * and shrink group if possible.
323  */
324 static void
325 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
326     int i)
327 {
328 	struct inpcblbgroup *grp, *new_grp;
329 
330 	grp = *grpp;
331 	for (; i + 1 < grp->il_inpcnt; ++i)
332 		grp->il_inp[i] = grp->il_inp[i + 1];
333 	grp->il_inpcnt--;
334 
335 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
336 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
337 		/* Shrink this group. */
338 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
339 		if (new_grp != NULL)
340 			*grpp = new_grp;
341 	}
342 }
343 
344 /*
345  * Add PCB to load balance group for SO_REUSEPORT_LB option.
346  */
347 static int
348 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
349 {
350 	const static struct timeval interval = { 60, 0 };
351 	static struct timeval lastprint;
352 	struct inpcbinfo *pcbinfo;
353 	struct inpcblbgrouphead *hdr;
354 	struct inpcblbgroup *grp;
355 	uint32_t idx;
356 
357 	pcbinfo = inp->inp_pcbinfo;
358 
359 	INP_WLOCK_ASSERT(inp);
360 	INP_HASH_WLOCK_ASSERT(pcbinfo);
361 
362 	/*
363 	 * Don't allow jailed socket to join local group.
364 	 */
365 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
366 		return (0);
367 
368 #ifdef INET6
369 	/*
370 	 * Don't allow IPv4 mapped INET6 wild socket.
371 	 */
372 	if ((inp->inp_vflag & INP_IPV4) &&
373 	    inp->inp_laddr.s_addr == INADDR_ANY &&
374 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
375 		return (0);
376 	}
377 #endif
378 
379 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
380 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
381 	CK_LIST_FOREACH(grp, hdr, il_list) {
382 		if (grp->il_vflag == inp->inp_vflag &&
383 		    grp->il_lport == inp->inp_lport &&
384 		    grp->il_numa_domain == numa_domain &&
385 		    memcmp(&grp->il_dependladdr,
386 		    &inp->inp_inc.inc_ie.ie_dependladdr,
387 		    sizeof(grp->il_dependladdr)) == 0)
388 			break;
389 	}
390 	if (grp == NULL) {
391 		/* Create new load balance group. */
392 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
393 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
394 		    INPCBLBGROUP_SIZMIN, numa_domain);
395 		if (grp == NULL)
396 			return (ENOBUFS);
397 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
398 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
399 			if (ratecheck(&lastprint, &interval))
400 				printf("lb group port %d, limit reached\n",
401 				    ntohs(grp->il_lport));
402 			return (0);
403 		}
404 
405 		/* Expand this local group. */
406 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
407 		if (grp == NULL)
408 			return (ENOBUFS);
409 	}
410 
411 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
412 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
413 	    grp->il_inpcnt));
414 
415 	grp->il_inp[grp->il_inpcnt] = inp;
416 	grp->il_inpcnt++;
417 	return (0);
418 }
419 
420 /*
421  * Remove PCB from load balance group.
422  */
423 static void
424 in_pcbremlbgrouphash(struct inpcb *inp)
425 {
426 	struct inpcbinfo *pcbinfo;
427 	struct inpcblbgrouphead *hdr;
428 	struct inpcblbgroup *grp;
429 	int i;
430 
431 	pcbinfo = inp->inp_pcbinfo;
432 
433 	INP_WLOCK_ASSERT(inp);
434 	INP_HASH_WLOCK_ASSERT(pcbinfo);
435 
436 	hdr = &pcbinfo->ipi_lbgrouphashbase[
437 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
438 	CK_LIST_FOREACH(grp, hdr, il_list) {
439 		for (i = 0; i < grp->il_inpcnt; ++i) {
440 			if (grp->il_inp[i] != inp)
441 				continue;
442 
443 			if (grp->il_inpcnt == 1) {
444 				/* We are the last, free this local group. */
445 				in_pcblbgroup_free(grp);
446 			} else {
447 				/* Pull up inpcbs, shrink group if possible. */
448 				in_pcblbgroup_reorder(hdr, &grp, i);
449 			}
450 			return;
451 		}
452 	}
453 }
454 
455 int
456 in_pcblbgroup_numa(struct inpcb *inp, int arg)
457 {
458 	struct inpcbinfo *pcbinfo;
459 	struct inpcblbgrouphead *hdr;
460 	struct inpcblbgroup *grp;
461 	int err, i;
462 	uint8_t numa_domain;
463 
464 	switch (arg) {
465 	case TCP_REUSPORT_LB_NUMA_NODOM:
466 		numa_domain = M_NODOM;
467 		break;
468 	case TCP_REUSPORT_LB_NUMA_CURDOM:
469 		numa_domain = PCPU_GET(domain);
470 		break;
471 	default:
472 		if (arg < 0 || arg >= vm_ndomains)
473 			return (EINVAL);
474 		numa_domain = arg;
475 	}
476 
477 	err = 0;
478 	pcbinfo = inp->inp_pcbinfo;
479 	INP_WLOCK_ASSERT(inp);
480 	INP_HASH_WLOCK(pcbinfo);
481 	hdr = &pcbinfo->ipi_lbgrouphashbase[
482 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
483 	CK_LIST_FOREACH(grp, hdr, il_list) {
484 		for (i = 0; i < grp->il_inpcnt; ++i) {
485 			if (grp->il_inp[i] != inp)
486 				continue;
487 
488 			if (grp->il_numa_domain == numa_domain) {
489 				goto abort_with_hash_wlock;
490 			}
491 
492 			/* Remove it from the old group. */
493 			in_pcbremlbgrouphash(inp);
494 
495 			/* Add it to the new group based on numa domain. */
496 			in_pcbinslbgrouphash(inp, numa_domain);
497 			goto abort_with_hash_wlock;
498 		}
499 	}
500 	err = ENOENT;
501 abort_with_hash_wlock:
502 	INP_HASH_WUNLOCK(pcbinfo);
503 	return (err);
504 }
505 
506 /*
507  * Different protocols initialize their inpcbs differently - giving
508  * different name to the lock.  But they all are disposed the same.
509  */
510 static void
511 inpcb_fini(void *mem, int size)
512 {
513 	struct inpcb *inp = mem;
514 
515 	INP_LOCK_DESTROY(inp);
516 }
517 
518 /*
519  * Initialize an inpcbinfo -- we should be able to reduce the number of
520  * arguments in time.
521  */
522 void
523 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
524     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
525     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
526 {
527 
528 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
529 
530 	INP_INFO_LOCK_INIT(pcbinfo, name);
531 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
532 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
533 #ifdef VIMAGE
534 	pcbinfo->ipi_vnet = curvnet;
535 #endif
536 	pcbinfo->ipi_listhead = listhead;
537 	CK_LIST_INIT(pcbinfo->ipi_listhead);
538 	pcbinfo->ipi_count = 0;
539 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
540 	    &pcbinfo->ipi_hashmask);
541 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
542 	    &pcbinfo->ipi_porthashmask);
543 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
544 	    &pcbinfo->ipi_lbgrouphashmask);
545 #ifdef PCBGROUP
546 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
547 #endif
548 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
549 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
550 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
551 	uma_zone_set_warning(pcbinfo->ipi_zone,
552 	    "kern.ipc.maxsockets limit reached");
553 }
554 
555 /*
556  * Destroy an inpcbinfo.
557  */
558 void
559 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
560 {
561 
562 	KASSERT(pcbinfo->ipi_count == 0,
563 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
564 
565 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
566 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
567 	    pcbinfo->ipi_porthashmask);
568 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
569 	    pcbinfo->ipi_lbgrouphashmask);
570 #ifdef PCBGROUP
571 	in_pcbgroup_destroy(pcbinfo);
572 #endif
573 	uma_zdestroy(pcbinfo->ipi_zone);
574 	INP_LIST_LOCK_DESTROY(pcbinfo);
575 	INP_HASH_LOCK_DESTROY(pcbinfo);
576 	INP_INFO_LOCK_DESTROY(pcbinfo);
577 }
578 
579 /*
580  * Allocate a PCB and associate it with the socket.
581  * On success return with the PCB locked.
582  */
583 int
584 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
585 {
586 	struct inpcb *inp;
587 	int error;
588 
589 	error = 0;
590 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
591 	if (inp == NULL)
592 		return (ENOBUFS);
593 	bzero(&inp->inp_start_zero, inp_zero_size);
594 #ifdef NUMA
595 	inp->inp_numa_domain = M_NODOM;
596 #endif
597 	inp->inp_pcbinfo = pcbinfo;
598 	inp->inp_socket = so;
599 	inp->inp_cred = crhold(so->so_cred);
600 	inp->inp_inc.inc_fibnum = so->so_fibnum;
601 #ifdef MAC
602 	error = mac_inpcb_init(inp, M_NOWAIT);
603 	if (error != 0)
604 		goto out;
605 	mac_inpcb_create(so, inp);
606 #endif
607 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
608 	error = ipsec_init_pcbpolicy(inp);
609 	if (error != 0) {
610 #ifdef MAC
611 		mac_inpcb_destroy(inp);
612 #endif
613 		goto out;
614 	}
615 #endif /*IPSEC*/
616 #ifdef INET6
617 	if (INP_SOCKAF(so) == AF_INET6) {
618 		inp->inp_vflag |= INP_IPV6PROTO;
619 		if (V_ip6_v6only)
620 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
621 	}
622 #endif
623 	INP_WLOCK(inp);
624 	INP_LIST_WLOCK(pcbinfo);
625 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
626 	pcbinfo->ipi_count++;
627 	so->so_pcb = (caddr_t)inp;
628 #ifdef INET6
629 	if (V_ip6_auto_flowlabel)
630 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
631 #endif
632 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
633 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
634 
635 	/*
636 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
637 	 * to be cleaned up.
638 	 */
639 	inp->inp_route.ro_flags = RT_LLE_CACHE;
640 	INP_LIST_WUNLOCK(pcbinfo);
641 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
642 out:
643 	if (error != 0) {
644 		crfree(inp->inp_cred);
645 		uma_zfree(pcbinfo->ipi_zone, inp);
646 	}
647 #endif
648 	return (error);
649 }
650 
651 #ifdef INET
652 int
653 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
654 {
655 	int anonport, error;
656 
657 	KASSERT(nam == NULL || nam->sa_family == AF_INET,
658 	    ("%s: invalid address family for %p", __func__, nam));
659 	KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in),
660 	    ("%s: invalid address length for %p", __func__, nam));
661 	INP_WLOCK_ASSERT(inp);
662 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
663 
664 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
665 		return (EINVAL);
666 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
667 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
668 	    &inp->inp_lport, cred);
669 	if (error)
670 		return (error);
671 	if (in_pcbinshash(inp) != 0) {
672 		inp->inp_laddr.s_addr = INADDR_ANY;
673 		inp->inp_lport = 0;
674 		return (EAGAIN);
675 	}
676 	if (anonport)
677 		inp->inp_flags |= INP_ANONPORT;
678 	return (0);
679 }
680 #endif
681 
682 #if defined(INET) || defined(INET6)
683 /*
684  * Assign a local port like in_pcb_lport(), but also used with connect()
685  * and a foreign address and port.  If fsa is non-NULL, choose a local port
686  * that is unused with those, otherwise one that is completely unused.
687  * lsa can be NULL for IPv6.
688  */
689 int
690 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
691     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
692 {
693 	struct inpcbinfo *pcbinfo;
694 	struct inpcb *tmpinp;
695 	unsigned short *lastport;
696 	int count, dorandom, error;
697 	u_short aux, first, last, lport;
698 #ifdef INET
699 	struct in_addr laddr, faddr;
700 #endif
701 #ifdef INET6
702 	struct in6_addr *laddr6, *faddr6;
703 #endif
704 
705 	pcbinfo = inp->inp_pcbinfo;
706 
707 	/*
708 	 * Because no actual state changes occur here, a global write lock on
709 	 * the pcbinfo isn't required.
710 	 */
711 	INP_LOCK_ASSERT(inp);
712 	INP_HASH_LOCK_ASSERT(pcbinfo);
713 
714 	if (inp->inp_flags & INP_HIGHPORT) {
715 		first = V_ipport_hifirstauto;	/* sysctl */
716 		last  = V_ipport_hilastauto;
717 		lastport = &pcbinfo->ipi_lasthi;
718 	} else if (inp->inp_flags & INP_LOWPORT) {
719 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
720 		if (error)
721 			return (error);
722 		first = V_ipport_lowfirstauto;	/* 1023 */
723 		last  = V_ipport_lowlastauto;	/* 600 */
724 		lastport = &pcbinfo->ipi_lastlow;
725 	} else {
726 		first = V_ipport_firstauto;	/* sysctl */
727 		last  = V_ipport_lastauto;
728 		lastport = &pcbinfo->ipi_lastport;
729 	}
730 	/*
731 	 * For UDP(-Lite), use random port allocation as long as the user
732 	 * allows it.  For TCP (and as of yet unknown) connections,
733 	 * use random port allocation only if the user allows it AND
734 	 * ipport_tick() allows it.
735 	 */
736 	if (V_ipport_randomized &&
737 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
738 		pcbinfo == &V_ulitecbinfo))
739 		dorandom = 1;
740 	else
741 		dorandom = 0;
742 	/*
743 	 * It makes no sense to do random port allocation if
744 	 * we have the only port available.
745 	 */
746 	if (first == last)
747 		dorandom = 0;
748 	/* Make sure to not include UDP(-Lite) packets in the count. */
749 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
750 		V_ipport_tcpallocs++;
751 	/*
752 	 * Instead of having two loops further down counting up or down
753 	 * make sure that first is always <= last and go with only one
754 	 * code path implementing all logic.
755 	 */
756 	if (first > last) {
757 		aux = first;
758 		first = last;
759 		last = aux;
760 	}
761 
762 #ifdef INET
763 	laddr.s_addr = INADDR_ANY;
764 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
765 		if (lsa != NULL)
766 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
767 		if (fsa != NULL)
768 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
769 	}
770 #endif
771 #ifdef INET6
772 	laddr6 = NULL;
773 	if ((inp->inp_vflag & INP_IPV6) != 0) {
774 		if (lsa != NULL)
775 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
776 		if (fsa != NULL)
777 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
778 	}
779 #endif
780 
781 	tmpinp = NULL;
782 	lport = *lportp;
783 
784 	if (dorandom)
785 		*lastport = first + (arc4random() % (last - first));
786 
787 	count = last - first;
788 
789 	do {
790 		if (count-- < 0)	/* completely used? */
791 			return (EADDRNOTAVAIL);
792 		++*lastport;
793 		if (*lastport < first || *lastport > last)
794 			*lastport = first;
795 		lport = htons(*lastport);
796 
797 		if (fsa != NULL) {
798 #ifdef INET
799 			if (lsa->sa_family == AF_INET) {
800 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
801 				    faddr, fport, laddr, lport, lookupflags,
802 				    NULL, M_NODOM);
803 			}
804 #endif
805 #ifdef INET6
806 			if (lsa->sa_family == AF_INET6) {
807 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
808 				    faddr6, fport, laddr6, lport, lookupflags,
809 				    NULL, M_NODOM);
810 			}
811 #endif
812 		} else {
813 #ifdef INET6
814 			if ((inp->inp_vflag & INP_IPV6) != 0)
815 				tmpinp = in6_pcblookup_local(pcbinfo,
816 				    &inp->in6p_laddr, lport, lookupflags, cred);
817 #endif
818 #if defined(INET) && defined(INET6)
819 			else
820 #endif
821 #ifdef INET
822 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
823 				    lport, lookupflags, cred);
824 #endif
825 		}
826 	} while (tmpinp != NULL);
827 
828 	*lportp = lport;
829 
830 	return (0);
831 }
832 
833 /*
834  * Select a local port (number) to use.
835  */
836 int
837 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
838     struct ucred *cred, int lookupflags)
839 {
840 	struct sockaddr_in laddr;
841 
842 	if (laddrp) {
843 		bzero(&laddr, sizeof(laddr));
844 		laddr.sin_family = AF_INET;
845 		laddr.sin_addr = *laddrp;
846 	}
847 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
848 	    NULL, lportp, NULL, 0, cred, lookupflags));
849 }
850 
851 /*
852  * Return cached socket options.
853  */
854 int
855 inp_so_options(const struct inpcb *inp)
856 {
857 	int so_options;
858 
859 	so_options = 0;
860 
861 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
862 		so_options |= SO_REUSEPORT_LB;
863 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
864 		so_options |= SO_REUSEPORT;
865 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
866 		so_options |= SO_REUSEADDR;
867 	return (so_options);
868 }
869 #endif /* INET || INET6 */
870 
871 /*
872  * Check if a new BINDMULTI socket is allowed to be created.
873  *
874  * ni points to the new inp.
875  * oi points to the exisitng inp.
876  *
877  * This checks whether the existing inp also has BINDMULTI and
878  * whether the credentials match.
879  */
880 int
881 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
882 {
883 	/* Check permissions match */
884 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
885 	    (ni->inp_cred->cr_uid !=
886 	    oi->inp_cred->cr_uid))
887 		return (0);
888 
889 	/* Check the existing inp has BINDMULTI set */
890 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
891 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
892 		return (0);
893 
894 	/*
895 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
896 	 * it is and it matches the checks.
897 	 */
898 	return (1);
899 }
900 
901 #ifdef INET
902 /*
903  * Set up a bind operation on a PCB, performing port allocation
904  * as required, but do not actually modify the PCB. Callers can
905  * either complete the bind by setting inp_laddr/inp_lport and
906  * calling in_pcbinshash(), or they can just use the resulting
907  * port and address to authorise the sending of a once-off packet.
908  *
909  * On error, the values of *laddrp and *lportp are not changed.
910  */
911 int
912 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
913     u_short *lportp, struct ucred *cred)
914 {
915 	struct socket *so = inp->inp_socket;
916 	struct sockaddr_in *sin;
917 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
918 	struct in_addr laddr;
919 	u_short lport = 0;
920 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
921 	int error;
922 
923 	/*
924 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
925 	 * so that we don't have to add to the (already messy) code below.
926 	 */
927 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
928 
929 	/*
930 	 * No state changes, so read locks are sufficient here.
931 	 */
932 	INP_LOCK_ASSERT(inp);
933 	INP_HASH_LOCK_ASSERT(pcbinfo);
934 
935 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
936 		return (EADDRNOTAVAIL);
937 	laddr.s_addr = *laddrp;
938 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
939 		return (EINVAL);
940 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
941 		lookupflags = INPLOOKUP_WILDCARD;
942 	if (nam == NULL) {
943 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
944 			return (error);
945 	} else {
946 		sin = (struct sockaddr_in *)nam;
947 		KASSERT(sin->sin_family == AF_INET,
948 		    ("%s: invalid family for address %p", __func__, sin));
949 		KASSERT(sin->sin_len == sizeof(*sin),
950 		    ("%s: invalid length for address %p", __func__, sin));
951 
952 		error = prison_local_ip4(cred, &sin->sin_addr);
953 		if (error)
954 			return (error);
955 		if (sin->sin_port != *lportp) {
956 			/* Don't allow the port to change. */
957 			if (*lportp != 0)
958 				return (EINVAL);
959 			lport = sin->sin_port;
960 		}
961 		/* NB: lport is left as 0 if the port isn't being changed. */
962 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
963 			/*
964 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
965 			 * allow complete duplication of binding if
966 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
967 			 * and a multicast address is bound on both
968 			 * new and duplicated sockets.
969 			 */
970 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
971 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
972 			/*
973 			 * XXX: How to deal with SO_REUSEPORT_LB here?
974 			 * Treat same as SO_REUSEPORT for now.
975 			 */
976 			if ((so->so_options &
977 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
978 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
979 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
980 			sin->sin_port = 0;		/* yech... */
981 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
982 			/*
983 			 * Is the address a local IP address?
984 			 * If INP_BINDANY is set, then the socket may be bound
985 			 * to any endpoint address, local or not.
986 			 */
987 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
988 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
989 				return (EADDRNOTAVAIL);
990 		}
991 		laddr = sin->sin_addr;
992 		if (lport) {
993 			struct inpcb *t;
994 			struct tcptw *tw;
995 
996 			/* GROSS */
997 			if (ntohs(lport) <= V_ipport_reservedhigh &&
998 			    ntohs(lport) >= V_ipport_reservedlow &&
999 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
1000 				return (EACCES);
1001 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
1002 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
1003 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1004 				    lport, INPLOOKUP_WILDCARD, cred);
1005 	/*
1006 	 * XXX
1007 	 * This entire block sorely needs a rewrite.
1008 	 */
1009 				if (t &&
1010 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1011 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
1012 				    (so->so_type != SOCK_STREAM ||
1013 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
1014 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
1015 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
1016 				     (t->inp_flags2 & INP_REUSEPORT) ||
1017 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
1018 				    (inp->inp_cred->cr_uid !=
1019 				     t->inp_cred->cr_uid))
1020 					return (EADDRINUSE);
1021 
1022 				/*
1023 				 * If the socket is a BINDMULTI socket, then
1024 				 * the credentials need to match and the
1025 				 * original socket also has to have been bound
1026 				 * with BINDMULTI.
1027 				 */
1028 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1029 					return (EADDRINUSE);
1030 			}
1031 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1032 			    lport, lookupflags, cred);
1033 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
1034 				/*
1035 				 * XXXRW: If an incpb has had its timewait
1036 				 * state recycled, we treat the address as
1037 				 * being in use (for now).  This is better
1038 				 * than a panic, but not desirable.
1039 				 */
1040 				tw = intotw(t);
1041 				if (tw == NULL ||
1042 				    ((reuseport & tw->tw_so_options) == 0 &&
1043 					(reuseport_lb &
1044 				            tw->tw_so_options) == 0)) {
1045 					return (EADDRINUSE);
1046 				}
1047 			} else if (t &&
1048 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1049 				   (reuseport & inp_so_options(t)) == 0 &&
1050 				   (reuseport_lb & inp_so_options(t)) == 0) {
1051 #ifdef INET6
1052 				if (ntohl(sin->sin_addr.s_addr) !=
1053 				    INADDR_ANY ||
1054 				    ntohl(t->inp_laddr.s_addr) !=
1055 				    INADDR_ANY ||
1056 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
1057 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
1058 #endif
1059 						return (EADDRINUSE);
1060 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1061 					return (EADDRINUSE);
1062 			}
1063 		}
1064 	}
1065 	if (*lportp != 0)
1066 		lport = *lportp;
1067 	if (lport == 0) {
1068 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1069 		if (error != 0)
1070 			return (error);
1071 	}
1072 	*laddrp = laddr.s_addr;
1073 	*lportp = lport;
1074 	return (0);
1075 }
1076 
1077 /*
1078  * Connect from a socket to a specified address.
1079  * Both address and port must be specified in argument sin.
1080  * If don't have a local address for this socket yet,
1081  * then pick one.
1082  */
1083 int
1084 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
1085     struct ucred *cred, struct mbuf *m, bool rehash)
1086 {
1087 	u_short lport, fport;
1088 	in_addr_t laddr, faddr;
1089 	int anonport, error;
1090 
1091 	INP_WLOCK_ASSERT(inp);
1092 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1093 
1094 	lport = inp->inp_lport;
1095 	laddr = inp->inp_laddr.s_addr;
1096 	anonport = (lport == 0);
1097 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
1098 	    NULL, cred);
1099 	if (error)
1100 		return (error);
1101 
1102 	/* Do the initial binding of the local address if required. */
1103 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1104 		KASSERT(rehash == true,
1105 		    ("Rehashing required for unbound inps"));
1106 		inp->inp_lport = lport;
1107 		inp->inp_laddr.s_addr = laddr;
1108 		if (in_pcbinshash(inp) != 0) {
1109 			inp->inp_laddr.s_addr = INADDR_ANY;
1110 			inp->inp_lport = 0;
1111 			return (EAGAIN);
1112 		}
1113 	}
1114 
1115 	/* Commit the remaining changes. */
1116 	inp->inp_lport = lport;
1117 	inp->inp_laddr.s_addr = laddr;
1118 	inp->inp_faddr.s_addr = faddr;
1119 	inp->inp_fport = fport;
1120 	if (rehash) {
1121 		in_pcbrehash_mbuf(inp, m);
1122 	} else {
1123 		in_pcbinshash_mbuf(inp, m);
1124 	}
1125 
1126 	if (anonport)
1127 		inp->inp_flags |= INP_ANONPORT;
1128 	return (0);
1129 }
1130 
1131 int
1132 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1133 {
1134 
1135 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1136 }
1137 
1138 /*
1139  * Do proper source address selection on an unbound socket in case
1140  * of connect. Take jails into account as well.
1141  */
1142 int
1143 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1144     struct ucred *cred)
1145 {
1146 	struct ifaddr *ifa;
1147 	struct sockaddr *sa;
1148 	struct sockaddr_in *sin, dst;
1149 	struct nhop_object *nh;
1150 	int error;
1151 
1152 	NET_EPOCH_ASSERT();
1153 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1154 	/*
1155 	 * Bypass source address selection and use the primary jail IP
1156 	 * if requested.
1157 	 */
1158 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1159 		return (0);
1160 
1161 	error = 0;
1162 
1163 	nh = NULL;
1164 	bzero(&dst, sizeof(dst));
1165 	sin = &dst;
1166 	sin->sin_family = AF_INET;
1167 	sin->sin_len = sizeof(struct sockaddr_in);
1168 	sin->sin_addr.s_addr = faddr->s_addr;
1169 
1170 	/*
1171 	 * If route is known our src addr is taken from the i/f,
1172 	 * else punt.
1173 	 *
1174 	 * Find out route to destination.
1175 	 */
1176 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1177 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1178 		    0, NHR_NONE, 0);
1179 
1180 	/*
1181 	 * If we found a route, use the address corresponding to
1182 	 * the outgoing interface.
1183 	 *
1184 	 * Otherwise assume faddr is reachable on a directly connected
1185 	 * network and try to find a corresponding interface to take
1186 	 * the source address from.
1187 	 */
1188 	if (nh == NULL || nh->nh_ifp == NULL) {
1189 		struct in_ifaddr *ia;
1190 		struct ifnet *ifp;
1191 
1192 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1193 					inp->inp_socket->so_fibnum));
1194 		if (ia == NULL) {
1195 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1196 						inp->inp_socket->so_fibnum));
1197 		}
1198 		if (ia == NULL) {
1199 			error = ENETUNREACH;
1200 			goto done;
1201 		}
1202 
1203 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1204 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1205 			goto done;
1206 		}
1207 
1208 		ifp = ia->ia_ifp;
1209 		ia = NULL;
1210 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1211 			sa = ifa->ifa_addr;
1212 			if (sa->sa_family != AF_INET)
1213 				continue;
1214 			sin = (struct sockaddr_in *)sa;
1215 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1216 				ia = (struct in_ifaddr *)ifa;
1217 				break;
1218 			}
1219 		}
1220 		if (ia != NULL) {
1221 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1222 			goto done;
1223 		}
1224 
1225 		/* 3. As a last resort return the 'default' jail address. */
1226 		error = prison_get_ip4(cred, laddr);
1227 		goto done;
1228 	}
1229 
1230 	/*
1231 	 * If the outgoing interface on the route found is not
1232 	 * a loopback interface, use the address from that interface.
1233 	 * In case of jails do those three steps:
1234 	 * 1. check if the interface address belongs to the jail. If so use it.
1235 	 * 2. check if we have any address on the outgoing interface
1236 	 *    belonging to this jail. If so use it.
1237 	 * 3. as a last resort return the 'default' jail address.
1238 	 */
1239 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1240 		struct in_ifaddr *ia;
1241 		struct ifnet *ifp;
1242 
1243 		/* If not jailed, use the default returned. */
1244 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1245 			ia = (struct in_ifaddr *)nh->nh_ifa;
1246 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1247 			goto done;
1248 		}
1249 
1250 		/* Jailed. */
1251 		/* 1. Check if the iface address belongs to the jail. */
1252 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1253 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1254 			ia = (struct in_ifaddr *)nh->nh_ifa;
1255 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1256 			goto done;
1257 		}
1258 
1259 		/*
1260 		 * 2. Check if we have any address on the outgoing interface
1261 		 *    belonging to this jail.
1262 		 */
1263 		ia = NULL;
1264 		ifp = nh->nh_ifp;
1265 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1266 			sa = ifa->ifa_addr;
1267 			if (sa->sa_family != AF_INET)
1268 				continue;
1269 			sin = (struct sockaddr_in *)sa;
1270 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1271 				ia = (struct in_ifaddr *)ifa;
1272 				break;
1273 			}
1274 		}
1275 		if (ia != NULL) {
1276 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1277 			goto done;
1278 		}
1279 
1280 		/* 3. As a last resort return the 'default' jail address. */
1281 		error = prison_get_ip4(cred, laddr);
1282 		goto done;
1283 	}
1284 
1285 	/*
1286 	 * The outgoing interface is marked with 'loopback net', so a route
1287 	 * to ourselves is here.
1288 	 * Try to find the interface of the destination address and then
1289 	 * take the address from there. That interface is not necessarily
1290 	 * a loopback interface.
1291 	 * In case of jails, check that it is an address of the jail
1292 	 * and if we cannot find, fall back to the 'default' jail address.
1293 	 */
1294 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1295 		struct in_ifaddr *ia;
1296 
1297 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1298 					inp->inp_socket->so_fibnum));
1299 		if (ia == NULL)
1300 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1301 						inp->inp_socket->so_fibnum));
1302 		if (ia == NULL)
1303 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1304 
1305 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1306 			if (ia == NULL) {
1307 				error = ENETUNREACH;
1308 				goto done;
1309 			}
1310 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1311 			goto done;
1312 		}
1313 
1314 		/* Jailed. */
1315 		if (ia != NULL) {
1316 			struct ifnet *ifp;
1317 
1318 			ifp = ia->ia_ifp;
1319 			ia = NULL;
1320 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1321 				sa = ifa->ifa_addr;
1322 				if (sa->sa_family != AF_INET)
1323 					continue;
1324 				sin = (struct sockaddr_in *)sa;
1325 				if (prison_check_ip4(cred,
1326 				    &sin->sin_addr) == 0) {
1327 					ia = (struct in_ifaddr *)ifa;
1328 					break;
1329 				}
1330 			}
1331 			if (ia != NULL) {
1332 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1333 				goto done;
1334 			}
1335 		}
1336 
1337 		/* 3. As a last resort return the 'default' jail address. */
1338 		error = prison_get_ip4(cred, laddr);
1339 		goto done;
1340 	}
1341 
1342 done:
1343 	return (error);
1344 }
1345 
1346 /*
1347  * Set up for a connect from a socket to the specified address.
1348  * On entry, *laddrp and *lportp should contain the current local
1349  * address and port for the PCB; these are updated to the values
1350  * that should be placed in inp_laddr and inp_lport to complete
1351  * the connect.
1352  *
1353  * On success, *faddrp and *fportp will be set to the remote address
1354  * and port. These are not updated in the error case.
1355  *
1356  * If the operation fails because the connection already exists,
1357  * *oinpp will be set to the PCB of that connection so that the
1358  * caller can decide to override it. In all other cases, *oinpp
1359  * is set to NULL.
1360  */
1361 int
1362 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1363     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1364     struct inpcb **oinpp, struct ucred *cred)
1365 {
1366 	struct rm_priotracker in_ifa_tracker;
1367 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1368 	struct in_ifaddr *ia;
1369 	struct inpcb *oinp;
1370 	struct in_addr laddr, faddr;
1371 	u_short lport, fport;
1372 	int error;
1373 
1374 	KASSERT(sin->sin_family == AF_INET,
1375 	    ("%s: invalid address family for %p", __func__, sin));
1376 	KASSERT(sin->sin_len == sizeof(*sin),
1377 	    ("%s: invalid address length for %p", __func__, sin));
1378 
1379 	/*
1380 	 * Because a global state change doesn't actually occur here, a read
1381 	 * lock is sufficient.
1382 	 */
1383 	NET_EPOCH_ASSERT();
1384 	INP_LOCK_ASSERT(inp);
1385 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1386 
1387 	if (oinpp != NULL)
1388 		*oinpp = NULL;
1389 	if (sin->sin_port == 0)
1390 		return (EADDRNOTAVAIL);
1391 	laddr.s_addr = *laddrp;
1392 	lport = *lportp;
1393 	faddr = sin->sin_addr;
1394 	fport = sin->sin_port;
1395 #ifdef ROUTE_MPATH
1396 	if (CALC_FLOWID_OUTBOUND) {
1397 		uint32_t hash_val, hash_type;
1398 
1399 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1400 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1401 
1402 		inp->inp_flowid = hash_val;
1403 		inp->inp_flowtype = hash_type;
1404 	}
1405 #endif
1406 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1407 		/*
1408 		 * If the destination address is INADDR_ANY,
1409 		 * use the primary local address.
1410 		 * If the supplied address is INADDR_BROADCAST,
1411 		 * and the primary interface supports broadcast,
1412 		 * choose the broadcast address for that interface.
1413 		 */
1414 		if (faddr.s_addr == INADDR_ANY) {
1415 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1416 			faddr =
1417 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1418 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1419 			if (cred != NULL &&
1420 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1421 				return (error);
1422 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1423 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1424 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1425 			    IFF_BROADCAST)
1426 				faddr = satosin(&CK_STAILQ_FIRST(
1427 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1428 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1429 		}
1430 	}
1431 	if (laddr.s_addr == INADDR_ANY) {
1432 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1433 		/*
1434 		 * If the destination address is multicast and an outgoing
1435 		 * interface has been set as a multicast option, prefer the
1436 		 * address of that interface as our source address.
1437 		 */
1438 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1439 		    inp->inp_moptions != NULL) {
1440 			struct ip_moptions *imo;
1441 			struct ifnet *ifp;
1442 
1443 			imo = inp->inp_moptions;
1444 			if (imo->imo_multicast_ifp != NULL) {
1445 				ifp = imo->imo_multicast_ifp;
1446 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1447 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1448 					if ((ia->ia_ifp == ifp) &&
1449 					    (cred == NULL ||
1450 					    prison_check_ip4(cred,
1451 					    &ia->ia_addr.sin_addr) == 0))
1452 						break;
1453 				}
1454 				if (ia == NULL)
1455 					error = EADDRNOTAVAIL;
1456 				else {
1457 					laddr = ia->ia_addr.sin_addr;
1458 					error = 0;
1459 				}
1460 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1461 			}
1462 		}
1463 		if (error)
1464 			return (error);
1465 	}
1466 
1467 	if (lport != 0) {
1468 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1469 		    fport, laddr, lport, 0, NULL, M_NODOM);
1470 		if (oinp != NULL) {
1471 			if (oinpp != NULL)
1472 				*oinpp = oinp;
1473 			return (EADDRINUSE);
1474 		}
1475 	} else {
1476 		struct sockaddr_in lsin, fsin;
1477 
1478 		bzero(&lsin, sizeof(lsin));
1479 		bzero(&fsin, sizeof(fsin));
1480 		lsin.sin_family = AF_INET;
1481 		lsin.sin_addr = laddr;
1482 		fsin.sin_family = AF_INET;
1483 		fsin.sin_addr = faddr;
1484 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1485 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1486 		    INPLOOKUP_WILDCARD);
1487 		if (error)
1488 			return (error);
1489 	}
1490 	*laddrp = laddr.s_addr;
1491 	*lportp = lport;
1492 	*faddrp = faddr.s_addr;
1493 	*fportp = fport;
1494 	return (0);
1495 }
1496 
1497 void
1498 in_pcbdisconnect(struct inpcb *inp)
1499 {
1500 
1501 	INP_WLOCK_ASSERT(inp);
1502 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1503 
1504 	inp->inp_faddr.s_addr = INADDR_ANY;
1505 	inp->inp_fport = 0;
1506 	in_pcbrehash(inp);
1507 }
1508 #endif /* INET */
1509 
1510 /*
1511  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1512  * For most protocols, this will be invoked immediately prior to calling
1513  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1514  * socket, in which case in_pcbfree() is deferred.
1515  */
1516 void
1517 in_pcbdetach(struct inpcb *inp)
1518 {
1519 
1520 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1521 
1522 #ifdef RATELIMIT
1523 	if (inp->inp_snd_tag != NULL)
1524 		in_pcbdetach_txrtlmt(inp);
1525 #endif
1526 	inp->inp_socket->so_pcb = NULL;
1527 	inp->inp_socket = NULL;
1528 }
1529 
1530 /*
1531  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1532  * stability of an inpcb pointer despite the inpcb lock being released.  This
1533  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1534  * but where the inpcb lock may already held, or when acquiring a reference
1535  * via a pcbgroup.
1536  *
1537  * in_pcbref() should be used only to provide brief memory stability, and
1538  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1539  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1540  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1541  * lock and rele are the *only* safe operations that may be performed on the
1542  * inpcb.
1543  *
1544  * While the inpcb will not be freed, releasing the inpcb lock means that the
1545  * connection's state may change, so the caller should be careful to
1546  * revalidate any cached state on reacquiring the lock.  Drop the reference
1547  * using in_pcbrele().
1548  */
1549 void
1550 in_pcbref(struct inpcb *inp)
1551 {
1552 
1553 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1554 
1555 	refcount_acquire(&inp->inp_refcount);
1556 }
1557 
1558 /*
1559  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1560  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1561  * return a flag indicating whether or not the inpcb remains valid.  If it is
1562  * valid, we return with the inpcb lock held.
1563  *
1564  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1565  * reference on an inpcb.  Historically more work was done here (actually, in
1566  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1567  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1568  * about memory stability (and continued use of the write lock).
1569  */
1570 int
1571 in_pcbrele_rlocked(struct inpcb *inp)
1572 {
1573 	struct inpcbinfo *pcbinfo;
1574 
1575 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1576 
1577 	INP_RLOCK_ASSERT(inp);
1578 
1579 	if (refcount_release(&inp->inp_refcount) == 0) {
1580 		/*
1581 		 * If the inpcb has been freed, let the caller know, even if
1582 		 * this isn't the last reference.
1583 		 */
1584 		if (inp->inp_flags2 & INP_FREED) {
1585 			INP_RUNLOCK(inp);
1586 			return (1);
1587 		}
1588 		return (0);
1589 	}
1590 
1591 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1592 #ifdef TCPHPTS
1593 	if (inp->inp_in_hpts || inp->inp_in_input) {
1594 		struct tcp_hpts_entry *hpts;
1595 		/*
1596 		 * We should not be on the hpts at
1597 		 * this point in any form. we must
1598 		 * get the lock to be sure.
1599 		 */
1600 		hpts = tcp_hpts_lock(inp);
1601 		if (inp->inp_in_hpts)
1602 			panic("Hpts:%p inp:%p at free still on hpts",
1603 			      hpts, inp);
1604 		mtx_unlock(&hpts->p_mtx);
1605 		hpts = tcp_input_lock(inp);
1606 		if (inp->inp_in_input)
1607 			panic("Hpts:%p inp:%p at free still on input hpts",
1608 			      hpts, inp);
1609 		mtx_unlock(&hpts->p_mtx);
1610 	}
1611 #endif
1612 	INP_RUNLOCK(inp);
1613 	pcbinfo = inp->inp_pcbinfo;
1614 	uma_zfree(pcbinfo->ipi_zone, inp);
1615 	return (1);
1616 }
1617 
1618 int
1619 in_pcbrele_wlocked(struct inpcb *inp)
1620 {
1621 	struct inpcbinfo *pcbinfo;
1622 
1623 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1624 
1625 	INP_WLOCK_ASSERT(inp);
1626 
1627 	if (refcount_release(&inp->inp_refcount) == 0) {
1628 		/*
1629 		 * If the inpcb has been freed, let the caller know, even if
1630 		 * this isn't the last reference.
1631 		 */
1632 		if (inp->inp_flags2 & INP_FREED) {
1633 			INP_WUNLOCK(inp);
1634 			return (1);
1635 		}
1636 		return (0);
1637 	}
1638 
1639 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1640 #ifdef TCPHPTS
1641 	if (inp->inp_in_hpts || inp->inp_in_input) {
1642 		struct tcp_hpts_entry *hpts;
1643 		/*
1644 		 * We should not be on the hpts at
1645 		 * this point in any form. we must
1646 		 * get the lock to be sure.
1647 		 */
1648 		hpts = tcp_hpts_lock(inp);
1649 		if (inp->inp_in_hpts)
1650 			panic("Hpts:%p inp:%p at free still on hpts",
1651 			      hpts, inp);
1652 		mtx_unlock(&hpts->p_mtx);
1653 		hpts = tcp_input_lock(inp);
1654 		if (inp->inp_in_input)
1655 			panic("Hpts:%p inp:%p at free still on input hpts",
1656 			      hpts, inp);
1657 		mtx_unlock(&hpts->p_mtx);
1658 	}
1659 #endif
1660 	INP_WUNLOCK(inp);
1661 	pcbinfo = inp->inp_pcbinfo;
1662 	uma_zfree(pcbinfo->ipi_zone, inp);
1663 	return (1);
1664 }
1665 
1666 /*
1667  * Temporary wrapper.
1668  */
1669 int
1670 in_pcbrele(struct inpcb *inp)
1671 {
1672 
1673 	return (in_pcbrele_wlocked(inp));
1674 }
1675 
1676 void
1677 in_pcblist_rele_rlocked(epoch_context_t ctx)
1678 {
1679 	struct in_pcblist *il;
1680 	struct inpcb *inp;
1681 	struct inpcbinfo *pcbinfo;
1682 	int i, n;
1683 
1684 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1685 	pcbinfo = il->il_pcbinfo;
1686 	n = il->il_count;
1687 	INP_INFO_WLOCK(pcbinfo);
1688 	for (i = 0; i < n; i++) {
1689 		inp = il->il_inp_list[i];
1690 		INP_RLOCK(inp);
1691 		if (!in_pcbrele_rlocked(inp))
1692 			INP_RUNLOCK(inp);
1693 	}
1694 	INP_INFO_WUNLOCK(pcbinfo);
1695 	free(il, M_TEMP);
1696 }
1697 
1698 static void
1699 inpcbport_free(epoch_context_t ctx)
1700 {
1701 	struct inpcbport *phd;
1702 
1703 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1704 	free(phd, M_PCB);
1705 }
1706 
1707 static void
1708 in_pcbfree_deferred(epoch_context_t ctx)
1709 {
1710 	struct inpcb *inp;
1711 	int released __unused;
1712 
1713 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1714 
1715 	INP_WLOCK(inp);
1716 	CURVNET_SET(inp->inp_vnet);
1717 #ifdef INET
1718 	struct ip_moptions *imo = inp->inp_moptions;
1719 	inp->inp_moptions = NULL;
1720 #endif
1721 	/* XXXRW: Do as much as possible here. */
1722 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1723 	if (inp->inp_sp != NULL)
1724 		ipsec_delete_pcbpolicy(inp);
1725 #endif
1726 #ifdef INET6
1727 	struct ip6_moptions *im6o = NULL;
1728 	if (inp->inp_vflag & INP_IPV6PROTO) {
1729 		ip6_freepcbopts(inp->in6p_outputopts);
1730 		im6o = inp->in6p_moptions;
1731 		inp->in6p_moptions = NULL;
1732 	}
1733 #endif
1734 	if (inp->inp_options)
1735 		(void)m_free(inp->inp_options);
1736 	inp->inp_vflag = 0;
1737 	crfree(inp->inp_cred);
1738 #ifdef MAC
1739 	mac_inpcb_destroy(inp);
1740 #endif
1741 	released = in_pcbrele_wlocked(inp);
1742 	MPASS(released);
1743 #ifdef INET6
1744 	ip6_freemoptions(im6o);
1745 #endif
1746 #ifdef INET
1747 	inp_freemoptions(imo);
1748 #endif
1749 	CURVNET_RESTORE();
1750 }
1751 
1752 /*
1753  * Unconditionally schedule an inpcb to be freed by decrementing its
1754  * reference count, which should occur only after the inpcb has been detached
1755  * from its socket.  If another thread holds a temporary reference (acquired
1756  * using in_pcbref()) then the free is deferred until that reference is
1757  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1758  * work, including removal from global lists, is done in this context, where
1759  * the pcbinfo lock is held.
1760  */
1761 void
1762 in_pcbfree(struct inpcb *inp)
1763 {
1764 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1765 
1766 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1767 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1768 	    ("%s: called twice for pcb %p", __func__, inp));
1769 	if (inp->inp_flags2 & INP_FREED) {
1770 		INP_WUNLOCK(inp);
1771 		return;
1772 	}
1773 
1774 	INP_WLOCK_ASSERT(inp);
1775 	INP_LIST_WLOCK(pcbinfo);
1776 	in_pcbremlists(inp);
1777 	INP_LIST_WUNLOCK(pcbinfo);
1778 	RO_INVALIDATE_CACHE(&inp->inp_route);
1779 	/* mark as destruction in progress */
1780 	inp->inp_flags2 |= INP_FREED;
1781 	INP_WUNLOCK(inp);
1782 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1783 }
1784 
1785 /*
1786  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1787  * port reservation, and preventing it from being returned by inpcb lookups.
1788  *
1789  * It is used by TCP to mark an inpcb as unused and avoid future packet
1790  * delivery or event notification when a socket remains open but TCP has
1791  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1792  * or a RST on the wire, and allows the port binding to be reused while still
1793  * maintaining the invariant that so_pcb always points to a valid inpcb until
1794  * in_pcbdetach().
1795  *
1796  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1797  * in_pcbnotifyall() and in_pcbpurgeif0()?
1798  */
1799 void
1800 in_pcbdrop(struct inpcb *inp)
1801 {
1802 
1803 	INP_WLOCK_ASSERT(inp);
1804 #ifdef INVARIANTS
1805 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1806 		MPASS(inp->inp_refcount > 1);
1807 #endif
1808 
1809 	/*
1810 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1811 	 * the hash lock...?
1812 	 */
1813 	inp->inp_flags |= INP_DROPPED;
1814 	if (inp->inp_flags & INP_INHASHLIST) {
1815 		struct inpcbport *phd = inp->inp_phd;
1816 
1817 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1818 		in_pcbremlbgrouphash(inp);
1819 		CK_LIST_REMOVE(inp, inp_hash);
1820 		CK_LIST_REMOVE(inp, inp_portlist);
1821 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1822 			CK_LIST_REMOVE(phd, phd_hash);
1823 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1824 		}
1825 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1826 		inp->inp_flags &= ~INP_INHASHLIST;
1827 #ifdef PCBGROUP
1828 		in_pcbgroup_remove(inp);
1829 #endif
1830 	}
1831 }
1832 
1833 #ifdef INET
1834 /*
1835  * Common routines to return the socket addresses associated with inpcbs.
1836  */
1837 struct sockaddr *
1838 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1839 {
1840 	struct sockaddr_in *sin;
1841 
1842 	sin = malloc(sizeof *sin, M_SONAME,
1843 		M_WAITOK | M_ZERO);
1844 	sin->sin_family = AF_INET;
1845 	sin->sin_len = sizeof(*sin);
1846 	sin->sin_addr = *addr_p;
1847 	sin->sin_port = port;
1848 
1849 	return (struct sockaddr *)sin;
1850 }
1851 
1852 int
1853 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1854 {
1855 	struct inpcb *inp;
1856 	struct in_addr addr;
1857 	in_port_t port;
1858 
1859 	inp = sotoinpcb(so);
1860 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1861 
1862 	INP_RLOCK(inp);
1863 	port = inp->inp_lport;
1864 	addr = inp->inp_laddr;
1865 	INP_RUNLOCK(inp);
1866 
1867 	*nam = in_sockaddr(port, &addr);
1868 	return 0;
1869 }
1870 
1871 int
1872 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1873 {
1874 	struct inpcb *inp;
1875 	struct in_addr addr;
1876 	in_port_t port;
1877 
1878 	inp = sotoinpcb(so);
1879 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1880 
1881 	INP_RLOCK(inp);
1882 	port = inp->inp_fport;
1883 	addr = inp->inp_faddr;
1884 	INP_RUNLOCK(inp);
1885 
1886 	*nam = in_sockaddr(port, &addr);
1887 	return 0;
1888 }
1889 
1890 void
1891 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1892     struct inpcb *(*notify)(struct inpcb *, int))
1893 {
1894 	struct inpcb *inp, *inp_temp;
1895 
1896 	INP_INFO_WLOCK(pcbinfo);
1897 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1898 		INP_WLOCK(inp);
1899 #ifdef INET6
1900 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1901 			INP_WUNLOCK(inp);
1902 			continue;
1903 		}
1904 #endif
1905 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1906 		    inp->inp_socket == NULL) {
1907 			INP_WUNLOCK(inp);
1908 			continue;
1909 		}
1910 		if ((*notify)(inp, errno))
1911 			INP_WUNLOCK(inp);
1912 	}
1913 	INP_INFO_WUNLOCK(pcbinfo);
1914 }
1915 
1916 void
1917 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1918 {
1919 	struct inpcb *inp;
1920 	struct in_multi *inm;
1921 	struct in_mfilter *imf;
1922 	struct ip_moptions *imo;
1923 
1924 	INP_INFO_WLOCK(pcbinfo);
1925 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1926 		INP_WLOCK(inp);
1927 		imo = inp->inp_moptions;
1928 		if ((inp->inp_vflag & INP_IPV4) &&
1929 		    imo != NULL) {
1930 			/*
1931 			 * Unselect the outgoing interface if it is being
1932 			 * detached.
1933 			 */
1934 			if (imo->imo_multicast_ifp == ifp)
1935 				imo->imo_multicast_ifp = NULL;
1936 
1937 			/*
1938 			 * Drop multicast group membership if we joined
1939 			 * through the interface being detached.
1940 			 *
1941 			 * XXX This can all be deferred to an epoch_call
1942 			 */
1943 restart:
1944 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1945 				if ((inm = imf->imf_inm) == NULL)
1946 					continue;
1947 				if (inm->inm_ifp != ifp)
1948 					continue;
1949 				ip_mfilter_remove(&imo->imo_head, imf);
1950 				IN_MULTI_LOCK_ASSERT();
1951 				in_leavegroup_locked(inm, NULL);
1952 				ip_mfilter_free(imf);
1953 				goto restart;
1954 			}
1955 		}
1956 		INP_WUNLOCK(inp);
1957 	}
1958 	INP_INFO_WUNLOCK(pcbinfo);
1959 }
1960 
1961 /*
1962  * Lookup a PCB based on the local address and port.  Caller must hold the
1963  * hash lock.  No inpcb locks or references are acquired.
1964  */
1965 #define INP_LOOKUP_MAPPED_PCB_COST	3
1966 struct inpcb *
1967 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1968     u_short lport, int lookupflags, struct ucred *cred)
1969 {
1970 	struct inpcb *inp;
1971 #ifdef INET6
1972 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1973 #else
1974 	int matchwild = 3;
1975 #endif
1976 	int wildcard;
1977 
1978 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1979 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1980 
1981 	INP_HASH_LOCK_ASSERT(pcbinfo);
1982 
1983 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1984 		struct inpcbhead *head;
1985 		/*
1986 		 * Look for an unconnected (wildcard foreign addr) PCB that
1987 		 * matches the local address and port we're looking for.
1988 		 */
1989 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1990 		    0, pcbinfo->ipi_hashmask)];
1991 		CK_LIST_FOREACH(inp, head, inp_hash) {
1992 #ifdef INET6
1993 			/* XXX inp locking */
1994 			if ((inp->inp_vflag & INP_IPV4) == 0)
1995 				continue;
1996 #endif
1997 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1998 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1999 			    inp->inp_lport == lport) {
2000 				/*
2001 				 * Found?
2002 				 */
2003 				if (cred == NULL ||
2004 				    prison_equal_ip4(cred->cr_prison,
2005 					inp->inp_cred->cr_prison))
2006 					return (inp);
2007 			}
2008 		}
2009 		/*
2010 		 * Not found.
2011 		 */
2012 		return (NULL);
2013 	} else {
2014 		struct inpcbporthead *porthash;
2015 		struct inpcbport *phd;
2016 		struct inpcb *match = NULL;
2017 		/*
2018 		 * Best fit PCB lookup.
2019 		 *
2020 		 * First see if this local port is in use by looking on the
2021 		 * port hash list.
2022 		 */
2023 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2024 		    pcbinfo->ipi_porthashmask)];
2025 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
2026 			if (phd->phd_port == lport)
2027 				break;
2028 		}
2029 		if (phd != NULL) {
2030 			/*
2031 			 * Port is in use by one or more PCBs. Look for best
2032 			 * fit.
2033 			 */
2034 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2035 				wildcard = 0;
2036 				if (cred != NULL &&
2037 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
2038 					cred->cr_prison))
2039 					continue;
2040 #ifdef INET6
2041 				/* XXX inp locking */
2042 				if ((inp->inp_vflag & INP_IPV4) == 0)
2043 					continue;
2044 				/*
2045 				 * We never select the PCB that has
2046 				 * INP_IPV6 flag and is bound to :: if
2047 				 * we have another PCB which is bound
2048 				 * to 0.0.0.0.  If a PCB has the
2049 				 * INP_IPV6 flag, then we set its cost
2050 				 * higher than IPv4 only PCBs.
2051 				 *
2052 				 * Note that the case only happens
2053 				 * when a socket is bound to ::, under
2054 				 * the condition that the use of the
2055 				 * mapped address is allowed.
2056 				 */
2057 				if ((inp->inp_vflag & INP_IPV6) != 0)
2058 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2059 #endif
2060 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2061 					wildcard++;
2062 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2063 					if (laddr.s_addr == INADDR_ANY)
2064 						wildcard++;
2065 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2066 						continue;
2067 				} else {
2068 					if (laddr.s_addr != INADDR_ANY)
2069 						wildcard++;
2070 				}
2071 				if (wildcard < matchwild) {
2072 					match = inp;
2073 					matchwild = wildcard;
2074 					if (matchwild == 0)
2075 						break;
2076 				}
2077 			}
2078 		}
2079 		return (match);
2080 	}
2081 }
2082 #undef INP_LOOKUP_MAPPED_PCB_COST
2083 
2084 static struct inpcb *
2085 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2086     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
2087     uint16_t fport, int lookupflags, int numa_domain)
2088 {
2089 	struct inpcb *local_wild, *numa_wild;
2090 	const struct inpcblbgrouphead *hdr;
2091 	struct inpcblbgroup *grp;
2092 	uint32_t idx;
2093 
2094 	INP_HASH_LOCK_ASSERT(pcbinfo);
2095 
2096 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2097 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2098 
2099 	/*
2100 	 * Order of socket selection:
2101 	 * 1. non-wild.
2102 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
2103 	 *
2104 	 * NOTE:
2105 	 * - Load balanced group does not contain jailed sockets
2106 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
2107 	 */
2108 	local_wild = NULL;
2109 	numa_wild = NULL;
2110 	CK_LIST_FOREACH(grp, hdr, il_list) {
2111 #ifdef INET6
2112 		if (!(grp->il_vflag & INP_IPV4))
2113 			continue;
2114 #endif
2115 		if (grp->il_lport != lport)
2116 			continue;
2117 
2118 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
2119 		    grp->il_inpcnt;
2120 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2121 			if (numa_domain == M_NODOM ||
2122 			    grp->il_numa_domain == numa_domain) {
2123 				return (grp->il_inp[idx]);
2124 			} else {
2125 				numa_wild = grp->il_inp[idx];
2126 			}
2127 		}
2128 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2129 		    (lookupflags & INPLOOKUP_WILDCARD) != 0 &&
2130 		    (local_wild == NULL || numa_domain == M_NODOM ||
2131 			grp->il_numa_domain == numa_domain)) {
2132 			local_wild = grp->il_inp[idx];
2133 		}
2134 	}
2135 	if (numa_wild != NULL)
2136 		return (numa_wild);
2137 
2138 	return (local_wild);
2139 }
2140 
2141 #ifdef PCBGROUP
2142 /*
2143  * Lookup PCB in hash list, using pcbgroup tables.
2144  */
2145 static struct inpcb *
2146 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2147     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2148     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2149 {
2150 	struct inpcbhead *head;
2151 	struct inpcb *inp, *tmpinp;
2152 	u_short fport = fport_arg, lport = lport_arg;
2153 	bool locked;
2154 
2155 	/*
2156 	 * First look for an exact match.
2157 	 */
2158 	tmpinp = NULL;
2159 	INP_GROUP_LOCK(pcbgroup);
2160 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2161 	    pcbgroup->ipg_hashmask)];
2162 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2163 #ifdef INET6
2164 		/* XXX inp locking */
2165 		if ((inp->inp_vflag & INP_IPV4) == 0)
2166 			continue;
2167 #endif
2168 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2169 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2170 		    inp->inp_fport == fport &&
2171 		    inp->inp_lport == lport) {
2172 			/*
2173 			 * XXX We should be able to directly return
2174 			 * the inp here, without any checks.
2175 			 * Well unless both bound with SO_REUSEPORT?
2176 			 */
2177 			if (prison_flag(inp->inp_cred, PR_IP4))
2178 				goto found;
2179 			if (tmpinp == NULL)
2180 				tmpinp = inp;
2181 		}
2182 	}
2183 	if (tmpinp != NULL) {
2184 		inp = tmpinp;
2185 		goto found;
2186 	}
2187 
2188 #ifdef	RSS
2189 	/*
2190 	 * For incoming connections, we may wish to do a wildcard
2191 	 * match for an RSS-local socket.
2192 	 */
2193 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2194 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2195 #ifdef INET6
2196 		struct inpcb *local_wild_mapped = NULL;
2197 #endif
2198 		struct inpcb *jail_wild = NULL;
2199 		struct inpcbhead *head;
2200 		int injail;
2201 
2202 		/*
2203 		 * Order of socket selection - we always prefer jails.
2204 		 *      1. jailed, non-wild.
2205 		 *      2. jailed, wild.
2206 		 *      3. non-jailed, non-wild.
2207 		 *      4. non-jailed, wild.
2208 		 */
2209 
2210 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2211 		    lport, 0, pcbgroup->ipg_hashmask)];
2212 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2213 #ifdef INET6
2214 			/* XXX inp locking */
2215 			if ((inp->inp_vflag & INP_IPV4) == 0)
2216 				continue;
2217 #endif
2218 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2219 			    inp->inp_lport != lport)
2220 				continue;
2221 
2222 			injail = prison_flag(inp->inp_cred, PR_IP4);
2223 			if (injail) {
2224 				if (prison_check_ip4(inp->inp_cred,
2225 				    &laddr) != 0)
2226 					continue;
2227 			} else {
2228 				if (local_exact != NULL)
2229 					continue;
2230 			}
2231 
2232 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2233 				if (injail)
2234 					goto found;
2235 				else
2236 					local_exact = inp;
2237 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2238 #ifdef INET6
2239 				/* XXX inp locking, NULL check */
2240 				if (inp->inp_vflag & INP_IPV6PROTO)
2241 					local_wild_mapped = inp;
2242 				else
2243 #endif
2244 					if (injail)
2245 						jail_wild = inp;
2246 					else
2247 						local_wild = inp;
2248 			}
2249 		} /* LIST_FOREACH */
2250 
2251 		inp = jail_wild;
2252 		if (inp == NULL)
2253 			inp = local_exact;
2254 		if (inp == NULL)
2255 			inp = local_wild;
2256 #ifdef INET6
2257 		if (inp == NULL)
2258 			inp = local_wild_mapped;
2259 #endif
2260 		if (inp != NULL)
2261 			goto found;
2262 	}
2263 #endif
2264 
2265 	/*
2266 	 * Then look for a wildcard match, if requested.
2267 	 */
2268 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2269 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2270 #ifdef INET6
2271 		struct inpcb *local_wild_mapped = NULL;
2272 #endif
2273 		struct inpcb *jail_wild = NULL;
2274 		struct inpcbhead *head;
2275 		int injail;
2276 
2277 		/*
2278 		 * Order of socket selection - we always prefer jails.
2279 		 *      1. jailed, non-wild.
2280 		 *      2. jailed, wild.
2281 		 *      3. non-jailed, non-wild.
2282 		 *      4. non-jailed, wild.
2283 		 */
2284 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2285 		    0, pcbinfo->ipi_wildmask)];
2286 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2287 #ifdef INET6
2288 			/* XXX inp locking */
2289 			if ((inp->inp_vflag & INP_IPV4) == 0)
2290 				continue;
2291 #endif
2292 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2293 			    inp->inp_lport != lport)
2294 				continue;
2295 
2296 			injail = prison_flag(inp->inp_cred, PR_IP4);
2297 			if (injail) {
2298 				if (prison_check_ip4(inp->inp_cred,
2299 				    &laddr) != 0)
2300 					continue;
2301 			} else {
2302 				if (local_exact != NULL)
2303 					continue;
2304 			}
2305 
2306 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2307 				if (injail)
2308 					goto found;
2309 				else
2310 					local_exact = inp;
2311 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2312 #ifdef INET6
2313 				/* XXX inp locking, NULL check */
2314 				if (inp->inp_vflag & INP_IPV6PROTO)
2315 					local_wild_mapped = inp;
2316 				else
2317 #endif
2318 					if (injail)
2319 						jail_wild = inp;
2320 					else
2321 						local_wild = inp;
2322 			}
2323 		} /* LIST_FOREACH */
2324 		inp = jail_wild;
2325 		if (inp == NULL)
2326 			inp = local_exact;
2327 		if (inp == NULL)
2328 			inp = local_wild;
2329 #ifdef INET6
2330 		if (inp == NULL)
2331 			inp = local_wild_mapped;
2332 #endif
2333 		if (inp != NULL)
2334 			goto found;
2335 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2336 	INP_GROUP_UNLOCK(pcbgroup);
2337 	return (NULL);
2338 
2339 found:
2340 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2341 		locked = INP_TRY_WLOCK(inp);
2342 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2343 		locked = INP_TRY_RLOCK(inp);
2344 	else
2345 		panic("%s: locking bug", __func__);
2346 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2347 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2348 			INP_WUNLOCK(inp);
2349 		else
2350 			INP_RUNLOCK(inp);
2351 		return (NULL);
2352 	} else if (!locked)
2353 		in_pcbref(inp);
2354 	INP_GROUP_UNLOCK(pcbgroup);
2355 	if (!locked) {
2356 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2357 			INP_WLOCK(inp);
2358 			if (in_pcbrele_wlocked(inp))
2359 				return (NULL);
2360 		} else {
2361 			INP_RLOCK(inp);
2362 			if (in_pcbrele_rlocked(inp))
2363 				return (NULL);
2364 		}
2365 	}
2366 #ifdef INVARIANTS
2367 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2368 		INP_WLOCK_ASSERT(inp);
2369 	else
2370 		INP_RLOCK_ASSERT(inp);
2371 #endif
2372 	return (inp);
2373 }
2374 #endif /* PCBGROUP */
2375 
2376 /*
2377  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2378  * that the caller has locked the hash list, and will not perform any further
2379  * locking or reference operations on either the hash list or the connection.
2380  */
2381 static struct inpcb *
2382 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2383     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2384     struct ifnet *ifp, uint8_t numa_domain)
2385 {
2386 	struct inpcbhead *head;
2387 	struct inpcb *inp, *tmpinp;
2388 	u_short fport = fport_arg, lport = lport_arg;
2389 
2390 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2391 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2392 	INP_HASH_LOCK_ASSERT(pcbinfo);
2393 
2394 	/*
2395 	 * First look for an exact match.
2396 	 */
2397 	tmpinp = NULL;
2398 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2399 	    pcbinfo->ipi_hashmask)];
2400 	CK_LIST_FOREACH(inp, head, inp_hash) {
2401 #ifdef INET6
2402 		/* XXX inp locking */
2403 		if ((inp->inp_vflag & INP_IPV4) == 0)
2404 			continue;
2405 #endif
2406 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2407 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2408 		    inp->inp_fport == fport &&
2409 		    inp->inp_lport == lport) {
2410 			/*
2411 			 * XXX We should be able to directly return
2412 			 * the inp here, without any checks.
2413 			 * Well unless both bound with SO_REUSEPORT?
2414 			 */
2415 			if (prison_flag(inp->inp_cred, PR_IP4))
2416 				return (inp);
2417 			if (tmpinp == NULL)
2418 				tmpinp = inp;
2419 		}
2420 	}
2421 	if (tmpinp != NULL)
2422 		return (tmpinp);
2423 
2424 	/*
2425 	 * Then look in lb group (for wildcard match).
2426 	 */
2427 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2428 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2429 		    fport, lookupflags, numa_domain);
2430 		if (inp != NULL)
2431 			return (inp);
2432 	}
2433 
2434 	/*
2435 	 * Then look for a wildcard match, if requested.
2436 	 */
2437 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2438 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2439 #ifdef INET6
2440 		struct inpcb *local_wild_mapped = NULL;
2441 #endif
2442 		struct inpcb *jail_wild = NULL;
2443 		int injail;
2444 
2445 		/*
2446 		 * Order of socket selection - we always prefer jails.
2447 		 *      1. jailed, non-wild.
2448 		 *      2. jailed, wild.
2449 		 *      3. non-jailed, non-wild.
2450 		 *      4. non-jailed, wild.
2451 		 */
2452 
2453 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2454 		    0, pcbinfo->ipi_hashmask)];
2455 		CK_LIST_FOREACH(inp, head, inp_hash) {
2456 #ifdef INET6
2457 			/* XXX inp locking */
2458 			if ((inp->inp_vflag & INP_IPV4) == 0)
2459 				continue;
2460 #endif
2461 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2462 			    inp->inp_lport != lport)
2463 				continue;
2464 
2465 			injail = prison_flag(inp->inp_cred, PR_IP4);
2466 			if (injail) {
2467 				if (prison_check_ip4(inp->inp_cred,
2468 				    &laddr) != 0)
2469 					continue;
2470 			} else {
2471 				if (local_exact != NULL)
2472 					continue;
2473 			}
2474 
2475 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2476 				if (injail)
2477 					return (inp);
2478 				else
2479 					local_exact = inp;
2480 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2481 #ifdef INET6
2482 				/* XXX inp locking, NULL check */
2483 				if (inp->inp_vflag & INP_IPV6PROTO)
2484 					local_wild_mapped = inp;
2485 				else
2486 #endif
2487 					if (injail)
2488 						jail_wild = inp;
2489 					else
2490 						local_wild = inp;
2491 			}
2492 		} /* LIST_FOREACH */
2493 		if (jail_wild != NULL)
2494 			return (jail_wild);
2495 		if (local_exact != NULL)
2496 			return (local_exact);
2497 		if (local_wild != NULL)
2498 			return (local_wild);
2499 #ifdef INET6
2500 		if (local_wild_mapped != NULL)
2501 			return (local_wild_mapped);
2502 #endif
2503 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2504 
2505 	return (NULL);
2506 }
2507 
2508 /*
2509  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2510  * hash list lock, and will return the inpcb locked (i.e., requires
2511  * INPLOOKUP_LOCKPCB).
2512  */
2513 static struct inpcb *
2514 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2515     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2516     struct ifnet *ifp, uint8_t numa_domain)
2517 {
2518 	struct inpcb *inp;
2519 
2520 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2521 	    lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain);
2522 	if (inp != NULL) {
2523 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2524 			INP_WLOCK(inp);
2525 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2526 			INP_RLOCK(inp);
2527 		} else
2528 			panic("%s: locking bug", __func__);
2529 		if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2530 			INP_UNLOCK(inp);
2531 			inp = NULL;
2532 		}
2533 	}
2534 
2535 	return (inp);
2536 }
2537 
2538 /*
2539  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2540  * from which a pre-calculated hash value may be extracted.
2541  *
2542  * Possibly more of this logic should be in in_pcbgroup.c.
2543  */
2544 struct inpcb *
2545 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2546     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2547 {
2548 #if defined(PCBGROUP) && !defined(RSS)
2549 	struct inpcbgroup *pcbgroup;
2550 #endif
2551 
2552 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2553 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2554 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2555 	    ("%s: LOCKPCB not set", __func__));
2556 
2557 	/*
2558 	 * When not using RSS, use connection groups in preference to the
2559 	 * reservation table when looking up 4-tuples.  When using RSS, just
2560 	 * use the reservation table, due to the cost of the Toeplitz hash
2561 	 * in software.
2562 	 *
2563 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2564 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2565 	 * in software.
2566 	 */
2567 #if defined(PCBGROUP) && !defined(RSS)
2568 	if (in_pcbgroup_enabled(pcbinfo)) {
2569 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2570 		    fport);
2571 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2572 		    laddr, lport, lookupflags, ifp));
2573 	}
2574 #endif
2575 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2576 	    lookupflags, ifp, M_NODOM));
2577 }
2578 
2579 struct inpcb *
2580 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2581     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2582     struct ifnet *ifp, struct mbuf *m)
2583 {
2584 #ifdef PCBGROUP
2585 	struct inpcbgroup *pcbgroup;
2586 #endif
2587 
2588 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2589 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2590 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2591 	    ("%s: LOCKPCB not set", __func__));
2592 
2593 #ifdef PCBGROUP
2594 	/*
2595 	 * If we can use a hardware-generated hash to look up the connection
2596 	 * group, use that connection group to find the inpcb.  Otherwise
2597 	 * fall back on a software hash -- or the reservation table if we're
2598 	 * using RSS.
2599 	 *
2600 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2601 	 */
2602 	if (in_pcbgroup_enabled(pcbinfo) &&
2603 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2604 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2605 		    m->m_pkthdr.flowid);
2606 		if (pcbgroup != NULL)
2607 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2608 			    fport, laddr, lport, lookupflags, ifp));
2609 #ifndef RSS
2610 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2611 		    fport);
2612 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2613 		    laddr, lport, lookupflags, ifp));
2614 #endif
2615 	}
2616 #endif
2617 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2618 	    lookupflags, ifp, m->m_pkthdr.numa_domain));
2619 }
2620 #endif /* INET */
2621 
2622 /*
2623  * Insert PCB onto various hash lists.
2624  */
2625 static int
2626 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2627 {
2628 	struct inpcbhead *pcbhash;
2629 	struct inpcbporthead *pcbporthash;
2630 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2631 	struct inpcbport *phd;
2632 	u_int32_t hashkey_faddr;
2633 	int so_options;
2634 
2635 	INP_WLOCK_ASSERT(inp);
2636 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2637 
2638 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2639 	    ("in_pcbinshash: INP_INHASHLIST"));
2640 
2641 #ifdef INET6
2642 	if (inp->inp_vflag & INP_IPV6)
2643 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2644 	else
2645 #endif
2646 	hashkey_faddr = inp->inp_faddr.s_addr;
2647 
2648 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2649 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2650 
2651 	pcbporthash = &pcbinfo->ipi_porthashbase[
2652 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2653 
2654 	/*
2655 	 * Add entry to load balance group.
2656 	 * Only do this if SO_REUSEPORT_LB is set.
2657 	 */
2658 	so_options = inp_so_options(inp);
2659 	if (so_options & SO_REUSEPORT_LB) {
2660 		int ret = in_pcbinslbgrouphash(inp, M_NODOM);
2661 		if (ret) {
2662 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2663 			return (ret);
2664 		}
2665 	}
2666 
2667 	/*
2668 	 * Go through port list and look for a head for this lport.
2669 	 */
2670 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2671 		if (phd->phd_port == inp->inp_lport)
2672 			break;
2673 	}
2674 	/*
2675 	 * If none exists, malloc one and tack it on.
2676 	 */
2677 	if (phd == NULL) {
2678 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2679 		if (phd == NULL) {
2680 			return (ENOBUFS); /* XXX */
2681 		}
2682 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2683 		phd->phd_port = inp->inp_lport;
2684 		CK_LIST_INIT(&phd->phd_pcblist);
2685 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2686 	}
2687 	inp->inp_phd = phd;
2688 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2689 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2690 	inp->inp_flags |= INP_INHASHLIST;
2691 #ifdef PCBGROUP
2692 	if (m != NULL) {
2693 		in_pcbgroup_update_mbuf(inp, m);
2694 	} else {
2695 		in_pcbgroup_update(inp);
2696 	}
2697 #endif
2698 	return (0);
2699 }
2700 
2701 int
2702 in_pcbinshash(struct inpcb *inp)
2703 {
2704 
2705 	return (in_pcbinshash_internal(inp, NULL));
2706 }
2707 
2708 int
2709 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2710 {
2711 
2712 	return (in_pcbinshash_internal(inp, m));
2713 }
2714 
2715 /*
2716  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2717  * changed. NOTE: This does not handle the case of the lport changing (the
2718  * hashed port list would have to be updated as well), so the lport must
2719  * not change after in_pcbinshash() has been called.
2720  */
2721 void
2722 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2723 {
2724 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2725 	struct inpcbhead *head;
2726 	u_int32_t hashkey_faddr;
2727 
2728 	INP_WLOCK_ASSERT(inp);
2729 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2730 
2731 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2732 	    ("in_pcbrehash: !INP_INHASHLIST"));
2733 
2734 #ifdef INET6
2735 	if (inp->inp_vflag & INP_IPV6)
2736 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2737 	else
2738 #endif
2739 	hashkey_faddr = inp->inp_faddr.s_addr;
2740 
2741 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2742 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2743 
2744 	CK_LIST_REMOVE(inp, inp_hash);
2745 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2746 
2747 #ifdef PCBGROUP
2748 	if (m != NULL)
2749 		in_pcbgroup_update_mbuf(inp, m);
2750 	else
2751 		in_pcbgroup_update(inp);
2752 #endif
2753 }
2754 
2755 void
2756 in_pcbrehash(struct inpcb *inp)
2757 {
2758 
2759 	in_pcbrehash_mbuf(inp, NULL);
2760 }
2761 
2762 /*
2763  * Remove PCB from various lists.
2764  */
2765 static void
2766 in_pcbremlists(struct inpcb *inp)
2767 {
2768 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2769 
2770 	INP_WLOCK_ASSERT(inp);
2771 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2772 
2773 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2774 	if (inp->inp_flags & INP_INHASHLIST) {
2775 		struct inpcbport *phd = inp->inp_phd;
2776 
2777 		INP_HASH_WLOCK(pcbinfo);
2778 
2779 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2780 		in_pcbremlbgrouphash(inp);
2781 
2782 		CK_LIST_REMOVE(inp, inp_hash);
2783 		CK_LIST_REMOVE(inp, inp_portlist);
2784 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2785 			CK_LIST_REMOVE(phd, phd_hash);
2786 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2787 		}
2788 		INP_HASH_WUNLOCK(pcbinfo);
2789 		inp->inp_flags &= ~INP_INHASHLIST;
2790 	}
2791 	CK_LIST_REMOVE(inp, inp_list);
2792 	pcbinfo->ipi_count--;
2793 #ifdef PCBGROUP
2794 	in_pcbgroup_remove(inp);
2795 #endif
2796 }
2797 
2798 /*
2799  * Check for alternatives when higher level complains
2800  * about service problems.  For now, invalidate cached
2801  * routing information.  If the route was created dynamically
2802  * (by a redirect), time to try a default gateway again.
2803  */
2804 void
2805 in_losing(struct inpcb *inp)
2806 {
2807 
2808 	RO_INVALIDATE_CACHE(&inp->inp_route);
2809 	return;
2810 }
2811 
2812 /*
2813  * A set label operation has occurred at the socket layer, propagate the
2814  * label change into the in_pcb for the socket.
2815  */
2816 void
2817 in_pcbsosetlabel(struct socket *so)
2818 {
2819 #ifdef MAC
2820 	struct inpcb *inp;
2821 
2822 	inp = sotoinpcb(so);
2823 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2824 
2825 	INP_WLOCK(inp);
2826 	SOCK_LOCK(so);
2827 	mac_inpcb_sosetlabel(so, inp);
2828 	SOCK_UNLOCK(so);
2829 	INP_WUNLOCK(inp);
2830 #endif
2831 }
2832 
2833 /*
2834  * ipport_tick runs once per second, determining if random port allocation
2835  * should be continued.  If more than ipport_randomcps ports have been
2836  * allocated in the last second, then we return to sequential port
2837  * allocation. We return to random allocation only once we drop below
2838  * ipport_randomcps for at least ipport_randomtime seconds.
2839  */
2840 static void
2841 ipport_tick(void *xtp)
2842 {
2843 	VNET_ITERATOR_DECL(vnet_iter);
2844 
2845 	VNET_LIST_RLOCK_NOSLEEP();
2846 	VNET_FOREACH(vnet_iter) {
2847 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2848 		if (V_ipport_tcpallocs <=
2849 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2850 			if (V_ipport_stoprandom > 0)
2851 				V_ipport_stoprandom--;
2852 		} else
2853 			V_ipport_stoprandom = V_ipport_randomtime;
2854 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2855 		CURVNET_RESTORE();
2856 	}
2857 	VNET_LIST_RUNLOCK_NOSLEEP();
2858 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2859 }
2860 
2861 static void
2862 ip_fini(void *xtp)
2863 {
2864 
2865 	callout_stop(&ipport_tick_callout);
2866 }
2867 
2868 /*
2869  * The ipport_callout should start running at about the time we attach the
2870  * inet or inet6 domains.
2871  */
2872 static void
2873 ipport_tick_init(const void *unused __unused)
2874 {
2875 
2876 	/* Start ipport_tick. */
2877 	callout_init(&ipport_tick_callout, 1);
2878 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2879 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2880 		SHUTDOWN_PRI_DEFAULT);
2881 }
2882 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2883     ipport_tick_init, NULL);
2884 
2885 void
2886 inp_wlock(struct inpcb *inp)
2887 {
2888 
2889 	INP_WLOCK(inp);
2890 }
2891 
2892 void
2893 inp_wunlock(struct inpcb *inp)
2894 {
2895 
2896 	INP_WUNLOCK(inp);
2897 }
2898 
2899 void
2900 inp_rlock(struct inpcb *inp)
2901 {
2902 
2903 	INP_RLOCK(inp);
2904 }
2905 
2906 void
2907 inp_runlock(struct inpcb *inp)
2908 {
2909 
2910 	INP_RUNLOCK(inp);
2911 }
2912 
2913 #ifdef INVARIANT_SUPPORT
2914 void
2915 inp_lock_assert(struct inpcb *inp)
2916 {
2917 
2918 	INP_WLOCK_ASSERT(inp);
2919 }
2920 
2921 void
2922 inp_unlock_assert(struct inpcb *inp)
2923 {
2924 
2925 	INP_UNLOCK_ASSERT(inp);
2926 }
2927 #endif
2928 
2929 void
2930 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2931 {
2932 	struct inpcb *inp;
2933 
2934 	INP_INFO_WLOCK(&V_tcbinfo);
2935 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2936 		INP_WLOCK(inp);
2937 		func(inp, arg);
2938 		INP_WUNLOCK(inp);
2939 	}
2940 	INP_INFO_WUNLOCK(&V_tcbinfo);
2941 }
2942 
2943 struct socket *
2944 inp_inpcbtosocket(struct inpcb *inp)
2945 {
2946 
2947 	INP_WLOCK_ASSERT(inp);
2948 	return (inp->inp_socket);
2949 }
2950 
2951 struct tcpcb *
2952 inp_inpcbtotcpcb(struct inpcb *inp)
2953 {
2954 
2955 	INP_WLOCK_ASSERT(inp);
2956 	return ((struct tcpcb *)inp->inp_ppcb);
2957 }
2958 
2959 int
2960 inp_ip_tos_get(const struct inpcb *inp)
2961 {
2962 
2963 	return (inp->inp_ip_tos);
2964 }
2965 
2966 void
2967 inp_ip_tos_set(struct inpcb *inp, int val)
2968 {
2969 
2970 	inp->inp_ip_tos = val;
2971 }
2972 
2973 void
2974 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2975     uint32_t *faddr, uint16_t *fp)
2976 {
2977 
2978 	INP_LOCK_ASSERT(inp);
2979 	*laddr = inp->inp_laddr.s_addr;
2980 	*faddr = inp->inp_faddr.s_addr;
2981 	*lp = inp->inp_lport;
2982 	*fp = inp->inp_fport;
2983 }
2984 
2985 struct inpcb *
2986 so_sotoinpcb(struct socket *so)
2987 {
2988 
2989 	return (sotoinpcb(so));
2990 }
2991 
2992 struct tcpcb *
2993 so_sototcpcb(struct socket *so)
2994 {
2995 
2996 	return (sototcpcb(so));
2997 }
2998 
2999 /*
3000  * Create an external-format (``xinpcb'') structure using the information in
3001  * the kernel-format in_pcb structure pointed to by inp.  This is done to
3002  * reduce the spew of irrelevant information over this interface, to isolate
3003  * user code from changes in the kernel structure, and potentially to provide
3004  * information-hiding if we decide that some of this information should be
3005  * hidden from users.
3006  */
3007 void
3008 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
3009 {
3010 
3011 	bzero(xi, sizeof(*xi));
3012 	xi->xi_len = sizeof(struct xinpcb);
3013 	if (inp->inp_socket)
3014 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
3015 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
3016 	xi->inp_gencnt = inp->inp_gencnt;
3017 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
3018 	xi->inp_flow = inp->inp_flow;
3019 	xi->inp_flowid = inp->inp_flowid;
3020 	xi->inp_flowtype = inp->inp_flowtype;
3021 	xi->inp_flags = inp->inp_flags;
3022 	xi->inp_flags2 = inp->inp_flags2;
3023 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
3024 	xi->in6p_cksum = inp->in6p_cksum;
3025 	xi->in6p_hops = inp->in6p_hops;
3026 	xi->inp_ip_tos = inp->inp_ip_tos;
3027 	xi->inp_vflag = inp->inp_vflag;
3028 	xi->inp_ip_ttl = inp->inp_ip_ttl;
3029 	xi->inp_ip_p = inp->inp_ip_p;
3030 	xi->inp_ip_minttl = inp->inp_ip_minttl;
3031 }
3032 
3033 #ifdef DDB
3034 static void
3035 db_print_indent(int indent)
3036 {
3037 	int i;
3038 
3039 	for (i = 0; i < indent; i++)
3040 		db_printf(" ");
3041 }
3042 
3043 static void
3044 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3045 {
3046 	char faddr_str[48], laddr_str[48];
3047 
3048 	db_print_indent(indent);
3049 	db_printf("%s at %p\n", name, inc);
3050 
3051 	indent += 2;
3052 
3053 #ifdef INET6
3054 	if (inc->inc_flags & INC_ISIPV6) {
3055 		/* IPv6. */
3056 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
3057 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
3058 	} else
3059 #endif
3060 	{
3061 		/* IPv4. */
3062 		inet_ntoa_r(inc->inc_laddr, laddr_str);
3063 		inet_ntoa_r(inc->inc_faddr, faddr_str);
3064 	}
3065 	db_print_indent(indent);
3066 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
3067 	    ntohs(inc->inc_lport));
3068 	db_print_indent(indent);
3069 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
3070 	    ntohs(inc->inc_fport));
3071 }
3072 
3073 static void
3074 db_print_inpflags(int inp_flags)
3075 {
3076 	int comma;
3077 
3078 	comma = 0;
3079 	if (inp_flags & INP_RECVOPTS) {
3080 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3081 		comma = 1;
3082 	}
3083 	if (inp_flags & INP_RECVRETOPTS) {
3084 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3085 		comma = 1;
3086 	}
3087 	if (inp_flags & INP_RECVDSTADDR) {
3088 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3089 		comma = 1;
3090 	}
3091 	if (inp_flags & INP_ORIGDSTADDR) {
3092 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3093 		comma = 1;
3094 	}
3095 	if (inp_flags & INP_HDRINCL) {
3096 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3097 		comma = 1;
3098 	}
3099 	if (inp_flags & INP_HIGHPORT) {
3100 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3101 		comma = 1;
3102 	}
3103 	if (inp_flags & INP_LOWPORT) {
3104 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3105 		comma = 1;
3106 	}
3107 	if (inp_flags & INP_ANONPORT) {
3108 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3109 		comma = 1;
3110 	}
3111 	if (inp_flags & INP_RECVIF) {
3112 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3113 		comma = 1;
3114 	}
3115 	if (inp_flags & INP_MTUDISC) {
3116 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3117 		comma = 1;
3118 	}
3119 	if (inp_flags & INP_RECVTTL) {
3120 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3121 		comma = 1;
3122 	}
3123 	if (inp_flags & INP_DONTFRAG) {
3124 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3125 		comma = 1;
3126 	}
3127 	if (inp_flags & INP_RECVTOS) {
3128 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3129 		comma = 1;
3130 	}
3131 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3132 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3133 		comma = 1;
3134 	}
3135 	if (inp_flags & IN6P_PKTINFO) {
3136 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3137 		comma = 1;
3138 	}
3139 	if (inp_flags & IN6P_HOPLIMIT) {
3140 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3141 		comma = 1;
3142 	}
3143 	if (inp_flags & IN6P_HOPOPTS) {
3144 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3145 		comma = 1;
3146 	}
3147 	if (inp_flags & IN6P_DSTOPTS) {
3148 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3149 		comma = 1;
3150 	}
3151 	if (inp_flags & IN6P_RTHDR) {
3152 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3153 		comma = 1;
3154 	}
3155 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3156 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3157 		comma = 1;
3158 	}
3159 	if (inp_flags & IN6P_TCLASS) {
3160 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3161 		comma = 1;
3162 	}
3163 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3164 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3165 		comma = 1;
3166 	}
3167 	if (inp_flags & INP_TIMEWAIT) {
3168 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3169 		comma  = 1;
3170 	}
3171 	if (inp_flags & INP_ONESBCAST) {
3172 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3173 		comma  = 1;
3174 	}
3175 	if (inp_flags & INP_DROPPED) {
3176 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3177 		comma  = 1;
3178 	}
3179 	if (inp_flags & INP_SOCKREF) {
3180 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3181 		comma  = 1;
3182 	}
3183 	if (inp_flags & IN6P_RFC2292) {
3184 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3185 		comma = 1;
3186 	}
3187 	if (inp_flags & IN6P_MTU) {
3188 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3189 		comma = 1;
3190 	}
3191 }
3192 
3193 static void
3194 db_print_inpvflag(u_char inp_vflag)
3195 {
3196 	int comma;
3197 
3198 	comma = 0;
3199 	if (inp_vflag & INP_IPV4) {
3200 		db_printf("%sINP_IPV4", comma ? ", " : "");
3201 		comma  = 1;
3202 	}
3203 	if (inp_vflag & INP_IPV6) {
3204 		db_printf("%sINP_IPV6", comma ? ", " : "");
3205 		comma  = 1;
3206 	}
3207 	if (inp_vflag & INP_IPV6PROTO) {
3208 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3209 		comma  = 1;
3210 	}
3211 }
3212 
3213 static void
3214 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3215 {
3216 
3217 	db_print_indent(indent);
3218 	db_printf("%s at %p\n", name, inp);
3219 
3220 	indent += 2;
3221 
3222 	db_print_indent(indent);
3223 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3224 
3225 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3226 
3227 	db_print_indent(indent);
3228 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3229 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3230 
3231 	db_print_indent(indent);
3232 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3233 	   inp->inp_label, inp->inp_flags);
3234 	db_print_inpflags(inp->inp_flags);
3235 	db_printf(")\n");
3236 
3237 	db_print_indent(indent);
3238 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3239 	    inp->inp_vflag);
3240 	db_print_inpvflag(inp->inp_vflag);
3241 	db_printf(")\n");
3242 
3243 	db_print_indent(indent);
3244 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3245 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3246 
3247 	db_print_indent(indent);
3248 #ifdef INET6
3249 	if (inp->inp_vflag & INP_IPV6) {
3250 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3251 		    "in6p_moptions: %p\n", inp->in6p_options,
3252 		    inp->in6p_outputopts, inp->in6p_moptions);
3253 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3254 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3255 		    inp->in6p_hops);
3256 	} else
3257 #endif
3258 	{
3259 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3260 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3261 		    inp->inp_options, inp->inp_moptions);
3262 	}
3263 
3264 	db_print_indent(indent);
3265 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3266 	    (uintmax_t)inp->inp_gencnt);
3267 }
3268 
3269 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3270 {
3271 	struct inpcb *inp;
3272 
3273 	if (!have_addr) {
3274 		db_printf("usage: show inpcb <addr>\n");
3275 		return;
3276 	}
3277 	inp = (struct inpcb *)addr;
3278 
3279 	db_print_inpcb(inp, "inpcb", 0);
3280 }
3281 #endif /* DDB */
3282 
3283 #ifdef RATELIMIT
3284 /*
3285  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3286  * if any.
3287  */
3288 int
3289 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3290 {
3291 	union if_snd_tag_modify_params params = {
3292 		.rate_limit.max_rate = max_pacing_rate,
3293 		.rate_limit.flags = M_NOWAIT,
3294 	};
3295 	struct m_snd_tag *mst;
3296 	int error;
3297 
3298 	mst = inp->inp_snd_tag;
3299 	if (mst == NULL)
3300 		return (EINVAL);
3301 
3302 	if (mst->sw->snd_tag_modify == NULL) {
3303 		error = EOPNOTSUPP;
3304 	} else {
3305 		error = mst->sw->snd_tag_modify(mst, &params);
3306 	}
3307 	return (error);
3308 }
3309 
3310 /*
3311  * Query existing TX rate limit based on the existing
3312  * "inp->inp_snd_tag", if any.
3313  */
3314 int
3315 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3316 {
3317 	union if_snd_tag_query_params params = { };
3318 	struct m_snd_tag *mst;
3319 	int error;
3320 
3321 	mst = inp->inp_snd_tag;
3322 	if (mst == NULL)
3323 		return (EINVAL);
3324 
3325 	if (mst->sw->snd_tag_query == NULL) {
3326 		error = EOPNOTSUPP;
3327 	} else {
3328 		error = mst->sw->snd_tag_query(mst, &params);
3329 		if (error == 0 && p_max_pacing_rate != NULL)
3330 			*p_max_pacing_rate = params.rate_limit.max_rate;
3331 	}
3332 	return (error);
3333 }
3334 
3335 /*
3336  * Query existing TX queue level based on the existing
3337  * "inp->inp_snd_tag", if any.
3338  */
3339 int
3340 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3341 {
3342 	union if_snd_tag_query_params params = { };
3343 	struct m_snd_tag *mst;
3344 	int error;
3345 
3346 	mst = inp->inp_snd_tag;
3347 	if (mst == NULL)
3348 		return (EINVAL);
3349 
3350 	if (mst->sw->snd_tag_query == NULL)
3351 		return (EOPNOTSUPP);
3352 
3353 	error = mst->sw->snd_tag_query(mst, &params);
3354 	if (error == 0 && p_txqueue_level != NULL)
3355 		*p_txqueue_level = params.rate_limit.queue_level;
3356 	return (error);
3357 }
3358 
3359 /*
3360  * Allocate a new TX rate limit send tag from the network interface
3361  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3362  */
3363 int
3364 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3365     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3366 
3367 {
3368 	union if_snd_tag_alloc_params params = {
3369 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3370 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3371 		.rate_limit.hdr.flowid = flowid,
3372 		.rate_limit.hdr.flowtype = flowtype,
3373 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3374 		.rate_limit.max_rate = max_pacing_rate,
3375 		.rate_limit.flags = M_NOWAIT,
3376 	};
3377 	int error;
3378 
3379 	INP_WLOCK_ASSERT(inp);
3380 
3381 	/*
3382 	 * If there is already a send tag, or the INP is being torn
3383 	 * down, allocating a new send tag is not allowed. Else send
3384 	 * tags may leak.
3385 	 */
3386 	if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0)
3387 		return (EINVAL);
3388 
3389 	error = m_snd_tag_alloc(ifp, &params, st);
3390 #ifdef INET
3391 	if (error == 0) {
3392 		counter_u64_add(rate_limit_set_ok, 1);
3393 		counter_u64_add(rate_limit_active, 1);
3394 	} else if (error != EOPNOTSUPP)
3395 		  counter_u64_add(rate_limit_alloc_fail, 1);
3396 #endif
3397 	return (error);
3398 }
3399 
3400 void
3401 in_pcbdetach_tag(struct m_snd_tag *mst)
3402 {
3403 
3404 	m_snd_tag_rele(mst);
3405 #ifdef INET
3406 	counter_u64_add(rate_limit_active, -1);
3407 #endif
3408 }
3409 
3410 /*
3411  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3412  * if any:
3413  */
3414 void
3415 in_pcbdetach_txrtlmt(struct inpcb *inp)
3416 {
3417 	struct m_snd_tag *mst;
3418 
3419 	INP_WLOCK_ASSERT(inp);
3420 
3421 	mst = inp->inp_snd_tag;
3422 	inp->inp_snd_tag = NULL;
3423 
3424 	if (mst == NULL)
3425 		return;
3426 
3427 	m_snd_tag_rele(mst);
3428 #ifdef INET
3429 	counter_u64_add(rate_limit_active, -1);
3430 #endif
3431 }
3432 
3433 int
3434 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3435 {
3436 	int error;
3437 
3438 	/*
3439 	 * If the existing send tag is for the wrong interface due to
3440 	 * a route change, first drop the existing tag.  Set the
3441 	 * CHANGED flag so that we will keep trying to allocate a new
3442 	 * tag if we fail to allocate one this time.
3443 	 */
3444 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3445 		in_pcbdetach_txrtlmt(inp);
3446 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3447 	}
3448 
3449 	/*
3450 	 * NOTE: When attaching to a network interface a reference is
3451 	 * made to ensure the network interface doesn't go away until
3452 	 * all ratelimit connections are gone. The network interface
3453 	 * pointers compared below represent valid network interfaces,
3454 	 * except when comparing towards NULL.
3455 	 */
3456 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3457 		error = 0;
3458 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3459 		if (inp->inp_snd_tag != NULL)
3460 			in_pcbdetach_txrtlmt(inp);
3461 		error = 0;
3462 	} else if (inp->inp_snd_tag == NULL) {
3463 		/*
3464 		 * In order to utilize packet pacing with RSS, we need
3465 		 * to wait until there is a valid RSS hash before we
3466 		 * can proceed:
3467 		 */
3468 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3469 			error = EAGAIN;
3470 		} else {
3471 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3472 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3473 		}
3474 	} else {
3475 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3476 	}
3477 	if (error == 0 || error == EOPNOTSUPP)
3478 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3479 
3480 	return (error);
3481 }
3482 
3483 /*
3484  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3485  * is set in the fast path and will attach/detach/modify the TX rate
3486  * limit send tag based on the socket's so_max_pacing_rate value.
3487  */
3488 void
3489 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3490 {
3491 	struct socket *socket;
3492 	uint32_t max_pacing_rate;
3493 	bool did_upgrade;
3494 	int error;
3495 
3496 	if (inp == NULL)
3497 		return;
3498 
3499 	socket = inp->inp_socket;
3500 	if (socket == NULL)
3501 		return;
3502 
3503 	if (!INP_WLOCKED(inp)) {
3504 		/*
3505 		 * NOTE: If the write locking fails, we need to bail
3506 		 * out and use the non-ratelimited ring for the
3507 		 * transmit until there is a new chance to get the
3508 		 * write lock.
3509 		 */
3510 		if (!INP_TRY_UPGRADE(inp))
3511 			return;
3512 		did_upgrade = 1;
3513 	} else {
3514 		did_upgrade = 0;
3515 	}
3516 
3517 	/*
3518 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3519 	 * because atomic updates are not required since the variable
3520 	 * is checked at every mbuf we send. It is assumed that the
3521 	 * variable read itself will be atomic.
3522 	 */
3523 	max_pacing_rate = socket->so_max_pacing_rate;
3524 
3525 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3526 
3527 	if (did_upgrade)
3528 		INP_DOWNGRADE(inp);
3529 }
3530 
3531 /*
3532  * Track route changes for TX rate limiting.
3533  */
3534 void
3535 in_pcboutput_eagain(struct inpcb *inp)
3536 {
3537 	bool did_upgrade;
3538 
3539 	if (inp == NULL)
3540 		return;
3541 
3542 	if (inp->inp_snd_tag == NULL)
3543 		return;
3544 
3545 	if (!INP_WLOCKED(inp)) {
3546 		/*
3547 		 * NOTE: If the write locking fails, we need to bail
3548 		 * out and use the non-ratelimited ring for the
3549 		 * transmit until there is a new chance to get the
3550 		 * write lock.
3551 		 */
3552 		if (!INP_TRY_UPGRADE(inp))
3553 			return;
3554 		did_upgrade = 1;
3555 	} else {
3556 		did_upgrade = 0;
3557 	}
3558 
3559 	/* detach rate limiting */
3560 	in_pcbdetach_txrtlmt(inp);
3561 
3562 	/* make sure new mbuf send tag allocation is made */
3563 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3564 
3565 	if (did_upgrade)
3566 		INP_DOWNGRADE(inp);
3567 }
3568 
3569 #ifdef INET
3570 static void
3571 rl_init(void *st)
3572 {
3573 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3574 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3575 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3576 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3577 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3578 }
3579 
3580 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3581 #endif
3582 #endif /* RATELIMIT */
3583