xref: /freebsd/sys/netinet/in_pcb.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #ifdef INET
90 #include <netinet/in_var.h>
91 #endif
92 #include <netinet/ip_var.h>
93 #include <netinet/tcp_var.h>
94 #ifdef TCPHPTS
95 #include <netinet/tcp_hpts.h>
96 #endif
97 #include <netinet/udp.h>
98 #include <netinet/udp_var.h>
99 #ifdef INET6
100 #include <netinet/ip6.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #endif /* INET6 */
105 #endif
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 #define	INPCBLBGROUP_SIZMIN	8
112 #define	INPCBLBGROUP_SIZMAX	256
113 
114 static struct callout	ipport_tick_callout;
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142 
143 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
144 
145 static void	in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148 			    struct in_addr faddr, u_int fport_arg,
149 			    struct in_addr laddr, u_int lport_arg,
150 			    int lookupflags, struct ifnet *ifp);
151 
152 #define RANGECHK(var, min, max) \
153 	if ((var) < (min)) { (var) = (min); } \
154 	else if ((var) > (max)) { (var) = (max); }
155 
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error;
160 
161 	error = sysctl_handle_int(oidp, arg1, arg2, req);
162 	if (error == 0) {
163 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169 	}
170 	return (error);
171 }
172 
173 #undef RANGECHK
174 
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
176     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
177     "IP Ports");
178 
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
180     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
182     "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
184     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
186     "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
188     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
190     "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
192     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
194     "");
195 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
196     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
197     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
198     "");
199 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
200     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
201     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
202     "");
203 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
204 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
205 	&VNET_NAME(ipport_reservedhigh), 0, "");
206 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
207 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
209 	CTLFLAG_VNET | CTLFLAG_RW,
210 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
211 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
212 	CTLFLAG_VNET | CTLFLAG_RW,
213 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
214 	"allocations before switching to a sequental one");
215 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
216 	CTLFLAG_VNET | CTLFLAG_RW,
217 	&VNET_NAME(ipport_randomtime), 0,
218 	"Minimum time to keep sequental port "
219 	"allocation before switching to a random one");
220 
221 #ifdef RATELIMIT
222 counter_u64_t rate_limit_active;
223 counter_u64_t rate_limit_alloc_fail;
224 counter_u64_t rate_limit_set_ok;
225 
226 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
227     "IP Rate Limiting");
228 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
229     &rate_limit_active, "Active rate limited connections");
230 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
231    &rate_limit_alloc_fail, "Rate limited connection failures");
232 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
233    &rate_limit_set_ok, "Rate limited setting succeeded");
234 #endif /* RATELIMIT */
235 
236 #endif /* INET */
237 
238 /*
239  * in_pcb.c: manage the Protocol Control Blocks.
240  *
241  * NOTE: It is assumed that most of these functions will be called with
242  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
243  * functions often modify hash chains or addresses in pcbs.
244  */
245 
246 static struct inpcblbgroup *
247 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
248     uint16_t port, const union in_dependaddr *addr, int size)
249 {
250 	struct inpcblbgroup *grp;
251 	size_t bytes;
252 
253 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
254 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
255 	if (!grp)
256 		return (NULL);
257 	grp->il_vflag = vflag;
258 	grp->il_lport = port;
259 	grp->il_dependladdr = *addr;
260 	grp->il_inpsiz = size;
261 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
262 	return (grp);
263 }
264 
265 static void
266 in_pcblbgroup_free_deferred(epoch_context_t ctx)
267 {
268 	struct inpcblbgroup *grp;
269 
270 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
271 	free(grp, M_PCB);
272 }
273 
274 static void
275 in_pcblbgroup_free(struct inpcblbgroup *grp)
276 {
277 
278 	CK_LIST_REMOVE(grp, il_list);
279 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
280 }
281 
282 static struct inpcblbgroup *
283 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
284     struct inpcblbgroup *old_grp, int size)
285 {
286 	struct inpcblbgroup *grp;
287 	int i;
288 
289 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
290 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
291 	if (grp == NULL)
292 		return (NULL);
293 
294 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
295 	    ("invalid new local group size %d and old local group count %d",
296 	     grp->il_inpsiz, old_grp->il_inpcnt));
297 
298 	for (i = 0; i < old_grp->il_inpcnt; ++i)
299 		grp->il_inp[i] = old_grp->il_inp[i];
300 	grp->il_inpcnt = old_grp->il_inpcnt;
301 	in_pcblbgroup_free(old_grp);
302 	return (grp);
303 }
304 
305 /*
306  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
307  * and shrink group if possible.
308  */
309 static void
310 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
311     int i)
312 {
313 	struct inpcblbgroup *grp, *new_grp;
314 
315 	grp = *grpp;
316 	for (; i + 1 < grp->il_inpcnt; ++i)
317 		grp->il_inp[i] = grp->il_inp[i + 1];
318 	grp->il_inpcnt--;
319 
320 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
321 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
322 		/* Shrink this group. */
323 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
324 		if (new_grp != NULL)
325 			*grpp = new_grp;
326 	}
327 }
328 
329 /*
330  * Add PCB to load balance group for SO_REUSEPORT_LB option.
331  */
332 static int
333 in_pcbinslbgrouphash(struct inpcb *inp)
334 {
335 	const static struct timeval interval = { 60, 0 };
336 	static struct timeval lastprint;
337 	struct inpcbinfo *pcbinfo;
338 	struct inpcblbgrouphead *hdr;
339 	struct inpcblbgroup *grp;
340 	uint32_t idx;
341 
342 	pcbinfo = inp->inp_pcbinfo;
343 
344 	INP_WLOCK_ASSERT(inp);
345 	INP_HASH_WLOCK_ASSERT(pcbinfo);
346 
347 	/*
348 	 * Don't allow jailed socket to join local group.
349 	 */
350 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
351 		return (0);
352 
353 #ifdef INET6
354 	/*
355 	 * Don't allow IPv4 mapped INET6 wild socket.
356 	 */
357 	if ((inp->inp_vflag & INP_IPV4) &&
358 	    inp->inp_laddr.s_addr == INADDR_ANY &&
359 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
360 		return (0);
361 	}
362 #endif
363 
364 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
365 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
366 	CK_LIST_FOREACH(grp, hdr, il_list) {
367 		if (grp->il_vflag == inp->inp_vflag &&
368 		    grp->il_lport == inp->inp_lport &&
369 		    memcmp(&grp->il_dependladdr,
370 		    &inp->inp_inc.inc_ie.ie_dependladdr,
371 		    sizeof(grp->il_dependladdr)) == 0)
372 			break;
373 	}
374 	if (grp == NULL) {
375 		/* Create new load balance group. */
376 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
377 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
378 		    INPCBLBGROUP_SIZMIN);
379 		if (grp == NULL)
380 			return (ENOBUFS);
381 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
382 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
383 			if (ratecheck(&lastprint, &interval))
384 				printf("lb group port %d, limit reached\n",
385 				    ntohs(grp->il_lport));
386 			return (0);
387 		}
388 
389 		/* Expand this local group. */
390 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
391 		if (grp == NULL)
392 			return (ENOBUFS);
393 	}
394 
395 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
396 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
397 	    grp->il_inpcnt));
398 
399 	grp->il_inp[grp->il_inpcnt] = inp;
400 	grp->il_inpcnt++;
401 	return (0);
402 }
403 
404 /*
405  * Remove PCB from load balance group.
406  */
407 static void
408 in_pcbremlbgrouphash(struct inpcb *inp)
409 {
410 	struct inpcbinfo *pcbinfo;
411 	struct inpcblbgrouphead *hdr;
412 	struct inpcblbgroup *grp;
413 	int i;
414 
415 	pcbinfo = inp->inp_pcbinfo;
416 
417 	INP_WLOCK_ASSERT(inp);
418 	INP_HASH_WLOCK_ASSERT(pcbinfo);
419 
420 	hdr = &pcbinfo->ipi_lbgrouphashbase[
421 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
422 	CK_LIST_FOREACH(grp, hdr, il_list) {
423 		for (i = 0; i < grp->il_inpcnt; ++i) {
424 			if (grp->il_inp[i] != inp)
425 				continue;
426 
427 			if (grp->il_inpcnt == 1) {
428 				/* We are the last, free this local group. */
429 				in_pcblbgroup_free(grp);
430 			} else {
431 				/* Pull up inpcbs, shrink group if possible. */
432 				in_pcblbgroup_reorder(hdr, &grp, i);
433 			}
434 			return;
435 		}
436 	}
437 }
438 
439 /*
440  * Different protocols initialize their inpcbs differently - giving
441  * different name to the lock.  But they all are disposed the same.
442  */
443 static void
444 inpcb_fini(void *mem, int size)
445 {
446 	struct inpcb *inp = mem;
447 
448 	INP_LOCK_DESTROY(inp);
449 }
450 
451 /*
452  * Initialize an inpcbinfo -- we should be able to reduce the number of
453  * arguments in time.
454  */
455 void
456 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
457     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
458     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
459 {
460 
461 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
462 
463 	INP_INFO_LOCK_INIT(pcbinfo, name);
464 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
465 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
466 #ifdef VIMAGE
467 	pcbinfo->ipi_vnet = curvnet;
468 #endif
469 	pcbinfo->ipi_listhead = listhead;
470 	CK_LIST_INIT(pcbinfo->ipi_listhead);
471 	pcbinfo->ipi_count = 0;
472 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
473 	    &pcbinfo->ipi_hashmask);
474 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
475 	    &pcbinfo->ipi_porthashmask);
476 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
477 	    &pcbinfo->ipi_lbgrouphashmask);
478 #ifdef PCBGROUP
479 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
480 #endif
481 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
482 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
483 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
484 	uma_zone_set_warning(pcbinfo->ipi_zone,
485 	    "kern.ipc.maxsockets limit reached");
486 }
487 
488 /*
489  * Destroy an inpcbinfo.
490  */
491 void
492 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
493 {
494 
495 	KASSERT(pcbinfo->ipi_count == 0,
496 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
497 
498 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
499 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
500 	    pcbinfo->ipi_porthashmask);
501 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
502 	    pcbinfo->ipi_lbgrouphashmask);
503 #ifdef PCBGROUP
504 	in_pcbgroup_destroy(pcbinfo);
505 #endif
506 	uma_zdestroy(pcbinfo->ipi_zone);
507 	INP_LIST_LOCK_DESTROY(pcbinfo);
508 	INP_HASH_LOCK_DESTROY(pcbinfo);
509 	INP_INFO_LOCK_DESTROY(pcbinfo);
510 }
511 
512 /*
513  * Allocate a PCB and associate it with the socket.
514  * On success return with the PCB locked.
515  */
516 int
517 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
518 {
519 	struct inpcb *inp;
520 	int error;
521 
522 	error = 0;
523 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
524 	if (inp == NULL)
525 		return (ENOBUFS);
526 	bzero(&inp->inp_start_zero, inp_zero_size);
527 #ifdef NUMA
528 	inp->inp_numa_domain = M_NODOM;
529 #endif
530 	inp->inp_pcbinfo = pcbinfo;
531 	inp->inp_socket = so;
532 	inp->inp_cred = crhold(so->so_cred);
533 	inp->inp_inc.inc_fibnum = so->so_fibnum;
534 #ifdef MAC
535 	error = mac_inpcb_init(inp, M_NOWAIT);
536 	if (error != 0)
537 		goto out;
538 	mac_inpcb_create(so, inp);
539 #endif
540 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
541 	error = ipsec_init_pcbpolicy(inp);
542 	if (error != 0) {
543 #ifdef MAC
544 		mac_inpcb_destroy(inp);
545 #endif
546 		goto out;
547 	}
548 #endif /*IPSEC*/
549 #ifdef INET6
550 	if (INP_SOCKAF(so) == AF_INET6) {
551 		inp->inp_vflag |= INP_IPV6PROTO;
552 		if (V_ip6_v6only)
553 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
554 	}
555 #endif
556 	INP_WLOCK(inp);
557 	INP_LIST_WLOCK(pcbinfo);
558 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
559 	pcbinfo->ipi_count++;
560 	so->so_pcb = (caddr_t)inp;
561 #ifdef INET6
562 	if (V_ip6_auto_flowlabel)
563 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
564 #endif
565 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
566 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
567 
568 	/*
569 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
570 	 * to be cleaned up.
571 	 */
572 	inp->inp_route.ro_flags = RT_LLE_CACHE;
573 	INP_LIST_WUNLOCK(pcbinfo);
574 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
575 out:
576 	if (error != 0) {
577 		crfree(inp->inp_cred);
578 		uma_zfree(pcbinfo->ipi_zone, inp);
579 	}
580 #endif
581 	return (error);
582 }
583 
584 #ifdef INET
585 int
586 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
587 {
588 	int anonport, error;
589 
590 	INP_WLOCK_ASSERT(inp);
591 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
592 
593 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
594 		return (EINVAL);
595 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
596 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
597 	    &inp->inp_lport, cred);
598 	if (error)
599 		return (error);
600 	if (in_pcbinshash(inp) != 0) {
601 		inp->inp_laddr.s_addr = INADDR_ANY;
602 		inp->inp_lport = 0;
603 		return (EAGAIN);
604 	}
605 	if (anonport)
606 		inp->inp_flags |= INP_ANONPORT;
607 	return (0);
608 }
609 #endif
610 
611 /*
612  * Select a local port (number) to use.
613  */
614 #if defined(INET) || defined(INET6)
615 int
616 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
617     struct ucred *cred, int lookupflags)
618 {
619 	struct inpcbinfo *pcbinfo;
620 	struct inpcb *tmpinp;
621 	unsigned short *lastport;
622 	int count, dorandom, error;
623 	u_short aux, first, last, lport;
624 #ifdef INET
625 	struct in_addr laddr;
626 #endif
627 
628 	pcbinfo = inp->inp_pcbinfo;
629 
630 	/*
631 	 * Because no actual state changes occur here, a global write lock on
632 	 * the pcbinfo isn't required.
633 	 */
634 	INP_LOCK_ASSERT(inp);
635 	INP_HASH_LOCK_ASSERT(pcbinfo);
636 
637 	if (inp->inp_flags & INP_HIGHPORT) {
638 		first = V_ipport_hifirstauto;	/* sysctl */
639 		last  = V_ipport_hilastauto;
640 		lastport = &pcbinfo->ipi_lasthi;
641 	} else if (inp->inp_flags & INP_LOWPORT) {
642 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
643 		if (error)
644 			return (error);
645 		first = V_ipport_lowfirstauto;	/* 1023 */
646 		last  = V_ipport_lowlastauto;	/* 600 */
647 		lastport = &pcbinfo->ipi_lastlow;
648 	} else {
649 		first = V_ipport_firstauto;	/* sysctl */
650 		last  = V_ipport_lastauto;
651 		lastport = &pcbinfo->ipi_lastport;
652 	}
653 	/*
654 	 * For UDP(-Lite), use random port allocation as long as the user
655 	 * allows it.  For TCP (and as of yet unknown) connections,
656 	 * use random port allocation only if the user allows it AND
657 	 * ipport_tick() allows it.
658 	 */
659 	if (V_ipport_randomized &&
660 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
661 		pcbinfo == &V_ulitecbinfo))
662 		dorandom = 1;
663 	else
664 		dorandom = 0;
665 	/*
666 	 * It makes no sense to do random port allocation if
667 	 * we have the only port available.
668 	 */
669 	if (first == last)
670 		dorandom = 0;
671 	/* Make sure to not include UDP(-Lite) packets in the count. */
672 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
673 		V_ipport_tcpallocs++;
674 	/*
675 	 * Instead of having two loops further down counting up or down
676 	 * make sure that first is always <= last and go with only one
677 	 * code path implementing all logic.
678 	 */
679 	if (first > last) {
680 		aux = first;
681 		first = last;
682 		last = aux;
683 	}
684 
685 #ifdef INET
686 	/* Make the compiler happy. */
687 	laddr.s_addr = 0;
688 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
689 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
690 		    __func__, inp));
691 		laddr = *laddrp;
692 	}
693 #endif
694 	tmpinp = NULL;	/* Make compiler happy. */
695 	lport = *lportp;
696 
697 	if (dorandom)
698 		*lastport = first + (arc4random() % (last - first));
699 
700 	count = last - first;
701 
702 	do {
703 		if (count-- < 0)	/* completely used? */
704 			return (EADDRNOTAVAIL);
705 		++*lastport;
706 		if (*lastport < first || *lastport > last)
707 			*lastport = first;
708 		lport = htons(*lastport);
709 
710 #ifdef INET6
711 		if ((inp->inp_vflag & INP_IPV6) != 0)
712 			tmpinp = in6_pcblookup_local(pcbinfo,
713 			    &inp->in6p_laddr, lport, lookupflags, cred);
714 #endif
715 #if defined(INET) && defined(INET6)
716 		else
717 #endif
718 #ifdef INET
719 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
720 			    lport, lookupflags, cred);
721 #endif
722 	} while (tmpinp != NULL);
723 
724 #ifdef INET
725 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
726 		laddrp->s_addr = laddr.s_addr;
727 #endif
728 	*lportp = lport;
729 
730 	return (0);
731 }
732 
733 /*
734  * Return cached socket options.
735  */
736 int
737 inp_so_options(const struct inpcb *inp)
738 {
739 	int so_options;
740 
741 	so_options = 0;
742 
743 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
744 		so_options |= SO_REUSEPORT_LB;
745 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
746 		so_options |= SO_REUSEPORT;
747 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
748 		so_options |= SO_REUSEADDR;
749 	return (so_options);
750 }
751 #endif /* INET || INET6 */
752 
753 /*
754  * Check if a new BINDMULTI socket is allowed to be created.
755  *
756  * ni points to the new inp.
757  * oi points to the exisitng inp.
758  *
759  * This checks whether the existing inp also has BINDMULTI and
760  * whether the credentials match.
761  */
762 int
763 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
764 {
765 	/* Check permissions match */
766 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
767 	    (ni->inp_cred->cr_uid !=
768 	    oi->inp_cred->cr_uid))
769 		return (0);
770 
771 	/* Check the existing inp has BINDMULTI set */
772 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
773 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
774 		return (0);
775 
776 	/*
777 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
778 	 * it is and it matches the checks.
779 	 */
780 	return (1);
781 }
782 
783 #ifdef INET
784 /*
785  * Set up a bind operation on a PCB, performing port allocation
786  * as required, but do not actually modify the PCB. Callers can
787  * either complete the bind by setting inp_laddr/inp_lport and
788  * calling in_pcbinshash(), or they can just use the resulting
789  * port and address to authorise the sending of a once-off packet.
790  *
791  * On error, the values of *laddrp and *lportp are not changed.
792  */
793 int
794 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
795     u_short *lportp, struct ucred *cred)
796 {
797 	struct socket *so = inp->inp_socket;
798 	struct sockaddr_in *sin;
799 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
800 	struct in_addr laddr;
801 	u_short lport = 0;
802 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
803 	int error;
804 
805 	/*
806 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
807 	 * so that we don't have to add to the (already messy) code below.
808 	 */
809 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
810 
811 	/*
812 	 * No state changes, so read locks are sufficient here.
813 	 */
814 	INP_LOCK_ASSERT(inp);
815 	INP_HASH_LOCK_ASSERT(pcbinfo);
816 
817 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
818 		return (EADDRNOTAVAIL);
819 	laddr.s_addr = *laddrp;
820 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
821 		return (EINVAL);
822 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
823 		lookupflags = INPLOOKUP_WILDCARD;
824 	if (nam == NULL) {
825 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
826 			return (error);
827 	} else {
828 		sin = (struct sockaddr_in *)nam;
829 		if (nam->sa_len != sizeof (*sin))
830 			return (EINVAL);
831 #ifdef notdef
832 		/*
833 		 * We should check the family, but old programs
834 		 * incorrectly fail to initialize it.
835 		 */
836 		if (sin->sin_family != AF_INET)
837 			return (EAFNOSUPPORT);
838 #endif
839 		error = prison_local_ip4(cred, &sin->sin_addr);
840 		if (error)
841 			return (error);
842 		if (sin->sin_port != *lportp) {
843 			/* Don't allow the port to change. */
844 			if (*lportp != 0)
845 				return (EINVAL);
846 			lport = sin->sin_port;
847 		}
848 		/* NB: lport is left as 0 if the port isn't being changed. */
849 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
850 			/*
851 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
852 			 * allow complete duplication of binding if
853 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
854 			 * and a multicast address is bound on both
855 			 * new and duplicated sockets.
856 			 */
857 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
858 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
859 			/*
860 			 * XXX: How to deal with SO_REUSEPORT_LB here?
861 			 * Treat same as SO_REUSEPORT for now.
862 			 */
863 			if ((so->so_options &
864 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
865 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
866 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
867 			sin->sin_port = 0;		/* yech... */
868 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
869 			/*
870 			 * Is the address a local IP address?
871 			 * If INP_BINDANY is set, then the socket may be bound
872 			 * to any endpoint address, local or not.
873 			 */
874 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
875 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
876 				return (EADDRNOTAVAIL);
877 		}
878 		laddr = sin->sin_addr;
879 		if (lport) {
880 			struct inpcb *t;
881 			struct tcptw *tw;
882 
883 			/* GROSS */
884 			if (ntohs(lport) <= V_ipport_reservedhigh &&
885 			    ntohs(lport) >= V_ipport_reservedlow &&
886 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
887 				return (EACCES);
888 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
889 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
890 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
891 				    lport, INPLOOKUP_WILDCARD, cred);
892 	/*
893 	 * XXX
894 	 * This entire block sorely needs a rewrite.
895 	 */
896 				if (t &&
897 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
898 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
899 				    (so->so_type != SOCK_STREAM ||
900 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
901 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
902 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
903 				     (t->inp_flags2 & INP_REUSEPORT) ||
904 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
905 				    (inp->inp_cred->cr_uid !=
906 				     t->inp_cred->cr_uid))
907 					return (EADDRINUSE);
908 
909 				/*
910 				 * If the socket is a BINDMULTI socket, then
911 				 * the credentials need to match and the
912 				 * original socket also has to have been bound
913 				 * with BINDMULTI.
914 				 */
915 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
916 					return (EADDRINUSE);
917 			}
918 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
919 			    lport, lookupflags, cred);
920 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
921 				/*
922 				 * XXXRW: If an incpb has had its timewait
923 				 * state recycled, we treat the address as
924 				 * being in use (for now).  This is better
925 				 * than a panic, but not desirable.
926 				 */
927 				tw = intotw(t);
928 				if (tw == NULL ||
929 				    ((reuseport & tw->tw_so_options) == 0 &&
930 					(reuseport_lb &
931 				            tw->tw_so_options) == 0)) {
932 					return (EADDRINUSE);
933 				}
934 			} else if (t &&
935 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
936 				   (reuseport & inp_so_options(t)) == 0 &&
937 				   (reuseport_lb & inp_so_options(t)) == 0) {
938 #ifdef INET6
939 				if (ntohl(sin->sin_addr.s_addr) !=
940 				    INADDR_ANY ||
941 				    ntohl(t->inp_laddr.s_addr) !=
942 				    INADDR_ANY ||
943 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
944 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
945 #endif
946 						return (EADDRINUSE);
947 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
948 					return (EADDRINUSE);
949 			}
950 		}
951 	}
952 	if (*lportp != 0)
953 		lport = *lportp;
954 	if (lport == 0) {
955 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
956 		if (error != 0)
957 			return (error);
958 
959 	}
960 	*laddrp = laddr.s_addr;
961 	*lportp = lport;
962 	return (0);
963 }
964 
965 /*
966  * Connect from a socket to a specified address.
967  * Both address and port must be specified in argument sin.
968  * If don't have a local address for this socket yet,
969  * then pick one.
970  */
971 int
972 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
973     struct ucred *cred, struct mbuf *m, bool rehash)
974 {
975 	u_short lport, fport;
976 	in_addr_t laddr, faddr;
977 	int anonport, error;
978 
979 	INP_WLOCK_ASSERT(inp);
980 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
981 
982 	lport = inp->inp_lport;
983 	laddr = inp->inp_laddr.s_addr;
984 	anonport = (lport == 0);
985 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
986 	    NULL, cred);
987 	if (error)
988 		return (error);
989 
990 	/* Do the initial binding of the local address if required. */
991 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
992 		KASSERT(rehash == true,
993 		    ("Rehashing required for unbound inps"));
994 		inp->inp_lport = lport;
995 		inp->inp_laddr.s_addr = laddr;
996 		if (in_pcbinshash(inp) != 0) {
997 			inp->inp_laddr.s_addr = INADDR_ANY;
998 			inp->inp_lport = 0;
999 			return (EAGAIN);
1000 		}
1001 	}
1002 
1003 	/* Commit the remaining changes. */
1004 	inp->inp_lport = lport;
1005 	inp->inp_laddr.s_addr = laddr;
1006 	inp->inp_faddr.s_addr = faddr;
1007 	inp->inp_fport = fport;
1008 	if (rehash) {
1009 		in_pcbrehash_mbuf(inp, m);
1010 	} else {
1011 		in_pcbinshash_mbuf(inp, m);
1012 	}
1013 
1014 	if (anonport)
1015 		inp->inp_flags |= INP_ANONPORT;
1016 	return (0);
1017 }
1018 
1019 int
1020 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1021 {
1022 
1023 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1024 }
1025 
1026 /*
1027  * Do proper source address selection on an unbound socket in case
1028  * of connect. Take jails into account as well.
1029  */
1030 int
1031 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1032     struct ucred *cred)
1033 {
1034 	struct ifaddr *ifa;
1035 	struct sockaddr *sa;
1036 	struct sockaddr_in *sin;
1037 	struct route sro;
1038 	int error;
1039 
1040 	NET_EPOCH_ASSERT();
1041 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1042 	/*
1043 	 * Bypass source address selection and use the primary jail IP
1044 	 * if requested.
1045 	 */
1046 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1047 		return (0);
1048 
1049 	error = 0;
1050 	bzero(&sro, sizeof(sro));
1051 
1052 	sin = (struct sockaddr_in *)&sro.ro_dst;
1053 	sin->sin_family = AF_INET;
1054 	sin->sin_len = sizeof(struct sockaddr_in);
1055 	sin->sin_addr.s_addr = faddr->s_addr;
1056 
1057 	/*
1058 	 * If route is known our src addr is taken from the i/f,
1059 	 * else punt.
1060 	 *
1061 	 * Find out route to destination.
1062 	 */
1063 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1064 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1065 
1066 	/*
1067 	 * If we found a route, use the address corresponding to
1068 	 * the outgoing interface.
1069 	 *
1070 	 * Otherwise assume faddr is reachable on a directly connected
1071 	 * network and try to find a corresponding interface to take
1072 	 * the source address from.
1073 	 */
1074 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1075 		struct in_ifaddr *ia;
1076 		struct ifnet *ifp;
1077 
1078 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1079 					inp->inp_socket->so_fibnum));
1080 		if (ia == NULL) {
1081 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1082 						inp->inp_socket->so_fibnum));
1083 
1084 		}
1085 		if (ia == NULL) {
1086 			error = ENETUNREACH;
1087 			goto done;
1088 		}
1089 
1090 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1091 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1092 			goto done;
1093 		}
1094 
1095 		ifp = ia->ia_ifp;
1096 		ia = NULL;
1097 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1098 
1099 			sa = ifa->ifa_addr;
1100 			if (sa->sa_family != AF_INET)
1101 				continue;
1102 			sin = (struct sockaddr_in *)sa;
1103 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1104 				ia = (struct in_ifaddr *)ifa;
1105 				break;
1106 			}
1107 		}
1108 		if (ia != NULL) {
1109 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1110 			goto done;
1111 		}
1112 
1113 		/* 3. As a last resort return the 'default' jail address. */
1114 		error = prison_get_ip4(cred, laddr);
1115 		goto done;
1116 	}
1117 
1118 	/*
1119 	 * If the outgoing interface on the route found is not
1120 	 * a loopback interface, use the address from that interface.
1121 	 * In case of jails do those three steps:
1122 	 * 1. check if the interface address belongs to the jail. If so use it.
1123 	 * 2. check if we have any address on the outgoing interface
1124 	 *    belonging to this jail. If so use it.
1125 	 * 3. as a last resort return the 'default' jail address.
1126 	 */
1127 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1128 		struct in_ifaddr *ia;
1129 		struct ifnet *ifp;
1130 
1131 		/* If not jailed, use the default returned. */
1132 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1133 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1134 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1135 			goto done;
1136 		}
1137 
1138 		/* Jailed. */
1139 		/* 1. Check if the iface address belongs to the jail. */
1140 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1141 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1142 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1143 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1144 			goto done;
1145 		}
1146 
1147 		/*
1148 		 * 2. Check if we have any address on the outgoing interface
1149 		 *    belonging to this jail.
1150 		 */
1151 		ia = NULL;
1152 		ifp = sro.ro_rt->rt_ifp;
1153 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1154 			sa = ifa->ifa_addr;
1155 			if (sa->sa_family != AF_INET)
1156 				continue;
1157 			sin = (struct sockaddr_in *)sa;
1158 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1159 				ia = (struct in_ifaddr *)ifa;
1160 				break;
1161 			}
1162 		}
1163 		if (ia != NULL) {
1164 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1165 			goto done;
1166 		}
1167 
1168 		/* 3. As a last resort return the 'default' jail address. */
1169 		error = prison_get_ip4(cred, laddr);
1170 		goto done;
1171 	}
1172 
1173 	/*
1174 	 * The outgoing interface is marked with 'loopback net', so a route
1175 	 * to ourselves is here.
1176 	 * Try to find the interface of the destination address and then
1177 	 * take the address from there. That interface is not necessarily
1178 	 * a loopback interface.
1179 	 * In case of jails, check that it is an address of the jail
1180 	 * and if we cannot find, fall back to the 'default' jail address.
1181 	 */
1182 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1183 		struct sockaddr_in sain;
1184 		struct in_ifaddr *ia;
1185 
1186 		bzero(&sain, sizeof(struct sockaddr_in));
1187 		sain.sin_family = AF_INET;
1188 		sain.sin_len = sizeof(struct sockaddr_in);
1189 		sain.sin_addr.s_addr = faddr->s_addr;
1190 
1191 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1192 					inp->inp_socket->so_fibnum));
1193 		if (ia == NULL)
1194 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1195 						inp->inp_socket->so_fibnum));
1196 		if (ia == NULL)
1197 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1198 
1199 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1200 			if (ia == NULL) {
1201 				error = ENETUNREACH;
1202 				goto done;
1203 			}
1204 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1205 			goto done;
1206 		}
1207 
1208 		/* Jailed. */
1209 		if (ia != NULL) {
1210 			struct ifnet *ifp;
1211 
1212 			ifp = ia->ia_ifp;
1213 			ia = NULL;
1214 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1215 				sa = ifa->ifa_addr;
1216 				if (sa->sa_family != AF_INET)
1217 					continue;
1218 				sin = (struct sockaddr_in *)sa;
1219 				if (prison_check_ip4(cred,
1220 				    &sin->sin_addr) == 0) {
1221 					ia = (struct in_ifaddr *)ifa;
1222 					break;
1223 				}
1224 			}
1225 			if (ia != NULL) {
1226 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1227 				goto done;
1228 			}
1229 		}
1230 
1231 		/* 3. As a last resort return the 'default' jail address. */
1232 		error = prison_get_ip4(cred, laddr);
1233 		goto done;
1234 	}
1235 
1236 done:
1237 	if (sro.ro_rt != NULL)
1238 		RTFREE(sro.ro_rt);
1239 	return (error);
1240 }
1241 
1242 /*
1243  * Set up for a connect from a socket to the specified address.
1244  * On entry, *laddrp and *lportp should contain the current local
1245  * address and port for the PCB; these are updated to the values
1246  * that should be placed in inp_laddr and inp_lport to complete
1247  * the connect.
1248  *
1249  * On success, *faddrp and *fportp will be set to the remote address
1250  * and port. These are not updated in the error case.
1251  *
1252  * If the operation fails because the connection already exists,
1253  * *oinpp will be set to the PCB of that connection so that the
1254  * caller can decide to override it. In all other cases, *oinpp
1255  * is set to NULL.
1256  */
1257 int
1258 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1259     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1260     struct inpcb **oinpp, struct ucred *cred)
1261 {
1262 	struct rm_priotracker in_ifa_tracker;
1263 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1264 	struct in_ifaddr *ia;
1265 	struct inpcb *oinp;
1266 	struct in_addr laddr, faddr;
1267 	u_short lport, fport;
1268 	int error;
1269 
1270 	/*
1271 	 * Because a global state change doesn't actually occur here, a read
1272 	 * lock is sufficient.
1273 	 */
1274 	NET_EPOCH_ASSERT();
1275 	INP_LOCK_ASSERT(inp);
1276 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1277 
1278 	if (oinpp != NULL)
1279 		*oinpp = NULL;
1280 	if (nam->sa_len != sizeof (*sin))
1281 		return (EINVAL);
1282 	if (sin->sin_family != AF_INET)
1283 		return (EAFNOSUPPORT);
1284 	if (sin->sin_port == 0)
1285 		return (EADDRNOTAVAIL);
1286 	laddr.s_addr = *laddrp;
1287 	lport = *lportp;
1288 	faddr = sin->sin_addr;
1289 	fport = sin->sin_port;
1290 
1291 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1292 		/*
1293 		 * If the destination address is INADDR_ANY,
1294 		 * use the primary local address.
1295 		 * If the supplied address is INADDR_BROADCAST,
1296 		 * and the primary interface supports broadcast,
1297 		 * choose the broadcast address for that interface.
1298 		 */
1299 		if (faddr.s_addr == INADDR_ANY) {
1300 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1301 			faddr =
1302 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1303 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1304 			if (cred != NULL &&
1305 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1306 				return (error);
1307 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1308 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1309 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1310 			    IFF_BROADCAST)
1311 				faddr = satosin(&CK_STAILQ_FIRST(
1312 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1313 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1314 		}
1315 	}
1316 	if (laddr.s_addr == INADDR_ANY) {
1317 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1318 		/*
1319 		 * If the destination address is multicast and an outgoing
1320 		 * interface has been set as a multicast option, prefer the
1321 		 * address of that interface as our source address.
1322 		 */
1323 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1324 		    inp->inp_moptions != NULL) {
1325 			struct ip_moptions *imo;
1326 			struct ifnet *ifp;
1327 
1328 			imo = inp->inp_moptions;
1329 			if (imo->imo_multicast_ifp != NULL) {
1330 				ifp = imo->imo_multicast_ifp;
1331 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1332 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1333 					if ((ia->ia_ifp == ifp) &&
1334 					    (cred == NULL ||
1335 					    prison_check_ip4(cred,
1336 					    &ia->ia_addr.sin_addr) == 0))
1337 						break;
1338 				}
1339 				if (ia == NULL)
1340 					error = EADDRNOTAVAIL;
1341 				else {
1342 					laddr = ia->ia_addr.sin_addr;
1343 					error = 0;
1344 				}
1345 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1346 			}
1347 		}
1348 		if (error)
1349 			return (error);
1350 	}
1351 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1352 	    laddr, lport, 0, NULL);
1353 	if (oinp != NULL) {
1354 		if (oinpp != NULL)
1355 			*oinpp = oinp;
1356 		return (EADDRINUSE);
1357 	}
1358 	if (lport == 0) {
1359 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1360 		    cred);
1361 		if (error)
1362 			return (error);
1363 	}
1364 	*laddrp = laddr.s_addr;
1365 	*lportp = lport;
1366 	*faddrp = faddr.s_addr;
1367 	*fportp = fport;
1368 	return (0);
1369 }
1370 
1371 void
1372 in_pcbdisconnect(struct inpcb *inp)
1373 {
1374 
1375 	INP_WLOCK_ASSERT(inp);
1376 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1377 
1378 	inp->inp_faddr.s_addr = INADDR_ANY;
1379 	inp->inp_fport = 0;
1380 	in_pcbrehash(inp);
1381 }
1382 #endif /* INET */
1383 
1384 /*
1385  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1386  * For most protocols, this will be invoked immediately prior to calling
1387  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1388  * socket, in which case in_pcbfree() is deferred.
1389  */
1390 void
1391 in_pcbdetach(struct inpcb *inp)
1392 {
1393 
1394 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1395 
1396 #ifdef RATELIMIT
1397 	if (inp->inp_snd_tag != NULL)
1398 		in_pcbdetach_txrtlmt(inp);
1399 #endif
1400 	inp->inp_socket->so_pcb = NULL;
1401 	inp->inp_socket = NULL;
1402 }
1403 
1404 /*
1405  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1406  * stability of an inpcb pointer despite the inpcb lock being released.  This
1407  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1408  * but where the inpcb lock may already held, or when acquiring a reference
1409  * via a pcbgroup.
1410  *
1411  * in_pcbref() should be used only to provide brief memory stability, and
1412  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1413  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1414  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1415  * lock and rele are the *only* safe operations that may be performed on the
1416  * inpcb.
1417  *
1418  * While the inpcb will not be freed, releasing the inpcb lock means that the
1419  * connection's state may change, so the caller should be careful to
1420  * revalidate any cached state on reacquiring the lock.  Drop the reference
1421  * using in_pcbrele().
1422  */
1423 void
1424 in_pcbref(struct inpcb *inp)
1425 {
1426 
1427 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1428 
1429 	refcount_acquire(&inp->inp_refcount);
1430 }
1431 
1432 /*
1433  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1434  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1435  * return a flag indicating whether or not the inpcb remains valid.  If it is
1436  * valid, we return with the inpcb lock held.
1437  *
1438  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1439  * reference on an inpcb.  Historically more work was done here (actually, in
1440  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1441  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1442  * about memory stability (and continued use of the write lock).
1443  */
1444 int
1445 in_pcbrele_rlocked(struct inpcb *inp)
1446 {
1447 	struct inpcbinfo *pcbinfo;
1448 
1449 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1450 
1451 	INP_RLOCK_ASSERT(inp);
1452 
1453 	if (refcount_release(&inp->inp_refcount) == 0) {
1454 		/*
1455 		 * If the inpcb has been freed, let the caller know, even if
1456 		 * this isn't the last reference.
1457 		 */
1458 		if (inp->inp_flags2 & INP_FREED) {
1459 			INP_RUNLOCK(inp);
1460 			return (1);
1461 		}
1462 		return (0);
1463 	}
1464 
1465 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1466 #ifdef TCPHPTS
1467 	if (inp->inp_in_hpts || inp->inp_in_input) {
1468 		struct tcp_hpts_entry *hpts;
1469 		/*
1470 		 * We should not be on the hpts at
1471 		 * this point in any form. we must
1472 		 * get the lock to be sure.
1473 		 */
1474 		hpts = tcp_hpts_lock(inp);
1475 		if (inp->inp_in_hpts)
1476 			panic("Hpts:%p inp:%p at free still on hpts",
1477 			      hpts, inp);
1478 		mtx_unlock(&hpts->p_mtx);
1479 		hpts = tcp_input_lock(inp);
1480 		if (inp->inp_in_input)
1481 			panic("Hpts:%p inp:%p at free still on input hpts",
1482 			      hpts, inp);
1483 		mtx_unlock(&hpts->p_mtx);
1484 	}
1485 #endif
1486 	INP_RUNLOCK(inp);
1487 	pcbinfo = inp->inp_pcbinfo;
1488 	uma_zfree(pcbinfo->ipi_zone, inp);
1489 	return (1);
1490 }
1491 
1492 int
1493 in_pcbrele_wlocked(struct inpcb *inp)
1494 {
1495 	struct inpcbinfo *pcbinfo;
1496 
1497 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1498 
1499 	INP_WLOCK_ASSERT(inp);
1500 
1501 	if (refcount_release(&inp->inp_refcount) == 0) {
1502 		/*
1503 		 * If the inpcb has been freed, let the caller know, even if
1504 		 * this isn't the last reference.
1505 		 */
1506 		if (inp->inp_flags2 & INP_FREED) {
1507 			INP_WUNLOCK(inp);
1508 			return (1);
1509 		}
1510 		return (0);
1511 	}
1512 
1513 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1514 #ifdef TCPHPTS
1515 	if (inp->inp_in_hpts || inp->inp_in_input) {
1516 		struct tcp_hpts_entry *hpts;
1517 		/*
1518 		 * We should not be on the hpts at
1519 		 * this point in any form. we must
1520 		 * get the lock to be sure.
1521 		 */
1522 		hpts = tcp_hpts_lock(inp);
1523 		if (inp->inp_in_hpts)
1524 			panic("Hpts:%p inp:%p at free still on hpts",
1525 			      hpts, inp);
1526 		mtx_unlock(&hpts->p_mtx);
1527 		hpts = tcp_input_lock(inp);
1528 		if (inp->inp_in_input)
1529 			panic("Hpts:%p inp:%p at free still on input hpts",
1530 			      hpts, inp);
1531 		mtx_unlock(&hpts->p_mtx);
1532 	}
1533 #endif
1534 	INP_WUNLOCK(inp);
1535 	pcbinfo = inp->inp_pcbinfo;
1536 	uma_zfree(pcbinfo->ipi_zone, inp);
1537 	return (1);
1538 }
1539 
1540 /*
1541  * Temporary wrapper.
1542  */
1543 int
1544 in_pcbrele(struct inpcb *inp)
1545 {
1546 
1547 	return (in_pcbrele_wlocked(inp));
1548 }
1549 
1550 void
1551 in_pcblist_rele_rlocked(epoch_context_t ctx)
1552 {
1553 	struct in_pcblist *il;
1554 	struct inpcb *inp;
1555 	struct inpcbinfo *pcbinfo;
1556 	int i, n;
1557 
1558 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1559 	pcbinfo = il->il_pcbinfo;
1560 	n = il->il_count;
1561 	INP_INFO_WLOCK(pcbinfo);
1562 	for (i = 0; i < n; i++) {
1563 		inp = il->il_inp_list[i];
1564 		INP_RLOCK(inp);
1565 		if (!in_pcbrele_rlocked(inp))
1566 			INP_RUNLOCK(inp);
1567 	}
1568 	INP_INFO_WUNLOCK(pcbinfo);
1569 	free(il, M_TEMP);
1570 }
1571 
1572 static void
1573 inpcbport_free(epoch_context_t ctx)
1574 {
1575 	struct inpcbport *phd;
1576 
1577 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1578 	free(phd, M_PCB);
1579 }
1580 
1581 static void
1582 in_pcbfree_deferred(epoch_context_t ctx)
1583 {
1584 	struct inpcb *inp;
1585 	int released __unused;
1586 
1587 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1588 
1589 	INP_WLOCK(inp);
1590 	CURVNET_SET(inp->inp_vnet);
1591 #ifdef INET
1592 	struct ip_moptions *imo = inp->inp_moptions;
1593 	inp->inp_moptions = NULL;
1594 #endif
1595 	/* XXXRW: Do as much as possible here. */
1596 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1597 	if (inp->inp_sp != NULL)
1598 		ipsec_delete_pcbpolicy(inp);
1599 #endif
1600 #ifdef INET6
1601 	struct ip6_moptions *im6o = NULL;
1602 	if (inp->inp_vflag & INP_IPV6PROTO) {
1603 		ip6_freepcbopts(inp->in6p_outputopts);
1604 		im6o = inp->in6p_moptions;
1605 		inp->in6p_moptions = NULL;
1606 	}
1607 #endif
1608 	if (inp->inp_options)
1609 		(void)m_free(inp->inp_options);
1610 	inp->inp_vflag = 0;
1611 	crfree(inp->inp_cred);
1612 #ifdef MAC
1613 	mac_inpcb_destroy(inp);
1614 #endif
1615 	released = in_pcbrele_wlocked(inp);
1616 	MPASS(released);
1617 #ifdef INET6
1618 	ip6_freemoptions(im6o);
1619 #endif
1620 #ifdef INET
1621 	inp_freemoptions(imo);
1622 #endif
1623 	CURVNET_RESTORE();
1624 }
1625 
1626 /*
1627  * Unconditionally schedule an inpcb to be freed by decrementing its
1628  * reference count, which should occur only after the inpcb has been detached
1629  * from its socket.  If another thread holds a temporary reference (acquired
1630  * using in_pcbref()) then the free is deferred until that reference is
1631  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1632  * work, including removal from global lists, is done in this context, where
1633  * the pcbinfo lock is held.
1634  */
1635 void
1636 in_pcbfree(struct inpcb *inp)
1637 {
1638 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1639 
1640 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1641 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1642 	    ("%s: called twice for pcb %p", __func__, inp));
1643 	if (inp->inp_flags2 & INP_FREED) {
1644 		INP_WUNLOCK(inp);
1645 		return;
1646 	}
1647 
1648 	INP_WLOCK_ASSERT(inp);
1649 	INP_LIST_WLOCK(pcbinfo);
1650 	in_pcbremlists(inp);
1651 	INP_LIST_WUNLOCK(pcbinfo);
1652 	RO_INVALIDATE_CACHE(&inp->inp_route);
1653 	/* mark as destruction in progress */
1654 	inp->inp_flags2 |= INP_FREED;
1655 	INP_WUNLOCK(inp);
1656 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1657 }
1658 
1659 /*
1660  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1661  * port reservation, and preventing it from being returned by inpcb lookups.
1662  *
1663  * It is used by TCP to mark an inpcb as unused and avoid future packet
1664  * delivery or event notification when a socket remains open but TCP has
1665  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1666  * or a RST on the wire, and allows the port binding to be reused while still
1667  * maintaining the invariant that so_pcb always points to a valid inpcb until
1668  * in_pcbdetach().
1669  *
1670  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1671  * in_pcbnotifyall() and in_pcbpurgeif0()?
1672  */
1673 void
1674 in_pcbdrop(struct inpcb *inp)
1675 {
1676 
1677 	INP_WLOCK_ASSERT(inp);
1678 #ifdef INVARIANTS
1679 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1680 		MPASS(inp->inp_refcount > 1);
1681 #endif
1682 
1683 	/*
1684 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1685 	 * the hash lock...?
1686 	 */
1687 	inp->inp_flags |= INP_DROPPED;
1688 	if (inp->inp_flags & INP_INHASHLIST) {
1689 		struct inpcbport *phd = inp->inp_phd;
1690 
1691 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1692 		in_pcbremlbgrouphash(inp);
1693 		CK_LIST_REMOVE(inp, inp_hash);
1694 		CK_LIST_REMOVE(inp, inp_portlist);
1695 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1696 			CK_LIST_REMOVE(phd, phd_hash);
1697 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1698 		}
1699 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1700 		inp->inp_flags &= ~INP_INHASHLIST;
1701 #ifdef PCBGROUP
1702 		in_pcbgroup_remove(inp);
1703 #endif
1704 	}
1705 }
1706 
1707 #ifdef INET
1708 /*
1709  * Common routines to return the socket addresses associated with inpcbs.
1710  */
1711 struct sockaddr *
1712 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1713 {
1714 	struct sockaddr_in *sin;
1715 
1716 	sin = malloc(sizeof *sin, M_SONAME,
1717 		M_WAITOK | M_ZERO);
1718 	sin->sin_family = AF_INET;
1719 	sin->sin_len = sizeof(*sin);
1720 	sin->sin_addr = *addr_p;
1721 	sin->sin_port = port;
1722 
1723 	return (struct sockaddr *)sin;
1724 }
1725 
1726 int
1727 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1728 {
1729 	struct inpcb *inp;
1730 	struct in_addr addr;
1731 	in_port_t port;
1732 
1733 	inp = sotoinpcb(so);
1734 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1735 
1736 	INP_RLOCK(inp);
1737 	port = inp->inp_lport;
1738 	addr = inp->inp_laddr;
1739 	INP_RUNLOCK(inp);
1740 
1741 	*nam = in_sockaddr(port, &addr);
1742 	return 0;
1743 }
1744 
1745 int
1746 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1747 {
1748 	struct inpcb *inp;
1749 	struct in_addr addr;
1750 	in_port_t port;
1751 
1752 	inp = sotoinpcb(so);
1753 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1754 
1755 	INP_RLOCK(inp);
1756 	port = inp->inp_fport;
1757 	addr = inp->inp_faddr;
1758 	INP_RUNLOCK(inp);
1759 
1760 	*nam = in_sockaddr(port, &addr);
1761 	return 0;
1762 }
1763 
1764 void
1765 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1766     struct inpcb *(*notify)(struct inpcb *, int))
1767 {
1768 	struct inpcb *inp, *inp_temp;
1769 
1770 	INP_INFO_WLOCK(pcbinfo);
1771 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1772 		INP_WLOCK(inp);
1773 #ifdef INET6
1774 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1775 			INP_WUNLOCK(inp);
1776 			continue;
1777 		}
1778 #endif
1779 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1780 		    inp->inp_socket == NULL) {
1781 			INP_WUNLOCK(inp);
1782 			continue;
1783 		}
1784 		if ((*notify)(inp, errno))
1785 			INP_WUNLOCK(inp);
1786 	}
1787 	INP_INFO_WUNLOCK(pcbinfo);
1788 }
1789 
1790 void
1791 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1792 {
1793 	struct inpcb *inp;
1794 	struct in_multi *inm;
1795 	struct in_mfilter *imf;
1796 	struct ip_moptions *imo;
1797 
1798 	INP_INFO_WLOCK(pcbinfo);
1799 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1800 		INP_WLOCK(inp);
1801 		imo = inp->inp_moptions;
1802 		if ((inp->inp_vflag & INP_IPV4) &&
1803 		    imo != NULL) {
1804 			/*
1805 			 * Unselect the outgoing interface if it is being
1806 			 * detached.
1807 			 */
1808 			if (imo->imo_multicast_ifp == ifp)
1809 				imo->imo_multicast_ifp = NULL;
1810 
1811 			/*
1812 			 * Drop multicast group membership if we joined
1813 			 * through the interface being detached.
1814 			 *
1815 			 * XXX This can all be deferred to an epoch_call
1816 			 */
1817 restart:
1818 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1819 				if ((inm = imf->imf_inm) == NULL)
1820 					continue;
1821 				if (inm->inm_ifp != ifp)
1822 					continue;
1823 				ip_mfilter_remove(&imo->imo_head, imf);
1824 				IN_MULTI_LOCK_ASSERT();
1825 				in_leavegroup_locked(inm, NULL);
1826 				ip_mfilter_free(imf);
1827 				goto restart;
1828 			}
1829 		}
1830 		INP_WUNLOCK(inp);
1831 	}
1832 	INP_INFO_WUNLOCK(pcbinfo);
1833 }
1834 
1835 /*
1836  * Lookup a PCB based on the local address and port.  Caller must hold the
1837  * hash lock.  No inpcb locks or references are acquired.
1838  */
1839 #define INP_LOOKUP_MAPPED_PCB_COST	3
1840 struct inpcb *
1841 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1842     u_short lport, int lookupflags, struct ucred *cred)
1843 {
1844 	struct inpcb *inp;
1845 #ifdef INET6
1846 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1847 #else
1848 	int matchwild = 3;
1849 #endif
1850 	int wildcard;
1851 
1852 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1853 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1854 
1855 	INP_HASH_LOCK_ASSERT(pcbinfo);
1856 
1857 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1858 		struct inpcbhead *head;
1859 		/*
1860 		 * Look for an unconnected (wildcard foreign addr) PCB that
1861 		 * matches the local address and port we're looking for.
1862 		 */
1863 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1864 		    0, pcbinfo->ipi_hashmask)];
1865 		CK_LIST_FOREACH(inp, head, inp_hash) {
1866 #ifdef INET6
1867 			/* XXX inp locking */
1868 			if ((inp->inp_vflag & INP_IPV4) == 0)
1869 				continue;
1870 #endif
1871 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1872 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1873 			    inp->inp_lport == lport) {
1874 				/*
1875 				 * Found?
1876 				 */
1877 				if (cred == NULL ||
1878 				    prison_equal_ip4(cred->cr_prison,
1879 					inp->inp_cred->cr_prison))
1880 					return (inp);
1881 			}
1882 		}
1883 		/*
1884 		 * Not found.
1885 		 */
1886 		return (NULL);
1887 	} else {
1888 		struct inpcbporthead *porthash;
1889 		struct inpcbport *phd;
1890 		struct inpcb *match = NULL;
1891 		/*
1892 		 * Best fit PCB lookup.
1893 		 *
1894 		 * First see if this local port is in use by looking on the
1895 		 * port hash list.
1896 		 */
1897 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1898 		    pcbinfo->ipi_porthashmask)];
1899 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1900 			if (phd->phd_port == lport)
1901 				break;
1902 		}
1903 		if (phd != NULL) {
1904 			/*
1905 			 * Port is in use by one or more PCBs. Look for best
1906 			 * fit.
1907 			 */
1908 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1909 				wildcard = 0;
1910 				if (cred != NULL &&
1911 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1912 					cred->cr_prison))
1913 					continue;
1914 #ifdef INET6
1915 				/* XXX inp locking */
1916 				if ((inp->inp_vflag & INP_IPV4) == 0)
1917 					continue;
1918 				/*
1919 				 * We never select the PCB that has
1920 				 * INP_IPV6 flag and is bound to :: if
1921 				 * we have another PCB which is bound
1922 				 * to 0.0.0.0.  If a PCB has the
1923 				 * INP_IPV6 flag, then we set its cost
1924 				 * higher than IPv4 only PCBs.
1925 				 *
1926 				 * Note that the case only happens
1927 				 * when a socket is bound to ::, under
1928 				 * the condition that the use of the
1929 				 * mapped address is allowed.
1930 				 */
1931 				if ((inp->inp_vflag & INP_IPV6) != 0)
1932 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1933 #endif
1934 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1935 					wildcard++;
1936 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1937 					if (laddr.s_addr == INADDR_ANY)
1938 						wildcard++;
1939 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1940 						continue;
1941 				} else {
1942 					if (laddr.s_addr != INADDR_ANY)
1943 						wildcard++;
1944 				}
1945 				if (wildcard < matchwild) {
1946 					match = inp;
1947 					matchwild = wildcard;
1948 					if (matchwild == 0)
1949 						break;
1950 				}
1951 			}
1952 		}
1953 		return (match);
1954 	}
1955 }
1956 #undef INP_LOOKUP_MAPPED_PCB_COST
1957 
1958 static struct inpcb *
1959 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1960     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1961     uint16_t fport, int lookupflags)
1962 {
1963 	struct inpcb *local_wild;
1964 	const struct inpcblbgrouphead *hdr;
1965 	struct inpcblbgroup *grp;
1966 	uint32_t idx;
1967 
1968 	INP_HASH_LOCK_ASSERT(pcbinfo);
1969 
1970 	hdr = &pcbinfo->ipi_lbgrouphashbase[
1971 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
1972 
1973 	/*
1974 	 * Order of socket selection:
1975 	 * 1. non-wild.
1976 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1977 	 *
1978 	 * NOTE:
1979 	 * - Load balanced group does not contain jailed sockets
1980 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1981 	 */
1982 	local_wild = NULL;
1983 	CK_LIST_FOREACH(grp, hdr, il_list) {
1984 #ifdef INET6
1985 		if (!(grp->il_vflag & INP_IPV4))
1986 			continue;
1987 #endif
1988 		if (grp->il_lport != lport)
1989 			continue;
1990 
1991 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
1992 		    grp->il_inpcnt;
1993 		if (grp->il_laddr.s_addr == laddr->s_addr)
1994 			return (grp->il_inp[idx]);
1995 		if (grp->il_laddr.s_addr == INADDR_ANY &&
1996 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
1997 			local_wild = grp->il_inp[idx];
1998 	}
1999 	return (local_wild);
2000 }
2001 
2002 #ifdef PCBGROUP
2003 /*
2004  * Lookup PCB in hash list, using pcbgroup tables.
2005  */
2006 static struct inpcb *
2007 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2008     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2009     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2010 {
2011 	struct inpcbhead *head;
2012 	struct inpcb *inp, *tmpinp;
2013 	u_short fport = fport_arg, lport = lport_arg;
2014 	bool locked;
2015 
2016 	/*
2017 	 * First look for an exact match.
2018 	 */
2019 	tmpinp = NULL;
2020 	INP_GROUP_LOCK(pcbgroup);
2021 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2022 	    pcbgroup->ipg_hashmask)];
2023 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2024 #ifdef INET6
2025 		/* XXX inp locking */
2026 		if ((inp->inp_vflag & INP_IPV4) == 0)
2027 			continue;
2028 #endif
2029 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2030 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2031 		    inp->inp_fport == fport &&
2032 		    inp->inp_lport == lport) {
2033 			/*
2034 			 * XXX We should be able to directly return
2035 			 * the inp here, without any checks.
2036 			 * Well unless both bound with SO_REUSEPORT?
2037 			 */
2038 			if (prison_flag(inp->inp_cred, PR_IP4))
2039 				goto found;
2040 			if (tmpinp == NULL)
2041 				tmpinp = inp;
2042 		}
2043 	}
2044 	if (tmpinp != NULL) {
2045 		inp = tmpinp;
2046 		goto found;
2047 	}
2048 
2049 #ifdef	RSS
2050 	/*
2051 	 * For incoming connections, we may wish to do a wildcard
2052 	 * match for an RSS-local socket.
2053 	 */
2054 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2055 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2056 #ifdef INET6
2057 		struct inpcb *local_wild_mapped = NULL;
2058 #endif
2059 		struct inpcb *jail_wild = NULL;
2060 		struct inpcbhead *head;
2061 		int injail;
2062 
2063 		/*
2064 		 * Order of socket selection - we always prefer jails.
2065 		 *      1. jailed, non-wild.
2066 		 *      2. jailed, wild.
2067 		 *      3. non-jailed, non-wild.
2068 		 *      4. non-jailed, wild.
2069 		 */
2070 
2071 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2072 		    lport, 0, pcbgroup->ipg_hashmask)];
2073 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2074 #ifdef INET6
2075 			/* XXX inp locking */
2076 			if ((inp->inp_vflag & INP_IPV4) == 0)
2077 				continue;
2078 #endif
2079 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2080 			    inp->inp_lport != lport)
2081 				continue;
2082 
2083 			injail = prison_flag(inp->inp_cred, PR_IP4);
2084 			if (injail) {
2085 				if (prison_check_ip4(inp->inp_cred,
2086 				    &laddr) != 0)
2087 					continue;
2088 			} else {
2089 				if (local_exact != NULL)
2090 					continue;
2091 			}
2092 
2093 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2094 				if (injail)
2095 					goto found;
2096 				else
2097 					local_exact = inp;
2098 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2099 #ifdef INET6
2100 				/* XXX inp locking, NULL check */
2101 				if (inp->inp_vflag & INP_IPV6PROTO)
2102 					local_wild_mapped = inp;
2103 				else
2104 #endif
2105 					if (injail)
2106 						jail_wild = inp;
2107 					else
2108 						local_wild = inp;
2109 			}
2110 		} /* LIST_FOREACH */
2111 
2112 		inp = jail_wild;
2113 		if (inp == NULL)
2114 			inp = local_exact;
2115 		if (inp == NULL)
2116 			inp = local_wild;
2117 #ifdef INET6
2118 		if (inp == NULL)
2119 			inp = local_wild_mapped;
2120 #endif
2121 		if (inp != NULL)
2122 			goto found;
2123 	}
2124 #endif
2125 
2126 	/*
2127 	 * Then look for a wildcard match, if requested.
2128 	 */
2129 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2130 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2131 #ifdef INET6
2132 		struct inpcb *local_wild_mapped = NULL;
2133 #endif
2134 		struct inpcb *jail_wild = NULL;
2135 		struct inpcbhead *head;
2136 		int injail;
2137 
2138 		/*
2139 		 * Order of socket selection - we always prefer jails.
2140 		 *      1. jailed, non-wild.
2141 		 *      2. jailed, wild.
2142 		 *      3. non-jailed, non-wild.
2143 		 *      4. non-jailed, wild.
2144 		 */
2145 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2146 		    0, pcbinfo->ipi_wildmask)];
2147 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2148 #ifdef INET6
2149 			/* XXX inp locking */
2150 			if ((inp->inp_vflag & INP_IPV4) == 0)
2151 				continue;
2152 #endif
2153 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2154 			    inp->inp_lport != lport)
2155 				continue;
2156 
2157 			injail = prison_flag(inp->inp_cred, PR_IP4);
2158 			if (injail) {
2159 				if (prison_check_ip4(inp->inp_cred,
2160 				    &laddr) != 0)
2161 					continue;
2162 			} else {
2163 				if (local_exact != NULL)
2164 					continue;
2165 			}
2166 
2167 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2168 				if (injail)
2169 					goto found;
2170 				else
2171 					local_exact = inp;
2172 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2173 #ifdef INET6
2174 				/* XXX inp locking, NULL check */
2175 				if (inp->inp_vflag & INP_IPV6PROTO)
2176 					local_wild_mapped = inp;
2177 				else
2178 #endif
2179 					if (injail)
2180 						jail_wild = inp;
2181 					else
2182 						local_wild = inp;
2183 			}
2184 		} /* LIST_FOREACH */
2185 		inp = jail_wild;
2186 		if (inp == NULL)
2187 			inp = local_exact;
2188 		if (inp == NULL)
2189 			inp = local_wild;
2190 #ifdef INET6
2191 		if (inp == NULL)
2192 			inp = local_wild_mapped;
2193 #endif
2194 		if (inp != NULL)
2195 			goto found;
2196 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2197 	INP_GROUP_UNLOCK(pcbgroup);
2198 	return (NULL);
2199 
2200 found:
2201 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2202 		locked = INP_TRY_WLOCK(inp);
2203 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2204 		locked = INP_TRY_RLOCK(inp);
2205 	else
2206 		panic("%s: locking bug", __func__);
2207 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2208 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2209 			INP_WUNLOCK(inp);
2210 		else
2211 			INP_RUNLOCK(inp);
2212 		return (NULL);
2213 	} else if (!locked)
2214 		in_pcbref(inp);
2215 	INP_GROUP_UNLOCK(pcbgroup);
2216 	if (!locked) {
2217 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2218 			INP_WLOCK(inp);
2219 			if (in_pcbrele_wlocked(inp))
2220 				return (NULL);
2221 		} else {
2222 			INP_RLOCK(inp);
2223 			if (in_pcbrele_rlocked(inp))
2224 				return (NULL);
2225 		}
2226 	}
2227 #ifdef INVARIANTS
2228 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2229 		INP_WLOCK_ASSERT(inp);
2230 	else
2231 		INP_RLOCK_ASSERT(inp);
2232 #endif
2233 	return (inp);
2234 }
2235 #endif /* PCBGROUP */
2236 
2237 /*
2238  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2239  * that the caller has locked the hash list, and will not perform any further
2240  * locking or reference operations on either the hash list or the connection.
2241  */
2242 static struct inpcb *
2243 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2244     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2245     struct ifnet *ifp)
2246 {
2247 	struct inpcbhead *head;
2248 	struct inpcb *inp, *tmpinp;
2249 	u_short fport = fport_arg, lport = lport_arg;
2250 
2251 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2252 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2253 	INP_HASH_LOCK_ASSERT(pcbinfo);
2254 
2255 	/*
2256 	 * First look for an exact match.
2257 	 */
2258 	tmpinp = NULL;
2259 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2260 	    pcbinfo->ipi_hashmask)];
2261 	CK_LIST_FOREACH(inp, head, inp_hash) {
2262 #ifdef INET6
2263 		/* XXX inp locking */
2264 		if ((inp->inp_vflag & INP_IPV4) == 0)
2265 			continue;
2266 #endif
2267 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2268 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2269 		    inp->inp_fport == fport &&
2270 		    inp->inp_lport == lport) {
2271 			/*
2272 			 * XXX We should be able to directly return
2273 			 * the inp here, without any checks.
2274 			 * Well unless both bound with SO_REUSEPORT?
2275 			 */
2276 			if (prison_flag(inp->inp_cred, PR_IP4))
2277 				return (inp);
2278 			if (tmpinp == NULL)
2279 				tmpinp = inp;
2280 		}
2281 	}
2282 	if (tmpinp != NULL)
2283 		return (tmpinp);
2284 
2285 	/*
2286 	 * Then look in lb group (for wildcard match).
2287 	 */
2288 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2289 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2290 		    fport, lookupflags);
2291 		if (inp != NULL)
2292 			return (inp);
2293 	}
2294 
2295 	/*
2296 	 * Then look for a wildcard match, if requested.
2297 	 */
2298 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2299 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2300 #ifdef INET6
2301 		struct inpcb *local_wild_mapped = NULL;
2302 #endif
2303 		struct inpcb *jail_wild = NULL;
2304 		int injail;
2305 
2306 		/*
2307 		 * Order of socket selection - we always prefer jails.
2308 		 *      1. jailed, non-wild.
2309 		 *      2. jailed, wild.
2310 		 *      3. non-jailed, non-wild.
2311 		 *      4. non-jailed, wild.
2312 		 */
2313 
2314 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2315 		    0, pcbinfo->ipi_hashmask)];
2316 		CK_LIST_FOREACH(inp, head, inp_hash) {
2317 #ifdef INET6
2318 			/* XXX inp locking */
2319 			if ((inp->inp_vflag & INP_IPV4) == 0)
2320 				continue;
2321 #endif
2322 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2323 			    inp->inp_lport != lport)
2324 				continue;
2325 
2326 			injail = prison_flag(inp->inp_cred, PR_IP4);
2327 			if (injail) {
2328 				if (prison_check_ip4(inp->inp_cred,
2329 				    &laddr) != 0)
2330 					continue;
2331 			} else {
2332 				if (local_exact != NULL)
2333 					continue;
2334 			}
2335 
2336 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2337 				if (injail)
2338 					return (inp);
2339 				else
2340 					local_exact = inp;
2341 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2342 #ifdef INET6
2343 				/* XXX inp locking, NULL check */
2344 				if (inp->inp_vflag & INP_IPV6PROTO)
2345 					local_wild_mapped = inp;
2346 				else
2347 #endif
2348 					if (injail)
2349 						jail_wild = inp;
2350 					else
2351 						local_wild = inp;
2352 			}
2353 		} /* LIST_FOREACH */
2354 		if (jail_wild != NULL)
2355 			return (jail_wild);
2356 		if (local_exact != NULL)
2357 			return (local_exact);
2358 		if (local_wild != NULL)
2359 			return (local_wild);
2360 #ifdef INET6
2361 		if (local_wild_mapped != NULL)
2362 			return (local_wild_mapped);
2363 #endif
2364 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2365 
2366 	return (NULL);
2367 }
2368 
2369 /*
2370  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2371  * hash list lock, and will return the inpcb locked (i.e., requires
2372  * INPLOOKUP_LOCKPCB).
2373  */
2374 static struct inpcb *
2375 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2376     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2377     struct ifnet *ifp)
2378 {
2379 	struct inpcb *inp;
2380 
2381 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2382 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2383 	if (inp != NULL) {
2384 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2385 			INP_WLOCK(inp);
2386 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2387 				INP_WUNLOCK(inp);
2388 				inp = NULL;
2389 			}
2390 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2391 			INP_RLOCK(inp);
2392 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2393 				INP_RUNLOCK(inp);
2394 				inp = NULL;
2395 			}
2396 		} else
2397 			panic("%s: locking bug", __func__);
2398 #ifdef INVARIANTS
2399 		if (inp != NULL) {
2400 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2401 				INP_WLOCK_ASSERT(inp);
2402 			else
2403 				INP_RLOCK_ASSERT(inp);
2404 		}
2405 #endif
2406 	}
2407 
2408 	return (inp);
2409 }
2410 
2411 /*
2412  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2413  * from which a pre-calculated hash value may be extracted.
2414  *
2415  * Possibly more of this logic should be in in_pcbgroup.c.
2416  */
2417 struct inpcb *
2418 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2419     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2420 {
2421 #if defined(PCBGROUP) && !defined(RSS)
2422 	struct inpcbgroup *pcbgroup;
2423 #endif
2424 
2425 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2426 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2427 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2428 	    ("%s: LOCKPCB not set", __func__));
2429 
2430 	/*
2431 	 * When not using RSS, use connection groups in preference to the
2432 	 * reservation table when looking up 4-tuples.  When using RSS, just
2433 	 * use the reservation table, due to the cost of the Toeplitz hash
2434 	 * in software.
2435 	 *
2436 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2437 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2438 	 * in software.
2439 	 */
2440 #if defined(PCBGROUP) && !defined(RSS)
2441 	if (in_pcbgroup_enabled(pcbinfo)) {
2442 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2443 		    fport);
2444 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2445 		    laddr, lport, lookupflags, ifp));
2446 	}
2447 #endif
2448 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2449 	    lookupflags, ifp));
2450 }
2451 
2452 struct inpcb *
2453 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2454     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2455     struct ifnet *ifp, struct mbuf *m)
2456 {
2457 #ifdef PCBGROUP
2458 	struct inpcbgroup *pcbgroup;
2459 #endif
2460 
2461 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2462 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2463 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2464 	    ("%s: LOCKPCB not set", __func__));
2465 
2466 #ifdef PCBGROUP
2467 	/*
2468 	 * If we can use a hardware-generated hash to look up the connection
2469 	 * group, use that connection group to find the inpcb.  Otherwise
2470 	 * fall back on a software hash -- or the reservation table if we're
2471 	 * using RSS.
2472 	 *
2473 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2474 	 */
2475 	if (in_pcbgroup_enabled(pcbinfo) &&
2476 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2477 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2478 		    m->m_pkthdr.flowid);
2479 		if (pcbgroup != NULL)
2480 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2481 			    fport, laddr, lport, lookupflags, ifp));
2482 #ifndef RSS
2483 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2484 		    fport);
2485 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2486 		    laddr, lport, lookupflags, ifp));
2487 #endif
2488 	}
2489 #endif
2490 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2491 	    lookupflags, ifp));
2492 }
2493 #endif /* INET */
2494 
2495 /*
2496  * Insert PCB onto various hash lists.
2497  */
2498 static int
2499 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2500 {
2501 	struct inpcbhead *pcbhash;
2502 	struct inpcbporthead *pcbporthash;
2503 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2504 	struct inpcbport *phd;
2505 	u_int32_t hashkey_faddr;
2506 	int so_options;
2507 
2508 	INP_WLOCK_ASSERT(inp);
2509 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2510 
2511 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2512 	    ("in_pcbinshash: INP_INHASHLIST"));
2513 
2514 #ifdef INET6
2515 	if (inp->inp_vflag & INP_IPV6)
2516 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2517 	else
2518 #endif
2519 	hashkey_faddr = inp->inp_faddr.s_addr;
2520 
2521 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2522 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2523 
2524 	pcbporthash = &pcbinfo->ipi_porthashbase[
2525 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2526 
2527 	/*
2528 	 * Add entry to load balance group.
2529 	 * Only do this if SO_REUSEPORT_LB is set.
2530 	 */
2531 	so_options = inp_so_options(inp);
2532 	if (so_options & SO_REUSEPORT_LB) {
2533 		int ret = in_pcbinslbgrouphash(inp);
2534 		if (ret) {
2535 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2536 			return (ret);
2537 		}
2538 	}
2539 
2540 	/*
2541 	 * Go through port list and look for a head for this lport.
2542 	 */
2543 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2544 		if (phd->phd_port == inp->inp_lport)
2545 			break;
2546 	}
2547 	/*
2548 	 * If none exists, malloc one and tack it on.
2549 	 */
2550 	if (phd == NULL) {
2551 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2552 		if (phd == NULL) {
2553 			return (ENOBUFS); /* XXX */
2554 		}
2555 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2556 		phd->phd_port = inp->inp_lport;
2557 		CK_LIST_INIT(&phd->phd_pcblist);
2558 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2559 	}
2560 	inp->inp_phd = phd;
2561 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2562 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2563 	inp->inp_flags |= INP_INHASHLIST;
2564 #ifdef PCBGROUP
2565 	if (m != NULL) {
2566 		in_pcbgroup_update_mbuf(inp, m);
2567 	} else {
2568 		in_pcbgroup_update(inp);
2569 	}
2570 #endif
2571 	return (0);
2572 }
2573 
2574 int
2575 in_pcbinshash(struct inpcb *inp)
2576 {
2577 
2578 	return (in_pcbinshash_internal(inp, NULL));
2579 }
2580 
2581 int
2582 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2583 {
2584 
2585 	return (in_pcbinshash_internal(inp, m));
2586 }
2587 
2588 /*
2589  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2590  * changed. NOTE: This does not handle the case of the lport changing (the
2591  * hashed port list would have to be updated as well), so the lport must
2592  * not change after in_pcbinshash() has been called.
2593  */
2594 void
2595 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2596 {
2597 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2598 	struct inpcbhead *head;
2599 	u_int32_t hashkey_faddr;
2600 
2601 	INP_WLOCK_ASSERT(inp);
2602 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2603 
2604 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2605 	    ("in_pcbrehash: !INP_INHASHLIST"));
2606 
2607 #ifdef INET6
2608 	if (inp->inp_vflag & INP_IPV6)
2609 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2610 	else
2611 #endif
2612 	hashkey_faddr = inp->inp_faddr.s_addr;
2613 
2614 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2615 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2616 
2617 	CK_LIST_REMOVE(inp, inp_hash);
2618 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2619 
2620 #ifdef PCBGROUP
2621 	if (m != NULL)
2622 		in_pcbgroup_update_mbuf(inp, m);
2623 	else
2624 		in_pcbgroup_update(inp);
2625 #endif
2626 }
2627 
2628 void
2629 in_pcbrehash(struct inpcb *inp)
2630 {
2631 
2632 	in_pcbrehash_mbuf(inp, NULL);
2633 }
2634 
2635 /*
2636  * Remove PCB from various lists.
2637  */
2638 static void
2639 in_pcbremlists(struct inpcb *inp)
2640 {
2641 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2642 
2643 	INP_WLOCK_ASSERT(inp);
2644 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2645 
2646 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2647 	if (inp->inp_flags & INP_INHASHLIST) {
2648 		struct inpcbport *phd = inp->inp_phd;
2649 
2650 		INP_HASH_WLOCK(pcbinfo);
2651 
2652 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2653 		in_pcbremlbgrouphash(inp);
2654 
2655 		CK_LIST_REMOVE(inp, inp_hash);
2656 		CK_LIST_REMOVE(inp, inp_portlist);
2657 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2658 			CK_LIST_REMOVE(phd, phd_hash);
2659 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2660 		}
2661 		INP_HASH_WUNLOCK(pcbinfo);
2662 		inp->inp_flags &= ~INP_INHASHLIST;
2663 	}
2664 	CK_LIST_REMOVE(inp, inp_list);
2665 	pcbinfo->ipi_count--;
2666 #ifdef PCBGROUP
2667 	in_pcbgroup_remove(inp);
2668 #endif
2669 }
2670 
2671 /*
2672  * Check for alternatives when higher level complains
2673  * about service problems.  For now, invalidate cached
2674  * routing information.  If the route was created dynamically
2675  * (by a redirect), time to try a default gateway again.
2676  */
2677 void
2678 in_losing(struct inpcb *inp)
2679 {
2680 
2681 	RO_INVALIDATE_CACHE(&inp->inp_route);
2682 	return;
2683 }
2684 
2685 /*
2686  * A set label operation has occurred at the socket layer, propagate the
2687  * label change into the in_pcb for the socket.
2688  */
2689 void
2690 in_pcbsosetlabel(struct socket *so)
2691 {
2692 #ifdef MAC
2693 	struct inpcb *inp;
2694 
2695 	inp = sotoinpcb(so);
2696 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2697 
2698 	INP_WLOCK(inp);
2699 	SOCK_LOCK(so);
2700 	mac_inpcb_sosetlabel(so, inp);
2701 	SOCK_UNLOCK(so);
2702 	INP_WUNLOCK(inp);
2703 #endif
2704 }
2705 
2706 /*
2707  * ipport_tick runs once per second, determining if random port allocation
2708  * should be continued.  If more than ipport_randomcps ports have been
2709  * allocated in the last second, then we return to sequential port
2710  * allocation. We return to random allocation only once we drop below
2711  * ipport_randomcps for at least ipport_randomtime seconds.
2712  */
2713 static void
2714 ipport_tick(void *xtp)
2715 {
2716 	VNET_ITERATOR_DECL(vnet_iter);
2717 
2718 	VNET_LIST_RLOCK_NOSLEEP();
2719 	VNET_FOREACH(vnet_iter) {
2720 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2721 		if (V_ipport_tcpallocs <=
2722 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2723 			if (V_ipport_stoprandom > 0)
2724 				V_ipport_stoprandom--;
2725 		} else
2726 			V_ipport_stoprandom = V_ipport_randomtime;
2727 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2728 		CURVNET_RESTORE();
2729 	}
2730 	VNET_LIST_RUNLOCK_NOSLEEP();
2731 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2732 }
2733 
2734 static void
2735 ip_fini(void *xtp)
2736 {
2737 
2738 	callout_stop(&ipport_tick_callout);
2739 }
2740 
2741 /*
2742  * The ipport_callout should start running at about the time we attach the
2743  * inet or inet6 domains.
2744  */
2745 static void
2746 ipport_tick_init(const void *unused __unused)
2747 {
2748 
2749 	/* Start ipport_tick. */
2750 	callout_init(&ipport_tick_callout, 1);
2751 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2752 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2753 		SHUTDOWN_PRI_DEFAULT);
2754 }
2755 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2756     ipport_tick_init, NULL);
2757 
2758 void
2759 inp_wlock(struct inpcb *inp)
2760 {
2761 
2762 	INP_WLOCK(inp);
2763 }
2764 
2765 void
2766 inp_wunlock(struct inpcb *inp)
2767 {
2768 
2769 	INP_WUNLOCK(inp);
2770 }
2771 
2772 void
2773 inp_rlock(struct inpcb *inp)
2774 {
2775 
2776 	INP_RLOCK(inp);
2777 }
2778 
2779 void
2780 inp_runlock(struct inpcb *inp)
2781 {
2782 
2783 	INP_RUNLOCK(inp);
2784 }
2785 
2786 #ifdef INVARIANT_SUPPORT
2787 void
2788 inp_lock_assert(struct inpcb *inp)
2789 {
2790 
2791 	INP_WLOCK_ASSERT(inp);
2792 }
2793 
2794 void
2795 inp_unlock_assert(struct inpcb *inp)
2796 {
2797 
2798 	INP_UNLOCK_ASSERT(inp);
2799 }
2800 #endif
2801 
2802 void
2803 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2804 {
2805 	struct inpcb *inp;
2806 
2807 	INP_INFO_WLOCK(&V_tcbinfo);
2808 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2809 		INP_WLOCK(inp);
2810 		func(inp, arg);
2811 		INP_WUNLOCK(inp);
2812 	}
2813 	INP_INFO_WUNLOCK(&V_tcbinfo);
2814 }
2815 
2816 struct socket *
2817 inp_inpcbtosocket(struct inpcb *inp)
2818 {
2819 
2820 	INP_WLOCK_ASSERT(inp);
2821 	return (inp->inp_socket);
2822 }
2823 
2824 struct tcpcb *
2825 inp_inpcbtotcpcb(struct inpcb *inp)
2826 {
2827 
2828 	INP_WLOCK_ASSERT(inp);
2829 	return ((struct tcpcb *)inp->inp_ppcb);
2830 }
2831 
2832 int
2833 inp_ip_tos_get(const struct inpcb *inp)
2834 {
2835 
2836 	return (inp->inp_ip_tos);
2837 }
2838 
2839 void
2840 inp_ip_tos_set(struct inpcb *inp, int val)
2841 {
2842 
2843 	inp->inp_ip_tos = val;
2844 }
2845 
2846 void
2847 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2848     uint32_t *faddr, uint16_t *fp)
2849 {
2850 
2851 	INP_LOCK_ASSERT(inp);
2852 	*laddr = inp->inp_laddr.s_addr;
2853 	*faddr = inp->inp_faddr.s_addr;
2854 	*lp = inp->inp_lport;
2855 	*fp = inp->inp_fport;
2856 }
2857 
2858 struct inpcb *
2859 so_sotoinpcb(struct socket *so)
2860 {
2861 
2862 	return (sotoinpcb(so));
2863 }
2864 
2865 struct tcpcb *
2866 so_sototcpcb(struct socket *so)
2867 {
2868 
2869 	return (sototcpcb(so));
2870 }
2871 
2872 /*
2873  * Create an external-format (``xinpcb'') structure using the information in
2874  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2875  * reduce the spew of irrelevant information over this interface, to isolate
2876  * user code from changes in the kernel structure, and potentially to provide
2877  * information-hiding if we decide that some of this information should be
2878  * hidden from users.
2879  */
2880 void
2881 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2882 {
2883 
2884 	bzero(xi, sizeof(*xi));
2885 	xi->xi_len = sizeof(struct xinpcb);
2886 	if (inp->inp_socket)
2887 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2888 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2889 	xi->inp_gencnt = inp->inp_gencnt;
2890 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2891 	xi->inp_flow = inp->inp_flow;
2892 	xi->inp_flowid = inp->inp_flowid;
2893 	xi->inp_flowtype = inp->inp_flowtype;
2894 	xi->inp_flags = inp->inp_flags;
2895 	xi->inp_flags2 = inp->inp_flags2;
2896 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2897 	xi->in6p_cksum = inp->in6p_cksum;
2898 	xi->in6p_hops = inp->in6p_hops;
2899 	xi->inp_ip_tos = inp->inp_ip_tos;
2900 	xi->inp_vflag = inp->inp_vflag;
2901 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2902 	xi->inp_ip_p = inp->inp_ip_p;
2903 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2904 }
2905 
2906 #ifdef DDB
2907 static void
2908 db_print_indent(int indent)
2909 {
2910 	int i;
2911 
2912 	for (i = 0; i < indent; i++)
2913 		db_printf(" ");
2914 }
2915 
2916 static void
2917 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2918 {
2919 	char faddr_str[48], laddr_str[48];
2920 
2921 	db_print_indent(indent);
2922 	db_printf("%s at %p\n", name, inc);
2923 
2924 	indent += 2;
2925 
2926 #ifdef INET6
2927 	if (inc->inc_flags & INC_ISIPV6) {
2928 		/* IPv6. */
2929 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2930 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2931 	} else
2932 #endif
2933 	{
2934 		/* IPv4. */
2935 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2936 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2937 	}
2938 	db_print_indent(indent);
2939 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2940 	    ntohs(inc->inc_lport));
2941 	db_print_indent(indent);
2942 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2943 	    ntohs(inc->inc_fport));
2944 }
2945 
2946 static void
2947 db_print_inpflags(int inp_flags)
2948 {
2949 	int comma;
2950 
2951 	comma = 0;
2952 	if (inp_flags & INP_RECVOPTS) {
2953 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2954 		comma = 1;
2955 	}
2956 	if (inp_flags & INP_RECVRETOPTS) {
2957 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2958 		comma = 1;
2959 	}
2960 	if (inp_flags & INP_RECVDSTADDR) {
2961 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2962 		comma = 1;
2963 	}
2964 	if (inp_flags & INP_ORIGDSTADDR) {
2965 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2966 		comma = 1;
2967 	}
2968 	if (inp_flags & INP_HDRINCL) {
2969 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2970 		comma = 1;
2971 	}
2972 	if (inp_flags & INP_HIGHPORT) {
2973 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2974 		comma = 1;
2975 	}
2976 	if (inp_flags & INP_LOWPORT) {
2977 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2978 		comma = 1;
2979 	}
2980 	if (inp_flags & INP_ANONPORT) {
2981 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2982 		comma = 1;
2983 	}
2984 	if (inp_flags & INP_RECVIF) {
2985 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2986 		comma = 1;
2987 	}
2988 	if (inp_flags & INP_MTUDISC) {
2989 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2990 		comma = 1;
2991 	}
2992 	if (inp_flags & INP_RECVTTL) {
2993 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2994 		comma = 1;
2995 	}
2996 	if (inp_flags & INP_DONTFRAG) {
2997 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2998 		comma = 1;
2999 	}
3000 	if (inp_flags & INP_RECVTOS) {
3001 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3002 		comma = 1;
3003 	}
3004 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3005 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3006 		comma = 1;
3007 	}
3008 	if (inp_flags & IN6P_PKTINFO) {
3009 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3010 		comma = 1;
3011 	}
3012 	if (inp_flags & IN6P_HOPLIMIT) {
3013 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3014 		comma = 1;
3015 	}
3016 	if (inp_flags & IN6P_HOPOPTS) {
3017 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3018 		comma = 1;
3019 	}
3020 	if (inp_flags & IN6P_DSTOPTS) {
3021 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3022 		comma = 1;
3023 	}
3024 	if (inp_flags & IN6P_RTHDR) {
3025 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3026 		comma = 1;
3027 	}
3028 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3029 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3030 		comma = 1;
3031 	}
3032 	if (inp_flags & IN6P_TCLASS) {
3033 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3034 		comma = 1;
3035 	}
3036 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3037 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3038 		comma = 1;
3039 	}
3040 	if (inp_flags & INP_TIMEWAIT) {
3041 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3042 		comma  = 1;
3043 	}
3044 	if (inp_flags & INP_ONESBCAST) {
3045 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3046 		comma  = 1;
3047 	}
3048 	if (inp_flags & INP_DROPPED) {
3049 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3050 		comma  = 1;
3051 	}
3052 	if (inp_flags & INP_SOCKREF) {
3053 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3054 		comma  = 1;
3055 	}
3056 	if (inp_flags & IN6P_RFC2292) {
3057 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3058 		comma = 1;
3059 	}
3060 	if (inp_flags & IN6P_MTU) {
3061 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3062 		comma = 1;
3063 	}
3064 }
3065 
3066 static void
3067 db_print_inpvflag(u_char inp_vflag)
3068 {
3069 	int comma;
3070 
3071 	comma = 0;
3072 	if (inp_vflag & INP_IPV4) {
3073 		db_printf("%sINP_IPV4", comma ? ", " : "");
3074 		comma  = 1;
3075 	}
3076 	if (inp_vflag & INP_IPV6) {
3077 		db_printf("%sINP_IPV6", comma ? ", " : "");
3078 		comma  = 1;
3079 	}
3080 	if (inp_vflag & INP_IPV6PROTO) {
3081 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3082 		comma  = 1;
3083 	}
3084 }
3085 
3086 static void
3087 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3088 {
3089 
3090 	db_print_indent(indent);
3091 	db_printf("%s at %p\n", name, inp);
3092 
3093 	indent += 2;
3094 
3095 	db_print_indent(indent);
3096 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3097 
3098 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3099 
3100 	db_print_indent(indent);
3101 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3102 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3103 
3104 	db_print_indent(indent);
3105 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3106 	   inp->inp_label, inp->inp_flags);
3107 	db_print_inpflags(inp->inp_flags);
3108 	db_printf(")\n");
3109 
3110 	db_print_indent(indent);
3111 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3112 	    inp->inp_vflag);
3113 	db_print_inpvflag(inp->inp_vflag);
3114 	db_printf(")\n");
3115 
3116 	db_print_indent(indent);
3117 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3118 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3119 
3120 	db_print_indent(indent);
3121 #ifdef INET6
3122 	if (inp->inp_vflag & INP_IPV6) {
3123 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3124 		    "in6p_moptions: %p\n", inp->in6p_options,
3125 		    inp->in6p_outputopts, inp->in6p_moptions);
3126 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3127 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3128 		    inp->in6p_hops);
3129 	} else
3130 #endif
3131 	{
3132 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3133 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3134 		    inp->inp_options, inp->inp_moptions);
3135 	}
3136 
3137 	db_print_indent(indent);
3138 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3139 	    (uintmax_t)inp->inp_gencnt);
3140 }
3141 
3142 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3143 {
3144 	struct inpcb *inp;
3145 
3146 	if (!have_addr) {
3147 		db_printf("usage: show inpcb <addr>\n");
3148 		return;
3149 	}
3150 	inp = (struct inpcb *)addr;
3151 
3152 	db_print_inpcb(inp, "inpcb", 0);
3153 }
3154 #endif /* DDB */
3155 
3156 #ifdef RATELIMIT
3157 /*
3158  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3159  * if any.
3160  */
3161 int
3162 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3163 {
3164 	union if_snd_tag_modify_params params = {
3165 		.rate_limit.max_rate = max_pacing_rate,
3166 		.rate_limit.flags = M_NOWAIT,
3167 	};
3168 	struct m_snd_tag *mst;
3169 	struct ifnet *ifp;
3170 	int error;
3171 
3172 	mst = inp->inp_snd_tag;
3173 	if (mst == NULL)
3174 		return (EINVAL);
3175 
3176 	ifp = mst->ifp;
3177 	if (ifp == NULL)
3178 		return (EINVAL);
3179 
3180 	if (ifp->if_snd_tag_modify == NULL) {
3181 		error = EOPNOTSUPP;
3182 	} else {
3183 		error = ifp->if_snd_tag_modify(mst, &params);
3184 	}
3185 	return (error);
3186 }
3187 
3188 /*
3189  * Query existing TX rate limit based on the existing
3190  * "inp->inp_snd_tag", if any.
3191  */
3192 int
3193 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3194 {
3195 	union if_snd_tag_query_params params = { };
3196 	struct m_snd_tag *mst;
3197 	struct ifnet *ifp;
3198 	int error;
3199 
3200 	mst = inp->inp_snd_tag;
3201 	if (mst == NULL)
3202 		return (EINVAL);
3203 
3204 	ifp = mst->ifp;
3205 	if (ifp == NULL)
3206 		return (EINVAL);
3207 
3208 	if (ifp->if_snd_tag_query == NULL) {
3209 		error = EOPNOTSUPP;
3210 	} else {
3211 		error = ifp->if_snd_tag_query(mst, &params);
3212 		if (error == 0 &&  p_max_pacing_rate != NULL)
3213 			*p_max_pacing_rate = params.rate_limit.max_rate;
3214 	}
3215 	return (error);
3216 }
3217 
3218 /*
3219  * Query existing TX queue level based on the existing
3220  * "inp->inp_snd_tag", if any.
3221  */
3222 int
3223 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3224 {
3225 	union if_snd_tag_query_params params = { };
3226 	struct m_snd_tag *mst;
3227 	struct ifnet *ifp;
3228 	int error;
3229 
3230 	mst = inp->inp_snd_tag;
3231 	if (mst == NULL)
3232 		return (EINVAL);
3233 
3234 	ifp = mst->ifp;
3235 	if (ifp == NULL)
3236 		return (EINVAL);
3237 
3238 	if (ifp->if_snd_tag_query == NULL)
3239 		return (EOPNOTSUPP);
3240 
3241 	error = ifp->if_snd_tag_query(mst, &params);
3242 	if (error == 0 &&  p_txqueue_level != NULL)
3243 		*p_txqueue_level = params.rate_limit.queue_level;
3244 	return (error);
3245 }
3246 
3247 /*
3248  * Allocate a new TX rate limit send tag from the network interface
3249  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3250  */
3251 int
3252 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3253     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3254 
3255 {
3256 	union if_snd_tag_alloc_params params = {
3257 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3258 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3259 		.rate_limit.hdr.flowid = flowid,
3260 		.rate_limit.hdr.flowtype = flowtype,
3261 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3262 		.rate_limit.max_rate = max_pacing_rate,
3263 		.rate_limit.flags = M_NOWAIT,
3264 	};
3265 	int error;
3266 
3267 	INP_WLOCK_ASSERT(inp);
3268 
3269 	if (*st != NULL)
3270 		return (EINVAL);
3271 
3272 	if (ifp->if_snd_tag_alloc == NULL) {
3273 		error = EOPNOTSUPP;
3274 	} else {
3275 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3276 
3277 #ifdef INET
3278 		if (error == 0) {
3279 			counter_u64_add(rate_limit_set_ok, 1);
3280 			counter_u64_add(rate_limit_active, 1);
3281 		} else
3282 			counter_u64_add(rate_limit_alloc_fail, 1);
3283 #endif
3284 	}
3285 	return (error);
3286 }
3287 
3288 void
3289 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst)
3290 {
3291 	if (ifp == NULL)
3292 		return;
3293 
3294 	/*
3295 	 * If the device was detached while we still had reference(s)
3296 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3297 	 * stubs.
3298 	 */
3299 	ifp->if_snd_tag_free(mst);
3300 
3301 	/* release reference count on network interface */
3302 	if_rele(ifp);
3303 #ifdef INET
3304 	counter_u64_add(rate_limit_active, -1);
3305 #endif
3306 }
3307 
3308 /*
3309  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3310  * if any:
3311  */
3312 void
3313 in_pcbdetach_txrtlmt(struct inpcb *inp)
3314 {
3315 	struct m_snd_tag *mst;
3316 
3317 	INP_WLOCK_ASSERT(inp);
3318 
3319 	mst = inp->inp_snd_tag;
3320 	inp->inp_snd_tag = NULL;
3321 
3322 	if (mst == NULL)
3323 		return;
3324 
3325 	m_snd_tag_rele(mst);
3326 }
3327 
3328 int
3329 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3330 {
3331 	int error;
3332 
3333 	/*
3334 	 * If the existing send tag is for the wrong interface due to
3335 	 * a route change, first drop the existing tag.  Set the
3336 	 * CHANGED flag so that we will keep trying to allocate a new
3337 	 * tag if we fail to allocate one this time.
3338 	 */
3339 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3340 		in_pcbdetach_txrtlmt(inp);
3341 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3342 	}
3343 
3344 	/*
3345 	 * NOTE: When attaching to a network interface a reference is
3346 	 * made to ensure the network interface doesn't go away until
3347 	 * all ratelimit connections are gone. The network interface
3348 	 * pointers compared below represent valid network interfaces,
3349 	 * except when comparing towards NULL.
3350 	 */
3351 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3352 		error = 0;
3353 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3354 		if (inp->inp_snd_tag != NULL)
3355 			in_pcbdetach_txrtlmt(inp);
3356 		error = 0;
3357 	} else if (inp->inp_snd_tag == NULL) {
3358 		/*
3359 		 * In order to utilize packet pacing with RSS, we need
3360 		 * to wait until there is a valid RSS hash before we
3361 		 * can proceed:
3362 		 */
3363 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3364 			error = EAGAIN;
3365 		} else {
3366 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3367 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3368 		}
3369 	} else {
3370 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3371 	}
3372 	if (error == 0 || error == EOPNOTSUPP)
3373 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3374 
3375 	return (error);
3376 }
3377 
3378 /*
3379  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3380  * is set in the fast path and will attach/detach/modify the TX rate
3381  * limit send tag based on the socket's so_max_pacing_rate value.
3382  */
3383 void
3384 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3385 {
3386 	struct socket *socket;
3387 	uint32_t max_pacing_rate;
3388 	bool did_upgrade;
3389 	int error;
3390 
3391 	if (inp == NULL)
3392 		return;
3393 
3394 	socket = inp->inp_socket;
3395 	if (socket == NULL)
3396 		return;
3397 
3398 	if (!INP_WLOCKED(inp)) {
3399 		/*
3400 		 * NOTE: If the write locking fails, we need to bail
3401 		 * out and use the non-ratelimited ring for the
3402 		 * transmit until there is a new chance to get the
3403 		 * write lock.
3404 		 */
3405 		if (!INP_TRY_UPGRADE(inp))
3406 			return;
3407 		did_upgrade = 1;
3408 	} else {
3409 		did_upgrade = 0;
3410 	}
3411 
3412 	/*
3413 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3414 	 * because atomic updates are not required since the variable
3415 	 * is checked at every mbuf we send. It is assumed that the
3416 	 * variable read itself will be atomic.
3417 	 */
3418 	max_pacing_rate = socket->so_max_pacing_rate;
3419 
3420 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3421 
3422 	if (did_upgrade)
3423 		INP_DOWNGRADE(inp);
3424 }
3425 
3426 /*
3427  * Track route changes for TX rate limiting.
3428  */
3429 void
3430 in_pcboutput_eagain(struct inpcb *inp)
3431 {
3432 	bool did_upgrade;
3433 
3434 	if (inp == NULL)
3435 		return;
3436 
3437 	if (inp->inp_snd_tag == NULL)
3438 		return;
3439 
3440 	if (!INP_WLOCKED(inp)) {
3441 		/*
3442 		 * NOTE: If the write locking fails, we need to bail
3443 		 * out and use the non-ratelimited ring for the
3444 		 * transmit until there is a new chance to get the
3445 		 * write lock.
3446 		 */
3447 		if (!INP_TRY_UPGRADE(inp))
3448 			return;
3449 		did_upgrade = 1;
3450 	} else {
3451 		did_upgrade = 0;
3452 	}
3453 
3454 	/* detach rate limiting */
3455 	in_pcbdetach_txrtlmt(inp);
3456 
3457 	/* make sure new mbuf send tag allocation is made */
3458 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3459 
3460 	if (did_upgrade)
3461 		INP_DOWNGRADE(inp);
3462 }
3463 
3464 #ifdef INET
3465 static void
3466 rl_init(void *st)
3467 {
3468 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3469 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3470 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3471 }
3472 
3473 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3474 #endif
3475 #endif /* RATELIMIT */
3476