xref: /freebsd/sys/netinet/in_pcb.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #ifdef INET
90 #include <netinet/in_var.h>
91 #include <netinet/in_fib.h>
92 #endif
93 #include <netinet/ip_var.h>
94 #include <netinet/tcp_var.h>
95 #ifdef TCPHPTS
96 #include <netinet/tcp_hpts.h>
97 #endif
98 #include <netinet/udp.h>
99 #include <netinet/udp_var.h>
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 #include <net/route/nhop.h>
107 #endif
108 
109 #include <netipsec/ipsec_support.h>
110 
111 #include <security/mac/mac_framework.h>
112 
113 #define	INPCBLBGROUP_SIZMIN	8
114 #define	INPCBLBGROUP_SIZMAX	256
115 
116 static struct callout	ipport_tick_callout;
117 
118 /*
119  * These configure the range of local port addresses assigned to
120  * "unspecified" outgoing connections/packets/whatever.
121  */
122 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
123 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
124 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
125 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
126 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
127 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
128 
129 /*
130  * Reserved ports accessible only to root. There are significant
131  * security considerations that must be accounted for when changing these,
132  * but the security benefits can be great. Please be careful.
133  */
134 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
135 VNET_DEFINE(int, ipport_reservedlow);
136 
137 /* Variables dealing with random ephemeral port allocation. */
138 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
140 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
141 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
142 VNET_DEFINE(int, ipport_tcpallocs);
143 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
144 
145 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
146 
147 static void	in_pcbremlists(struct inpcb *inp);
148 #ifdef INET
149 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
150 			    struct in_addr faddr, u_int fport_arg,
151 			    struct in_addr laddr, u_int lport_arg,
152 			    int lookupflags, struct ifnet *ifp);
153 
154 #define RANGECHK(var, min, max) \
155 	if ((var) < (min)) { (var) = (min); } \
156 	else if ((var) > (max)) { (var) = (max); }
157 
158 static int
159 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
160 {
161 	int error;
162 
163 	error = sysctl_handle_int(oidp, arg1, arg2, req);
164 	if (error == 0) {
165 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
166 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
167 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
169 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
170 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
171 	}
172 	return (error);
173 }
174 
175 #undef RANGECHK
176 
177 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
178     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
179     "IP Ports");
180 
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
182     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
183     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
184     "");
185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
186     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
187     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
188     "");
189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
190     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
191     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
192     "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
194     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
195     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
196     "");
197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
198     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
199     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
200     "");
201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
202     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
203     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
204     "");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
206 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
207 	&VNET_NAME(ipport_reservedhigh), 0, "");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
209 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
210 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
211 	CTLFLAG_VNET | CTLFLAG_RW,
212 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
213 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
214 	CTLFLAG_VNET | CTLFLAG_RW,
215 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
216 	"allocations before switching to a sequental one");
217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
218 	CTLFLAG_VNET | CTLFLAG_RW,
219 	&VNET_NAME(ipport_randomtime), 0,
220 	"Minimum time to keep sequental port "
221 	"allocation before switching to a random one");
222 
223 #ifdef RATELIMIT
224 counter_u64_t rate_limit_active;
225 counter_u64_t rate_limit_alloc_fail;
226 counter_u64_t rate_limit_set_ok;
227 
228 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
229     "IP Rate Limiting");
230 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
231     &rate_limit_active, "Active rate limited connections");
232 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
233    &rate_limit_alloc_fail, "Rate limited connection failures");
234 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
235    &rate_limit_set_ok, "Rate limited setting succeeded");
236 #endif /* RATELIMIT */
237 
238 #endif /* INET */
239 
240 /*
241  * in_pcb.c: manage the Protocol Control Blocks.
242  *
243  * NOTE: It is assumed that most of these functions will be called with
244  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
245  * functions often modify hash chains or addresses in pcbs.
246  */
247 
248 static struct inpcblbgroup *
249 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
250     uint16_t port, const union in_dependaddr *addr, int size)
251 {
252 	struct inpcblbgroup *grp;
253 	size_t bytes;
254 
255 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
256 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
257 	if (!grp)
258 		return (NULL);
259 	grp->il_vflag = vflag;
260 	grp->il_lport = port;
261 	grp->il_dependladdr = *addr;
262 	grp->il_inpsiz = size;
263 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
264 	return (grp);
265 }
266 
267 static void
268 in_pcblbgroup_free_deferred(epoch_context_t ctx)
269 {
270 	struct inpcblbgroup *grp;
271 
272 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
273 	free(grp, M_PCB);
274 }
275 
276 static void
277 in_pcblbgroup_free(struct inpcblbgroup *grp)
278 {
279 
280 	CK_LIST_REMOVE(grp, il_list);
281 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
282 }
283 
284 static struct inpcblbgroup *
285 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
286     struct inpcblbgroup *old_grp, int size)
287 {
288 	struct inpcblbgroup *grp;
289 	int i;
290 
291 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
292 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
293 	if (grp == NULL)
294 		return (NULL);
295 
296 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
297 	    ("invalid new local group size %d and old local group count %d",
298 	     grp->il_inpsiz, old_grp->il_inpcnt));
299 
300 	for (i = 0; i < old_grp->il_inpcnt; ++i)
301 		grp->il_inp[i] = old_grp->il_inp[i];
302 	grp->il_inpcnt = old_grp->il_inpcnt;
303 	in_pcblbgroup_free(old_grp);
304 	return (grp);
305 }
306 
307 /*
308  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
309  * and shrink group if possible.
310  */
311 static void
312 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
313     int i)
314 {
315 	struct inpcblbgroup *grp, *new_grp;
316 
317 	grp = *grpp;
318 	for (; i + 1 < grp->il_inpcnt; ++i)
319 		grp->il_inp[i] = grp->il_inp[i + 1];
320 	grp->il_inpcnt--;
321 
322 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
323 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
324 		/* Shrink this group. */
325 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
326 		if (new_grp != NULL)
327 			*grpp = new_grp;
328 	}
329 }
330 
331 /*
332  * Add PCB to load balance group for SO_REUSEPORT_LB option.
333  */
334 static int
335 in_pcbinslbgrouphash(struct inpcb *inp)
336 {
337 	const static struct timeval interval = { 60, 0 };
338 	static struct timeval lastprint;
339 	struct inpcbinfo *pcbinfo;
340 	struct inpcblbgrouphead *hdr;
341 	struct inpcblbgroup *grp;
342 	uint32_t idx;
343 
344 	pcbinfo = inp->inp_pcbinfo;
345 
346 	INP_WLOCK_ASSERT(inp);
347 	INP_HASH_WLOCK_ASSERT(pcbinfo);
348 
349 	/*
350 	 * Don't allow jailed socket to join local group.
351 	 */
352 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
353 		return (0);
354 
355 #ifdef INET6
356 	/*
357 	 * Don't allow IPv4 mapped INET6 wild socket.
358 	 */
359 	if ((inp->inp_vflag & INP_IPV4) &&
360 	    inp->inp_laddr.s_addr == INADDR_ANY &&
361 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
362 		return (0);
363 	}
364 #endif
365 
366 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
367 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
368 	CK_LIST_FOREACH(grp, hdr, il_list) {
369 		if (grp->il_vflag == inp->inp_vflag &&
370 		    grp->il_lport == inp->inp_lport &&
371 		    memcmp(&grp->il_dependladdr,
372 		    &inp->inp_inc.inc_ie.ie_dependladdr,
373 		    sizeof(grp->il_dependladdr)) == 0)
374 			break;
375 	}
376 	if (grp == NULL) {
377 		/* Create new load balance group. */
378 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
379 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
380 		    INPCBLBGROUP_SIZMIN);
381 		if (grp == NULL)
382 			return (ENOBUFS);
383 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
384 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
385 			if (ratecheck(&lastprint, &interval))
386 				printf("lb group port %d, limit reached\n",
387 				    ntohs(grp->il_lport));
388 			return (0);
389 		}
390 
391 		/* Expand this local group. */
392 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
393 		if (grp == NULL)
394 			return (ENOBUFS);
395 	}
396 
397 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
398 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
399 	    grp->il_inpcnt));
400 
401 	grp->il_inp[grp->il_inpcnt] = inp;
402 	grp->il_inpcnt++;
403 	return (0);
404 }
405 
406 /*
407  * Remove PCB from load balance group.
408  */
409 static void
410 in_pcbremlbgrouphash(struct inpcb *inp)
411 {
412 	struct inpcbinfo *pcbinfo;
413 	struct inpcblbgrouphead *hdr;
414 	struct inpcblbgroup *grp;
415 	int i;
416 
417 	pcbinfo = inp->inp_pcbinfo;
418 
419 	INP_WLOCK_ASSERT(inp);
420 	INP_HASH_WLOCK_ASSERT(pcbinfo);
421 
422 	hdr = &pcbinfo->ipi_lbgrouphashbase[
423 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
424 	CK_LIST_FOREACH(grp, hdr, il_list) {
425 		for (i = 0; i < grp->il_inpcnt; ++i) {
426 			if (grp->il_inp[i] != inp)
427 				continue;
428 
429 			if (grp->il_inpcnt == 1) {
430 				/* We are the last, free this local group. */
431 				in_pcblbgroup_free(grp);
432 			} else {
433 				/* Pull up inpcbs, shrink group if possible. */
434 				in_pcblbgroup_reorder(hdr, &grp, i);
435 			}
436 			return;
437 		}
438 	}
439 }
440 
441 /*
442  * Different protocols initialize their inpcbs differently - giving
443  * different name to the lock.  But they all are disposed the same.
444  */
445 static void
446 inpcb_fini(void *mem, int size)
447 {
448 	struct inpcb *inp = mem;
449 
450 	INP_LOCK_DESTROY(inp);
451 }
452 
453 /*
454  * Initialize an inpcbinfo -- we should be able to reduce the number of
455  * arguments in time.
456  */
457 void
458 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
459     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
460     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
461 {
462 
463 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
464 
465 	INP_INFO_LOCK_INIT(pcbinfo, name);
466 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
467 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
468 #ifdef VIMAGE
469 	pcbinfo->ipi_vnet = curvnet;
470 #endif
471 	pcbinfo->ipi_listhead = listhead;
472 	CK_LIST_INIT(pcbinfo->ipi_listhead);
473 	pcbinfo->ipi_count = 0;
474 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
475 	    &pcbinfo->ipi_hashmask);
476 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
477 	    &pcbinfo->ipi_porthashmask);
478 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
479 	    &pcbinfo->ipi_lbgrouphashmask);
480 #ifdef PCBGROUP
481 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
482 #endif
483 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
484 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
485 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
486 	uma_zone_set_warning(pcbinfo->ipi_zone,
487 	    "kern.ipc.maxsockets limit reached");
488 }
489 
490 /*
491  * Destroy an inpcbinfo.
492  */
493 void
494 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
495 {
496 
497 	KASSERT(pcbinfo->ipi_count == 0,
498 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
499 
500 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
501 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
502 	    pcbinfo->ipi_porthashmask);
503 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
504 	    pcbinfo->ipi_lbgrouphashmask);
505 #ifdef PCBGROUP
506 	in_pcbgroup_destroy(pcbinfo);
507 #endif
508 	uma_zdestroy(pcbinfo->ipi_zone);
509 	INP_LIST_LOCK_DESTROY(pcbinfo);
510 	INP_HASH_LOCK_DESTROY(pcbinfo);
511 	INP_INFO_LOCK_DESTROY(pcbinfo);
512 }
513 
514 /*
515  * Allocate a PCB and associate it with the socket.
516  * On success return with the PCB locked.
517  */
518 int
519 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
520 {
521 	struct inpcb *inp;
522 	int error;
523 
524 	error = 0;
525 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
526 	if (inp == NULL)
527 		return (ENOBUFS);
528 	bzero(&inp->inp_start_zero, inp_zero_size);
529 #ifdef NUMA
530 	inp->inp_numa_domain = M_NODOM;
531 #endif
532 	inp->inp_pcbinfo = pcbinfo;
533 	inp->inp_socket = so;
534 	inp->inp_cred = crhold(so->so_cred);
535 	inp->inp_inc.inc_fibnum = so->so_fibnum;
536 #ifdef MAC
537 	error = mac_inpcb_init(inp, M_NOWAIT);
538 	if (error != 0)
539 		goto out;
540 	mac_inpcb_create(so, inp);
541 #endif
542 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
543 	error = ipsec_init_pcbpolicy(inp);
544 	if (error != 0) {
545 #ifdef MAC
546 		mac_inpcb_destroy(inp);
547 #endif
548 		goto out;
549 	}
550 #endif /*IPSEC*/
551 #ifdef INET6
552 	if (INP_SOCKAF(so) == AF_INET6) {
553 		inp->inp_vflag |= INP_IPV6PROTO;
554 		if (V_ip6_v6only)
555 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
556 	}
557 #endif
558 	INP_WLOCK(inp);
559 	INP_LIST_WLOCK(pcbinfo);
560 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
561 	pcbinfo->ipi_count++;
562 	so->so_pcb = (caddr_t)inp;
563 #ifdef INET6
564 	if (V_ip6_auto_flowlabel)
565 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
566 #endif
567 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
568 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
569 
570 	/*
571 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
572 	 * to be cleaned up.
573 	 */
574 	inp->inp_route.ro_flags = RT_LLE_CACHE;
575 	INP_LIST_WUNLOCK(pcbinfo);
576 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
577 out:
578 	if (error != 0) {
579 		crfree(inp->inp_cred);
580 		uma_zfree(pcbinfo->ipi_zone, inp);
581 	}
582 #endif
583 	return (error);
584 }
585 
586 #ifdef INET
587 int
588 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
589 {
590 	int anonport, error;
591 
592 	INP_WLOCK_ASSERT(inp);
593 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
594 
595 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
596 		return (EINVAL);
597 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
598 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
599 	    &inp->inp_lport, cred);
600 	if (error)
601 		return (error);
602 	if (in_pcbinshash(inp) != 0) {
603 		inp->inp_laddr.s_addr = INADDR_ANY;
604 		inp->inp_lport = 0;
605 		return (EAGAIN);
606 	}
607 	if (anonport)
608 		inp->inp_flags |= INP_ANONPORT;
609 	return (0);
610 }
611 #endif
612 
613 #if defined(INET) || defined(INET6)
614 /*
615  * Assign a local port like in_pcb_lport(), but also used with connect()
616  * and a foreign address and port.  If fsa is non-NULL, choose a local port
617  * that is unused with those, otherwise one that is completely unused.
618  * lsa can be NULL for IPv6.
619  */
620 int
621 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
622     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
623 {
624 	struct inpcbinfo *pcbinfo;
625 	struct inpcb *tmpinp;
626 	unsigned short *lastport;
627 	int count, dorandom, error;
628 	u_short aux, first, last, lport;
629 #ifdef INET
630 	struct in_addr laddr, faddr;
631 #endif
632 #ifdef INET6
633 	struct in6_addr *laddr6, *faddr6;
634 #endif
635 
636 	pcbinfo = inp->inp_pcbinfo;
637 
638 	/*
639 	 * Because no actual state changes occur here, a global write lock on
640 	 * the pcbinfo isn't required.
641 	 */
642 	INP_LOCK_ASSERT(inp);
643 	INP_HASH_LOCK_ASSERT(pcbinfo);
644 
645 	if (inp->inp_flags & INP_HIGHPORT) {
646 		first = V_ipport_hifirstauto;	/* sysctl */
647 		last  = V_ipport_hilastauto;
648 		lastport = &pcbinfo->ipi_lasthi;
649 	} else if (inp->inp_flags & INP_LOWPORT) {
650 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
651 		if (error)
652 			return (error);
653 		first = V_ipport_lowfirstauto;	/* 1023 */
654 		last  = V_ipport_lowlastauto;	/* 600 */
655 		lastport = &pcbinfo->ipi_lastlow;
656 	} else {
657 		first = V_ipport_firstauto;	/* sysctl */
658 		last  = V_ipport_lastauto;
659 		lastport = &pcbinfo->ipi_lastport;
660 	}
661 	/*
662 	 * For UDP(-Lite), use random port allocation as long as the user
663 	 * allows it.  For TCP (and as of yet unknown) connections,
664 	 * use random port allocation only if the user allows it AND
665 	 * ipport_tick() allows it.
666 	 */
667 	if (V_ipport_randomized &&
668 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
669 		pcbinfo == &V_ulitecbinfo))
670 		dorandom = 1;
671 	else
672 		dorandom = 0;
673 	/*
674 	 * It makes no sense to do random port allocation if
675 	 * we have the only port available.
676 	 */
677 	if (first == last)
678 		dorandom = 0;
679 	/* Make sure to not include UDP(-Lite) packets in the count. */
680 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
681 		V_ipport_tcpallocs++;
682 	/*
683 	 * Instead of having two loops further down counting up or down
684 	 * make sure that first is always <= last and go with only one
685 	 * code path implementing all logic.
686 	 */
687 	if (first > last) {
688 		aux = first;
689 		first = last;
690 		last = aux;
691 	}
692 
693 #ifdef INET
694 	laddr.s_addr = INADDR_ANY;
695 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
696 		if (lsa != NULL)
697 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
698 		if (fsa != NULL)
699 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
700 	}
701 #endif
702 #ifdef INET6
703 	laddr6 = NULL;
704 	if ((inp->inp_vflag & INP_IPV6) != 0) {
705 		if (lsa != NULL)
706 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
707 		if (fsa != NULL)
708 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
709 	}
710 #endif
711 
712 	tmpinp = NULL;
713 	lport = *lportp;
714 
715 	if (dorandom)
716 		*lastport = first + (arc4random() % (last - first));
717 
718 	count = last - first;
719 
720 	do {
721 		if (count-- < 0)	/* completely used? */
722 			return (EADDRNOTAVAIL);
723 		++*lastport;
724 		if (*lastport < first || *lastport > last)
725 			*lastport = first;
726 		lport = htons(*lastport);
727 
728 		if (fsa != NULL) {
729 
730 #ifdef INET
731 			if (lsa->sa_family == AF_INET) {
732 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
733 				    faddr, fport, laddr, lport, lookupflags,
734 				    NULL);
735 			}
736 #endif
737 #ifdef INET6
738 			if (lsa->sa_family == AF_INET6) {
739 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
740 				    faddr6, fport, laddr6, lport, lookupflags,
741 				    NULL);
742 			}
743 #endif
744 		} else {
745 #ifdef INET6
746 			if ((inp->inp_vflag & INP_IPV6) != 0)
747 				tmpinp = in6_pcblookup_local(pcbinfo,
748 				    &inp->in6p_laddr, lport, lookupflags, cred);
749 #endif
750 #if defined(INET) && defined(INET6)
751 			else
752 #endif
753 #ifdef INET
754 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
755 				    lport, lookupflags, cred);
756 #endif
757 		}
758 	} while (tmpinp != NULL);
759 
760 	*lportp = lport;
761 
762 	return (0);
763 }
764 
765 /*
766  * Select a local port (number) to use.
767  */
768 int
769 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
770     struct ucred *cred, int lookupflags)
771 {
772 	struct sockaddr_in laddr;
773 
774 	if (laddrp) {
775 		bzero(&laddr, sizeof(laddr));
776 		laddr.sin_family = AF_INET;
777 		laddr.sin_addr = *laddrp;
778 	}
779 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
780 	    NULL, lportp, NULL, 0, cred, lookupflags));
781 }
782 
783 /*
784  * Return cached socket options.
785  */
786 int
787 inp_so_options(const struct inpcb *inp)
788 {
789 	int so_options;
790 
791 	so_options = 0;
792 
793 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
794 		so_options |= SO_REUSEPORT_LB;
795 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
796 		so_options |= SO_REUSEPORT;
797 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
798 		so_options |= SO_REUSEADDR;
799 	return (so_options);
800 }
801 #endif /* INET || INET6 */
802 
803 /*
804  * Check if a new BINDMULTI socket is allowed to be created.
805  *
806  * ni points to the new inp.
807  * oi points to the exisitng inp.
808  *
809  * This checks whether the existing inp also has BINDMULTI and
810  * whether the credentials match.
811  */
812 int
813 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
814 {
815 	/* Check permissions match */
816 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
817 	    (ni->inp_cred->cr_uid !=
818 	    oi->inp_cred->cr_uid))
819 		return (0);
820 
821 	/* Check the existing inp has BINDMULTI set */
822 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
823 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
824 		return (0);
825 
826 	/*
827 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
828 	 * it is and it matches the checks.
829 	 */
830 	return (1);
831 }
832 
833 #ifdef INET
834 /*
835  * Set up a bind operation on a PCB, performing port allocation
836  * as required, but do not actually modify the PCB. Callers can
837  * either complete the bind by setting inp_laddr/inp_lport and
838  * calling in_pcbinshash(), or they can just use the resulting
839  * port and address to authorise the sending of a once-off packet.
840  *
841  * On error, the values of *laddrp and *lportp are not changed.
842  */
843 int
844 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
845     u_short *lportp, struct ucred *cred)
846 {
847 	struct socket *so = inp->inp_socket;
848 	struct sockaddr_in *sin;
849 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
850 	struct in_addr laddr;
851 	u_short lport = 0;
852 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
853 	int error;
854 
855 	/*
856 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
857 	 * so that we don't have to add to the (already messy) code below.
858 	 */
859 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
860 
861 	/*
862 	 * No state changes, so read locks are sufficient here.
863 	 */
864 	INP_LOCK_ASSERT(inp);
865 	INP_HASH_LOCK_ASSERT(pcbinfo);
866 
867 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
868 		return (EADDRNOTAVAIL);
869 	laddr.s_addr = *laddrp;
870 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
871 		return (EINVAL);
872 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
873 		lookupflags = INPLOOKUP_WILDCARD;
874 	if (nam == NULL) {
875 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
876 			return (error);
877 	} else {
878 		sin = (struct sockaddr_in *)nam;
879 		if (nam->sa_len != sizeof (*sin))
880 			return (EINVAL);
881 #ifdef notdef
882 		/*
883 		 * We should check the family, but old programs
884 		 * incorrectly fail to initialize it.
885 		 */
886 		if (sin->sin_family != AF_INET)
887 			return (EAFNOSUPPORT);
888 #endif
889 		error = prison_local_ip4(cred, &sin->sin_addr);
890 		if (error)
891 			return (error);
892 		if (sin->sin_port != *lportp) {
893 			/* Don't allow the port to change. */
894 			if (*lportp != 0)
895 				return (EINVAL);
896 			lport = sin->sin_port;
897 		}
898 		/* NB: lport is left as 0 if the port isn't being changed. */
899 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
900 			/*
901 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
902 			 * allow complete duplication of binding if
903 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
904 			 * and a multicast address is bound on both
905 			 * new and duplicated sockets.
906 			 */
907 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
908 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
909 			/*
910 			 * XXX: How to deal with SO_REUSEPORT_LB here?
911 			 * Treat same as SO_REUSEPORT for now.
912 			 */
913 			if ((so->so_options &
914 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
915 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
916 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
917 			sin->sin_port = 0;		/* yech... */
918 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
919 			/*
920 			 * Is the address a local IP address?
921 			 * If INP_BINDANY is set, then the socket may be bound
922 			 * to any endpoint address, local or not.
923 			 */
924 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
925 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
926 				return (EADDRNOTAVAIL);
927 		}
928 		laddr = sin->sin_addr;
929 		if (lport) {
930 			struct inpcb *t;
931 			struct tcptw *tw;
932 
933 			/* GROSS */
934 			if (ntohs(lport) <= V_ipport_reservedhigh &&
935 			    ntohs(lport) >= V_ipport_reservedlow &&
936 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
937 				return (EACCES);
938 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
939 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
940 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
941 				    lport, INPLOOKUP_WILDCARD, cred);
942 	/*
943 	 * XXX
944 	 * This entire block sorely needs a rewrite.
945 	 */
946 				if (t &&
947 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
948 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
949 				    (so->so_type != SOCK_STREAM ||
950 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
951 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
952 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
953 				     (t->inp_flags2 & INP_REUSEPORT) ||
954 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
955 				    (inp->inp_cred->cr_uid !=
956 				     t->inp_cred->cr_uid))
957 					return (EADDRINUSE);
958 
959 				/*
960 				 * If the socket is a BINDMULTI socket, then
961 				 * the credentials need to match and the
962 				 * original socket also has to have been bound
963 				 * with BINDMULTI.
964 				 */
965 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
966 					return (EADDRINUSE);
967 			}
968 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
969 			    lport, lookupflags, cred);
970 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
971 				/*
972 				 * XXXRW: If an incpb has had its timewait
973 				 * state recycled, we treat the address as
974 				 * being in use (for now).  This is better
975 				 * than a panic, but not desirable.
976 				 */
977 				tw = intotw(t);
978 				if (tw == NULL ||
979 				    ((reuseport & tw->tw_so_options) == 0 &&
980 					(reuseport_lb &
981 				            tw->tw_so_options) == 0)) {
982 					return (EADDRINUSE);
983 				}
984 			} else if (t &&
985 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
986 				   (reuseport & inp_so_options(t)) == 0 &&
987 				   (reuseport_lb & inp_so_options(t)) == 0) {
988 #ifdef INET6
989 				if (ntohl(sin->sin_addr.s_addr) !=
990 				    INADDR_ANY ||
991 				    ntohl(t->inp_laddr.s_addr) !=
992 				    INADDR_ANY ||
993 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
994 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
995 #endif
996 						return (EADDRINUSE);
997 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
998 					return (EADDRINUSE);
999 			}
1000 		}
1001 	}
1002 	if (*lportp != 0)
1003 		lport = *lportp;
1004 	if (lport == 0) {
1005 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1006 		if (error != 0)
1007 			return (error);
1008 
1009 	}
1010 	*laddrp = laddr.s_addr;
1011 	*lportp = lport;
1012 	return (0);
1013 }
1014 
1015 /*
1016  * Connect from a socket to a specified address.
1017  * Both address and port must be specified in argument sin.
1018  * If don't have a local address for this socket yet,
1019  * then pick one.
1020  */
1021 int
1022 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
1023     struct ucred *cred, struct mbuf *m, bool rehash)
1024 {
1025 	u_short lport, fport;
1026 	in_addr_t laddr, faddr;
1027 	int anonport, error;
1028 
1029 	INP_WLOCK_ASSERT(inp);
1030 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1031 
1032 	lport = inp->inp_lport;
1033 	laddr = inp->inp_laddr.s_addr;
1034 	anonport = (lport == 0);
1035 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
1036 	    NULL, cred);
1037 	if (error)
1038 		return (error);
1039 
1040 	/* Do the initial binding of the local address if required. */
1041 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1042 		KASSERT(rehash == true,
1043 		    ("Rehashing required for unbound inps"));
1044 		inp->inp_lport = lport;
1045 		inp->inp_laddr.s_addr = laddr;
1046 		if (in_pcbinshash(inp) != 0) {
1047 			inp->inp_laddr.s_addr = INADDR_ANY;
1048 			inp->inp_lport = 0;
1049 			return (EAGAIN);
1050 		}
1051 	}
1052 
1053 	/* Commit the remaining changes. */
1054 	inp->inp_lport = lport;
1055 	inp->inp_laddr.s_addr = laddr;
1056 	inp->inp_faddr.s_addr = faddr;
1057 	inp->inp_fport = fport;
1058 	if (rehash) {
1059 		in_pcbrehash_mbuf(inp, m);
1060 	} else {
1061 		in_pcbinshash_mbuf(inp, m);
1062 	}
1063 
1064 	if (anonport)
1065 		inp->inp_flags |= INP_ANONPORT;
1066 	return (0);
1067 }
1068 
1069 int
1070 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1071 {
1072 
1073 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1074 }
1075 
1076 /*
1077  * Do proper source address selection on an unbound socket in case
1078  * of connect. Take jails into account as well.
1079  */
1080 int
1081 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1082     struct ucred *cred)
1083 {
1084 	struct ifaddr *ifa;
1085 	struct sockaddr *sa;
1086 	struct sockaddr_in *sin, dst;
1087 	struct nhop_object *nh;
1088 	int error;
1089 
1090 	NET_EPOCH_ASSERT();
1091 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1092 	/*
1093 	 * Bypass source address selection and use the primary jail IP
1094 	 * if requested.
1095 	 */
1096 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1097 		return (0);
1098 
1099 	error = 0;
1100 
1101 	nh = NULL;
1102 	bzero(&dst, sizeof(dst));
1103 	sin = &dst;
1104 	sin->sin_family = AF_INET;
1105 	sin->sin_len = sizeof(struct sockaddr_in);
1106 	sin->sin_addr.s_addr = faddr->s_addr;
1107 
1108 	/*
1109 	 * If route is known our src addr is taken from the i/f,
1110 	 * else punt.
1111 	 *
1112 	 * Find out route to destination.
1113 	 */
1114 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1115 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1116 		    0, NHR_NONE, 0);
1117 
1118 	/*
1119 	 * If we found a route, use the address corresponding to
1120 	 * the outgoing interface.
1121 	 *
1122 	 * Otherwise assume faddr is reachable on a directly connected
1123 	 * network and try to find a corresponding interface to take
1124 	 * the source address from.
1125 	 */
1126 	if (nh == NULL || nh->nh_ifp == NULL) {
1127 		struct in_ifaddr *ia;
1128 		struct ifnet *ifp;
1129 
1130 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1131 					inp->inp_socket->so_fibnum));
1132 		if (ia == NULL) {
1133 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1134 						inp->inp_socket->so_fibnum));
1135 
1136 		}
1137 		if (ia == NULL) {
1138 			error = ENETUNREACH;
1139 			goto done;
1140 		}
1141 
1142 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1143 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1144 			goto done;
1145 		}
1146 
1147 		ifp = ia->ia_ifp;
1148 		ia = NULL;
1149 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1150 
1151 			sa = ifa->ifa_addr;
1152 			if (sa->sa_family != AF_INET)
1153 				continue;
1154 			sin = (struct sockaddr_in *)sa;
1155 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1156 				ia = (struct in_ifaddr *)ifa;
1157 				break;
1158 			}
1159 		}
1160 		if (ia != NULL) {
1161 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1162 			goto done;
1163 		}
1164 
1165 		/* 3. As a last resort return the 'default' jail address. */
1166 		error = prison_get_ip4(cred, laddr);
1167 		goto done;
1168 	}
1169 
1170 	/*
1171 	 * If the outgoing interface on the route found is not
1172 	 * a loopback interface, use the address from that interface.
1173 	 * In case of jails do those three steps:
1174 	 * 1. check if the interface address belongs to the jail. If so use it.
1175 	 * 2. check if we have any address on the outgoing interface
1176 	 *    belonging to this jail. If so use it.
1177 	 * 3. as a last resort return the 'default' jail address.
1178 	 */
1179 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1180 		struct in_ifaddr *ia;
1181 		struct ifnet *ifp;
1182 
1183 		/* If not jailed, use the default returned. */
1184 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1185 			ia = (struct in_ifaddr *)nh->nh_ifa;
1186 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1187 			goto done;
1188 		}
1189 
1190 		/* Jailed. */
1191 		/* 1. Check if the iface address belongs to the jail. */
1192 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1193 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1194 			ia = (struct in_ifaddr *)nh->nh_ifa;
1195 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1196 			goto done;
1197 		}
1198 
1199 		/*
1200 		 * 2. Check if we have any address on the outgoing interface
1201 		 *    belonging to this jail.
1202 		 */
1203 		ia = NULL;
1204 		ifp = nh->nh_ifp;
1205 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1206 			sa = ifa->ifa_addr;
1207 			if (sa->sa_family != AF_INET)
1208 				continue;
1209 			sin = (struct sockaddr_in *)sa;
1210 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1211 				ia = (struct in_ifaddr *)ifa;
1212 				break;
1213 			}
1214 		}
1215 		if (ia != NULL) {
1216 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1217 			goto done;
1218 		}
1219 
1220 		/* 3. As a last resort return the 'default' jail address. */
1221 		error = prison_get_ip4(cred, laddr);
1222 		goto done;
1223 	}
1224 
1225 	/*
1226 	 * The outgoing interface is marked with 'loopback net', so a route
1227 	 * to ourselves is here.
1228 	 * Try to find the interface of the destination address and then
1229 	 * take the address from there. That interface is not necessarily
1230 	 * a loopback interface.
1231 	 * In case of jails, check that it is an address of the jail
1232 	 * and if we cannot find, fall back to the 'default' jail address.
1233 	 */
1234 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1235 		struct in_ifaddr *ia;
1236 
1237 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1238 					inp->inp_socket->so_fibnum));
1239 		if (ia == NULL)
1240 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1241 						inp->inp_socket->so_fibnum));
1242 		if (ia == NULL)
1243 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1244 
1245 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1246 			if (ia == NULL) {
1247 				error = ENETUNREACH;
1248 				goto done;
1249 			}
1250 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1251 			goto done;
1252 		}
1253 
1254 		/* Jailed. */
1255 		if (ia != NULL) {
1256 			struct ifnet *ifp;
1257 
1258 			ifp = ia->ia_ifp;
1259 			ia = NULL;
1260 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1261 				sa = ifa->ifa_addr;
1262 				if (sa->sa_family != AF_INET)
1263 					continue;
1264 				sin = (struct sockaddr_in *)sa;
1265 				if (prison_check_ip4(cred,
1266 				    &sin->sin_addr) == 0) {
1267 					ia = (struct in_ifaddr *)ifa;
1268 					break;
1269 				}
1270 			}
1271 			if (ia != NULL) {
1272 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1273 				goto done;
1274 			}
1275 		}
1276 
1277 		/* 3. As a last resort return the 'default' jail address. */
1278 		error = prison_get_ip4(cred, laddr);
1279 		goto done;
1280 	}
1281 
1282 done:
1283 	return (error);
1284 }
1285 
1286 /*
1287  * Set up for a connect from a socket to the specified address.
1288  * On entry, *laddrp and *lportp should contain the current local
1289  * address and port for the PCB; these are updated to the values
1290  * that should be placed in inp_laddr and inp_lport to complete
1291  * the connect.
1292  *
1293  * On success, *faddrp and *fportp will be set to the remote address
1294  * and port. These are not updated in the error case.
1295  *
1296  * If the operation fails because the connection already exists,
1297  * *oinpp will be set to the PCB of that connection so that the
1298  * caller can decide to override it. In all other cases, *oinpp
1299  * is set to NULL.
1300  */
1301 int
1302 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1303     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1304     struct inpcb **oinpp, struct ucred *cred)
1305 {
1306 	struct rm_priotracker in_ifa_tracker;
1307 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1308 	struct in_ifaddr *ia;
1309 	struct inpcb *oinp;
1310 	struct in_addr laddr, faddr;
1311 	u_short lport, fport;
1312 	int error;
1313 
1314 	/*
1315 	 * Because a global state change doesn't actually occur here, a read
1316 	 * lock is sufficient.
1317 	 */
1318 	NET_EPOCH_ASSERT();
1319 	INP_LOCK_ASSERT(inp);
1320 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1321 
1322 	if (oinpp != NULL)
1323 		*oinpp = NULL;
1324 	if (nam->sa_len != sizeof (*sin))
1325 		return (EINVAL);
1326 	if (sin->sin_family != AF_INET)
1327 		return (EAFNOSUPPORT);
1328 	if (sin->sin_port == 0)
1329 		return (EADDRNOTAVAIL);
1330 	laddr.s_addr = *laddrp;
1331 	lport = *lportp;
1332 	faddr = sin->sin_addr;
1333 	fport = sin->sin_port;
1334 
1335 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1336 		/*
1337 		 * If the destination address is INADDR_ANY,
1338 		 * use the primary local address.
1339 		 * If the supplied address is INADDR_BROADCAST,
1340 		 * and the primary interface supports broadcast,
1341 		 * choose the broadcast address for that interface.
1342 		 */
1343 		if (faddr.s_addr == INADDR_ANY) {
1344 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1345 			faddr =
1346 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1347 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1348 			if (cred != NULL &&
1349 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1350 				return (error);
1351 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1352 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1353 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1354 			    IFF_BROADCAST)
1355 				faddr = satosin(&CK_STAILQ_FIRST(
1356 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1357 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1358 		}
1359 	}
1360 	if (laddr.s_addr == INADDR_ANY) {
1361 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1362 		/*
1363 		 * If the destination address is multicast and an outgoing
1364 		 * interface has been set as a multicast option, prefer the
1365 		 * address of that interface as our source address.
1366 		 */
1367 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1368 		    inp->inp_moptions != NULL) {
1369 			struct ip_moptions *imo;
1370 			struct ifnet *ifp;
1371 
1372 			imo = inp->inp_moptions;
1373 			if (imo->imo_multicast_ifp != NULL) {
1374 				ifp = imo->imo_multicast_ifp;
1375 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1376 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1377 					if ((ia->ia_ifp == ifp) &&
1378 					    (cred == NULL ||
1379 					    prison_check_ip4(cred,
1380 					    &ia->ia_addr.sin_addr) == 0))
1381 						break;
1382 				}
1383 				if (ia == NULL)
1384 					error = EADDRNOTAVAIL;
1385 				else {
1386 					laddr = ia->ia_addr.sin_addr;
1387 					error = 0;
1388 				}
1389 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1390 			}
1391 		}
1392 		if (error)
1393 			return (error);
1394 	}
1395 	if (lport != 0) {
1396 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1397 		    fport, laddr, lport, 0, NULL);
1398 		if (oinp != NULL) {
1399 			if (oinpp != NULL)
1400 				*oinpp = oinp;
1401 			return (EADDRINUSE);
1402 		}
1403 	} else {
1404 		struct sockaddr_in lsin, fsin;
1405 
1406 		bzero(&lsin, sizeof(lsin));
1407 		bzero(&fsin, sizeof(fsin));
1408 		lsin.sin_family = AF_INET;
1409 		lsin.sin_addr = laddr;
1410 		fsin.sin_family = AF_INET;
1411 		fsin.sin_addr = faddr;
1412 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1413 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1414 		    INPLOOKUP_WILDCARD);
1415 		if (error)
1416 			return (error);
1417 	}
1418 	*laddrp = laddr.s_addr;
1419 	*lportp = lport;
1420 	*faddrp = faddr.s_addr;
1421 	*fportp = fport;
1422 	return (0);
1423 }
1424 
1425 void
1426 in_pcbdisconnect(struct inpcb *inp)
1427 {
1428 
1429 	INP_WLOCK_ASSERT(inp);
1430 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1431 
1432 	inp->inp_faddr.s_addr = INADDR_ANY;
1433 	inp->inp_fport = 0;
1434 	in_pcbrehash(inp);
1435 }
1436 #endif /* INET */
1437 
1438 /*
1439  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1440  * For most protocols, this will be invoked immediately prior to calling
1441  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1442  * socket, in which case in_pcbfree() is deferred.
1443  */
1444 void
1445 in_pcbdetach(struct inpcb *inp)
1446 {
1447 
1448 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1449 
1450 #ifdef RATELIMIT
1451 	if (inp->inp_snd_tag != NULL)
1452 		in_pcbdetach_txrtlmt(inp);
1453 #endif
1454 	inp->inp_socket->so_pcb = NULL;
1455 	inp->inp_socket = NULL;
1456 }
1457 
1458 /*
1459  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1460  * stability of an inpcb pointer despite the inpcb lock being released.  This
1461  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1462  * but where the inpcb lock may already held, or when acquiring a reference
1463  * via a pcbgroup.
1464  *
1465  * in_pcbref() should be used only to provide brief memory stability, and
1466  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1467  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1468  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1469  * lock and rele are the *only* safe operations that may be performed on the
1470  * inpcb.
1471  *
1472  * While the inpcb will not be freed, releasing the inpcb lock means that the
1473  * connection's state may change, so the caller should be careful to
1474  * revalidate any cached state on reacquiring the lock.  Drop the reference
1475  * using in_pcbrele().
1476  */
1477 void
1478 in_pcbref(struct inpcb *inp)
1479 {
1480 
1481 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1482 
1483 	refcount_acquire(&inp->inp_refcount);
1484 }
1485 
1486 /*
1487  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1488  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1489  * return a flag indicating whether or not the inpcb remains valid.  If it is
1490  * valid, we return with the inpcb lock held.
1491  *
1492  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1493  * reference on an inpcb.  Historically more work was done here (actually, in
1494  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1495  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1496  * about memory stability (and continued use of the write lock).
1497  */
1498 int
1499 in_pcbrele_rlocked(struct inpcb *inp)
1500 {
1501 	struct inpcbinfo *pcbinfo;
1502 
1503 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1504 
1505 	INP_RLOCK_ASSERT(inp);
1506 
1507 	if (refcount_release(&inp->inp_refcount) == 0) {
1508 		/*
1509 		 * If the inpcb has been freed, let the caller know, even if
1510 		 * this isn't the last reference.
1511 		 */
1512 		if (inp->inp_flags2 & INP_FREED) {
1513 			INP_RUNLOCK(inp);
1514 			return (1);
1515 		}
1516 		return (0);
1517 	}
1518 
1519 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1520 #ifdef TCPHPTS
1521 	if (inp->inp_in_hpts || inp->inp_in_input) {
1522 		struct tcp_hpts_entry *hpts;
1523 		/*
1524 		 * We should not be on the hpts at
1525 		 * this point in any form. we must
1526 		 * get the lock to be sure.
1527 		 */
1528 		hpts = tcp_hpts_lock(inp);
1529 		if (inp->inp_in_hpts)
1530 			panic("Hpts:%p inp:%p at free still on hpts",
1531 			      hpts, inp);
1532 		mtx_unlock(&hpts->p_mtx);
1533 		hpts = tcp_input_lock(inp);
1534 		if (inp->inp_in_input)
1535 			panic("Hpts:%p inp:%p at free still on input hpts",
1536 			      hpts, inp);
1537 		mtx_unlock(&hpts->p_mtx);
1538 	}
1539 #endif
1540 	INP_RUNLOCK(inp);
1541 	pcbinfo = inp->inp_pcbinfo;
1542 	uma_zfree(pcbinfo->ipi_zone, inp);
1543 	return (1);
1544 }
1545 
1546 int
1547 in_pcbrele_wlocked(struct inpcb *inp)
1548 {
1549 	struct inpcbinfo *pcbinfo;
1550 
1551 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1552 
1553 	INP_WLOCK_ASSERT(inp);
1554 
1555 	if (refcount_release(&inp->inp_refcount) == 0) {
1556 		/*
1557 		 * If the inpcb has been freed, let the caller know, even if
1558 		 * this isn't the last reference.
1559 		 */
1560 		if (inp->inp_flags2 & INP_FREED) {
1561 			INP_WUNLOCK(inp);
1562 			return (1);
1563 		}
1564 		return (0);
1565 	}
1566 
1567 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1568 #ifdef TCPHPTS
1569 	if (inp->inp_in_hpts || inp->inp_in_input) {
1570 		struct tcp_hpts_entry *hpts;
1571 		/*
1572 		 * We should not be on the hpts at
1573 		 * this point in any form. we must
1574 		 * get the lock to be sure.
1575 		 */
1576 		hpts = tcp_hpts_lock(inp);
1577 		if (inp->inp_in_hpts)
1578 			panic("Hpts:%p inp:%p at free still on hpts",
1579 			      hpts, inp);
1580 		mtx_unlock(&hpts->p_mtx);
1581 		hpts = tcp_input_lock(inp);
1582 		if (inp->inp_in_input)
1583 			panic("Hpts:%p inp:%p at free still on input hpts",
1584 			      hpts, inp);
1585 		mtx_unlock(&hpts->p_mtx);
1586 	}
1587 #endif
1588 	INP_WUNLOCK(inp);
1589 	pcbinfo = inp->inp_pcbinfo;
1590 	uma_zfree(pcbinfo->ipi_zone, inp);
1591 	return (1);
1592 }
1593 
1594 /*
1595  * Temporary wrapper.
1596  */
1597 int
1598 in_pcbrele(struct inpcb *inp)
1599 {
1600 
1601 	return (in_pcbrele_wlocked(inp));
1602 }
1603 
1604 void
1605 in_pcblist_rele_rlocked(epoch_context_t ctx)
1606 {
1607 	struct in_pcblist *il;
1608 	struct inpcb *inp;
1609 	struct inpcbinfo *pcbinfo;
1610 	int i, n;
1611 
1612 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1613 	pcbinfo = il->il_pcbinfo;
1614 	n = il->il_count;
1615 	INP_INFO_WLOCK(pcbinfo);
1616 	for (i = 0; i < n; i++) {
1617 		inp = il->il_inp_list[i];
1618 		INP_RLOCK(inp);
1619 		if (!in_pcbrele_rlocked(inp))
1620 			INP_RUNLOCK(inp);
1621 	}
1622 	INP_INFO_WUNLOCK(pcbinfo);
1623 	free(il, M_TEMP);
1624 }
1625 
1626 static void
1627 inpcbport_free(epoch_context_t ctx)
1628 {
1629 	struct inpcbport *phd;
1630 
1631 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1632 	free(phd, M_PCB);
1633 }
1634 
1635 static void
1636 in_pcbfree_deferred(epoch_context_t ctx)
1637 {
1638 	struct inpcb *inp;
1639 	int released __unused;
1640 
1641 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1642 
1643 	INP_WLOCK(inp);
1644 	CURVNET_SET(inp->inp_vnet);
1645 #ifdef INET
1646 	struct ip_moptions *imo = inp->inp_moptions;
1647 	inp->inp_moptions = NULL;
1648 #endif
1649 	/* XXXRW: Do as much as possible here. */
1650 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1651 	if (inp->inp_sp != NULL)
1652 		ipsec_delete_pcbpolicy(inp);
1653 #endif
1654 #ifdef INET6
1655 	struct ip6_moptions *im6o = NULL;
1656 	if (inp->inp_vflag & INP_IPV6PROTO) {
1657 		ip6_freepcbopts(inp->in6p_outputopts);
1658 		im6o = inp->in6p_moptions;
1659 		inp->in6p_moptions = NULL;
1660 	}
1661 #endif
1662 	if (inp->inp_options)
1663 		(void)m_free(inp->inp_options);
1664 	inp->inp_vflag = 0;
1665 	crfree(inp->inp_cred);
1666 #ifdef MAC
1667 	mac_inpcb_destroy(inp);
1668 #endif
1669 	released = in_pcbrele_wlocked(inp);
1670 	MPASS(released);
1671 #ifdef INET6
1672 	ip6_freemoptions(im6o);
1673 #endif
1674 #ifdef INET
1675 	inp_freemoptions(imo);
1676 #endif
1677 	CURVNET_RESTORE();
1678 }
1679 
1680 /*
1681  * Unconditionally schedule an inpcb to be freed by decrementing its
1682  * reference count, which should occur only after the inpcb has been detached
1683  * from its socket.  If another thread holds a temporary reference (acquired
1684  * using in_pcbref()) then the free is deferred until that reference is
1685  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1686  * work, including removal from global lists, is done in this context, where
1687  * the pcbinfo lock is held.
1688  */
1689 void
1690 in_pcbfree(struct inpcb *inp)
1691 {
1692 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1693 
1694 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1695 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1696 	    ("%s: called twice for pcb %p", __func__, inp));
1697 	if (inp->inp_flags2 & INP_FREED) {
1698 		INP_WUNLOCK(inp);
1699 		return;
1700 	}
1701 
1702 	INP_WLOCK_ASSERT(inp);
1703 	INP_LIST_WLOCK(pcbinfo);
1704 	in_pcbremlists(inp);
1705 	INP_LIST_WUNLOCK(pcbinfo);
1706 	RO_INVALIDATE_CACHE(&inp->inp_route);
1707 	/* mark as destruction in progress */
1708 	inp->inp_flags2 |= INP_FREED;
1709 	INP_WUNLOCK(inp);
1710 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1711 }
1712 
1713 /*
1714  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1715  * port reservation, and preventing it from being returned by inpcb lookups.
1716  *
1717  * It is used by TCP to mark an inpcb as unused and avoid future packet
1718  * delivery or event notification when a socket remains open but TCP has
1719  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1720  * or a RST on the wire, and allows the port binding to be reused while still
1721  * maintaining the invariant that so_pcb always points to a valid inpcb until
1722  * in_pcbdetach().
1723  *
1724  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1725  * in_pcbnotifyall() and in_pcbpurgeif0()?
1726  */
1727 void
1728 in_pcbdrop(struct inpcb *inp)
1729 {
1730 
1731 	INP_WLOCK_ASSERT(inp);
1732 #ifdef INVARIANTS
1733 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1734 		MPASS(inp->inp_refcount > 1);
1735 #endif
1736 
1737 	/*
1738 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1739 	 * the hash lock...?
1740 	 */
1741 	inp->inp_flags |= INP_DROPPED;
1742 	if (inp->inp_flags & INP_INHASHLIST) {
1743 		struct inpcbport *phd = inp->inp_phd;
1744 
1745 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1746 		in_pcbremlbgrouphash(inp);
1747 		CK_LIST_REMOVE(inp, inp_hash);
1748 		CK_LIST_REMOVE(inp, inp_portlist);
1749 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1750 			CK_LIST_REMOVE(phd, phd_hash);
1751 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1752 		}
1753 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1754 		inp->inp_flags &= ~INP_INHASHLIST;
1755 #ifdef PCBGROUP
1756 		in_pcbgroup_remove(inp);
1757 #endif
1758 	}
1759 }
1760 
1761 #ifdef INET
1762 /*
1763  * Common routines to return the socket addresses associated with inpcbs.
1764  */
1765 struct sockaddr *
1766 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1767 {
1768 	struct sockaddr_in *sin;
1769 
1770 	sin = malloc(sizeof *sin, M_SONAME,
1771 		M_WAITOK | M_ZERO);
1772 	sin->sin_family = AF_INET;
1773 	sin->sin_len = sizeof(*sin);
1774 	sin->sin_addr = *addr_p;
1775 	sin->sin_port = port;
1776 
1777 	return (struct sockaddr *)sin;
1778 }
1779 
1780 int
1781 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1782 {
1783 	struct inpcb *inp;
1784 	struct in_addr addr;
1785 	in_port_t port;
1786 
1787 	inp = sotoinpcb(so);
1788 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1789 
1790 	INP_RLOCK(inp);
1791 	port = inp->inp_lport;
1792 	addr = inp->inp_laddr;
1793 	INP_RUNLOCK(inp);
1794 
1795 	*nam = in_sockaddr(port, &addr);
1796 	return 0;
1797 }
1798 
1799 int
1800 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1801 {
1802 	struct inpcb *inp;
1803 	struct in_addr addr;
1804 	in_port_t port;
1805 
1806 	inp = sotoinpcb(so);
1807 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1808 
1809 	INP_RLOCK(inp);
1810 	port = inp->inp_fport;
1811 	addr = inp->inp_faddr;
1812 	INP_RUNLOCK(inp);
1813 
1814 	*nam = in_sockaddr(port, &addr);
1815 	return 0;
1816 }
1817 
1818 void
1819 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1820     struct inpcb *(*notify)(struct inpcb *, int))
1821 {
1822 	struct inpcb *inp, *inp_temp;
1823 
1824 	INP_INFO_WLOCK(pcbinfo);
1825 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1826 		INP_WLOCK(inp);
1827 #ifdef INET6
1828 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1829 			INP_WUNLOCK(inp);
1830 			continue;
1831 		}
1832 #endif
1833 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1834 		    inp->inp_socket == NULL) {
1835 			INP_WUNLOCK(inp);
1836 			continue;
1837 		}
1838 		if ((*notify)(inp, errno))
1839 			INP_WUNLOCK(inp);
1840 	}
1841 	INP_INFO_WUNLOCK(pcbinfo);
1842 }
1843 
1844 void
1845 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1846 {
1847 	struct inpcb *inp;
1848 	struct in_multi *inm;
1849 	struct in_mfilter *imf;
1850 	struct ip_moptions *imo;
1851 
1852 	INP_INFO_WLOCK(pcbinfo);
1853 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1854 		INP_WLOCK(inp);
1855 		imo = inp->inp_moptions;
1856 		if ((inp->inp_vflag & INP_IPV4) &&
1857 		    imo != NULL) {
1858 			/*
1859 			 * Unselect the outgoing interface if it is being
1860 			 * detached.
1861 			 */
1862 			if (imo->imo_multicast_ifp == ifp)
1863 				imo->imo_multicast_ifp = NULL;
1864 
1865 			/*
1866 			 * Drop multicast group membership if we joined
1867 			 * through the interface being detached.
1868 			 *
1869 			 * XXX This can all be deferred to an epoch_call
1870 			 */
1871 restart:
1872 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1873 				if ((inm = imf->imf_inm) == NULL)
1874 					continue;
1875 				if (inm->inm_ifp != ifp)
1876 					continue;
1877 				ip_mfilter_remove(&imo->imo_head, imf);
1878 				IN_MULTI_LOCK_ASSERT();
1879 				in_leavegroup_locked(inm, NULL);
1880 				ip_mfilter_free(imf);
1881 				goto restart;
1882 			}
1883 		}
1884 		INP_WUNLOCK(inp);
1885 	}
1886 	INP_INFO_WUNLOCK(pcbinfo);
1887 }
1888 
1889 /*
1890  * Lookup a PCB based on the local address and port.  Caller must hold the
1891  * hash lock.  No inpcb locks or references are acquired.
1892  */
1893 #define INP_LOOKUP_MAPPED_PCB_COST	3
1894 struct inpcb *
1895 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1896     u_short lport, int lookupflags, struct ucred *cred)
1897 {
1898 	struct inpcb *inp;
1899 #ifdef INET6
1900 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1901 #else
1902 	int matchwild = 3;
1903 #endif
1904 	int wildcard;
1905 
1906 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1907 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1908 
1909 	INP_HASH_LOCK_ASSERT(pcbinfo);
1910 
1911 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1912 		struct inpcbhead *head;
1913 		/*
1914 		 * Look for an unconnected (wildcard foreign addr) PCB that
1915 		 * matches the local address and port we're looking for.
1916 		 */
1917 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1918 		    0, pcbinfo->ipi_hashmask)];
1919 		CK_LIST_FOREACH(inp, head, inp_hash) {
1920 #ifdef INET6
1921 			/* XXX inp locking */
1922 			if ((inp->inp_vflag & INP_IPV4) == 0)
1923 				continue;
1924 #endif
1925 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1926 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1927 			    inp->inp_lport == lport) {
1928 				/*
1929 				 * Found?
1930 				 */
1931 				if (cred == NULL ||
1932 				    prison_equal_ip4(cred->cr_prison,
1933 					inp->inp_cred->cr_prison))
1934 					return (inp);
1935 			}
1936 		}
1937 		/*
1938 		 * Not found.
1939 		 */
1940 		return (NULL);
1941 	} else {
1942 		struct inpcbporthead *porthash;
1943 		struct inpcbport *phd;
1944 		struct inpcb *match = NULL;
1945 		/*
1946 		 * Best fit PCB lookup.
1947 		 *
1948 		 * First see if this local port is in use by looking on the
1949 		 * port hash list.
1950 		 */
1951 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1952 		    pcbinfo->ipi_porthashmask)];
1953 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1954 			if (phd->phd_port == lport)
1955 				break;
1956 		}
1957 		if (phd != NULL) {
1958 			/*
1959 			 * Port is in use by one or more PCBs. Look for best
1960 			 * fit.
1961 			 */
1962 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1963 				wildcard = 0;
1964 				if (cred != NULL &&
1965 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1966 					cred->cr_prison))
1967 					continue;
1968 #ifdef INET6
1969 				/* XXX inp locking */
1970 				if ((inp->inp_vflag & INP_IPV4) == 0)
1971 					continue;
1972 				/*
1973 				 * We never select the PCB that has
1974 				 * INP_IPV6 flag and is bound to :: if
1975 				 * we have another PCB which is bound
1976 				 * to 0.0.0.0.  If a PCB has the
1977 				 * INP_IPV6 flag, then we set its cost
1978 				 * higher than IPv4 only PCBs.
1979 				 *
1980 				 * Note that the case only happens
1981 				 * when a socket is bound to ::, under
1982 				 * the condition that the use of the
1983 				 * mapped address is allowed.
1984 				 */
1985 				if ((inp->inp_vflag & INP_IPV6) != 0)
1986 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1987 #endif
1988 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1989 					wildcard++;
1990 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1991 					if (laddr.s_addr == INADDR_ANY)
1992 						wildcard++;
1993 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1994 						continue;
1995 				} else {
1996 					if (laddr.s_addr != INADDR_ANY)
1997 						wildcard++;
1998 				}
1999 				if (wildcard < matchwild) {
2000 					match = inp;
2001 					matchwild = wildcard;
2002 					if (matchwild == 0)
2003 						break;
2004 				}
2005 			}
2006 		}
2007 		return (match);
2008 	}
2009 }
2010 #undef INP_LOOKUP_MAPPED_PCB_COST
2011 
2012 static struct inpcb *
2013 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2014     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
2015     uint16_t fport, int lookupflags)
2016 {
2017 	struct inpcb *local_wild;
2018 	const struct inpcblbgrouphead *hdr;
2019 	struct inpcblbgroup *grp;
2020 	uint32_t idx;
2021 
2022 	INP_HASH_LOCK_ASSERT(pcbinfo);
2023 
2024 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2025 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2026 
2027 	/*
2028 	 * Order of socket selection:
2029 	 * 1. non-wild.
2030 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
2031 	 *
2032 	 * NOTE:
2033 	 * - Load balanced group does not contain jailed sockets
2034 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
2035 	 */
2036 	local_wild = NULL;
2037 	CK_LIST_FOREACH(grp, hdr, il_list) {
2038 #ifdef INET6
2039 		if (!(grp->il_vflag & INP_IPV4))
2040 			continue;
2041 #endif
2042 		if (grp->il_lport != lport)
2043 			continue;
2044 
2045 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
2046 		    grp->il_inpcnt;
2047 		if (grp->il_laddr.s_addr == laddr->s_addr)
2048 			return (grp->il_inp[idx]);
2049 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2050 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
2051 			local_wild = grp->il_inp[idx];
2052 	}
2053 	return (local_wild);
2054 }
2055 
2056 #ifdef PCBGROUP
2057 /*
2058  * Lookup PCB in hash list, using pcbgroup tables.
2059  */
2060 static struct inpcb *
2061 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2062     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2063     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2064 {
2065 	struct inpcbhead *head;
2066 	struct inpcb *inp, *tmpinp;
2067 	u_short fport = fport_arg, lport = lport_arg;
2068 	bool locked;
2069 
2070 	/*
2071 	 * First look for an exact match.
2072 	 */
2073 	tmpinp = NULL;
2074 	INP_GROUP_LOCK(pcbgroup);
2075 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2076 	    pcbgroup->ipg_hashmask)];
2077 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2078 #ifdef INET6
2079 		/* XXX inp locking */
2080 		if ((inp->inp_vflag & INP_IPV4) == 0)
2081 			continue;
2082 #endif
2083 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2084 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2085 		    inp->inp_fport == fport &&
2086 		    inp->inp_lport == lport) {
2087 			/*
2088 			 * XXX We should be able to directly return
2089 			 * the inp here, without any checks.
2090 			 * Well unless both bound with SO_REUSEPORT?
2091 			 */
2092 			if (prison_flag(inp->inp_cred, PR_IP4))
2093 				goto found;
2094 			if (tmpinp == NULL)
2095 				tmpinp = inp;
2096 		}
2097 	}
2098 	if (tmpinp != NULL) {
2099 		inp = tmpinp;
2100 		goto found;
2101 	}
2102 
2103 #ifdef	RSS
2104 	/*
2105 	 * For incoming connections, we may wish to do a wildcard
2106 	 * match for an RSS-local socket.
2107 	 */
2108 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2109 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2110 #ifdef INET6
2111 		struct inpcb *local_wild_mapped = NULL;
2112 #endif
2113 		struct inpcb *jail_wild = NULL;
2114 		struct inpcbhead *head;
2115 		int injail;
2116 
2117 		/*
2118 		 * Order of socket selection - we always prefer jails.
2119 		 *      1. jailed, non-wild.
2120 		 *      2. jailed, wild.
2121 		 *      3. non-jailed, non-wild.
2122 		 *      4. non-jailed, wild.
2123 		 */
2124 
2125 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2126 		    lport, 0, pcbgroup->ipg_hashmask)];
2127 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2128 #ifdef INET6
2129 			/* XXX inp locking */
2130 			if ((inp->inp_vflag & INP_IPV4) == 0)
2131 				continue;
2132 #endif
2133 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2134 			    inp->inp_lport != lport)
2135 				continue;
2136 
2137 			injail = prison_flag(inp->inp_cred, PR_IP4);
2138 			if (injail) {
2139 				if (prison_check_ip4(inp->inp_cred,
2140 				    &laddr) != 0)
2141 					continue;
2142 			} else {
2143 				if (local_exact != NULL)
2144 					continue;
2145 			}
2146 
2147 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2148 				if (injail)
2149 					goto found;
2150 				else
2151 					local_exact = inp;
2152 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2153 #ifdef INET6
2154 				/* XXX inp locking, NULL check */
2155 				if (inp->inp_vflag & INP_IPV6PROTO)
2156 					local_wild_mapped = inp;
2157 				else
2158 #endif
2159 					if (injail)
2160 						jail_wild = inp;
2161 					else
2162 						local_wild = inp;
2163 			}
2164 		} /* LIST_FOREACH */
2165 
2166 		inp = jail_wild;
2167 		if (inp == NULL)
2168 			inp = local_exact;
2169 		if (inp == NULL)
2170 			inp = local_wild;
2171 #ifdef INET6
2172 		if (inp == NULL)
2173 			inp = local_wild_mapped;
2174 #endif
2175 		if (inp != NULL)
2176 			goto found;
2177 	}
2178 #endif
2179 
2180 	/*
2181 	 * Then look for a wildcard match, if requested.
2182 	 */
2183 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2184 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2185 #ifdef INET6
2186 		struct inpcb *local_wild_mapped = NULL;
2187 #endif
2188 		struct inpcb *jail_wild = NULL;
2189 		struct inpcbhead *head;
2190 		int injail;
2191 
2192 		/*
2193 		 * Order of socket selection - we always prefer jails.
2194 		 *      1. jailed, non-wild.
2195 		 *      2. jailed, wild.
2196 		 *      3. non-jailed, non-wild.
2197 		 *      4. non-jailed, wild.
2198 		 */
2199 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2200 		    0, pcbinfo->ipi_wildmask)];
2201 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2202 #ifdef INET6
2203 			/* XXX inp locking */
2204 			if ((inp->inp_vflag & INP_IPV4) == 0)
2205 				continue;
2206 #endif
2207 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2208 			    inp->inp_lport != lport)
2209 				continue;
2210 
2211 			injail = prison_flag(inp->inp_cred, PR_IP4);
2212 			if (injail) {
2213 				if (prison_check_ip4(inp->inp_cred,
2214 				    &laddr) != 0)
2215 					continue;
2216 			} else {
2217 				if (local_exact != NULL)
2218 					continue;
2219 			}
2220 
2221 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2222 				if (injail)
2223 					goto found;
2224 				else
2225 					local_exact = inp;
2226 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2227 #ifdef INET6
2228 				/* XXX inp locking, NULL check */
2229 				if (inp->inp_vflag & INP_IPV6PROTO)
2230 					local_wild_mapped = inp;
2231 				else
2232 #endif
2233 					if (injail)
2234 						jail_wild = inp;
2235 					else
2236 						local_wild = inp;
2237 			}
2238 		} /* LIST_FOREACH */
2239 		inp = jail_wild;
2240 		if (inp == NULL)
2241 			inp = local_exact;
2242 		if (inp == NULL)
2243 			inp = local_wild;
2244 #ifdef INET6
2245 		if (inp == NULL)
2246 			inp = local_wild_mapped;
2247 #endif
2248 		if (inp != NULL)
2249 			goto found;
2250 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2251 	INP_GROUP_UNLOCK(pcbgroup);
2252 	return (NULL);
2253 
2254 found:
2255 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2256 		locked = INP_TRY_WLOCK(inp);
2257 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2258 		locked = INP_TRY_RLOCK(inp);
2259 	else
2260 		panic("%s: locking bug", __func__);
2261 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2262 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2263 			INP_WUNLOCK(inp);
2264 		else
2265 			INP_RUNLOCK(inp);
2266 		return (NULL);
2267 	} else if (!locked)
2268 		in_pcbref(inp);
2269 	INP_GROUP_UNLOCK(pcbgroup);
2270 	if (!locked) {
2271 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2272 			INP_WLOCK(inp);
2273 			if (in_pcbrele_wlocked(inp))
2274 				return (NULL);
2275 		} else {
2276 			INP_RLOCK(inp);
2277 			if (in_pcbrele_rlocked(inp))
2278 				return (NULL);
2279 		}
2280 	}
2281 #ifdef INVARIANTS
2282 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2283 		INP_WLOCK_ASSERT(inp);
2284 	else
2285 		INP_RLOCK_ASSERT(inp);
2286 #endif
2287 	return (inp);
2288 }
2289 #endif /* PCBGROUP */
2290 
2291 /*
2292  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2293  * that the caller has locked the hash list, and will not perform any further
2294  * locking or reference operations on either the hash list or the connection.
2295  */
2296 static struct inpcb *
2297 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2298     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2299     struct ifnet *ifp)
2300 {
2301 	struct inpcbhead *head;
2302 	struct inpcb *inp, *tmpinp;
2303 	u_short fport = fport_arg, lport = lport_arg;
2304 
2305 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2306 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2307 	INP_HASH_LOCK_ASSERT(pcbinfo);
2308 
2309 	/*
2310 	 * First look for an exact match.
2311 	 */
2312 	tmpinp = NULL;
2313 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2314 	    pcbinfo->ipi_hashmask)];
2315 	CK_LIST_FOREACH(inp, head, inp_hash) {
2316 #ifdef INET6
2317 		/* XXX inp locking */
2318 		if ((inp->inp_vflag & INP_IPV4) == 0)
2319 			continue;
2320 #endif
2321 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2322 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2323 		    inp->inp_fport == fport &&
2324 		    inp->inp_lport == lport) {
2325 			/*
2326 			 * XXX We should be able to directly return
2327 			 * the inp here, without any checks.
2328 			 * Well unless both bound with SO_REUSEPORT?
2329 			 */
2330 			if (prison_flag(inp->inp_cred, PR_IP4))
2331 				return (inp);
2332 			if (tmpinp == NULL)
2333 				tmpinp = inp;
2334 		}
2335 	}
2336 	if (tmpinp != NULL)
2337 		return (tmpinp);
2338 
2339 	/*
2340 	 * Then look in lb group (for wildcard match).
2341 	 */
2342 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2343 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2344 		    fport, lookupflags);
2345 		if (inp != NULL)
2346 			return (inp);
2347 	}
2348 
2349 	/*
2350 	 * Then look for a wildcard match, if requested.
2351 	 */
2352 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2353 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2354 #ifdef INET6
2355 		struct inpcb *local_wild_mapped = NULL;
2356 #endif
2357 		struct inpcb *jail_wild = NULL;
2358 		int injail;
2359 
2360 		/*
2361 		 * Order of socket selection - we always prefer jails.
2362 		 *      1. jailed, non-wild.
2363 		 *      2. jailed, wild.
2364 		 *      3. non-jailed, non-wild.
2365 		 *      4. non-jailed, wild.
2366 		 */
2367 
2368 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2369 		    0, pcbinfo->ipi_hashmask)];
2370 		CK_LIST_FOREACH(inp, head, inp_hash) {
2371 #ifdef INET6
2372 			/* XXX inp locking */
2373 			if ((inp->inp_vflag & INP_IPV4) == 0)
2374 				continue;
2375 #endif
2376 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2377 			    inp->inp_lport != lport)
2378 				continue;
2379 
2380 			injail = prison_flag(inp->inp_cred, PR_IP4);
2381 			if (injail) {
2382 				if (prison_check_ip4(inp->inp_cred,
2383 				    &laddr) != 0)
2384 					continue;
2385 			} else {
2386 				if (local_exact != NULL)
2387 					continue;
2388 			}
2389 
2390 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2391 				if (injail)
2392 					return (inp);
2393 				else
2394 					local_exact = inp;
2395 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2396 #ifdef INET6
2397 				/* XXX inp locking, NULL check */
2398 				if (inp->inp_vflag & INP_IPV6PROTO)
2399 					local_wild_mapped = inp;
2400 				else
2401 #endif
2402 					if (injail)
2403 						jail_wild = inp;
2404 					else
2405 						local_wild = inp;
2406 			}
2407 		} /* LIST_FOREACH */
2408 		if (jail_wild != NULL)
2409 			return (jail_wild);
2410 		if (local_exact != NULL)
2411 			return (local_exact);
2412 		if (local_wild != NULL)
2413 			return (local_wild);
2414 #ifdef INET6
2415 		if (local_wild_mapped != NULL)
2416 			return (local_wild_mapped);
2417 #endif
2418 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2419 
2420 	return (NULL);
2421 }
2422 
2423 /*
2424  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2425  * hash list lock, and will return the inpcb locked (i.e., requires
2426  * INPLOOKUP_LOCKPCB).
2427  */
2428 static struct inpcb *
2429 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2430     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2431     struct ifnet *ifp)
2432 {
2433 	struct inpcb *inp;
2434 
2435 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2436 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2437 	if (inp != NULL) {
2438 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2439 			INP_WLOCK(inp);
2440 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2441 				INP_WUNLOCK(inp);
2442 				inp = NULL;
2443 			}
2444 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2445 			INP_RLOCK(inp);
2446 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2447 				INP_RUNLOCK(inp);
2448 				inp = NULL;
2449 			}
2450 		} else
2451 			panic("%s: locking bug", __func__);
2452 #ifdef INVARIANTS
2453 		if (inp != NULL) {
2454 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2455 				INP_WLOCK_ASSERT(inp);
2456 			else
2457 				INP_RLOCK_ASSERT(inp);
2458 		}
2459 #endif
2460 	}
2461 
2462 	return (inp);
2463 }
2464 
2465 /*
2466  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2467  * from which a pre-calculated hash value may be extracted.
2468  *
2469  * Possibly more of this logic should be in in_pcbgroup.c.
2470  */
2471 struct inpcb *
2472 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2473     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2474 {
2475 #if defined(PCBGROUP) && !defined(RSS)
2476 	struct inpcbgroup *pcbgroup;
2477 #endif
2478 
2479 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2480 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2481 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2482 	    ("%s: LOCKPCB not set", __func__));
2483 
2484 	/*
2485 	 * When not using RSS, use connection groups in preference to the
2486 	 * reservation table when looking up 4-tuples.  When using RSS, just
2487 	 * use the reservation table, due to the cost of the Toeplitz hash
2488 	 * in software.
2489 	 *
2490 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2491 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2492 	 * in software.
2493 	 */
2494 #if defined(PCBGROUP) && !defined(RSS)
2495 	if (in_pcbgroup_enabled(pcbinfo)) {
2496 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2497 		    fport);
2498 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2499 		    laddr, lport, lookupflags, ifp));
2500 	}
2501 #endif
2502 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2503 	    lookupflags, ifp));
2504 }
2505 
2506 struct inpcb *
2507 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2508     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2509     struct ifnet *ifp, struct mbuf *m)
2510 {
2511 #ifdef PCBGROUP
2512 	struct inpcbgroup *pcbgroup;
2513 #endif
2514 
2515 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2516 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2517 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2518 	    ("%s: LOCKPCB not set", __func__));
2519 
2520 #ifdef PCBGROUP
2521 	/*
2522 	 * If we can use a hardware-generated hash to look up the connection
2523 	 * group, use that connection group to find the inpcb.  Otherwise
2524 	 * fall back on a software hash -- or the reservation table if we're
2525 	 * using RSS.
2526 	 *
2527 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2528 	 */
2529 	if (in_pcbgroup_enabled(pcbinfo) &&
2530 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2531 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2532 		    m->m_pkthdr.flowid);
2533 		if (pcbgroup != NULL)
2534 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2535 			    fport, laddr, lport, lookupflags, ifp));
2536 #ifndef RSS
2537 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2538 		    fport);
2539 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2540 		    laddr, lport, lookupflags, ifp));
2541 #endif
2542 	}
2543 #endif
2544 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2545 	    lookupflags, ifp));
2546 }
2547 #endif /* INET */
2548 
2549 /*
2550  * Insert PCB onto various hash lists.
2551  */
2552 static int
2553 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2554 {
2555 	struct inpcbhead *pcbhash;
2556 	struct inpcbporthead *pcbporthash;
2557 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2558 	struct inpcbport *phd;
2559 	u_int32_t hashkey_faddr;
2560 	int so_options;
2561 
2562 	INP_WLOCK_ASSERT(inp);
2563 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2564 
2565 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2566 	    ("in_pcbinshash: INP_INHASHLIST"));
2567 
2568 #ifdef INET6
2569 	if (inp->inp_vflag & INP_IPV6)
2570 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2571 	else
2572 #endif
2573 	hashkey_faddr = inp->inp_faddr.s_addr;
2574 
2575 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2576 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2577 
2578 	pcbporthash = &pcbinfo->ipi_porthashbase[
2579 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2580 
2581 	/*
2582 	 * Add entry to load balance group.
2583 	 * Only do this if SO_REUSEPORT_LB is set.
2584 	 */
2585 	so_options = inp_so_options(inp);
2586 	if (so_options & SO_REUSEPORT_LB) {
2587 		int ret = in_pcbinslbgrouphash(inp);
2588 		if (ret) {
2589 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2590 			return (ret);
2591 		}
2592 	}
2593 
2594 	/*
2595 	 * Go through port list and look for a head for this lport.
2596 	 */
2597 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2598 		if (phd->phd_port == inp->inp_lport)
2599 			break;
2600 	}
2601 	/*
2602 	 * If none exists, malloc one and tack it on.
2603 	 */
2604 	if (phd == NULL) {
2605 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2606 		if (phd == NULL) {
2607 			return (ENOBUFS); /* XXX */
2608 		}
2609 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2610 		phd->phd_port = inp->inp_lport;
2611 		CK_LIST_INIT(&phd->phd_pcblist);
2612 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2613 	}
2614 	inp->inp_phd = phd;
2615 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2616 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2617 	inp->inp_flags |= INP_INHASHLIST;
2618 #ifdef PCBGROUP
2619 	if (m != NULL) {
2620 		in_pcbgroup_update_mbuf(inp, m);
2621 	} else {
2622 		in_pcbgroup_update(inp);
2623 	}
2624 #endif
2625 	return (0);
2626 }
2627 
2628 int
2629 in_pcbinshash(struct inpcb *inp)
2630 {
2631 
2632 	return (in_pcbinshash_internal(inp, NULL));
2633 }
2634 
2635 int
2636 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2637 {
2638 
2639 	return (in_pcbinshash_internal(inp, m));
2640 }
2641 
2642 /*
2643  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2644  * changed. NOTE: This does not handle the case of the lport changing (the
2645  * hashed port list would have to be updated as well), so the lport must
2646  * not change after in_pcbinshash() has been called.
2647  */
2648 void
2649 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2650 {
2651 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2652 	struct inpcbhead *head;
2653 	u_int32_t hashkey_faddr;
2654 
2655 	INP_WLOCK_ASSERT(inp);
2656 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2657 
2658 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2659 	    ("in_pcbrehash: !INP_INHASHLIST"));
2660 
2661 #ifdef INET6
2662 	if (inp->inp_vflag & INP_IPV6)
2663 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2664 	else
2665 #endif
2666 	hashkey_faddr = inp->inp_faddr.s_addr;
2667 
2668 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2669 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2670 
2671 	CK_LIST_REMOVE(inp, inp_hash);
2672 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2673 
2674 #ifdef PCBGROUP
2675 	if (m != NULL)
2676 		in_pcbgroup_update_mbuf(inp, m);
2677 	else
2678 		in_pcbgroup_update(inp);
2679 #endif
2680 }
2681 
2682 void
2683 in_pcbrehash(struct inpcb *inp)
2684 {
2685 
2686 	in_pcbrehash_mbuf(inp, NULL);
2687 }
2688 
2689 /*
2690  * Remove PCB from various lists.
2691  */
2692 static void
2693 in_pcbremlists(struct inpcb *inp)
2694 {
2695 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2696 
2697 	INP_WLOCK_ASSERT(inp);
2698 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2699 
2700 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2701 	if (inp->inp_flags & INP_INHASHLIST) {
2702 		struct inpcbport *phd = inp->inp_phd;
2703 
2704 		INP_HASH_WLOCK(pcbinfo);
2705 
2706 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2707 		in_pcbremlbgrouphash(inp);
2708 
2709 		CK_LIST_REMOVE(inp, inp_hash);
2710 		CK_LIST_REMOVE(inp, inp_portlist);
2711 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2712 			CK_LIST_REMOVE(phd, phd_hash);
2713 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2714 		}
2715 		INP_HASH_WUNLOCK(pcbinfo);
2716 		inp->inp_flags &= ~INP_INHASHLIST;
2717 	}
2718 	CK_LIST_REMOVE(inp, inp_list);
2719 	pcbinfo->ipi_count--;
2720 #ifdef PCBGROUP
2721 	in_pcbgroup_remove(inp);
2722 #endif
2723 }
2724 
2725 /*
2726  * Check for alternatives when higher level complains
2727  * about service problems.  For now, invalidate cached
2728  * routing information.  If the route was created dynamically
2729  * (by a redirect), time to try a default gateway again.
2730  */
2731 void
2732 in_losing(struct inpcb *inp)
2733 {
2734 
2735 	RO_INVALIDATE_CACHE(&inp->inp_route);
2736 	return;
2737 }
2738 
2739 /*
2740  * A set label operation has occurred at the socket layer, propagate the
2741  * label change into the in_pcb for the socket.
2742  */
2743 void
2744 in_pcbsosetlabel(struct socket *so)
2745 {
2746 #ifdef MAC
2747 	struct inpcb *inp;
2748 
2749 	inp = sotoinpcb(so);
2750 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2751 
2752 	INP_WLOCK(inp);
2753 	SOCK_LOCK(so);
2754 	mac_inpcb_sosetlabel(so, inp);
2755 	SOCK_UNLOCK(so);
2756 	INP_WUNLOCK(inp);
2757 #endif
2758 }
2759 
2760 /*
2761  * ipport_tick runs once per second, determining if random port allocation
2762  * should be continued.  If more than ipport_randomcps ports have been
2763  * allocated in the last second, then we return to sequential port
2764  * allocation. We return to random allocation only once we drop below
2765  * ipport_randomcps for at least ipport_randomtime seconds.
2766  */
2767 static void
2768 ipport_tick(void *xtp)
2769 {
2770 	VNET_ITERATOR_DECL(vnet_iter);
2771 
2772 	VNET_LIST_RLOCK_NOSLEEP();
2773 	VNET_FOREACH(vnet_iter) {
2774 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2775 		if (V_ipport_tcpallocs <=
2776 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2777 			if (V_ipport_stoprandom > 0)
2778 				V_ipport_stoprandom--;
2779 		} else
2780 			V_ipport_stoprandom = V_ipport_randomtime;
2781 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2782 		CURVNET_RESTORE();
2783 	}
2784 	VNET_LIST_RUNLOCK_NOSLEEP();
2785 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2786 }
2787 
2788 static void
2789 ip_fini(void *xtp)
2790 {
2791 
2792 	callout_stop(&ipport_tick_callout);
2793 }
2794 
2795 /*
2796  * The ipport_callout should start running at about the time we attach the
2797  * inet or inet6 domains.
2798  */
2799 static void
2800 ipport_tick_init(const void *unused __unused)
2801 {
2802 
2803 	/* Start ipport_tick. */
2804 	callout_init(&ipport_tick_callout, 1);
2805 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2806 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2807 		SHUTDOWN_PRI_DEFAULT);
2808 }
2809 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2810     ipport_tick_init, NULL);
2811 
2812 void
2813 inp_wlock(struct inpcb *inp)
2814 {
2815 
2816 	INP_WLOCK(inp);
2817 }
2818 
2819 void
2820 inp_wunlock(struct inpcb *inp)
2821 {
2822 
2823 	INP_WUNLOCK(inp);
2824 }
2825 
2826 void
2827 inp_rlock(struct inpcb *inp)
2828 {
2829 
2830 	INP_RLOCK(inp);
2831 }
2832 
2833 void
2834 inp_runlock(struct inpcb *inp)
2835 {
2836 
2837 	INP_RUNLOCK(inp);
2838 }
2839 
2840 #ifdef INVARIANT_SUPPORT
2841 void
2842 inp_lock_assert(struct inpcb *inp)
2843 {
2844 
2845 	INP_WLOCK_ASSERT(inp);
2846 }
2847 
2848 void
2849 inp_unlock_assert(struct inpcb *inp)
2850 {
2851 
2852 	INP_UNLOCK_ASSERT(inp);
2853 }
2854 #endif
2855 
2856 void
2857 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2858 {
2859 	struct inpcb *inp;
2860 
2861 	INP_INFO_WLOCK(&V_tcbinfo);
2862 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2863 		INP_WLOCK(inp);
2864 		func(inp, arg);
2865 		INP_WUNLOCK(inp);
2866 	}
2867 	INP_INFO_WUNLOCK(&V_tcbinfo);
2868 }
2869 
2870 struct socket *
2871 inp_inpcbtosocket(struct inpcb *inp)
2872 {
2873 
2874 	INP_WLOCK_ASSERT(inp);
2875 	return (inp->inp_socket);
2876 }
2877 
2878 struct tcpcb *
2879 inp_inpcbtotcpcb(struct inpcb *inp)
2880 {
2881 
2882 	INP_WLOCK_ASSERT(inp);
2883 	return ((struct tcpcb *)inp->inp_ppcb);
2884 }
2885 
2886 int
2887 inp_ip_tos_get(const struct inpcb *inp)
2888 {
2889 
2890 	return (inp->inp_ip_tos);
2891 }
2892 
2893 void
2894 inp_ip_tos_set(struct inpcb *inp, int val)
2895 {
2896 
2897 	inp->inp_ip_tos = val;
2898 }
2899 
2900 void
2901 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2902     uint32_t *faddr, uint16_t *fp)
2903 {
2904 
2905 	INP_LOCK_ASSERT(inp);
2906 	*laddr = inp->inp_laddr.s_addr;
2907 	*faddr = inp->inp_faddr.s_addr;
2908 	*lp = inp->inp_lport;
2909 	*fp = inp->inp_fport;
2910 }
2911 
2912 struct inpcb *
2913 so_sotoinpcb(struct socket *so)
2914 {
2915 
2916 	return (sotoinpcb(so));
2917 }
2918 
2919 struct tcpcb *
2920 so_sototcpcb(struct socket *so)
2921 {
2922 
2923 	return (sototcpcb(so));
2924 }
2925 
2926 /*
2927  * Create an external-format (``xinpcb'') structure using the information in
2928  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2929  * reduce the spew of irrelevant information over this interface, to isolate
2930  * user code from changes in the kernel structure, and potentially to provide
2931  * information-hiding if we decide that some of this information should be
2932  * hidden from users.
2933  */
2934 void
2935 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2936 {
2937 
2938 	bzero(xi, sizeof(*xi));
2939 	xi->xi_len = sizeof(struct xinpcb);
2940 	if (inp->inp_socket)
2941 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2942 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2943 	xi->inp_gencnt = inp->inp_gencnt;
2944 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2945 	xi->inp_flow = inp->inp_flow;
2946 	xi->inp_flowid = inp->inp_flowid;
2947 	xi->inp_flowtype = inp->inp_flowtype;
2948 	xi->inp_flags = inp->inp_flags;
2949 	xi->inp_flags2 = inp->inp_flags2;
2950 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2951 	xi->in6p_cksum = inp->in6p_cksum;
2952 	xi->in6p_hops = inp->in6p_hops;
2953 	xi->inp_ip_tos = inp->inp_ip_tos;
2954 	xi->inp_vflag = inp->inp_vflag;
2955 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2956 	xi->inp_ip_p = inp->inp_ip_p;
2957 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2958 }
2959 
2960 #ifdef DDB
2961 static void
2962 db_print_indent(int indent)
2963 {
2964 	int i;
2965 
2966 	for (i = 0; i < indent; i++)
2967 		db_printf(" ");
2968 }
2969 
2970 static void
2971 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2972 {
2973 	char faddr_str[48], laddr_str[48];
2974 
2975 	db_print_indent(indent);
2976 	db_printf("%s at %p\n", name, inc);
2977 
2978 	indent += 2;
2979 
2980 #ifdef INET6
2981 	if (inc->inc_flags & INC_ISIPV6) {
2982 		/* IPv6. */
2983 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2984 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2985 	} else
2986 #endif
2987 	{
2988 		/* IPv4. */
2989 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2990 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2991 	}
2992 	db_print_indent(indent);
2993 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2994 	    ntohs(inc->inc_lport));
2995 	db_print_indent(indent);
2996 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2997 	    ntohs(inc->inc_fport));
2998 }
2999 
3000 static void
3001 db_print_inpflags(int inp_flags)
3002 {
3003 	int comma;
3004 
3005 	comma = 0;
3006 	if (inp_flags & INP_RECVOPTS) {
3007 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3008 		comma = 1;
3009 	}
3010 	if (inp_flags & INP_RECVRETOPTS) {
3011 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3012 		comma = 1;
3013 	}
3014 	if (inp_flags & INP_RECVDSTADDR) {
3015 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3016 		comma = 1;
3017 	}
3018 	if (inp_flags & INP_ORIGDSTADDR) {
3019 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3020 		comma = 1;
3021 	}
3022 	if (inp_flags & INP_HDRINCL) {
3023 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3024 		comma = 1;
3025 	}
3026 	if (inp_flags & INP_HIGHPORT) {
3027 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3028 		comma = 1;
3029 	}
3030 	if (inp_flags & INP_LOWPORT) {
3031 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3032 		comma = 1;
3033 	}
3034 	if (inp_flags & INP_ANONPORT) {
3035 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3036 		comma = 1;
3037 	}
3038 	if (inp_flags & INP_RECVIF) {
3039 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3040 		comma = 1;
3041 	}
3042 	if (inp_flags & INP_MTUDISC) {
3043 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3044 		comma = 1;
3045 	}
3046 	if (inp_flags & INP_RECVTTL) {
3047 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3048 		comma = 1;
3049 	}
3050 	if (inp_flags & INP_DONTFRAG) {
3051 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3052 		comma = 1;
3053 	}
3054 	if (inp_flags & INP_RECVTOS) {
3055 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3056 		comma = 1;
3057 	}
3058 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3059 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3060 		comma = 1;
3061 	}
3062 	if (inp_flags & IN6P_PKTINFO) {
3063 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3064 		comma = 1;
3065 	}
3066 	if (inp_flags & IN6P_HOPLIMIT) {
3067 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3068 		comma = 1;
3069 	}
3070 	if (inp_flags & IN6P_HOPOPTS) {
3071 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3072 		comma = 1;
3073 	}
3074 	if (inp_flags & IN6P_DSTOPTS) {
3075 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3076 		comma = 1;
3077 	}
3078 	if (inp_flags & IN6P_RTHDR) {
3079 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3080 		comma = 1;
3081 	}
3082 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3083 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3084 		comma = 1;
3085 	}
3086 	if (inp_flags & IN6P_TCLASS) {
3087 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3088 		comma = 1;
3089 	}
3090 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3091 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3092 		comma = 1;
3093 	}
3094 	if (inp_flags & INP_TIMEWAIT) {
3095 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3096 		comma  = 1;
3097 	}
3098 	if (inp_flags & INP_ONESBCAST) {
3099 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3100 		comma  = 1;
3101 	}
3102 	if (inp_flags & INP_DROPPED) {
3103 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3104 		comma  = 1;
3105 	}
3106 	if (inp_flags & INP_SOCKREF) {
3107 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3108 		comma  = 1;
3109 	}
3110 	if (inp_flags & IN6P_RFC2292) {
3111 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3112 		comma = 1;
3113 	}
3114 	if (inp_flags & IN6P_MTU) {
3115 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3116 		comma = 1;
3117 	}
3118 }
3119 
3120 static void
3121 db_print_inpvflag(u_char inp_vflag)
3122 {
3123 	int comma;
3124 
3125 	comma = 0;
3126 	if (inp_vflag & INP_IPV4) {
3127 		db_printf("%sINP_IPV4", comma ? ", " : "");
3128 		comma  = 1;
3129 	}
3130 	if (inp_vflag & INP_IPV6) {
3131 		db_printf("%sINP_IPV6", comma ? ", " : "");
3132 		comma  = 1;
3133 	}
3134 	if (inp_vflag & INP_IPV6PROTO) {
3135 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3136 		comma  = 1;
3137 	}
3138 }
3139 
3140 static void
3141 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3142 {
3143 
3144 	db_print_indent(indent);
3145 	db_printf("%s at %p\n", name, inp);
3146 
3147 	indent += 2;
3148 
3149 	db_print_indent(indent);
3150 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3151 
3152 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3153 
3154 	db_print_indent(indent);
3155 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3156 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3157 
3158 	db_print_indent(indent);
3159 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3160 	   inp->inp_label, inp->inp_flags);
3161 	db_print_inpflags(inp->inp_flags);
3162 	db_printf(")\n");
3163 
3164 	db_print_indent(indent);
3165 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3166 	    inp->inp_vflag);
3167 	db_print_inpvflag(inp->inp_vflag);
3168 	db_printf(")\n");
3169 
3170 	db_print_indent(indent);
3171 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3172 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3173 
3174 	db_print_indent(indent);
3175 #ifdef INET6
3176 	if (inp->inp_vflag & INP_IPV6) {
3177 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3178 		    "in6p_moptions: %p\n", inp->in6p_options,
3179 		    inp->in6p_outputopts, inp->in6p_moptions);
3180 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3181 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3182 		    inp->in6p_hops);
3183 	} else
3184 #endif
3185 	{
3186 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3187 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3188 		    inp->inp_options, inp->inp_moptions);
3189 	}
3190 
3191 	db_print_indent(indent);
3192 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3193 	    (uintmax_t)inp->inp_gencnt);
3194 }
3195 
3196 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3197 {
3198 	struct inpcb *inp;
3199 
3200 	if (!have_addr) {
3201 		db_printf("usage: show inpcb <addr>\n");
3202 		return;
3203 	}
3204 	inp = (struct inpcb *)addr;
3205 
3206 	db_print_inpcb(inp, "inpcb", 0);
3207 }
3208 #endif /* DDB */
3209 
3210 #ifdef RATELIMIT
3211 /*
3212  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3213  * if any.
3214  */
3215 int
3216 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3217 {
3218 	union if_snd_tag_modify_params params = {
3219 		.rate_limit.max_rate = max_pacing_rate,
3220 		.rate_limit.flags = M_NOWAIT,
3221 	};
3222 	struct m_snd_tag *mst;
3223 	struct ifnet *ifp;
3224 	int error;
3225 
3226 	mst = inp->inp_snd_tag;
3227 	if (mst == NULL)
3228 		return (EINVAL);
3229 
3230 	ifp = mst->ifp;
3231 	if (ifp == NULL)
3232 		return (EINVAL);
3233 
3234 	if (ifp->if_snd_tag_modify == NULL) {
3235 		error = EOPNOTSUPP;
3236 	} else {
3237 		error = ifp->if_snd_tag_modify(mst, &params);
3238 	}
3239 	return (error);
3240 }
3241 
3242 /*
3243  * Query existing TX rate limit based on the existing
3244  * "inp->inp_snd_tag", if any.
3245  */
3246 int
3247 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3248 {
3249 	union if_snd_tag_query_params params = { };
3250 	struct m_snd_tag *mst;
3251 	struct ifnet *ifp;
3252 	int error;
3253 
3254 	mst = inp->inp_snd_tag;
3255 	if (mst == NULL)
3256 		return (EINVAL);
3257 
3258 	ifp = mst->ifp;
3259 	if (ifp == NULL)
3260 		return (EINVAL);
3261 
3262 	if (ifp->if_snd_tag_query == NULL) {
3263 		error = EOPNOTSUPP;
3264 	} else {
3265 		error = ifp->if_snd_tag_query(mst, &params);
3266 		if (error == 0 &&  p_max_pacing_rate != NULL)
3267 			*p_max_pacing_rate = params.rate_limit.max_rate;
3268 	}
3269 	return (error);
3270 }
3271 
3272 /*
3273  * Query existing TX queue level based on the existing
3274  * "inp->inp_snd_tag", if any.
3275  */
3276 int
3277 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3278 {
3279 	union if_snd_tag_query_params params = { };
3280 	struct m_snd_tag *mst;
3281 	struct ifnet *ifp;
3282 	int error;
3283 
3284 	mst = inp->inp_snd_tag;
3285 	if (mst == NULL)
3286 		return (EINVAL);
3287 
3288 	ifp = mst->ifp;
3289 	if (ifp == NULL)
3290 		return (EINVAL);
3291 
3292 	if (ifp->if_snd_tag_query == NULL)
3293 		return (EOPNOTSUPP);
3294 
3295 	error = ifp->if_snd_tag_query(mst, &params);
3296 	if (error == 0 &&  p_txqueue_level != NULL)
3297 		*p_txqueue_level = params.rate_limit.queue_level;
3298 	return (error);
3299 }
3300 
3301 /*
3302  * Allocate a new TX rate limit send tag from the network interface
3303  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3304  */
3305 int
3306 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3307     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3308 
3309 {
3310 	union if_snd_tag_alloc_params params = {
3311 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3312 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3313 		.rate_limit.hdr.flowid = flowid,
3314 		.rate_limit.hdr.flowtype = flowtype,
3315 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3316 		.rate_limit.max_rate = max_pacing_rate,
3317 		.rate_limit.flags = M_NOWAIT,
3318 	};
3319 	int error;
3320 
3321 	INP_WLOCK_ASSERT(inp);
3322 
3323 	if (*st != NULL)
3324 		return (EINVAL);
3325 
3326 	if (ifp->if_snd_tag_alloc == NULL) {
3327 		error = EOPNOTSUPP;
3328 	} else {
3329 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3330 
3331 #ifdef INET
3332 		if (error == 0) {
3333 			counter_u64_add(rate_limit_set_ok, 1);
3334 			counter_u64_add(rate_limit_active, 1);
3335 		} else
3336 			counter_u64_add(rate_limit_alloc_fail, 1);
3337 #endif
3338 	}
3339 	return (error);
3340 }
3341 
3342 void
3343 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst)
3344 {
3345 	if (ifp == NULL)
3346 		return;
3347 
3348 	/*
3349 	 * If the device was detached while we still had reference(s)
3350 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3351 	 * stubs.
3352 	 */
3353 	ifp->if_snd_tag_free(mst);
3354 
3355 	/* release reference count on network interface */
3356 	if_rele(ifp);
3357 #ifdef INET
3358 	counter_u64_add(rate_limit_active, -1);
3359 #endif
3360 }
3361 
3362 /*
3363  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3364  * if any:
3365  */
3366 void
3367 in_pcbdetach_txrtlmt(struct inpcb *inp)
3368 {
3369 	struct m_snd_tag *mst;
3370 
3371 	INP_WLOCK_ASSERT(inp);
3372 
3373 	mst = inp->inp_snd_tag;
3374 	inp->inp_snd_tag = NULL;
3375 
3376 	if (mst == NULL)
3377 		return;
3378 
3379 	m_snd_tag_rele(mst);
3380 }
3381 
3382 int
3383 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3384 {
3385 	int error;
3386 
3387 	/*
3388 	 * If the existing send tag is for the wrong interface due to
3389 	 * a route change, first drop the existing tag.  Set the
3390 	 * CHANGED flag so that we will keep trying to allocate a new
3391 	 * tag if we fail to allocate one this time.
3392 	 */
3393 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3394 		in_pcbdetach_txrtlmt(inp);
3395 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3396 	}
3397 
3398 	/*
3399 	 * NOTE: When attaching to a network interface a reference is
3400 	 * made to ensure the network interface doesn't go away until
3401 	 * all ratelimit connections are gone. The network interface
3402 	 * pointers compared below represent valid network interfaces,
3403 	 * except when comparing towards NULL.
3404 	 */
3405 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3406 		error = 0;
3407 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3408 		if (inp->inp_snd_tag != NULL)
3409 			in_pcbdetach_txrtlmt(inp);
3410 		error = 0;
3411 	} else if (inp->inp_snd_tag == NULL) {
3412 		/*
3413 		 * In order to utilize packet pacing with RSS, we need
3414 		 * to wait until there is a valid RSS hash before we
3415 		 * can proceed:
3416 		 */
3417 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3418 			error = EAGAIN;
3419 		} else {
3420 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3421 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3422 		}
3423 	} else {
3424 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3425 	}
3426 	if (error == 0 || error == EOPNOTSUPP)
3427 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3428 
3429 	return (error);
3430 }
3431 
3432 /*
3433  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3434  * is set in the fast path and will attach/detach/modify the TX rate
3435  * limit send tag based on the socket's so_max_pacing_rate value.
3436  */
3437 void
3438 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3439 {
3440 	struct socket *socket;
3441 	uint32_t max_pacing_rate;
3442 	bool did_upgrade;
3443 	int error;
3444 
3445 	if (inp == NULL)
3446 		return;
3447 
3448 	socket = inp->inp_socket;
3449 	if (socket == NULL)
3450 		return;
3451 
3452 	if (!INP_WLOCKED(inp)) {
3453 		/*
3454 		 * NOTE: If the write locking fails, we need to bail
3455 		 * out and use the non-ratelimited ring for the
3456 		 * transmit until there is a new chance to get the
3457 		 * write lock.
3458 		 */
3459 		if (!INP_TRY_UPGRADE(inp))
3460 			return;
3461 		did_upgrade = 1;
3462 	} else {
3463 		did_upgrade = 0;
3464 	}
3465 
3466 	/*
3467 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3468 	 * because atomic updates are not required since the variable
3469 	 * is checked at every mbuf we send. It is assumed that the
3470 	 * variable read itself will be atomic.
3471 	 */
3472 	max_pacing_rate = socket->so_max_pacing_rate;
3473 
3474 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3475 
3476 	if (did_upgrade)
3477 		INP_DOWNGRADE(inp);
3478 }
3479 
3480 /*
3481  * Track route changes for TX rate limiting.
3482  */
3483 void
3484 in_pcboutput_eagain(struct inpcb *inp)
3485 {
3486 	bool did_upgrade;
3487 
3488 	if (inp == NULL)
3489 		return;
3490 
3491 	if (inp->inp_snd_tag == NULL)
3492 		return;
3493 
3494 	if (!INP_WLOCKED(inp)) {
3495 		/*
3496 		 * NOTE: If the write locking fails, we need to bail
3497 		 * out and use the non-ratelimited ring for the
3498 		 * transmit until there is a new chance to get the
3499 		 * write lock.
3500 		 */
3501 		if (!INP_TRY_UPGRADE(inp))
3502 			return;
3503 		did_upgrade = 1;
3504 	} else {
3505 		did_upgrade = 0;
3506 	}
3507 
3508 	/* detach rate limiting */
3509 	in_pcbdetach_txrtlmt(inp);
3510 
3511 	/* make sure new mbuf send tag allocation is made */
3512 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3513 
3514 	if (did_upgrade)
3515 		INP_DOWNGRADE(inp);
3516 }
3517 
3518 #ifdef INET
3519 static void
3520 rl_init(void *st)
3521 {
3522 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3523 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3524 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3525 }
3526 
3527 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3528 #endif
3529 #endif /* RATELIMIT */
3530