xref: /freebsd/sys/netinet/in_pcb.c (revision 7cc42f6d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #ifdef INET
90 #include <netinet/in_var.h>
91 #include <netinet/in_fib.h>
92 #endif
93 #include <netinet/ip_var.h>
94 #include <netinet/tcp_var.h>
95 #ifdef TCPHPTS
96 #include <netinet/tcp_hpts.h>
97 #endif
98 #include <netinet/udp.h>
99 #include <netinet/udp_var.h>
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 #include <net/route/nhop.h>
107 #endif
108 
109 #include <netipsec/ipsec_support.h>
110 
111 #include <security/mac/mac_framework.h>
112 
113 #define	INPCBLBGROUP_SIZMIN	8
114 #define	INPCBLBGROUP_SIZMAX	256
115 
116 static struct callout	ipport_tick_callout;
117 
118 /*
119  * These configure the range of local port addresses assigned to
120  * "unspecified" outgoing connections/packets/whatever.
121  */
122 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
123 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
124 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
125 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
126 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
127 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
128 
129 /*
130  * Reserved ports accessible only to root. There are significant
131  * security considerations that must be accounted for when changing these,
132  * but the security benefits can be great. Please be careful.
133  */
134 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
135 VNET_DEFINE(int, ipport_reservedlow);
136 
137 /* Variables dealing with random ephemeral port allocation. */
138 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
140 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
141 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
142 VNET_DEFINE(int, ipport_tcpallocs);
143 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
144 
145 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
146 
147 static void	in_pcbremlists(struct inpcb *inp);
148 #ifdef INET
149 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
150 			    struct in_addr faddr, u_int fport_arg,
151 			    struct in_addr laddr, u_int lport_arg,
152 			    int lookupflags, struct ifnet *ifp);
153 
154 #define RANGECHK(var, min, max) \
155 	if ((var) < (min)) { (var) = (min); } \
156 	else if ((var) > (max)) { (var) = (max); }
157 
158 static int
159 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
160 {
161 	int error;
162 
163 	error = sysctl_handle_int(oidp, arg1, arg2, req);
164 	if (error == 0) {
165 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
166 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
167 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
169 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
170 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
171 	}
172 	return (error);
173 }
174 
175 #undef RANGECHK
176 
177 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
178     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
179     "IP Ports");
180 
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
182     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
183     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
184     "");
185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
186     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
187     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
188     "");
189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
190     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
191     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
192     "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
194     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
195     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
196     "");
197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
198     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
199     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
200     "");
201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
202     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
203     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
204     "");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
206 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
207 	&VNET_NAME(ipport_reservedhigh), 0, "");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
209 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
210 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
211 	CTLFLAG_VNET | CTLFLAG_RW,
212 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
213 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
214 	CTLFLAG_VNET | CTLFLAG_RW,
215 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
216 	"allocations before switching to a sequental one");
217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
218 	CTLFLAG_VNET | CTLFLAG_RW,
219 	&VNET_NAME(ipport_randomtime), 0,
220 	"Minimum time to keep sequental port "
221 	"allocation before switching to a random one");
222 
223 #ifdef RATELIMIT
224 counter_u64_t rate_limit_active;
225 counter_u64_t rate_limit_alloc_fail;
226 counter_u64_t rate_limit_set_ok;
227 
228 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
229     "IP Rate Limiting");
230 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
231     &rate_limit_active, "Active rate limited connections");
232 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
233    &rate_limit_alloc_fail, "Rate limited connection failures");
234 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
235    &rate_limit_set_ok, "Rate limited setting succeeded");
236 #endif /* RATELIMIT */
237 
238 #endif /* INET */
239 
240 /*
241  * in_pcb.c: manage the Protocol Control Blocks.
242  *
243  * NOTE: It is assumed that most of these functions will be called with
244  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
245  * functions often modify hash chains or addresses in pcbs.
246  */
247 
248 static struct inpcblbgroup *
249 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
250     uint16_t port, const union in_dependaddr *addr, int size)
251 {
252 	struct inpcblbgroup *grp;
253 	size_t bytes;
254 
255 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
256 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
257 	if (!grp)
258 		return (NULL);
259 	grp->il_vflag = vflag;
260 	grp->il_lport = port;
261 	grp->il_dependladdr = *addr;
262 	grp->il_inpsiz = size;
263 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
264 	return (grp);
265 }
266 
267 static void
268 in_pcblbgroup_free_deferred(epoch_context_t ctx)
269 {
270 	struct inpcblbgroup *grp;
271 
272 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
273 	free(grp, M_PCB);
274 }
275 
276 static void
277 in_pcblbgroup_free(struct inpcblbgroup *grp)
278 {
279 
280 	CK_LIST_REMOVE(grp, il_list);
281 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
282 }
283 
284 static struct inpcblbgroup *
285 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
286     struct inpcblbgroup *old_grp, int size)
287 {
288 	struct inpcblbgroup *grp;
289 	int i;
290 
291 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
292 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
293 	if (grp == NULL)
294 		return (NULL);
295 
296 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
297 	    ("invalid new local group size %d and old local group count %d",
298 	     grp->il_inpsiz, old_grp->il_inpcnt));
299 
300 	for (i = 0; i < old_grp->il_inpcnt; ++i)
301 		grp->il_inp[i] = old_grp->il_inp[i];
302 	grp->il_inpcnt = old_grp->il_inpcnt;
303 	in_pcblbgroup_free(old_grp);
304 	return (grp);
305 }
306 
307 /*
308  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
309  * and shrink group if possible.
310  */
311 static void
312 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
313     int i)
314 {
315 	struct inpcblbgroup *grp, *new_grp;
316 
317 	grp = *grpp;
318 	for (; i + 1 < grp->il_inpcnt; ++i)
319 		grp->il_inp[i] = grp->il_inp[i + 1];
320 	grp->il_inpcnt--;
321 
322 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
323 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
324 		/* Shrink this group. */
325 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
326 		if (new_grp != NULL)
327 			*grpp = new_grp;
328 	}
329 }
330 
331 /*
332  * Add PCB to load balance group for SO_REUSEPORT_LB option.
333  */
334 static int
335 in_pcbinslbgrouphash(struct inpcb *inp)
336 {
337 	const static struct timeval interval = { 60, 0 };
338 	static struct timeval lastprint;
339 	struct inpcbinfo *pcbinfo;
340 	struct inpcblbgrouphead *hdr;
341 	struct inpcblbgroup *grp;
342 	uint32_t idx;
343 
344 	pcbinfo = inp->inp_pcbinfo;
345 
346 	INP_WLOCK_ASSERT(inp);
347 	INP_HASH_WLOCK_ASSERT(pcbinfo);
348 
349 	/*
350 	 * Don't allow jailed socket to join local group.
351 	 */
352 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
353 		return (0);
354 
355 #ifdef INET6
356 	/*
357 	 * Don't allow IPv4 mapped INET6 wild socket.
358 	 */
359 	if ((inp->inp_vflag & INP_IPV4) &&
360 	    inp->inp_laddr.s_addr == INADDR_ANY &&
361 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
362 		return (0);
363 	}
364 #endif
365 
366 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
367 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
368 	CK_LIST_FOREACH(grp, hdr, il_list) {
369 		if (grp->il_vflag == inp->inp_vflag &&
370 		    grp->il_lport == inp->inp_lport &&
371 		    memcmp(&grp->il_dependladdr,
372 		    &inp->inp_inc.inc_ie.ie_dependladdr,
373 		    sizeof(grp->il_dependladdr)) == 0)
374 			break;
375 	}
376 	if (grp == NULL) {
377 		/* Create new load balance group. */
378 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
379 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
380 		    INPCBLBGROUP_SIZMIN);
381 		if (grp == NULL)
382 			return (ENOBUFS);
383 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
384 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
385 			if (ratecheck(&lastprint, &interval))
386 				printf("lb group port %d, limit reached\n",
387 				    ntohs(grp->il_lport));
388 			return (0);
389 		}
390 
391 		/* Expand this local group. */
392 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
393 		if (grp == NULL)
394 			return (ENOBUFS);
395 	}
396 
397 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
398 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
399 	    grp->il_inpcnt));
400 
401 	grp->il_inp[grp->il_inpcnt] = inp;
402 	grp->il_inpcnt++;
403 	return (0);
404 }
405 
406 /*
407  * Remove PCB from load balance group.
408  */
409 static void
410 in_pcbremlbgrouphash(struct inpcb *inp)
411 {
412 	struct inpcbinfo *pcbinfo;
413 	struct inpcblbgrouphead *hdr;
414 	struct inpcblbgroup *grp;
415 	int i;
416 
417 	pcbinfo = inp->inp_pcbinfo;
418 
419 	INP_WLOCK_ASSERT(inp);
420 	INP_HASH_WLOCK_ASSERT(pcbinfo);
421 
422 	hdr = &pcbinfo->ipi_lbgrouphashbase[
423 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
424 	CK_LIST_FOREACH(grp, hdr, il_list) {
425 		for (i = 0; i < grp->il_inpcnt; ++i) {
426 			if (grp->il_inp[i] != inp)
427 				continue;
428 
429 			if (grp->il_inpcnt == 1) {
430 				/* We are the last, free this local group. */
431 				in_pcblbgroup_free(grp);
432 			} else {
433 				/* Pull up inpcbs, shrink group if possible. */
434 				in_pcblbgroup_reorder(hdr, &grp, i);
435 			}
436 			return;
437 		}
438 	}
439 }
440 
441 /*
442  * Different protocols initialize their inpcbs differently - giving
443  * different name to the lock.  But they all are disposed the same.
444  */
445 static void
446 inpcb_fini(void *mem, int size)
447 {
448 	struct inpcb *inp = mem;
449 
450 	INP_LOCK_DESTROY(inp);
451 }
452 
453 /*
454  * Initialize an inpcbinfo -- we should be able to reduce the number of
455  * arguments in time.
456  */
457 void
458 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
459     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
460     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
461 {
462 
463 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
464 
465 	INP_INFO_LOCK_INIT(pcbinfo, name);
466 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
467 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
468 #ifdef VIMAGE
469 	pcbinfo->ipi_vnet = curvnet;
470 #endif
471 	pcbinfo->ipi_listhead = listhead;
472 	CK_LIST_INIT(pcbinfo->ipi_listhead);
473 	pcbinfo->ipi_count = 0;
474 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
475 	    &pcbinfo->ipi_hashmask);
476 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
477 	    &pcbinfo->ipi_porthashmask);
478 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
479 	    &pcbinfo->ipi_lbgrouphashmask);
480 #ifdef PCBGROUP
481 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
482 #endif
483 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
484 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
485 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
486 	uma_zone_set_warning(pcbinfo->ipi_zone,
487 	    "kern.ipc.maxsockets limit reached");
488 }
489 
490 /*
491  * Destroy an inpcbinfo.
492  */
493 void
494 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
495 {
496 
497 	KASSERT(pcbinfo->ipi_count == 0,
498 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
499 
500 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
501 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
502 	    pcbinfo->ipi_porthashmask);
503 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
504 	    pcbinfo->ipi_lbgrouphashmask);
505 #ifdef PCBGROUP
506 	in_pcbgroup_destroy(pcbinfo);
507 #endif
508 	uma_zdestroy(pcbinfo->ipi_zone);
509 	INP_LIST_LOCK_DESTROY(pcbinfo);
510 	INP_HASH_LOCK_DESTROY(pcbinfo);
511 	INP_INFO_LOCK_DESTROY(pcbinfo);
512 }
513 
514 /*
515  * Allocate a PCB and associate it with the socket.
516  * On success return with the PCB locked.
517  */
518 int
519 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
520 {
521 	struct inpcb *inp;
522 	int error;
523 
524 	error = 0;
525 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
526 	if (inp == NULL)
527 		return (ENOBUFS);
528 	bzero(&inp->inp_start_zero, inp_zero_size);
529 #ifdef NUMA
530 	inp->inp_numa_domain = M_NODOM;
531 #endif
532 	inp->inp_pcbinfo = pcbinfo;
533 	inp->inp_socket = so;
534 	inp->inp_cred = crhold(so->so_cred);
535 	inp->inp_inc.inc_fibnum = so->so_fibnum;
536 #ifdef MAC
537 	error = mac_inpcb_init(inp, M_NOWAIT);
538 	if (error != 0)
539 		goto out;
540 	mac_inpcb_create(so, inp);
541 #endif
542 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
543 	error = ipsec_init_pcbpolicy(inp);
544 	if (error != 0) {
545 #ifdef MAC
546 		mac_inpcb_destroy(inp);
547 #endif
548 		goto out;
549 	}
550 #endif /*IPSEC*/
551 #ifdef INET6
552 	if (INP_SOCKAF(so) == AF_INET6) {
553 		inp->inp_vflag |= INP_IPV6PROTO;
554 		if (V_ip6_v6only)
555 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
556 	}
557 #endif
558 	INP_WLOCK(inp);
559 	INP_LIST_WLOCK(pcbinfo);
560 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
561 	pcbinfo->ipi_count++;
562 	so->so_pcb = (caddr_t)inp;
563 #ifdef INET6
564 	if (V_ip6_auto_flowlabel)
565 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
566 #endif
567 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
568 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
569 
570 	/*
571 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
572 	 * to be cleaned up.
573 	 */
574 	inp->inp_route.ro_flags = RT_LLE_CACHE;
575 	INP_LIST_WUNLOCK(pcbinfo);
576 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
577 out:
578 	if (error != 0) {
579 		crfree(inp->inp_cred);
580 		uma_zfree(pcbinfo->ipi_zone, inp);
581 	}
582 #endif
583 	return (error);
584 }
585 
586 #ifdef INET
587 int
588 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
589 {
590 	int anonport, error;
591 
592 	INP_WLOCK_ASSERT(inp);
593 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
594 
595 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
596 		return (EINVAL);
597 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
598 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
599 	    &inp->inp_lport, cred);
600 	if (error)
601 		return (error);
602 	if (in_pcbinshash(inp) != 0) {
603 		inp->inp_laddr.s_addr = INADDR_ANY;
604 		inp->inp_lport = 0;
605 		return (EAGAIN);
606 	}
607 	if (anonport)
608 		inp->inp_flags |= INP_ANONPORT;
609 	return (0);
610 }
611 #endif
612 
613 #if defined(INET) || defined(INET6)
614 /*
615  * Assign a local port like in_pcb_lport(), but also used with connect()
616  * and a foreign address and port.  If fsa is non-NULL, choose a local port
617  * that is unused with those, otherwise one that is completely unused.
618  * lsa can be NULL for IPv6.
619  */
620 int
621 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
622     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
623 {
624 	struct inpcbinfo *pcbinfo;
625 	struct inpcb *tmpinp;
626 	unsigned short *lastport;
627 	int count, dorandom, error;
628 	u_short aux, first, last, lport;
629 #ifdef INET
630 	struct in_addr laddr, faddr;
631 #endif
632 #ifdef INET6
633 	struct in6_addr *laddr6, *faddr6;
634 #endif
635 
636 	pcbinfo = inp->inp_pcbinfo;
637 
638 	/*
639 	 * Because no actual state changes occur here, a global write lock on
640 	 * the pcbinfo isn't required.
641 	 */
642 	INP_LOCK_ASSERT(inp);
643 	INP_HASH_LOCK_ASSERT(pcbinfo);
644 
645 	if (inp->inp_flags & INP_HIGHPORT) {
646 		first = V_ipport_hifirstauto;	/* sysctl */
647 		last  = V_ipport_hilastauto;
648 		lastport = &pcbinfo->ipi_lasthi;
649 	} else if (inp->inp_flags & INP_LOWPORT) {
650 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
651 		if (error)
652 			return (error);
653 		first = V_ipport_lowfirstauto;	/* 1023 */
654 		last  = V_ipport_lowlastauto;	/* 600 */
655 		lastport = &pcbinfo->ipi_lastlow;
656 	} else {
657 		first = V_ipport_firstauto;	/* sysctl */
658 		last  = V_ipport_lastauto;
659 		lastport = &pcbinfo->ipi_lastport;
660 	}
661 	/*
662 	 * For UDP(-Lite), use random port allocation as long as the user
663 	 * allows it.  For TCP (and as of yet unknown) connections,
664 	 * use random port allocation only if the user allows it AND
665 	 * ipport_tick() allows it.
666 	 */
667 	if (V_ipport_randomized &&
668 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
669 		pcbinfo == &V_ulitecbinfo))
670 		dorandom = 1;
671 	else
672 		dorandom = 0;
673 	/*
674 	 * It makes no sense to do random port allocation if
675 	 * we have the only port available.
676 	 */
677 	if (first == last)
678 		dorandom = 0;
679 	/* Make sure to not include UDP(-Lite) packets in the count. */
680 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
681 		V_ipport_tcpallocs++;
682 	/*
683 	 * Instead of having two loops further down counting up or down
684 	 * make sure that first is always <= last and go with only one
685 	 * code path implementing all logic.
686 	 */
687 	if (first > last) {
688 		aux = first;
689 		first = last;
690 		last = aux;
691 	}
692 
693 #ifdef INET
694 	laddr.s_addr = INADDR_ANY;
695 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
696 		if (lsa != NULL)
697 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
698 		if (fsa != NULL)
699 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
700 	}
701 #endif
702 #ifdef INET6
703 	laddr6 = NULL;
704 	if ((inp->inp_vflag & INP_IPV6) != 0) {
705 		if (lsa != NULL)
706 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
707 		if (fsa != NULL)
708 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
709 	}
710 #endif
711 
712 	tmpinp = NULL;
713 	lport = *lportp;
714 
715 	if (dorandom)
716 		*lastport = first + (arc4random() % (last - first));
717 
718 	count = last - first;
719 
720 	do {
721 		if (count-- < 0)	/* completely used? */
722 			return (EADDRNOTAVAIL);
723 		++*lastport;
724 		if (*lastport < first || *lastport > last)
725 			*lastport = first;
726 		lport = htons(*lastport);
727 
728 		if (fsa != NULL) {
729 #ifdef INET
730 			if (lsa->sa_family == AF_INET) {
731 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
732 				    faddr, fport, laddr, lport, lookupflags,
733 				    NULL);
734 			}
735 #endif
736 #ifdef INET6
737 			if (lsa->sa_family == AF_INET6) {
738 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
739 				    faddr6, fport, laddr6, lport, lookupflags,
740 				    NULL);
741 			}
742 #endif
743 		} else {
744 #ifdef INET6
745 			if ((inp->inp_vflag & INP_IPV6) != 0)
746 				tmpinp = in6_pcblookup_local(pcbinfo,
747 				    &inp->in6p_laddr, lport, lookupflags, cred);
748 #endif
749 #if defined(INET) && defined(INET6)
750 			else
751 #endif
752 #ifdef INET
753 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
754 				    lport, lookupflags, cred);
755 #endif
756 		}
757 	} while (tmpinp != NULL);
758 
759 	*lportp = lport;
760 
761 	return (0);
762 }
763 
764 /*
765  * Select a local port (number) to use.
766  */
767 int
768 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
769     struct ucred *cred, int lookupflags)
770 {
771 	struct sockaddr_in laddr;
772 
773 	if (laddrp) {
774 		bzero(&laddr, sizeof(laddr));
775 		laddr.sin_family = AF_INET;
776 		laddr.sin_addr = *laddrp;
777 	}
778 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
779 	    NULL, lportp, NULL, 0, cred, lookupflags));
780 }
781 
782 /*
783  * Return cached socket options.
784  */
785 int
786 inp_so_options(const struct inpcb *inp)
787 {
788 	int so_options;
789 
790 	so_options = 0;
791 
792 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
793 		so_options |= SO_REUSEPORT_LB;
794 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
795 		so_options |= SO_REUSEPORT;
796 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
797 		so_options |= SO_REUSEADDR;
798 	return (so_options);
799 }
800 #endif /* INET || INET6 */
801 
802 /*
803  * Check if a new BINDMULTI socket is allowed to be created.
804  *
805  * ni points to the new inp.
806  * oi points to the exisitng inp.
807  *
808  * This checks whether the existing inp also has BINDMULTI and
809  * whether the credentials match.
810  */
811 int
812 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
813 {
814 	/* Check permissions match */
815 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
816 	    (ni->inp_cred->cr_uid !=
817 	    oi->inp_cred->cr_uid))
818 		return (0);
819 
820 	/* Check the existing inp has BINDMULTI set */
821 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
822 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
823 		return (0);
824 
825 	/*
826 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
827 	 * it is and it matches the checks.
828 	 */
829 	return (1);
830 }
831 
832 #ifdef INET
833 /*
834  * Set up a bind operation on a PCB, performing port allocation
835  * as required, but do not actually modify the PCB. Callers can
836  * either complete the bind by setting inp_laddr/inp_lport and
837  * calling in_pcbinshash(), or they can just use the resulting
838  * port and address to authorise the sending of a once-off packet.
839  *
840  * On error, the values of *laddrp and *lportp are not changed.
841  */
842 int
843 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
844     u_short *lportp, struct ucred *cred)
845 {
846 	struct socket *so = inp->inp_socket;
847 	struct sockaddr_in *sin;
848 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
849 	struct in_addr laddr;
850 	u_short lport = 0;
851 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
852 	int error;
853 
854 	/*
855 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
856 	 * so that we don't have to add to the (already messy) code below.
857 	 */
858 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
859 
860 	/*
861 	 * No state changes, so read locks are sufficient here.
862 	 */
863 	INP_LOCK_ASSERT(inp);
864 	INP_HASH_LOCK_ASSERT(pcbinfo);
865 
866 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
867 		return (EADDRNOTAVAIL);
868 	laddr.s_addr = *laddrp;
869 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
870 		return (EINVAL);
871 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
872 		lookupflags = INPLOOKUP_WILDCARD;
873 	if (nam == NULL) {
874 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
875 			return (error);
876 	} else {
877 		sin = (struct sockaddr_in *)nam;
878 		if (nam->sa_len != sizeof (*sin))
879 			return (EINVAL);
880 #ifdef notdef
881 		/*
882 		 * We should check the family, but old programs
883 		 * incorrectly fail to initialize it.
884 		 */
885 		if (sin->sin_family != AF_INET)
886 			return (EAFNOSUPPORT);
887 #endif
888 		error = prison_local_ip4(cred, &sin->sin_addr);
889 		if (error)
890 			return (error);
891 		if (sin->sin_port != *lportp) {
892 			/* Don't allow the port to change. */
893 			if (*lportp != 0)
894 				return (EINVAL);
895 			lport = sin->sin_port;
896 		}
897 		/* NB: lport is left as 0 if the port isn't being changed. */
898 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
899 			/*
900 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
901 			 * allow complete duplication of binding if
902 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
903 			 * and a multicast address is bound on both
904 			 * new and duplicated sockets.
905 			 */
906 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
907 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
908 			/*
909 			 * XXX: How to deal with SO_REUSEPORT_LB here?
910 			 * Treat same as SO_REUSEPORT for now.
911 			 */
912 			if ((so->so_options &
913 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
914 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
915 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
916 			sin->sin_port = 0;		/* yech... */
917 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
918 			/*
919 			 * Is the address a local IP address?
920 			 * If INP_BINDANY is set, then the socket may be bound
921 			 * to any endpoint address, local or not.
922 			 */
923 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
924 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
925 				return (EADDRNOTAVAIL);
926 		}
927 		laddr = sin->sin_addr;
928 		if (lport) {
929 			struct inpcb *t;
930 			struct tcptw *tw;
931 
932 			/* GROSS */
933 			if (ntohs(lport) <= V_ipport_reservedhigh &&
934 			    ntohs(lport) >= V_ipport_reservedlow &&
935 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
936 				return (EACCES);
937 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
938 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
939 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
940 				    lport, INPLOOKUP_WILDCARD, cred);
941 	/*
942 	 * XXX
943 	 * This entire block sorely needs a rewrite.
944 	 */
945 				if (t &&
946 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
947 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
948 				    (so->so_type != SOCK_STREAM ||
949 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
950 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
951 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
952 				     (t->inp_flags2 & INP_REUSEPORT) ||
953 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
954 				    (inp->inp_cred->cr_uid !=
955 				     t->inp_cred->cr_uid))
956 					return (EADDRINUSE);
957 
958 				/*
959 				 * If the socket is a BINDMULTI socket, then
960 				 * the credentials need to match and the
961 				 * original socket also has to have been bound
962 				 * with BINDMULTI.
963 				 */
964 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
965 					return (EADDRINUSE);
966 			}
967 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
968 			    lport, lookupflags, cred);
969 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
970 				/*
971 				 * XXXRW: If an incpb has had its timewait
972 				 * state recycled, we treat the address as
973 				 * being in use (for now).  This is better
974 				 * than a panic, but not desirable.
975 				 */
976 				tw = intotw(t);
977 				if (tw == NULL ||
978 				    ((reuseport & tw->tw_so_options) == 0 &&
979 					(reuseport_lb &
980 				            tw->tw_so_options) == 0)) {
981 					return (EADDRINUSE);
982 				}
983 			} else if (t &&
984 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
985 				   (reuseport & inp_so_options(t)) == 0 &&
986 				   (reuseport_lb & inp_so_options(t)) == 0) {
987 #ifdef INET6
988 				if (ntohl(sin->sin_addr.s_addr) !=
989 				    INADDR_ANY ||
990 				    ntohl(t->inp_laddr.s_addr) !=
991 				    INADDR_ANY ||
992 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
993 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
994 #endif
995 						return (EADDRINUSE);
996 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
997 					return (EADDRINUSE);
998 			}
999 		}
1000 	}
1001 	if (*lportp != 0)
1002 		lport = *lportp;
1003 	if (lport == 0) {
1004 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1005 		if (error != 0)
1006 			return (error);
1007 	}
1008 	*laddrp = laddr.s_addr;
1009 	*lportp = lport;
1010 	return (0);
1011 }
1012 
1013 /*
1014  * Connect from a socket to a specified address.
1015  * Both address and port must be specified in argument sin.
1016  * If don't have a local address for this socket yet,
1017  * then pick one.
1018  */
1019 int
1020 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
1021     struct ucred *cred, struct mbuf *m, bool rehash)
1022 {
1023 	u_short lport, fport;
1024 	in_addr_t laddr, faddr;
1025 	int anonport, error;
1026 
1027 	INP_WLOCK_ASSERT(inp);
1028 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1029 
1030 	lport = inp->inp_lport;
1031 	laddr = inp->inp_laddr.s_addr;
1032 	anonport = (lport == 0);
1033 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
1034 	    NULL, cred);
1035 	if (error)
1036 		return (error);
1037 
1038 	/* Do the initial binding of the local address if required. */
1039 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1040 		KASSERT(rehash == true,
1041 		    ("Rehashing required for unbound inps"));
1042 		inp->inp_lport = lport;
1043 		inp->inp_laddr.s_addr = laddr;
1044 		if (in_pcbinshash(inp) != 0) {
1045 			inp->inp_laddr.s_addr = INADDR_ANY;
1046 			inp->inp_lport = 0;
1047 			return (EAGAIN);
1048 		}
1049 	}
1050 
1051 	/* Commit the remaining changes. */
1052 	inp->inp_lport = lport;
1053 	inp->inp_laddr.s_addr = laddr;
1054 	inp->inp_faddr.s_addr = faddr;
1055 	inp->inp_fport = fport;
1056 	if (rehash) {
1057 		in_pcbrehash_mbuf(inp, m);
1058 	} else {
1059 		in_pcbinshash_mbuf(inp, m);
1060 	}
1061 
1062 	if (anonport)
1063 		inp->inp_flags |= INP_ANONPORT;
1064 	return (0);
1065 }
1066 
1067 int
1068 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1069 {
1070 
1071 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1072 }
1073 
1074 /*
1075  * Do proper source address selection on an unbound socket in case
1076  * of connect. Take jails into account as well.
1077  */
1078 int
1079 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1080     struct ucred *cred)
1081 {
1082 	struct ifaddr *ifa;
1083 	struct sockaddr *sa;
1084 	struct sockaddr_in *sin, dst;
1085 	struct nhop_object *nh;
1086 	int error;
1087 
1088 	NET_EPOCH_ASSERT();
1089 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1090 	/*
1091 	 * Bypass source address selection and use the primary jail IP
1092 	 * if requested.
1093 	 */
1094 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1095 		return (0);
1096 
1097 	error = 0;
1098 
1099 	nh = NULL;
1100 	bzero(&dst, sizeof(dst));
1101 	sin = &dst;
1102 	sin->sin_family = AF_INET;
1103 	sin->sin_len = sizeof(struct sockaddr_in);
1104 	sin->sin_addr.s_addr = faddr->s_addr;
1105 
1106 	/*
1107 	 * If route is known our src addr is taken from the i/f,
1108 	 * else punt.
1109 	 *
1110 	 * Find out route to destination.
1111 	 */
1112 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1113 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1114 		    0, NHR_NONE, 0);
1115 
1116 	/*
1117 	 * If we found a route, use the address corresponding to
1118 	 * the outgoing interface.
1119 	 *
1120 	 * Otherwise assume faddr is reachable on a directly connected
1121 	 * network and try to find a corresponding interface to take
1122 	 * the source address from.
1123 	 */
1124 	if (nh == NULL || nh->nh_ifp == NULL) {
1125 		struct in_ifaddr *ia;
1126 		struct ifnet *ifp;
1127 
1128 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1129 					inp->inp_socket->so_fibnum));
1130 		if (ia == NULL) {
1131 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1132 						inp->inp_socket->so_fibnum));
1133 		}
1134 		if (ia == NULL) {
1135 			error = ENETUNREACH;
1136 			goto done;
1137 		}
1138 
1139 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1140 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1141 			goto done;
1142 		}
1143 
1144 		ifp = ia->ia_ifp;
1145 		ia = NULL;
1146 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1147 			sa = ifa->ifa_addr;
1148 			if (sa->sa_family != AF_INET)
1149 				continue;
1150 			sin = (struct sockaddr_in *)sa;
1151 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1152 				ia = (struct in_ifaddr *)ifa;
1153 				break;
1154 			}
1155 		}
1156 		if (ia != NULL) {
1157 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1158 			goto done;
1159 		}
1160 
1161 		/* 3. As a last resort return the 'default' jail address. */
1162 		error = prison_get_ip4(cred, laddr);
1163 		goto done;
1164 	}
1165 
1166 	/*
1167 	 * If the outgoing interface on the route found is not
1168 	 * a loopback interface, use the address from that interface.
1169 	 * In case of jails do those three steps:
1170 	 * 1. check if the interface address belongs to the jail. If so use it.
1171 	 * 2. check if we have any address on the outgoing interface
1172 	 *    belonging to this jail. If so use it.
1173 	 * 3. as a last resort return the 'default' jail address.
1174 	 */
1175 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1176 		struct in_ifaddr *ia;
1177 		struct ifnet *ifp;
1178 
1179 		/* If not jailed, use the default returned. */
1180 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1181 			ia = (struct in_ifaddr *)nh->nh_ifa;
1182 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1183 			goto done;
1184 		}
1185 
1186 		/* Jailed. */
1187 		/* 1. Check if the iface address belongs to the jail. */
1188 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1189 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1190 			ia = (struct in_ifaddr *)nh->nh_ifa;
1191 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1192 			goto done;
1193 		}
1194 
1195 		/*
1196 		 * 2. Check if we have any address on the outgoing interface
1197 		 *    belonging to this jail.
1198 		 */
1199 		ia = NULL;
1200 		ifp = nh->nh_ifp;
1201 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1202 			sa = ifa->ifa_addr;
1203 			if (sa->sa_family != AF_INET)
1204 				continue;
1205 			sin = (struct sockaddr_in *)sa;
1206 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1207 				ia = (struct in_ifaddr *)ifa;
1208 				break;
1209 			}
1210 		}
1211 		if (ia != NULL) {
1212 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1213 			goto done;
1214 		}
1215 
1216 		/* 3. As a last resort return the 'default' jail address. */
1217 		error = prison_get_ip4(cred, laddr);
1218 		goto done;
1219 	}
1220 
1221 	/*
1222 	 * The outgoing interface is marked with 'loopback net', so a route
1223 	 * to ourselves is here.
1224 	 * Try to find the interface of the destination address and then
1225 	 * take the address from there. That interface is not necessarily
1226 	 * a loopback interface.
1227 	 * In case of jails, check that it is an address of the jail
1228 	 * and if we cannot find, fall back to the 'default' jail address.
1229 	 */
1230 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1231 		struct in_ifaddr *ia;
1232 
1233 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1234 					inp->inp_socket->so_fibnum));
1235 		if (ia == NULL)
1236 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1237 						inp->inp_socket->so_fibnum));
1238 		if (ia == NULL)
1239 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1240 
1241 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1242 			if (ia == NULL) {
1243 				error = ENETUNREACH;
1244 				goto done;
1245 			}
1246 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1247 			goto done;
1248 		}
1249 
1250 		/* Jailed. */
1251 		if (ia != NULL) {
1252 			struct ifnet *ifp;
1253 
1254 			ifp = ia->ia_ifp;
1255 			ia = NULL;
1256 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1257 				sa = ifa->ifa_addr;
1258 				if (sa->sa_family != AF_INET)
1259 					continue;
1260 				sin = (struct sockaddr_in *)sa;
1261 				if (prison_check_ip4(cred,
1262 				    &sin->sin_addr) == 0) {
1263 					ia = (struct in_ifaddr *)ifa;
1264 					break;
1265 				}
1266 			}
1267 			if (ia != NULL) {
1268 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1269 				goto done;
1270 			}
1271 		}
1272 
1273 		/* 3. As a last resort return the 'default' jail address. */
1274 		error = prison_get_ip4(cred, laddr);
1275 		goto done;
1276 	}
1277 
1278 done:
1279 	return (error);
1280 }
1281 
1282 /*
1283  * Set up for a connect from a socket to the specified address.
1284  * On entry, *laddrp and *lportp should contain the current local
1285  * address and port for the PCB; these are updated to the values
1286  * that should be placed in inp_laddr and inp_lport to complete
1287  * the connect.
1288  *
1289  * On success, *faddrp and *fportp will be set to the remote address
1290  * and port. These are not updated in the error case.
1291  *
1292  * If the operation fails because the connection already exists,
1293  * *oinpp will be set to the PCB of that connection so that the
1294  * caller can decide to override it. In all other cases, *oinpp
1295  * is set to NULL.
1296  */
1297 int
1298 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1299     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1300     struct inpcb **oinpp, struct ucred *cred)
1301 {
1302 	struct rm_priotracker in_ifa_tracker;
1303 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1304 	struct in_ifaddr *ia;
1305 	struct inpcb *oinp;
1306 	struct in_addr laddr, faddr;
1307 	u_short lport, fport;
1308 	int error;
1309 
1310 	/*
1311 	 * Because a global state change doesn't actually occur here, a read
1312 	 * lock is sufficient.
1313 	 */
1314 	NET_EPOCH_ASSERT();
1315 	INP_LOCK_ASSERT(inp);
1316 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1317 
1318 	if (oinpp != NULL)
1319 		*oinpp = NULL;
1320 	if (nam->sa_len != sizeof (*sin))
1321 		return (EINVAL);
1322 	if (sin->sin_family != AF_INET)
1323 		return (EAFNOSUPPORT);
1324 	if (sin->sin_port == 0)
1325 		return (EADDRNOTAVAIL);
1326 	laddr.s_addr = *laddrp;
1327 	lport = *lportp;
1328 	faddr = sin->sin_addr;
1329 	fport = sin->sin_port;
1330 
1331 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1332 		/*
1333 		 * If the destination address is INADDR_ANY,
1334 		 * use the primary local address.
1335 		 * If the supplied address is INADDR_BROADCAST,
1336 		 * and the primary interface supports broadcast,
1337 		 * choose the broadcast address for that interface.
1338 		 */
1339 		if (faddr.s_addr == INADDR_ANY) {
1340 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1341 			faddr =
1342 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1343 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1344 			if (cred != NULL &&
1345 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1346 				return (error);
1347 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1348 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1349 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1350 			    IFF_BROADCAST)
1351 				faddr = satosin(&CK_STAILQ_FIRST(
1352 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1353 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1354 		}
1355 	}
1356 	if (laddr.s_addr == INADDR_ANY) {
1357 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1358 		/*
1359 		 * If the destination address is multicast and an outgoing
1360 		 * interface has been set as a multicast option, prefer the
1361 		 * address of that interface as our source address.
1362 		 */
1363 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1364 		    inp->inp_moptions != NULL) {
1365 			struct ip_moptions *imo;
1366 			struct ifnet *ifp;
1367 
1368 			imo = inp->inp_moptions;
1369 			if (imo->imo_multicast_ifp != NULL) {
1370 				ifp = imo->imo_multicast_ifp;
1371 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1372 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1373 					if ((ia->ia_ifp == ifp) &&
1374 					    (cred == NULL ||
1375 					    prison_check_ip4(cred,
1376 					    &ia->ia_addr.sin_addr) == 0))
1377 						break;
1378 				}
1379 				if (ia == NULL)
1380 					error = EADDRNOTAVAIL;
1381 				else {
1382 					laddr = ia->ia_addr.sin_addr;
1383 					error = 0;
1384 				}
1385 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1386 			}
1387 		}
1388 		if (error)
1389 			return (error);
1390 	}
1391 	if (lport != 0) {
1392 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1393 		    fport, laddr, lport, 0, NULL);
1394 		if (oinp != NULL) {
1395 			if (oinpp != NULL)
1396 				*oinpp = oinp;
1397 			return (EADDRINUSE);
1398 		}
1399 	} else {
1400 		struct sockaddr_in lsin, fsin;
1401 
1402 		bzero(&lsin, sizeof(lsin));
1403 		bzero(&fsin, sizeof(fsin));
1404 		lsin.sin_family = AF_INET;
1405 		lsin.sin_addr = laddr;
1406 		fsin.sin_family = AF_INET;
1407 		fsin.sin_addr = faddr;
1408 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1409 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1410 		    INPLOOKUP_WILDCARD);
1411 		if (error)
1412 			return (error);
1413 	}
1414 	*laddrp = laddr.s_addr;
1415 	*lportp = lport;
1416 	*faddrp = faddr.s_addr;
1417 	*fportp = fport;
1418 	return (0);
1419 }
1420 
1421 void
1422 in_pcbdisconnect(struct inpcb *inp)
1423 {
1424 
1425 	INP_WLOCK_ASSERT(inp);
1426 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1427 
1428 	inp->inp_faddr.s_addr = INADDR_ANY;
1429 	inp->inp_fport = 0;
1430 	in_pcbrehash(inp);
1431 }
1432 #endif /* INET */
1433 
1434 /*
1435  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1436  * For most protocols, this will be invoked immediately prior to calling
1437  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1438  * socket, in which case in_pcbfree() is deferred.
1439  */
1440 void
1441 in_pcbdetach(struct inpcb *inp)
1442 {
1443 
1444 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1445 
1446 #ifdef RATELIMIT
1447 	if (inp->inp_snd_tag != NULL)
1448 		in_pcbdetach_txrtlmt(inp);
1449 #endif
1450 	inp->inp_socket->so_pcb = NULL;
1451 	inp->inp_socket = NULL;
1452 }
1453 
1454 /*
1455  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1456  * stability of an inpcb pointer despite the inpcb lock being released.  This
1457  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1458  * but where the inpcb lock may already held, or when acquiring a reference
1459  * via a pcbgroup.
1460  *
1461  * in_pcbref() should be used only to provide brief memory stability, and
1462  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1463  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1464  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1465  * lock and rele are the *only* safe operations that may be performed on the
1466  * inpcb.
1467  *
1468  * While the inpcb will not be freed, releasing the inpcb lock means that the
1469  * connection's state may change, so the caller should be careful to
1470  * revalidate any cached state on reacquiring the lock.  Drop the reference
1471  * using in_pcbrele().
1472  */
1473 void
1474 in_pcbref(struct inpcb *inp)
1475 {
1476 
1477 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1478 
1479 	refcount_acquire(&inp->inp_refcount);
1480 }
1481 
1482 /*
1483  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1484  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1485  * return a flag indicating whether or not the inpcb remains valid.  If it is
1486  * valid, we return with the inpcb lock held.
1487  *
1488  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1489  * reference on an inpcb.  Historically more work was done here (actually, in
1490  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1491  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1492  * about memory stability (and continued use of the write lock).
1493  */
1494 int
1495 in_pcbrele_rlocked(struct inpcb *inp)
1496 {
1497 	struct inpcbinfo *pcbinfo;
1498 
1499 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1500 
1501 	INP_RLOCK_ASSERT(inp);
1502 
1503 	if (refcount_release(&inp->inp_refcount) == 0) {
1504 		/*
1505 		 * If the inpcb has been freed, let the caller know, even if
1506 		 * this isn't the last reference.
1507 		 */
1508 		if (inp->inp_flags2 & INP_FREED) {
1509 			INP_RUNLOCK(inp);
1510 			return (1);
1511 		}
1512 		return (0);
1513 	}
1514 
1515 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1516 #ifdef TCPHPTS
1517 	if (inp->inp_in_hpts || inp->inp_in_input) {
1518 		struct tcp_hpts_entry *hpts;
1519 		/*
1520 		 * We should not be on the hpts at
1521 		 * this point in any form. we must
1522 		 * get the lock to be sure.
1523 		 */
1524 		hpts = tcp_hpts_lock(inp);
1525 		if (inp->inp_in_hpts)
1526 			panic("Hpts:%p inp:%p at free still on hpts",
1527 			      hpts, inp);
1528 		mtx_unlock(&hpts->p_mtx);
1529 		hpts = tcp_input_lock(inp);
1530 		if (inp->inp_in_input)
1531 			panic("Hpts:%p inp:%p at free still on input hpts",
1532 			      hpts, inp);
1533 		mtx_unlock(&hpts->p_mtx);
1534 	}
1535 #endif
1536 	INP_RUNLOCK(inp);
1537 	pcbinfo = inp->inp_pcbinfo;
1538 	uma_zfree(pcbinfo->ipi_zone, inp);
1539 	return (1);
1540 }
1541 
1542 int
1543 in_pcbrele_wlocked(struct inpcb *inp)
1544 {
1545 	struct inpcbinfo *pcbinfo;
1546 
1547 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1548 
1549 	INP_WLOCK_ASSERT(inp);
1550 
1551 	if (refcount_release(&inp->inp_refcount) == 0) {
1552 		/*
1553 		 * If the inpcb has been freed, let the caller know, even if
1554 		 * this isn't the last reference.
1555 		 */
1556 		if (inp->inp_flags2 & INP_FREED) {
1557 			INP_WUNLOCK(inp);
1558 			return (1);
1559 		}
1560 		return (0);
1561 	}
1562 
1563 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1564 #ifdef TCPHPTS
1565 	if (inp->inp_in_hpts || inp->inp_in_input) {
1566 		struct tcp_hpts_entry *hpts;
1567 		/*
1568 		 * We should not be on the hpts at
1569 		 * this point in any form. we must
1570 		 * get the lock to be sure.
1571 		 */
1572 		hpts = tcp_hpts_lock(inp);
1573 		if (inp->inp_in_hpts)
1574 			panic("Hpts:%p inp:%p at free still on hpts",
1575 			      hpts, inp);
1576 		mtx_unlock(&hpts->p_mtx);
1577 		hpts = tcp_input_lock(inp);
1578 		if (inp->inp_in_input)
1579 			panic("Hpts:%p inp:%p at free still on input hpts",
1580 			      hpts, inp);
1581 		mtx_unlock(&hpts->p_mtx);
1582 	}
1583 #endif
1584 	INP_WUNLOCK(inp);
1585 	pcbinfo = inp->inp_pcbinfo;
1586 	uma_zfree(pcbinfo->ipi_zone, inp);
1587 	return (1);
1588 }
1589 
1590 /*
1591  * Temporary wrapper.
1592  */
1593 int
1594 in_pcbrele(struct inpcb *inp)
1595 {
1596 
1597 	return (in_pcbrele_wlocked(inp));
1598 }
1599 
1600 void
1601 in_pcblist_rele_rlocked(epoch_context_t ctx)
1602 {
1603 	struct in_pcblist *il;
1604 	struct inpcb *inp;
1605 	struct inpcbinfo *pcbinfo;
1606 	int i, n;
1607 
1608 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1609 	pcbinfo = il->il_pcbinfo;
1610 	n = il->il_count;
1611 	INP_INFO_WLOCK(pcbinfo);
1612 	for (i = 0; i < n; i++) {
1613 		inp = il->il_inp_list[i];
1614 		INP_RLOCK(inp);
1615 		if (!in_pcbrele_rlocked(inp))
1616 			INP_RUNLOCK(inp);
1617 	}
1618 	INP_INFO_WUNLOCK(pcbinfo);
1619 	free(il, M_TEMP);
1620 }
1621 
1622 static void
1623 inpcbport_free(epoch_context_t ctx)
1624 {
1625 	struct inpcbport *phd;
1626 
1627 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1628 	free(phd, M_PCB);
1629 }
1630 
1631 static void
1632 in_pcbfree_deferred(epoch_context_t ctx)
1633 {
1634 	struct inpcb *inp;
1635 	int released __unused;
1636 
1637 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1638 
1639 	INP_WLOCK(inp);
1640 	CURVNET_SET(inp->inp_vnet);
1641 #ifdef INET
1642 	struct ip_moptions *imo = inp->inp_moptions;
1643 	inp->inp_moptions = NULL;
1644 #endif
1645 	/* XXXRW: Do as much as possible here. */
1646 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1647 	if (inp->inp_sp != NULL)
1648 		ipsec_delete_pcbpolicy(inp);
1649 #endif
1650 #ifdef INET6
1651 	struct ip6_moptions *im6o = NULL;
1652 	if (inp->inp_vflag & INP_IPV6PROTO) {
1653 		ip6_freepcbopts(inp->in6p_outputopts);
1654 		im6o = inp->in6p_moptions;
1655 		inp->in6p_moptions = NULL;
1656 	}
1657 #endif
1658 	if (inp->inp_options)
1659 		(void)m_free(inp->inp_options);
1660 	inp->inp_vflag = 0;
1661 	crfree(inp->inp_cred);
1662 #ifdef MAC
1663 	mac_inpcb_destroy(inp);
1664 #endif
1665 	released = in_pcbrele_wlocked(inp);
1666 	MPASS(released);
1667 #ifdef INET6
1668 	ip6_freemoptions(im6o);
1669 #endif
1670 #ifdef INET
1671 	inp_freemoptions(imo);
1672 #endif
1673 	CURVNET_RESTORE();
1674 }
1675 
1676 /*
1677  * Unconditionally schedule an inpcb to be freed by decrementing its
1678  * reference count, which should occur only after the inpcb has been detached
1679  * from its socket.  If another thread holds a temporary reference (acquired
1680  * using in_pcbref()) then the free is deferred until that reference is
1681  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1682  * work, including removal from global lists, is done in this context, where
1683  * the pcbinfo lock is held.
1684  */
1685 void
1686 in_pcbfree(struct inpcb *inp)
1687 {
1688 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1689 
1690 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1691 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1692 	    ("%s: called twice for pcb %p", __func__, inp));
1693 	if (inp->inp_flags2 & INP_FREED) {
1694 		INP_WUNLOCK(inp);
1695 		return;
1696 	}
1697 
1698 	INP_WLOCK_ASSERT(inp);
1699 	INP_LIST_WLOCK(pcbinfo);
1700 	in_pcbremlists(inp);
1701 	INP_LIST_WUNLOCK(pcbinfo);
1702 	RO_INVALIDATE_CACHE(&inp->inp_route);
1703 	/* mark as destruction in progress */
1704 	inp->inp_flags2 |= INP_FREED;
1705 	INP_WUNLOCK(inp);
1706 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1707 }
1708 
1709 /*
1710  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1711  * port reservation, and preventing it from being returned by inpcb lookups.
1712  *
1713  * It is used by TCP to mark an inpcb as unused and avoid future packet
1714  * delivery or event notification when a socket remains open but TCP has
1715  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1716  * or a RST on the wire, and allows the port binding to be reused while still
1717  * maintaining the invariant that so_pcb always points to a valid inpcb until
1718  * in_pcbdetach().
1719  *
1720  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1721  * in_pcbnotifyall() and in_pcbpurgeif0()?
1722  */
1723 void
1724 in_pcbdrop(struct inpcb *inp)
1725 {
1726 
1727 	INP_WLOCK_ASSERT(inp);
1728 #ifdef INVARIANTS
1729 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1730 		MPASS(inp->inp_refcount > 1);
1731 #endif
1732 
1733 	/*
1734 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1735 	 * the hash lock...?
1736 	 */
1737 	inp->inp_flags |= INP_DROPPED;
1738 	if (inp->inp_flags & INP_INHASHLIST) {
1739 		struct inpcbport *phd = inp->inp_phd;
1740 
1741 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1742 		in_pcbremlbgrouphash(inp);
1743 		CK_LIST_REMOVE(inp, inp_hash);
1744 		CK_LIST_REMOVE(inp, inp_portlist);
1745 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1746 			CK_LIST_REMOVE(phd, phd_hash);
1747 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1748 		}
1749 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1750 		inp->inp_flags &= ~INP_INHASHLIST;
1751 #ifdef PCBGROUP
1752 		in_pcbgroup_remove(inp);
1753 #endif
1754 	}
1755 }
1756 
1757 #ifdef INET
1758 /*
1759  * Common routines to return the socket addresses associated with inpcbs.
1760  */
1761 struct sockaddr *
1762 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1763 {
1764 	struct sockaddr_in *sin;
1765 
1766 	sin = malloc(sizeof *sin, M_SONAME,
1767 		M_WAITOK | M_ZERO);
1768 	sin->sin_family = AF_INET;
1769 	sin->sin_len = sizeof(*sin);
1770 	sin->sin_addr = *addr_p;
1771 	sin->sin_port = port;
1772 
1773 	return (struct sockaddr *)sin;
1774 }
1775 
1776 int
1777 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1778 {
1779 	struct inpcb *inp;
1780 	struct in_addr addr;
1781 	in_port_t port;
1782 
1783 	inp = sotoinpcb(so);
1784 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1785 
1786 	INP_RLOCK(inp);
1787 	port = inp->inp_lport;
1788 	addr = inp->inp_laddr;
1789 	INP_RUNLOCK(inp);
1790 
1791 	*nam = in_sockaddr(port, &addr);
1792 	return 0;
1793 }
1794 
1795 int
1796 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1797 {
1798 	struct inpcb *inp;
1799 	struct in_addr addr;
1800 	in_port_t port;
1801 
1802 	inp = sotoinpcb(so);
1803 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1804 
1805 	INP_RLOCK(inp);
1806 	port = inp->inp_fport;
1807 	addr = inp->inp_faddr;
1808 	INP_RUNLOCK(inp);
1809 
1810 	*nam = in_sockaddr(port, &addr);
1811 	return 0;
1812 }
1813 
1814 void
1815 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1816     struct inpcb *(*notify)(struct inpcb *, int))
1817 {
1818 	struct inpcb *inp, *inp_temp;
1819 
1820 	INP_INFO_WLOCK(pcbinfo);
1821 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1822 		INP_WLOCK(inp);
1823 #ifdef INET6
1824 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1825 			INP_WUNLOCK(inp);
1826 			continue;
1827 		}
1828 #endif
1829 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1830 		    inp->inp_socket == NULL) {
1831 			INP_WUNLOCK(inp);
1832 			continue;
1833 		}
1834 		if ((*notify)(inp, errno))
1835 			INP_WUNLOCK(inp);
1836 	}
1837 	INP_INFO_WUNLOCK(pcbinfo);
1838 }
1839 
1840 void
1841 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1842 {
1843 	struct inpcb *inp;
1844 	struct in_multi *inm;
1845 	struct in_mfilter *imf;
1846 	struct ip_moptions *imo;
1847 
1848 	INP_INFO_WLOCK(pcbinfo);
1849 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1850 		INP_WLOCK(inp);
1851 		imo = inp->inp_moptions;
1852 		if ((inp->inp_vflag & INP_IPV4) &&
1853 		    imo != NULL) {
1854 			/*
1855 			 * Unselect the outgoing interface if it is being
1856 			 * detached.
1857 			 */
1858 			if (imo->imo_multicast_ifp == ifp)
1859 				imo->imo_multicast_ifp = NULL;
1860 
1861 			/*
1862 			 * Drop multicast group membership if we joined
1863 			 * through the interface being detached.
1864 			 *
1865 			 * XXX This can all be deferred to an epoch_call
1866 			 */
1867 restart:
1868 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1869 				if ((inm = imf->imf_inm) == NULL)
1870 					continue;
1871 				if (inm->inm_ifp != ifp)
1872 					continue;
1873 				ip_mfilter_remove(&imo->imo_head, imf);
1874 				IN_MULTI_LOCK_ASSERT();
1875 				in_leavegroup_locked(inm, NULL);
1876 				ip_mfilter_free(imf);
1877 				goto restart;
1878 			}
1879 		}
1880 		INP_WUNLOCK(inp);
1881 	}
1882 	INP_INFO_WUNLOCK(pcbinfo);
1883 }
1884 
1885 /*
1886  * Lookup a PCB based on the local address and port.  Caller must hold the
1887  * hash lock.  No inpcb locks or references are acquired.
1888  */
1889 #define INP_LOOKUP_MAPPED_PCB_COST	3
1890 struct inpcb *
1891 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1892     u_short lport, int lookupflags, struct ucred *cred)
1893 {
1894 	struct inpcb *inp;
1895 #ifdef INET6
1896 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1897 #else
1898 	int matchwild = 3;
1899 #endif
1900 	int wildcard;
1901 
1902 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1903 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1904 
1905 	INP_HASH_LOCK_ASSERT(pcbinfo);
1906 
1907 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1908 		struct inpcbhead *head;
1909 		/*
1910 		 * Look for an unconnected (wildcard foreign addr) PCB that
1911 		 * matches the local address and port we're looking for.
1912 		 */
1913 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1914 		    0, pcbinfo->ipi_hashmask)];
1915 		CK_LIST_FOREACH(inp, head, inp_hash) {
1916 #ifdef INET6
1917 			/* XXX inp locking */
1918 			if ((inp->inp_vflag & INP_IPV4) == 0)
1919 				continue;
1920 #endif
1921 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1922 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1923 			    inp->inp_lport == lport) {
1924 				/*
1925 				 * Found?
1926 				 */
1927 				if (cred == NULL ||
1928 				    prison_equal_ip4(cred->cr_prison,
1929 					inp->inp_cred->cr_prison))
1930 					return (inp);
1931 			}
1932 		}
1933 		/*
1934 		 * Not found.
1935 		 */
1936 		return (NULL);
1937 	} else {
1938 		struct inpcbporthead *porthash;
1939 		struct inpcbport *phd;
1940 		struct inpcb *match = NULL;
1941 		/*
1942 		 * Best fit PCB lookup.
1943 		 *
1944 		 * First see if this local port is in use by looking on the
1945 		 * port hash list.
1946 		 */
1947 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1948 		    pcbinfo->ipi_porthashmask)];
1949 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1950 			if (phd->phd_port == lport)
1951 				break;
1952 		}
1953 		if (phd != NULL) {
1954 			/*
1955 			 * Port is in use by one or more PCBs. Look for best
1956 			 * fit.
1957 			 */
1958 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1959 				wildcard = 0;
1960 				if (cred != NULL &&
1961 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1962 					cred->cr_prison))
1963 					continue;
1964 #ifdef INET6
1965 				/* XXX inp locking */
1966 				if ((inp->inp_vflag & INP_IPV4) == 0)
1967 					continue;
1968 				/*
1969 				 * We never select the PCB that has
1970 				 * INP_IPV6 flag and is bound to :: if
1971 				 * we have another PCB which is bound
1972 				 * to 0.0.0.0.  If a PCB has the
1973 				 * INP_IPV6 flag, then we set its cost
1974 				 * higher than IPv4 only PCBs.
1975 				 *
1976 				 * Note that the case only happens
1977 				 * when a socket is bound to ::, under
1978 				 * the condition that the use of the
1979 				 * mapped address is allowed.
1980 				 */
1981 				if ((inp->inp_vflag & INP_IPV6) != 0)
1982 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1983 #endif
1984 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1985 					wildcard++;
1986 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1987 					if (laddr.s_addr == INADDR_ANY)
1988 						wildcard++;
1989 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1990 						continue;
1991 				} else {
1992 					if (laddr.s_addr != INADDR_ANY)
1993 						wildcard++;
1994 				}
1995 				if (wildcard < matchwild) {
1996 					match = inp;
1997 					matchwild = wildcard;
1998 					if (matchwild == 0)
1999 						break;
2000 				}
2001 			}
2002 		}
2003 		return (match);
2004 	}
2005 }
2006 #undef INP_LOOKUP_MAPPED_PCB_COST
2007 
2008 static struct inpcb *
2009 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2010     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
2011     uint16_t fport, int lookupflags)
2012 {
2013 	struct inpcb *local_wild;
2014 	const struct inpcblbgrouphead *hdr;
2015 	struct inpcblbgroup *grp;
2016 	uint32_t idx;
2017 
2018 	INP_HASH_LOCK_ASSERT(pcbinfo);
2019 
2020 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2021 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2022 
2023 	/*
2024 	 * Order of socket selection:
2025 	 * 1. non-wild.
2026 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
2027 	 *
2028 	 * NOTE:
2029 	 * - Load balanced group does not contain jailed sockets
2030 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
2031 	 */
2032 	local_wild = NULL;
2033 	CK_LIST_FOREACH(grp, hdr, il_list) {
2034 #ifdef INET6
2035 		if (!(grp->il_vflag & INP_IPV4))
2036 			continue;
2037 #endif
2038 		if (grp->il_lport != lport)
2039 			continue;
2040 
2041 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
2042 		    grp->il_inpcnt;
2043 		if (grp->il_laddr.s_addr == laddr->s_addr)
2044 			return (grp->il_inp[idx]);
2045 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2046 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
2047 			local_wild = grp->il_inp[idx];
2048 	}
2049 	return (local_wild);
2050 }
2051 
2052 #ifdef PCBGROUP
2053 /*
2054  * Lookup PCB in hash list, using pcbgroup tables.
2055  */
2056 static struct inpcb *
2057 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2058     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2059     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2060 {
2061 	struct inpcbhead *head;
2062 	struct inpcb *inp, *tmpinp;
2063 	u_short fport = fport_arg, lport = lport_arg;
2064 	bool locked;
2065 
2066 	/*
2067 	 * First look for an exact match.
2068 	 */
2069 	tmpinp = NULL;
2070 	INP_GROUP_LOCK(pcbgroup);
2071 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2072 	    pcbgroup->ipg_hashmask)];
2073 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2074 #ifdef INET6
2075 		/* XXX inp locking */
2076 		if ((inp->inp_vflag & INP_IPV4) == 0)
2077 			continue;
2078 #endif
2079 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2080 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2081 		    inp->inp_fport == fport &&
2082 		    inp->inp_lport == lport) {
2083 			/*
2084 			 * XXX We should be able to directly return
2085 			 * the inp here, without any checks.
2086 			 * Well unless both bound with SO_REUSEPORT?
2087 			 */
2088 			if (prison_flag(inp->inp_cred, PR_IP4))
2089 				goto found;
2090 			if (tmpinp == NULL)
2091 				tmpinp = inp;
2092 		}
2093 	}
2094 	if (tmpinp != NULL) {
2095 		inp = tmpinp;
2096 		goto found;
2097 	}
2098 
2099 #ifdef	RSS
2100 	/*
2101 	 * For incoming connections, we may wish to do a wildcard
2102 	 * match for an RSS-local socket.
2103 	 */
2104 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2105 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2106 #ifdef INET6
2107 		struct inpcb *local_wild_mapped = NULL;
2108 #endif
2109 		struct inpcb *jail_wild = NULL;
2110 		struct inpcbhead *head;
2111 		int injail;
2112 
2113 		/*
2114 		 * Order of socket selection - we always prefer jails.
2115 		 *      1. jailed, non-wild.
2116 		 *      2. jailed, wild.
2117 		 *      3. non-jailed, non-wild.
2118 		 *      4. non-jailed, wild.
2119 		 */
2120 
2121 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2122 		    lport, 0, pcbgroup->ipg_hashmask)];
2123 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2124 #ifdef INET6
2125 			/* XXX inp locking */
2126 			if ((inp->inp_vflag & INP_IPV4) == 0)
2127 				continue;
2128 #endif
2129 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2130 			    inp->inp_lport != lport)
2131 				continue;
2132 
2133 			injail = prison_flag(inp->inp_cred, PR_IP4);
2134 			if (injail) {
2135 				if (prison_check_ip4(inp->inp_cred,
2136 				    &laddr) != 0)
2137 					continue;
2138 			} else {
2139 				if (local_exact != NULL)
2140 					continue;
2141 			}
2142 
2143 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2144 				if (injail)
2145 					goto found;
2146 				else
2147 					local_exact = inp;
2148 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2149 #ifdef INET6
2150 				/* XXX inp locking, NULL check */
2151 				if (inp->inp_vflag & INP_IPV6PROTO)
2152 					local_wild_mapped = inp;
2153 				else
2154 #endif
2155 					if (injail)
2156 						jail_wild = inp;
2157 					else
2158 						local_wild = inp;
2159 			}
2160 		} /* LIST_FOREACH */
2161 
2162 		inp = jail_wild;
2163 		if (inp == NULL)
2164 			inp = local_exact;
2165 		if (inp == NULL)
2166 			inp = local_wild;
2167 #ifdef INET6
2168 		if (inp == NULL)
2169 			inp = local_wild_mapped;
2170 #endif
2171 		if (inp != NULL)
2172 			goto found;
2173 	}
2174 #endif
2175 
2176 	/*
2177 	 * Then look for a wildcard match, if requested.
2178 	 */
2179 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2180 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2181 #ifdef INET6
2182 		struct inpcb *local_wild_mapped = NULL;
2183 #endif
2184 		struct inpcb *jail_wild = NULL;
2185 		struct inpcbhead *head;
2186 		int injail;
2187 
2188 		/*
2189 		 * Order of socket selection - we always prefer jails.
2190 		 *      1. jailed, non-wild.
2191 		 *      2. jailed, wild.
2192 		 *      3. non-jailed, non-wild.
2193 		 *      4. non-jailed, wild.
2194 		 */
2195 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2196 		    0, pcbinfo->ipi_wildmask)];
2197 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2198 #ifdef INET6
2199 			/* XXX inp locking */
2200 			if ((inp->inp_vflag & INP_IPV4) == 0)
2201 				continue;
2202 #endif
2203 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2204 			    inp->inp_lport != lport)
2205 				continue;
2206 
2207 			injail = prison_flag(inp->inp_cred, PR_IP4);
2208 			if (injail) {
2209 				if (prison_check_ip4(inp->inp_cred,
2210 				    &laddr) != 0)
2211 					continue;
2212 			} else {
2213 				if (local_exact != NULL)
2214 					continue;
2215 			}
2216 
2217 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2218 				if (injail)
2219 					goto found;
2220 				else
2221 					local_exact = inp;
2222 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2223 #ifdef INET6
2224 				/* XXX inp locking, NULL check */
2225 				if (inp->inp_vflag & INP_IPV6PROTO)
2226 					local_wild_mapped = inp;
2227 				else
2228 #endif
2229 					if (injail)
2230 						jail_wild = inp;
2231 					else
2232 						local_wild = inp;
2233 			}
2234 		} /* LIST_FOREACH */
2235 		inp = jail_wild;
2236 		if (inp == NULL)
2237 			inp = local_exact;
2238 		if (inp == NULL)
2239 			inp = local_wild;
2240 #ifdef INET6
2241 		if (inp == NULL)
2242 			inp = local_wild_mapped;
2243 #endif
2244 		if (inp != NULL)
2245 			goto found;
2246 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2247 	INP_GROUP_UNLOCK(pcbgroup);
2248 	return (NULL);
2249 
2250 found:
2251 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2252 		locked = INP_TRY_WLOCK(inp);
2253 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2254 		locked = INP_TRY_RLOCK(inp);
2255 	else
2256 		panic("%s: locking bug", __func__);
2257 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2258 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2259 			INP_WUNLOCK(inp);
2260 		else
2261 			INP_RUNLOCK(inp);
2262 		return (NULL);
2263 	} else if (!locked)
2264 		in_pcbref(inp);
2265 	INP_GROUP_UNLOCK(pcbgroup);
2266 	if (!locked) {
2267 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2268 			INP_WLOCK(inp);
2269 			if (in_pcbrele_wlocked(inp))
2270 				return (NULL);
2271 		} else {
2272 			INP_RLOCK(inp);
2273 			if (in_pcbrele_rlocked(inp))
2274 				return (NULL);
2275 		}
2276 	}
2277 #ifdef INVARIANTS
2278 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2279 		INP_WLOCK_ASSERT(inp);
2280 	else
2281 		INP_RLOCK_ASSERT(inp);
2282 #endif
2283 	return (inp);
2284 }
2285 #endif /* PCBGROUP */
2286 
2287 /*
2288  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2289  * that the caller has locked the hash list, and will not perform any further
2290  * locking or reference operations on either the hash list or the connection.
2291  */
2292 static struct inpcb *
2293 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2294     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2295     struct ifnet *ifp)
2296 {
2297 	struct inpcbhead *head;
2298 	struct inpcb *inp, *tmpinp;
2299 	u_short fport = fport_arg, lport = lport_arg;
2300 
2301 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2302 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2303 	INP_HASH_LOCK_ASSERT(pcbinfo);
2304 
2305 	/*
2306 	 * First look for an exact match.
2307 	 */
2308 	tmpinp = NULL;
2309 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2310 	    pcbinfo->ipi_hashmask)];
2311 	CK_LIST_FOREACH(inp, head, inp_hash) {
2312 #ifdef INET6
2313 		/* XXX inp locking */
2314 		if ((inp->inp_vflag & INP_IPV4) == 0)
2315 			continue;
2316 #endif
2317 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2318 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2319 		    inp->inp_fport == fport &&
2320 		    inp->inp_lport == lport) {
2321 			/*
2322 			 * XXX We should be able to directly return
2323 			 * the inp here, without any checks.
2324 			 * Well unless both bound with SO_REUSEPORT?
2325 			 */
2326 			if (prison_flag(inp->inp_cred, PR_IP4))
2327 				return (inp);
2328 			if (tmpinp == NULL)
2329 				tmpinp = inp;
2330 		}
2331 	}
2332 	if (tmpinp != NULL)
2333 		return (tmpinp);
2334 
2335 	/*
2336 	 * Then look in lb group (for wildcard match).
2337 	 */
2338 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2339 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2340 		    fport, lookupflags);
2341 		if (inp != NULL)
2342 			return (inp);
2343 	}
2344 
2345 	/*
2346 	 * Then look for a wildcard match, if requested.
2347 	 */
2348 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2349 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2350 #ifdef INET6
2351 		struct inpcb *local_wild_mapped = NULL;
2352 #endif
2353 		struct inpcb *jail_wild = NULL;
2354 		int injail;
2355 
2356 		/*
2357 		 * Order of socket selection - we always prefer jails.
2358 		 *      1. jailed, non-wild.
2359 		 *      2. jailed, wild.
2360 		 *      3. non-jailed, non-wild.
2361 		 *      4. non-jailed, wild.
2362 		 */
2363 
2364 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2365 		    0, pcbinfo->ipi_hashmask)];
2366 		CK_LIST_FOREACH(inp, head, inp_hash) {
2367 #ifdef INET6
2368 			/* XXX inp locking */
2369 			if ((inp->inp_vflag & INP_IPV4) == 0)
2370 				continue;
2371 #endif
2372 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2373 			    inp->inp_lport != lport)
2374 				continue;
2375 
2376 			injail = prison_flag(inp->inp_cred, PR_IP4);
2377 			if (injail) {
2378 				if (prison_check_ip4(inp->inp_cred,
2379 				    &laddr) != 0)
2380 					continue;
2381 			} else {
2382 				if (local_exact != NULL)
2383 					continue;
2384 			}
2385 
2386 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2387 				if (injail)
2388 					return (inp);
2389 				else
2390 					local_exact = inp;
2391 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2392 #ifdef INET6
2393 				/* XXX inp locking, NULL check */
2394 				if (inp->inp_vflag & INP_IPV6PROTO)
2395 					local_wild_mapped = inp;
2396 				else
2397 #endif
2398 					if (injail)
2399 						jail_wild = inp;
2400 					else
2401 						local_wild = inp;
2402 			}
2403 		} /* LIST_FOREACH */
2404 		if (jail_wild != NULL)
2405 			return (jail_wild);
2406 		if (local_exact != NULL)
2407 			return (local_exact);
2408 		if (local_wild != NULL)
2409 			return (local_wild);
2410 #ifdef INET6
2411 		if (local_wild_mapped != NULL)
2412 			return (local_wild_mapped);
2413 #endif
2414 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2415 
2416 	return (NULL);
2417 }
2418 
2419 /*
2420  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2421  * hash list lock, and will return the inpcb locked (i.e., requires
2422  * INPLOOKUP_LOCKPCB).
2423  */
2424 static struct inpcb *
2425 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2426     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2427     struct ifnet *ifp)
2428 {
2429 	struct inpcb *inp;
2430 
2431 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2432 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2433 	if (inp != NULL) {
2434 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2435 			INP_WLOCK(inp);
2436 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2437 				INP_WUNLOCK(inp);
2438 				inp = NULL;
2439 			}
2440 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2441 			INP_RLOCK(inp);
2442 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2443 				INP_RUNLOCK(inp);
2444 				inp = NULL;
2445 			}
2446 		} else
2447 			panic("%s: locking bug", __func__);
2448 #ifdef INVARIANTS
2449 		if (inp != NULL) {
2450 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2451 				INP_WLOCK_ASSERT(inp);
2452 			else
2453 				INP_RLOCK_ASSERT(inp);
2454 		}
2455 #endif
2456 	}
2457 
2458 	return (inp);
2459 }
2460 
2461 /*
2462  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2463  * from which a pre-calculated hash value may be extracted.
2464  *
2465  * Possibly more of this logic should be in in_pcbgroup.c.
2466  */
2467 struct inpcb *
2468 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2469     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2470 {
2471 #if defined(PCBGROUP) && !defined(RSS)
2472 	struct inpcbgroup *pcbgroup;
2473 #endif
2474 
2475 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2476 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2477 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2478 	    ("%s: LOCKPCB not set", __func__));
2479 
2480 	/*
2481 	 * When not using RSS, use connection groups in preference to the
2482 	 * reservation table when looking up 4-tuples.  When using RSS, just
2483 	 * use the reservation table, due to the cost of the Toeplitz hash
2484 	 * in software.
2485 	 *
2486 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2487 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2488 	 * in software.
2489 	 */
2490 #if defined(PCBGROUP) && !defined(RSS)
2491 	if (in_pcbgroup_enabled(pcbinfo)) {
2492 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2493 		    fport);
2494 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2495 		    laddr, lport, lookupflags, ifp));
2496 	}
2497 #endif
2498 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2499 	    lookupflags, ifp));
2500 }
2501 
2502 struct inpcb *
2503 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2504     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2505     struct ifnet *ifp, struct mbuf *m)
2506 {
2507 #ifdef PCBGROUP
2508 	struct inpcbgroup *pcbgroup;
2509 #endif
2510 
2511 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2512 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2513 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2514 	    ("%s: LOCKPCB not set", __func__));
2515 
2516 #ifdef PCBGROUP
2517 	/*
2518 	 * If we can use a hardware-generated hash to look up the connection
2519 	 * group, use that connection group to find the inpcb.  Otherwise
2520 	 * fall back on a software hash -- or the reservation table if we're
2521 	 * using RSS.
2522 	 *
2523 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2524 	 */
2525 	if (in_pcbgroup_enabled(pcbinfo) &&
2526 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2527 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2528 		    m->m_pkthdr.flowid);
2529 		if (pcbgroup != NULL)
2530 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2531 			    fport, laddr, lport, lookupflags, ifp));
2532 #ifndef RSS
2533 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2534 		    fport);
2535 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2536 		    laddr, lport, lookupflags, ifp));
2537 #endif
2538 	}
2539 #endif
2540 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2541 	    lookupflags, ifp));
2542 }
2543 #endif /* INET */
2544 
2545 /*
2546  * Insert PCB onto various hash lists.
2547  */
2548 static int
2549 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2550 {
2551 	struct inpcbhead *pcbhash;
2552 	struct inpcbporthead *pcbporthash;
2553 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2554 	struct inpcbport *phd;
2555 	u_int32_t hashkey_faddr;
2556 	int so_options;
2557 
2558 	INP_WLOCK_ASSERT(inp);
2559 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2560 
2561 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2562 	    ("in_pcbinshash: INP_INHASHLIST"));
2563 
2564 #ifdef INET6
2565 	if (inp->inp_vflag & INP_IPV6)
2566 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2567 	else
2568 #endif
2569 	hashkey_faddr = inp->inp_faddr.s_addr;
2570 
2571 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2572 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2573 
2574 	pcbporthash = &pcbinfo->ipi_porthashbase[
2575 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2576 
2577 	/*
2578 	 * Add entry to load balance group.
2579 	 * Only do this if SO_REUSEPORT_LB is set.
2580 	 */
2581 	so_options = inp_so_options(inp);
2582 	if (so_options & SO_REUSEPORT_LB) {
2583 		int ret = in_pcbinslbgrouphash(inp);
2584 		if (ret) {
2585 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2586 			return (ret);
2587 		}
2588 	}
2589 
2590 	/*
2591 	 * Go through port list and look for a head for this lport.
2592 	 */
2593 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2594 		if (phd->phd_port == inp->inp_lport)
2595 			break;
2596 	}
2597 	/*
2598 	 * If none exists, malloc one and tack it on.
2599 	 */
2600 	if (phd == NULL) {
2601 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2602 		if (phd == NULL) {
2603 			return (ENOBUFS); /* XXX */
2604 		}
2605 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2606 		phd->phd_port = inp->inp_lport;
2607 		CK_LIST_INIT(&phd->phd_pcblist);
2608 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2609 	}
2610 	inp->inp_phd = phd;
2611 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2612 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2613 	inp->inp_flags |= INP_INHASHLIST;
2614 #ifdef PCBGROUP
2615 	if (m != NULL) {
2616 		in_pcbgroup_update_mbuf(inp, m);
2617 	} else {
2618 		in_pcbgroup_update(inp);
2619 	}
2620 #endif
2621 	return (0);
2622 }
2623 
2624 int
2625 in_pcbinshash(struct inpcb *inp)
2626 {
2627 
2628 	return (in_pcbinshash_internal(inp, NULL));
2629 }
2630 
2631 int
2632 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2633 {
2634 
2635 	return (in_pcbinshash_internal(inp, m));
2636 }
2637 
2638 /*
2639  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2640  * changed. NOTE: This does not handle the case of the lport changing (the
2641  * hashed port list would have to be updated as well), so the lport must
2642  * not change after in_pcbinshash() has been called.
2643  */
2644 void
2645 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2646 {
2647 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2648 	struct inpcbhead *head;
2649 	u_int32_t hashkey_faddr;
2650 
2651 	INP_WLOCK_ASSERT(inp);
2652 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2653 
2654 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2655 	    ("in_pcbrehash: !INP_INHASHLIST"));
2656 
2657 #ifdef INET6
2658 	if (inp->inp_vflag & INP_IPV6)
2659 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2660 	else
2661 #endif
2662 	hashkey_faddr = inp->inp_faddr.s_addr;
2663 
2664 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2665 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2666 
2667 	CK_LIST_REMOVE(inp, inp_hash);
2668 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2669 
2670 #ifdef PCBGROUP
2671 	if (m != NULL)
2672 		in_pcbgroup_update_mbuf(inp, m);
2673 	else
2674 		in_pcbgroup_update(inp);
2675 #endif
2676 }
2677 
2678 void
2679 in_pcbrehash(struct inpcb *inp)
2680 {
2681 
2682 	in_pcbrehash_mbuf(inp, NULL);
2683 }
2684 
2685 /*
2686  * Remove PCB from various lists.
2687  */
2688 static void
2689 in_pcbremlists(struct inpcb *inp)
2690 {
2691 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2692 
2693 	INP_WLOCK_ASSERT(inp);
2694 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2695 
2696 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2697 	if (inp->inp_flags & INP_INHASHLIST) {
2698 		struct inpcbport *phd = inp->inp_phd;
2699 
2700 		INP_HASH_WLOCK(pcbinfo);
2701 
2702 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2703 		in_pcbremlbgrouphash(inp);
2704 
2705 		CK_LIST_REMOVE(inp, inp_hash);
2706 		CK_LIST_REMOVE(inp, inp_portlist);
2707 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2708 			CK_LIST_REMOVE(phd, phd_hash);
2709 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2710 		}
2711 		INP_HASH_WUNLOCK(pcbinfo);
2712 		inp->inp_flags &= ~INP_INHASHLIST;
2713 	}
2714 	CK_LIST_REMOVE(inp, inp_list);
2715 	pcbinfo->ipi_count--;
2716 #ifdef PCBGROUP
2717 	in_pcbgroup_remove(inp);
2718 #endif
2719 }
2720 
2721 /*
2722  * Check for alternatives when higher level complains
2723  * about service problems.  For now, invalidate cached
2724  * routing information.  If the route was created dynamically
2725  * (by a redirect), time to try a default gateway again.
2726  */
2727 void
2728 in_losing(struct inpcb *inp)
2729 {
2730 
2731 	RO_INVALIDATE_CACHE(&inp->inp_route);
2732 	return;
2733 }
2734 
2735 /*
2736  * A set label operation has occurred at the socket layer, propagate the
2737  * label change into the in_pcb for the socket.
2738  */
2739 void
2740 in_pcbsosetlabel(struct socket *so)
2741 {
2742 #ifdef MAC
2743 	struct inpcb *inp;
2744 
2745 	inp = sotoinpcb(so);
2746 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2747 
2748 	INP_WLOCK(inp);
2749 	SOCK_LOCK(so);
2750 	mac_inpcb_sosetlabel(so, inp);
2751 	SOCK_UNLOCK(so);
2752 	INP_WUNLOCK(inp);
2753 #endif
2754 }
2755 
2756 /*
2757  * ipport_tick runs once per second, determining if random port allocation
2758  * should be continued.  If more than ipport_randomcps ports have been
2759  * allocated in the last second, then we return to sequential port
2760  * allocation. We return to random allocation only once we drop below
2761  * ipport_randomcps for at least ipport_randomtime seconds.
2762  */
2763 static void
2764 ipport_tick(void *xtp)
2765 {
2766 	VNET_ITERATOR_DECL(vnet_iter);
2767 
2768 	VNET_LIST_RLOCK_NOSLEEP();
2769 	VNET_FOREACH(vnet_iter) {
2770 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2771 		if (V_ipport_tcpallocs <=
2772 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2773 			if (V_ipport_stoprandom > 0)
2774 				V_ipport_stoprandom--;
2775 		} else
2776 			V_ipport_stoprandom = V_ipport_randomtime;
2777 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2778 		CURVNET_RESTORE();
2779 	}
2780 	VNET_LIST_RUNLOCK_NOSLEEP();
2781 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2782 }
2783 
2784 static void
2785 ip_fini(void *xtp)
2786 {
2787 
2788 	callout_stop(&ipport_tick_callout);
2789 }
2790 
2791 /*
2792  * The ipport_callout should start running at about the time we attach the
2793  * inet or inet6 domains.
2794  */
2795 static void
2796 ipport_tick_init(const void *unused __unused)
2797 {
2798 
2799 	/* Start ipport_tick. */
2800 	callout_init(&ipport_tick_callout, 1);
2801 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2802 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2803 		SHUTDOWN_PRI_DEFAULT);
2804 }
2805 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2806     ipport_tick_init, NULL);
2807 
2808 void
2809 inp_wlock(struct inpcb *inp)
2810 {
2811 
2812 	INP_WLOCK(inp);
2813 }
2814 
2815 void
2816 inp_wunlock(struct inpcb *inp)
2817 {
2818 
2819 	INP_WUNLOCK(inp);
2820 }
2821 
2822 void
2823 inp_rlock(struct inpcb *inp)
2824 {
2825 
2826 	INP_RLOCK(inp);
2827 }
2828 
2829 void
2830 inp_runlock(struct inpcb *inp)
2831 {
2832 
2833 	INP_RUNLOCK(inp);
2834 }
2835 
2836 #ifdef INVARIANT_SUPPORT
2837 void
2838 inp_lock_assert(struct inpcb *inp)
2839 {
2840 
2841 	INP_WLOCK_ASSERT(inp);
2842 }
2843 
2844 void
2845 inp_unlock_assert(struct inpcb *inp)
2846 {
2847 
2848 	INP_UNLOCK_ASSERT(inp);
2849 }
2850 #endif
2851 
2852 void
2853 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2854 {
2855 	struct inpcb *inp;
2856 
2857 	INP_INFO_WLOCK(&V_tcbinfo);
2858 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2859 		INP_WLOCK(inp);
2860 		func(inp, arg);
2861 		INP_WUNLOCK(inp);
2862 	}
2863 	INP_INFO_WUNLOCK(&V_tcbinfo);
2864 }
2865 
2866 struct socket *
2867 inp_inpcbtosocket(struct inpcb *inp)
2868 {
2869 
2870 	INP_WLOCK_ASSERT(inp);
2871 	return (inp->inp_socket);
2872 }
2873 
2874 struct tcpcb *
2875 inp_inpcbtotcpcb(struct inpcb *inp)
2876 {
2877 
2878 	INP_WLOCK_ASSERT(inp);
2879 	return ((struct tcpcb *)inp->inp_ppcb);
2880 }
2881 
2882 int
2883 inp_ip_tos_get(const struct inpcb *inp)
2884 {
2885 
2886 	return (inp->inp_ip_tos);
2887 }
2888 
2889 void
2890 inp_ip_tos_set(struct inpcb *inp, int val)
2891 {
2892 
2893 	inp->inp_ip_tos = val;
2894 }
2895 
2896 void
2897 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2898     uint32_t *faddr, uint16_t *fp)
2899 {
2900 
2901 	INP_LOCK_ASSERT(inp);
2902 	*laddr = inp->inp_laddr.s_addr;
2903 	*faddr = inp->inp_faddr.s_addr;
2904 	*lp = inp->inp_lport;
2905 	*fp = inp->inp_fport;
2906 }
2907 
2908 struct inpcb *
2909 so_sotoinpcb(struct socket *so)
2910 {
2911 
2912 	return (sotoinpcb(so));
2913 }
2914 
2915 struct tcpcb *
2916 so_sototcpcb(struct socket *so)
2917 {
2918 
2919 	return (sototcpcb(so));
2920 }
2921 
2922 /*
2923  * Create an external-format (``xinpcb'') structure using the information in
2924  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2925  * reduce the spew of irrelevant information over this interface, to isolate
2926  * user code from changes in the kernel structure, and potentially to provide
2927  * information-hiding if we decide that some of this information should be
2928  * hidden from users.
2929  */
2930 void
2931 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2932 {
2933 
2934 	bzero(xi, sizeof(*xi));
2935 	xi->xi_len = sizeof(struct xinpcb);
2936 	if (inp->inp_socket)
2937 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2938 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2939 	xi->inp_gencnt = inp->inp_gencnt;
2940 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2941 	xi->inp_flow = inp->inp_flow;
2942 	xi->inp_flowid = inp->inp_flowid;
2943 	xi->inp_flowtype = inp->inp_flowtype;
2944 	xi->inp_flags = inp->inp_flags;
2945 	xi->inp_flags2 = inp->inp_flags2;
2946 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2947 	xi->in6p_cksum = inp->in6p_cksum;
2948 	xi->in6p_hops = inp->in6p_hops;
2949 	xi->inp_ip_tos = inp->inp_ip_tos;
2950 	xi->inp_vflag = inp->inp_vflag;
2951 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2952 	xi->inp_ip_p = inp->inp_ip_p;
2953 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2954 }
2955 
2956 #ifdef DDB
2957 static void
2958 db_print_indent(int indent)
2959 {
2960 	int i;
2961 
2962 	for (i = 0; i < indent; i++)
2963 		db_printf(" ");
2964 }
2965 
2966 static void
2967 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2968 {
2969 	char faddr_str[48], laddr_str[48];
2970 
2971 	db_print_indent(indent);
2972 	db_printf("%s at %p\n", name, inc);
2973 
2974 	indent += 2;
2975 
2976 #ifdef INET6
2977 	if (inc->inc_flags & INC_ISIPV6) {
2978 		/* IPv6. */
2979 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2980 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2981 	} else
2982 #endif
2983 	{
2984 		/* IPv4. */
2985 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2986 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2987 	}
2988 	db_print_indent(indent);
2989 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2990 	    ntohs(inc->inc_lport));
2991 	db_print_indent(indent);
2992 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2993 	    ntohs(inc->inc_fport));
2994 }
2995 
2996 static void
2997 db_print_inpflags(int inp_flags)
2998 {
2999 	int comma;
3000 
3001 	comma = 0;
3002 	if (inp_flags & INP_RECVOPTS) {
3003 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3004 		comma = 1;
3005 	}
3006 	if (inp_flags & INP_RECVRETOPTS) {
3007 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3008 		comma = 1;
3009 	}
3010 	if (inp_flags & INP_RECVDSTADDR) {
3011 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3012 		comma = 1;
3013 	}
3014 	if (inp_flags & INP_ORIGDSTADDR) {
3015 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3016 		comma = 1;
3017 	}
3018 	if (inp_flags & INP_HDRINCL) {
3019 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3020 		comma = 1;
3021 	}
3022 	if (inp_flags & INP_HIGHPORT) {
3023 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3024 		comma = 1;
3025 	}
3026 	if (inp_flags & INP_LOWPORT) {
3027 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3028 		comma = 1;
3029 	}
3030 	if (inp_flags & INP_ANONPORT) {
3031 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3032 		comma = 1;
3033 	}
3034 	if (inp_flags & INP_RECVIF) {
3035 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3036 		comma = 1;
3037 	}
3038 	if (inp_flags & INP_MTUDISC) {
3039 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3040 		comma = 1;
3041 	}
3042 	if (inp_flags & INP_RECVTTL) {
3043 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3044 		comma = 1;
3045 	}
3046 	if (inp_flags & INP_DONTFRAG) {
3047 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3048 		comma = 1;
3049 	}
3050 	if (inp_flags & INP_RECVTOS) {
3051 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3052 		comma = 1;
3053 	}
3054 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3055 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3056 		comma = 1;
3057 	}
3058 	if (inp_flags & IN6P_PKTINFO) {
3059 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3060 		comma = 1;
3061 	}
3062 	if (inp_flags & IN6P_HOPLIMIT) {
3063 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3064 		comma = 1;
3065 	}
3066 	if (inp_flags & IN6P_HOPOPTS) {
3067 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3068 		comma = 1;
3069 	}
3070 	if (inp_flags & IN6P_DSTOPTS) {
3071 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3072 		comma = 1;
3073 	}
3074 	if (inp_flags & IN6P_RTHDR) {
3075 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3076 		comma = 1;
3077 	}
3078 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3079 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3080 		comma = 1;
3081 	}
3082 	if (inp_flags & IN6P_TCLASS) {
3083 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3084 		comma = 1;
3085 	}
3086 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3087 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3088 		comma = 1;
3089 	}
3090 	if (inp_flags & INP_TIMEWAIT) {
3091 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3092 		comma  = 1;
3093 	}
3094 	if (inp_flags & INP_ONESBCAST) {
3095 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3096 		comma  = 1;
3097 	}
3098 	if (inp_flags & INP_DROPPED) {
3099 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3100 		comma  = 1;
3101 	}
3102 	if (inp_flags & INP_SOCKREF) {
3103 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3104 		comma  = 1;
3105 	}
3106 	if (inp_flags & IN6P_RFC2292) {
3107 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3108 		comma = 1;
3109 	}
3110 	if (inp_flags & IN6P_MTU) {
3111 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3112 		comma = 1;
3113 	}
3114 }
3115 
3116 static void
3117 db_print_inpvflag(u_char inp_vflag)
3118 {
3119 	int comma;
3120 
3121 	comma = 0;
3122 	if (inp_vflag & INP_IPV4) {
3123 		db_printf("%sINP_IPV4", comma ? ", " : "");
3124 		comma  = 1;
3125 	}
3126 	if (inp_vflag & INP_IPV6) {
3127 		db_printf("%sINP_IPV6", comma ? ", " : "");
3128 		comma  = 1;
3129 	}
3130 	if (inp_vflag & INP_IPV6PROTO) {
3131 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3132 		comma  = 1;
3133 	}
3134 }
3135 
3136 static void
3137 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3138 {
3139 
3140 	db_print_indent(indent);
3141 	db_printf("%s at %p\n", name, inp);
3142 
3143 	indent += 2;
3144 
3145 	db_print_indent(indent);
3146 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3147 
3148 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3149 
3150 	db_print_indent(indent);
3151 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3152 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3153 
3154 	db_print_indent(indent);
3155 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3156 	   inp->inp_label, inp->inp_flags);
3157 	db_print_inpflags(inp->inp_flags);
3158 	db_printf(")\n");
3159 
3160 	db_print_indent(indent);
3161 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3162 	    inp->inp_vflag);
3163 	db_print_inpvflag(inp->inp_vflag);
3164 	db_printf(")\n");
3165 
3166 	db_print_indent(indent);
3167 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3168 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3169 
3170 	db_print_indent(indent);
3171 #ifdef INET6
3172 	if (inp->inp_vflag & INP_IPV6) {
3173 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3174 		    "in6p_moptions: %p\n", inp->in6p_options,
3175 		    inp->in6p_outputopts, inp->in6p_moptions);
3176 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3177 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3178 		    inp->in6p_hops);
3179 	} else
3180 #endif
3181 	{
3182 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3183 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3184 		    inp->inp_options, inp->inp_moptions);
3185 	}
3186 
3187 	db_print_indent(indent);
3188 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3189 	    (uintmax_t)inp->inp_gencnt);
3190 }
3191 
3192 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3193 {
3194 	struct inpcb *inp;
3195 
3196 	if (!have_addr) {
3197 		db_printf("usage: show inpcb <addr>\n");
3198 		return;
3199 	}
3200 	inp = (struct inpcb *)addr;
3201 
3202 	db_print_inpcb(inp, "inpcb", 0);
3203 }
3204 #endif /* DDB */
3205 
3206 #ifdef RATELIMIT
3207 /*
3208  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3209  * if any.
3210  */
3211 int
3212 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3213 {
3214 	union if_snd_tag_modify_params params = {
3215 		.rate_limit.max_rate = max_pacing_rate,
3216 		.rate_limit.flags = M_NOWAIT,
3217 	};
3218 	struct m_snd_tag *mst;
3219 	struct ifnet *ifp;
3220 	int error;
3221 
3222 	mst = inp->inp_snd_tag;
3223 	if (mst == NULL)
3224 		return (EINVAL);
3225 
3226 	ifp = mst->ifp;
3227 	if (ifp == NULL)
3228 		return (EINVAL);
3229 
3230 	if (ifp->if_snd_tag_modify == NULL) {
3231 		error = EOPNOTSUPP;
3232 	} else {
3233 		error = ifp->if_snd_tag_modify(mst, &params);
3234 	}
3235 	return (error);
3236 }
3237 
3238 /*
3239  * Query existing TX rate limit based on the existing
3240  * "inp->inp_snd_tag", if any.
3241  */
3242 int
3243 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3244 {
3245 	union if_snd_tag_query_params params = { };
3246 	struct m_snd_tag *mst;
3247 	struct ifnet *ifp;
3248 	int error;
3249 
3250 	mst = inp->inp_snd_tag;
3251 	if (mst == NULL)
3252 		return (EINVAL);
3253 
3254 	ifp = mst->ifp;
3255 	if (ifp == NULL)
3256 		return (EINVAL);
3257 
3258 	if (ifp->if_snd_tag_query == NULL) {
3259 		error = EOPNOTSUPP;
3260 	} else {
3261 		error = ifp->if_snd_tag_query(mst, &params);
3262 		if (error == 0 &&  p_max_pacing_rate != NULL)
3263 			*p_max_pacing_rate = params.rate_limit.max_rate;
3264 	}
3265 	return (error);
3266 }
3267 
3268 /*
3269  * Query existing TX queue level based on the existing
3270  * "inp->inp_snd_tag", if any.
3271  */
3272 int
3273 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3274 {
3275 	union if_snd_tag_query_params params = { };
3276 	struct m_snd_tag *mst;
3277 	struct ifnet *ifp;
3278 	int error;
3279 
3280 	mst = inp->inp_snd_tag;
3281 	if (mst == NULL)
3282 		return (EINVAL);
3283 
3284 	ifp = mst->ifp;
3285 	if (ifp == NULL)
3286 		return (EINVAL);
3287 
3288 	if (ifp->if_snd_tag_query == NULL)
3289 		return (EOPNOTSUPP);
3290 
3291 	error = ifp->if_snd_tag_query(mst, &params);
3292 	if (error == 0 &&  p_txqueue_level != NULL)
3293 		*p_txqueue_level = params.rate_limit.queue_level;
3294 	return (error);
3295 }
3296 
3297 /*
3298  * Allocate a new TX rate limit send tag from the network interface
3299  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3300  */
3301 int
3302 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3303     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3304 
3305 {
3306 	union if_snd_tag_alloc_params params = {
3307 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3308 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3309 		.rate_limit.hdr.flowid = flowid,
3310 		.rate_limit.hdr.flowtype = flowtype,
3311 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3312 		.rate_limit.max_rate = max_pacing_rate,
3313 		.rate_limit.flags = M_NOWAIT,
3314 	};
3315 	int error;
3316 
3317 	INP_WLOCK_ASSERT(inp);
3318 
3319 	if (*st != NULL)
3320 		return (EINVAL);
3321 
3322 	if (ifp->if_snd_tag_alloc == NULL) {
3323 		error = EOPNOTSUPP;
3324 	} else {
3325 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3326 
3327 #ifdef INET
3328 		if (error == 0) {
3329 			counter_u64_add(rate_limit_set_ok, 1);
3330 			counter_u64_add(rate_limit_active, 1);
3331 		} else
3332 			counter_u64_add(rate_limit_alloc_fail, 1);
3333 #endif
3334 	}
3335 	return (error);
3336 }
3337 
3338 void
3339 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst)
3340 {
3341 	if (ifp == NULL)
3342 		return;
3343 
3344 	/*
3345 	 * If the device was detached while we still had reference(s)
3346 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3347 	 * stubs.
3348 	 */
3349 	ifp->if_snd_tag_free(mst);
3350 
3351 	/* release reference count on network interface */
3352 	if_rele(ifp);
3353 #ifdef INET
3354 	counter_u64_add(rate_limit_active, -1);
3355 #endif
3356 }
3357 
3358 /*
3359  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3360  * if any:
3361  */
3362 void
3363 in_pcbdetach_txrtlmt(struct inpcb *inp)
3364 {
3365 	struct m_snd_tag *mst;
3366 
3367 	INP_WLOCK_ASSERT(inp);
3368 
3369 	mst = inp->inp_snd_tag;
3370 	inp->inp_snd_tag = NULL;
3371 
3372 	if (mst == NULL)
3373 		return;
3374 
3375 	m_snd_tag_rele(mst);
3376 }
3377 
3378 int
3379 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3380 {
3381 	int error;
3382 
3383 	/*
3384 	 * If the existing send tag is for the wrong interface due to
3385 	 * a route change, first drop the existing tag.  Set the
3386 	 * CHANGED flag so that we will keep trying to allocate a new
3387 	 * tag if we fail to allocate one this time.
3388 	 */
3389 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3390 		in_pcbdetach_txrtlmt(inp);
3391 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3392 	}
3393 
3394 	/*
3395 	 * NOTE: When attaching to a network interface a reference is
3396 	 * made to ensure the network interface doesn't go away until
3397 	 * all ratelimit connections are gone. The network interface
3398 	 * pointers compared below represent valid network interfaces,
3399 	 * except when comparing towards NULL.
3400 	 */
3401 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3402 		error = 0;
3403 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3404 		if (inp->inp_snd_tag != NULL)
3405 			in_pcbdetach_txrtlmt(inp);
3406 		error = 0;
3407 	} else if (inp->inp_snd_tag == NULL) {
3408 		/*
3409 		 * In order to utilize packet pacing with RSS, we need
3410 		 * to wait until there is a valid RSS hash before we
3411 		 * can proceed:
3412 		 */
3413 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3414 			error = EAGAIN;
3415 		} else {
3416 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3417 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3418 		}
3419 	} else {
3420 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3421 	}
3422 	if (error == 0 || error == EOPNOTSUPP)
3423 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3424 
3425 	return (error);
3426 }
3427 
3428 /*
3429  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3430  * is set in the fast path and will attach/detach/modify the TX rate
3431  * limit send tag based on the socket's so_max_pacing_rate value.
3432  */
3433 void
3434 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3435 {
3436 	struct socket *socket;
3437 	uint32_t max_pacing_rate;
3438 	bool did_upgrade;
3439 	int error;
3440 
3441 	if (inp == NULL)
3442 		return;
3443 
3444 	socket = inp->inp_socket;
3445 	if (socket == NULL)
3446 		return;
3447 
3448 	if (!INP_WLOCKED(inp)) {
3449 		/*
3450 		 * NOTE: If the write locking fails, we need to bail
3451 		 * out and use the non-ratelimited ring for the
3452 		 * transmit until there is a new chance to get the
3453 		 * write lock.
3454 		 */
3455 		if (!INP_TRY_UPGRADE(inp))
3456 			return;
3457 		did_upgrade = 1;
3458 	} else {
3459 		did_upgrade = 0;
3460 	}
3461 
3462 	/*
3463 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3464 	 * because atomic updates are not required since the variable
3465 	 * is checked at every mbuf we send. It is assumed that the
3466 	 * variable read itself will be atomic.
3467 	 */
3468 	max_pacing_rate = socket->so_max_pacing_rate;
3469 
3470 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3471 
3472 	if (did_upgrade)
3473 		INP_DOWNGRADE(inp);
3474 }
3475 
3476 /*
3477  * Track route changes for TX rate limiting.
3478  */
3479 void
3480 in_pcboutput_eagain(struct inpcb *inp)
3481 {
3482 	bool did_upgrade;
3483 
3484 	if (inp == NULL)
3485 		return;
3486 
3487 	if (inp->inp_snd_tag == NULL)
3488 		return;
3489 
3490 	if (!INP_WLOCKED(inp)) {
3491 		/*
3492 		 * NOTE: If the write locking fails, we need to bail
3493 		 * out and use the non-ratelimited ring for the
3494 		 * transmit until there is a new chance to get the
3495 		 * write lock.
3496 		 */
3497 		if (!INP_TRY_UPGRADE(inp))
3498 			return;
3499 		did_upgrade = 1;
3500 	} else {
3501 		did_upgrade = 0;
3502 	}
3503 
3504 	/* detach rate limiting */
3505 	in_pcbdetach_txrtlmt(inp);
3506 
3507 	/* make sure new mbuf send tag allocation is made */
3508 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3509 
3510 	if (did_upgrade)
3511 		INP_DOWNGRADE(inp);
3512 }
3513 
3514 #ifdef INET
3515 static void
3516 rl_init(void *st)
3517 {
3518 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3519 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3520 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3521 }
3522 
3523 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3524 #endif
3525 #endif /* RATELIMIT */
3526