xref: /freebsd/sys/netinet/ip_mroute.c (revision c7046f76)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989 Stephen Deering
5  * Copyright (c) 1992, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Stephen Deering of Stanford University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
36  */
37 
38 /*
39  * IP multicast forwarding procedures
40  *
41  * Written by David Waitzman, BBN Labs, August 1988.
42  * Modified by Steve Deering, Stanford, February 1989.
43  * Modified by Mark J. Steiglitz, Stanford, May, 1991
44  * Modified by Van Jacobson, LBL, January 1993
45  * Modified by Ajit Thyagarajan, PARC, August 1993
46  * Modified by Bill Fenner, PARC, April 1995
47  * Modified by Ahmed Helmy, SGI, June 1996
48  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
49  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
50  * Modified by Hitoshi Asaeda, WIDE, August 2000
51  * Modified by Pavlin Radoslavov, ICSI, October 2002
52  * Modified by Wojciech Macek, Semihalf, May 2021
53  *
54  * MROUTING Revision: 3.5
55  * and PIM-SMv2 and PIM-DM support, advanced API support,
56  * bandwidth metering and signaling
57  */
58 
59 /*
60  * TODO: Prefix functions with ipmf_.
61  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
62  * domain attachment (if_afdata) so we can track consumers of that service.
63  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
64  * move it to socket options.
65  * TODO: Cleanup LSRR removal further.
66  * TODO: Push RSVP stubs into raw_ip.c.
67  * TODO: Use bitstring.h for vif set.
68  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
69  * TODO: Sync ip6_mroute.c with this file.
70  */
71 
72 #include <sys/cdefs.h>
73 __FBSDID("$FreeBSD$");
74 
75 #include "opt_inet.h"
76 #include "opt_mrouting.h"
77 
78 #define _PIM_VT 1
79 
80 #include <sys/types.h>
81 #include <sys/param.h>
82 #include <sys/kernel.h>
83 #include <sys/stddef.h>
84 #include <sys/condvar.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/module.h>
92 #include <sys/priv.h>
93 #include <sys/protosw.h>
94 #include <sys/signalvar.h>
95 #include <sys/socket.h>
96 #include <sys/socketvar.h>
97 #include <sys/sockio.h>
98 #include <sys/sx.h>
99 #include <sys/sysctl.h>
100 #include <sys/syslog.h>
101 #include <sys/systm.h>
102 #include <sys/taskqueue.h>
103 #include <sys/time.h>
104 #include <sys/counter.h>
105 #include <machine/atomic.h>
106 
107 #include <net/if.h>
108 #include <net/if_var.h>
109 #include <net/if_types.h>
110 #include <net/netisr.h>
111 #include <net/route.h>
112 #include <net/vnet.h>
113 
114 #include <netinet/in.h>
115 #include <netinet/igmp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/in_var.h>
118 #include <netinet/ip.h>
119 #include <netinet/ip_encap.h>
120 #include <netinet/ip_mroute.h>
121 #include <netinet/ip_var.h>
122 #include <netinet/ip_options.h>
123 #include <netinet/pim.h>
124 #include <netinet/pim_var.h>
125 #include <netinet/udp.h>
126 
127 #include <machine/in_cksum.h>
128 
129 #ifndef KTR_IPMF
130 #define KTR_IPMF KTR_INET
131 #endif
132 
133 #define		VIFI_INVALID	((vifi_t) -1)
134 
135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
136 
137 /*
138  * Locking.  We use two locks: one for the virtual interface table and
139  * one for the forwarding table.  These locks may be nested in which case
140  * the VIF lock must always be taken first.  Note that each lock is used
141  * to cover not only the specific data structure but also related data
142  * structures.
143  */
144 
145 static struct rwlock mrouter_mtx;
146 #define	MRW_RLOCK()		rw_rlock(&mrouter_mtx)
147 #define	MRW_WLOCK()		rw_wlock(&mrouter_mtx)
148 #define	MRW_RUNLOCK()	rw_runlock(&mrouter_mtx)
149 #define	MRW_WUNLOCK()	rw_wunlock(&mrouter_mtx)
150 #define	MRW_UNLOCK()	rw_unlock(&mrouter_mtx)
151 #define	MRW_LOCK_ASSERT()	rw_assert(&mrouter_mtx, RA_LOCKED)
152 #define	MRW_WLOCK_ASSERT()	rw_assert(&mrouter_mtx, RA_WLOCKED)
153 #define	MRW_LOCK_TRY_UPGRADE()	rw_try_upgrade(&mrouter_mtx)
154 #define	MRW_WOWNED()	rw_wowned(&mrouter_mtx)
155 #define	MRW_LOCK_INIT()						\
156 	rw_init(&mrouter_mtx, "IPv4 multicast forwarding")
157 #define	MRW_LOCK_DESTROY()	rw_destroy(&mrouter_mtx)
158 
159 static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
161 
162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
163 VNET_PCPUSTAT_SYSINIT(mrtstat);
164 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
166     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
167     "netinet/ip_mroute.h)");
168 
169 VNET_DEFINE_STATIC(u_long, mfchash);
170 #define	V_mfchash		VNET(mfchash)
171 #define	MFCHASH(a, g)							\
172 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
173 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
174 #define	MFCHASHSIZE	256
175 
176 static u_long mfchashsize;			/* Hash size */
177 VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
178 #define	V_nexpire		VNET(nexpire)
179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
180 #define	V_mfchashtbl		VNET(mfchashtbl)
181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue);
182 #define	V_task_queue		VNET(task_queue)
183 VNET_DEFINE_STATIC(struct task, task);
184 #define	V_task		VNET(task)
185 
186 VNET_DEFINE_STATIC(vifi_t, numvifs);
187 #define	V_numvifs		VNET(numvifs)
188 VNET_DEFINE_STATIC(struct vif *, viftable);
189 #define	V_viftable		VNET(viftable)
190 
191 static eventhandler_tag if_detach_event_tag = NULL;
192 
193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
194 #define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
195 
196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
197 #define	V_buf_ring_mtx	VNET(buf_ring_mtx)
198 
199 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
200 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
201 
202 /*
203  * Bandwidth meter variables and constants
204  */
205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
206 
207 /*
208  * Pending upcalls are stored in a ring which is flushed when
209  * full, or periodically
210  */
211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
212 #define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
214 #define	V_bw_upcalls_ring    	VNET(bw_upcalls_ring)
215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
216 #define	V_bw_upcalls_ring_mtx    	VNET(bw_upcalls_ring_mtx)
217 
218 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
219 
220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
221 VNET_PCPUSTAT_SYSINIT(pimstat);
222 VNET_PCPUSTAT_SYSUNINIT(pimstat);
223 
224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
225     "PIM");
226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
227     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
228 
229 static u_long	pim_squelch_wholepkt = 0;
230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
231     &pim_squelch_wholepkt, 0,
232     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
233 
234 static const struct encaptab *pim_encap_cookie;
235 static int pim_encapcheck(const struct mbuf *, int, int, void *);
236 static int pim_input(struct mbuf *, int, int, void *);
237 
238 extern int in_mcast_loop;
239 
240 static const struct encap_config ipv4_encap_cfg = {
241 	.proto = IPPROTO_PIM,
242 	.min_length = sizeof(struct ip) + PIM_MINLEN,
243 	.exact_match = 8,
244 	.check = pim_encapcheck,
245 	.input = pim_input
246 };
247 
248 /*
249  * Note: the PIM Register encapsulation adds the following in front of a
250  * data packet:
251  *
252  * struct pim_encap_hdr {
253  *    struct ip ip;
254  *    struct pim_encap_pimhdr  pim;
255  * }
256  *
257  */
258 
259 struct pim_encap_pimhdr {
260 	struct pim pim;
261 	uint32_t   flags;
262 };
263 #define		PIM_ENCAP_TTL	64
264 
265 static struct ip pim_encap_iphdr = {
266 #if BYTE_ORDER == LITTLE_ENDIAN
267 	sizeof(struct ip) >> 2,
268 	IPVERSION,
269 #else
270 	IPVERSION,
271 	sizeof(struct ip) >> 2,
272 #endif
273 	0,			/* tos */
274 	sizeof(struct ip),	/* total length */
275 	0,			/* id */
276 	0,			/* frag offset */
277 	PIM_ENCAP_TTL,
278 	IPPROTO_PIM,
279 	0,			/* checksum */
280 };
281 
282 static struct pim_encap_pimhdr pim_encap_pimhdr = {
283     {
284 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
285 	0,			/* reserved */
286 	0,			/* checksum */
287     },
288     0				/* flags */
289 };
290 
291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
292 #define	V_reg_vif_num		VNET(reg_vif_num)
293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
294 #define	V_multicast_register_if	VNET(multicast_register_if)
295 
296 /*
297  * Private variables.
298  */
299 
300 static u_long	X_ip_mcast_src(int);
301 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
302 		    struct ip_moptions *);
303 static int	X_ip_mrouter_done(void);
304 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
305 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
306 static int	X_legal_vif_num(int);
307 static int	X_mrt_ioctl(u_long, caddr_t, int);
308 
309 static int	add_bw_upcall(struct bw_upcall *);
310 static int	add_mfc(struct mfcctl2 *);
311 static int	add_vif(struct vifctl *);
312 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
313 static void	bw_meter_geq_receive_packet(struct bw_meter *, int,
314 		    struct timeval *);
315 static void	bw_upcalls_send(void);
316 static int	del_bw_upcall(struct bw_upcall *);
317 static int	del_mfc(struct mfcctl2 *);
318 static int	del_vif(vifi_t);
319 static int	del_vif_locked(vifi_t, struct ifnet **);
320 static void	expire_bw_upcalls_send(void *);
321 static void	expire_mfc(struct mfc *);
322 static void	expire_upcalls(void *);
323 static void	free_bw_list(struct bw_meter *);
324 static int	get_sg_cnt(struct sioc_sg_req *);
325 static int	get_vif_cnt(struct sioc_vif_req *);
326 static void	if_detached_event(void *, struct ifnet *);
327 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
328 static int	ip_mrouter_init(struct socket *, int);
329 static __inline struct mfc *
330 		mfc_find(struct in_addr *, struct in_addr *);
331 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
332 static struct mbuf *
333 		pim_register_prepare(struct ip *, struct mbuf *);
334 static int	pim_register_send(struct ip *, struct vif *,
335 		    struct mbuf *, struct mfc *);
336 static int	pim_register_send_rp(struct ip *, struct vif *,
337 		    struct mbuf *, struct mfc *);
338 static int	pim_register_send_upcall(struct ip *, struct vif *,
339 		    struct mbuf *, struct mfc *);
340 static void	send_packet(struct vif *, struct mbuf *);
341 static int	set_api_config(uint32_t *);
342 static int	set_assert(int);
343 static int	socket_send(struct socket *, struct mbuf *,
344 		    struct sockaddr_in *);
345 
346 /*
347  * Kernel multicast forwarding API capabilities and setup.
348  * If more API capabilities are added to the kernel, they should be
349  * recorded in `mrt_api_support'.
350  */
351 #define MRT_API_VERSION		0x0305
352 
353 static const int mrt_api_version = MRT_API_VERSION;
354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
355 					 MRT_MFC_FLAGS_BORDER_VIF |
356 					 MRT_MFC_RP |
357 					 MRT_MFC_BW_UPCALL);
358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
359 #define	V_mrt_api_config	VNET(mrt_api_config)
360 VNET_DEFINE_STATIC(int, pim_assert_enabled);
361 #define	V_pim_assert_enabled	VNET(pim_assert_enabled)
362 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
363 
364 /*
365  * Find a route for a given origin IP address and multicast group address.
366  * Statistics must be updated by the caller.
367  */
368 static __inline struct mfc *
369 mfc_find(struct in_addr *o, struct in_addr *g)
370 {
371 	struct mfc *rt;
372 
373 	/*
374 	 * Might be called both RLOCK and WLOCK.
375 	 * Check if any, it's caller responsibility
376 	 * to choose correct option.
377 	 */
378 	MRW_LOCK_ASSERT();
379 
380 	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
381 		if (in_hosteq(rt->mfc_origin, *o) &&
382 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
383 		    buf_ring_empty(rt->mfc_stall_ring))
384 			break;
385 	}
386 
387 	return (rt);
388 }
389 
390 static __inline struct mfc *
391 mfc_alloc(void)
392 {
393 	struct mfc *rt;
394 	rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
395 	if (rt == NULL)
396 		return rt;
397 
398 	rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
399 	    M_NOWAIT, &V_buf_ring_mtx);
400 	if (rt->mfc_stall_ring == NULL) {
401 		free(rt, M_MRTABLE);
402 		return NULL;
403 	}
404 
405 	return rt;
406 }
407 
408 /*
409  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
410  */
411 static int
412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
413 {
414     int	error, optval;
415     vifi_t	vifi;
416     struct	vifctl vifc;
417     struct	mfcctl2 mfc;
418     struct	bw_upcall bw_upcall;
419     uint32_t	i;
420 
421     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
422 	return EPERM;
423 
424     error = 0;
425     switch (sopt->sopt_name) {
426     case MRT_INIT:
427 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
428 	if (error)
429 	    break;
430 	error = ip_mrouter_init(so, optval);
431 	break;
432 
433     case MRT_DONE:
434 	error = ip_mrouter_done();
435 	break;
436 
437     case MRT_ADD_VIF:
438 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
439 	if (error)
440 	    break;
441 	error = add_vif(&vifc);
442 	break;
443 
444     case MRT_DEL_VIF:
445 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
446 	if (error)
447 	    break;
448 	error = del_vif(vifi);
449 	break;
450 
451     case MRT_ADD_MFC:
452     case MRT_DEL_MFC:
453 	/*
454 	 * select data size depending on API version.
455 	 */
456 	if (sopt->sopt_name == MRT_ADD_MFC &&
457 		V_mrt_api_config & MRT_API_FLAGS_ALL) {
458 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
459 				sizeof(struct mfcctl2));
460 	} else {
461 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
462 				sizeof(struct mfcctl));
463 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
464 			sizeof(mfc) - sizeof(struct mfcctl));
465 	}
466 	if (error)
467 	    break;
468 	if (sopt->sopt_name == MRT_ADD_MFC)
469 	    error = add_mfc(&mfc);
470 	else
471 	    error = del_mfc(&mfc);
472 	break;
473 
474     case MRT_ASSERT:
475 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
476 	if (error)
477 	    break;
478 	set_assert(optval);
479 	break;
480 
481     case MRT_API_CONFIG:
482 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
483 	if (!error)
484 	    error = set_api_config(&i);
485 	if (!error)
486 	    error = sooptcopyout(sopt, &i, sizeof i);
487 	break;
488 
489     case MRT_ADD_BW_UPCALL:
490     case MRT_DEL_BW_UPCALL:
491 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
492 				sizeof bw_upcall);
493 	if (error)
494 	    break;
495 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
496 	    error = add_bw_upcall(&bw_upcall);
497 	else
498 	    error = del_bw_upcall(&bw_upcall);
499 	break;
500 
501     default:
502 	error = EOPNOTSUPP;
503 	break;
504     }
505     return error;
506 }
507 
508 /*
509  * Handle MRT getsockopt commands
510  */
511 static int
512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
513 {
514     int error;
515 
516     switch (sopt->sopt_name) {
517     case MRT_VERSION:
518 	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
519 	break;
520 
521     case MRT_ASSERT:
522 	error = sooptcopyout(sopt, &V_pim_assert_enabled,
523 	    sizeof V_pim_assert_enabled);
524 	break;
525 
526     case MRT_API_SUPPORT:
527 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
528 	break;
529 
530     case MRT_API_CONFIG:
531 	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
532 	break;
533 
534     default:
535 	error = EOPNOTSUPP;
536 	break;
537     }
538     return error;
539 }
540 
541 /*
542  * Handle ioctl commands to obtain information from the cache
543  */
544 static int
545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
546 {
547     int error = 0;
548 
549     /*
550      * Currently the only function calling this ioctl routine is rtioctl_fib().
551      * Typically, only root can create the raw socket in order to execute
552      * this ioctl method, however the request might be coming from a prison
553      */
554     error = priv_check(curthread, PRIV_NETINET_MROUTE);
555     if (error)
556 	return (error);
557     switch (cmd) {
558     case (SIOCGETVIFCNT):
559 	error = get_vif_cnt((struct sioc_vif_req *)data);
560 	break;
561 
562     case (SIOCGETSGCNT):
563 	error = get_sg_cnt((struct sioc_sg_req *)data);
564 	break;
565 
566     default:
567 	error = EINVAL;
568 	break;
569     }
570     return error;
571 }
572 
573 /*
574  * returns the packet, byte, rpf-failure count for the source group provided
575  */
576 static int
577 get_sg_cnt(struct sioc_sg_req *req)
578 {
579     struct mfc *rt;
580 
581     MRW_RLOCK();
582     rt = mfc_find(&req->src, &req->grp);
583     if (rt == NULL) {
584 	    MRW_RUNLOCK();
585 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
586 	return EADDRNOTAVAIL;
587     }
588     req->pktcnt = rt->mfc_pkt_cnt;
589     req->bytecnt = rt->mfc_byte_cnt;
590     req->wrong_if = rt->mfc_wrong_if;
591     MRW_RUNLOCK();
592     return 0;
593 }
594 
595 /*
596  * returns the input and output packet and byte counts on the vif provided
597  */
598 static int
599 get_vif_cnt(struct sioc_vif_req *req)
600 {
601     vifi_t vifi = req->vifi;
602 
603     MRW_RLOCK();
604     if (vifi >= V_numvifs) {
605 	MRW_RUNLOCK();
606 	return EINVAL;
607     }
608 
609     mtx_lock_spin(&V_viftable[vifi].v_spin);
610     req->icount = V_viftable[vifi].v_pkt_in;
611     req->ocount = V_viftable[vifi].v_pkt_out;
612     req->ibytes = V_viftable[vifi].v_bytes_in;
613     req->obytes = V_viftable[vifi].v_bytes_out;
614     mtx_unlock_spin(&V_viftable[vifi].v_spin);
615     MRW_RUNLOCK();
616 
617     return 0;
618 }
619 
620 static void
621 if_detached_event(void *arg __unused, struct ifnet *ifp)
622 {
623     vifi_t vifi;
624     u_long i, vifi_cnt = 0;
625     struct ifnet *free_ptr;
626 
627     MRW_WLOCK();
628 
629     if (V_ip_mrouter == NULL) {
630 	MRW_WUNLOCK();
631 	return;
632     }
633 
634     /*
635      * Tear down multicast forwarder state associated with this ifnet.
636      * 1. Walk the vif list, matching vifs against this ifnet.
637      * 2. Walk the multicast forwarding cache (mfc) looking for
638      *    inner matches with this vif's index.
639      * 3. Expire any matching multicast forwarding cache entries.
640      * 4. Free vif state. This should disable ALLMULTI on the interface.
641      */
642     for (vifi = 0; vifi < V_numvifs; vifi++) {
643 	if (V_viftable[vifi].v_ifp != ifp)
644 		continue;
645 	for (i = 0; i < mfchashsize; i++) {
646 		struct mfc *rt, *nrt;
647 
648 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
649 			if (rt->mfc_parent == vifi) {
650 				expire_mfc(rt);
651 			}
652 		}
653 	}
654 	del_vif_locked(vifi, &free_ptr);
655 	if (free_ptr != NULL)
656 		vifi_cnt++;
657     }
658 
659     MRW_WUNLOCK();
660 
661     /*
662      * Free IFP. We don't have to use free_ptr here as it is the same
663      * that ifp. Perform free as many times as required in case
664      * refcount is greater than 1.
665      */
666     for (i = 0; i < vifi_cnt; i++)
667 	    if_free(ifp);
668 }
669 
670 static void
671 ip_mrouter_upcall_thread(void *arg, int pending __unused)
672 {
673 	CURVNET_SET((struct vnet *) arg);
674 
675 	MRW_WLOCK();
676 	bw_upcalls_send();
677 	MRW_WUNLOCK();
678 
679 	CURVNET_RESTORE();
680 }
681 
682 /*
683  * Enable multicast forwarding.
684  */
685 static int
686 ip_mrouter_init(struct socket *so, int version)
687 {
688 
689     CTR2(KTR_IPMF, "%s: so %p", __func__, so);
690 
691     if (version != 1)
692 	return ENOPROTOOPT;
693 
694     MRW_WLOCK();
695 
696     if (ip_mrouter_unloading) {
697 	MRW_WUNLOCK();
698 	return ENOPROTOOPT;
699     }
700 
701     if (V_ip_mrouter != NULL) {
702 	MRW_WUNLOCK();
703 	return EADDRINUSE;
704     }
705 
706     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
707 	HASH_NOWAIT);
708 
709     /* Create upcall ring */
710     mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
711     V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
712 	M_NOWAIT, &V_bw_upcalls_ring_mtx);
713     if (!V_bw_upcalls_ring) {
714 	MRW_WUNLOCK();
715 	return (ENOMEM);
716     }
717 
718     TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet);
719     taskqueue_cancel(V_task_queue, &V_task, NULL);
720     taskqueue_unblock(V_task_queue);
721 
722     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
723 	curvnet);
724     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
725 	curvnet);
726 
727     V_ip_mrouter = so;
728     atomic_add_int(&ip_mrouter_cnt, 1);
729 
730     /* This is a mutex required by buf_ring init, but not used internally */
731     mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
732 
733     MRW_WUNLOCK();
734 
735     CTR1(KTR_IPMF, "%s: done", __func__);
736 
737     return 0;
738 }
739 
740 /*
741  * Disable multicast forwarding.
742  */
743 static int
744 X_ip_mrouter_done(void)
745 {
746     struct ifnet **ifps;
747     int nifp;
748     u_long i;
749     vifi_t vifi;
750     struct bw_upcall *bu;
751 
752     if (V_ip_mrouter == NULL)
753 	return (EINVAL);
754 
755     /*
756      * Detach/disable hooks to the reset of the system.
757      */
758     V_ip_mrouter = NULL;
759     atomic_subtract_int(&ip_mrouter_cnt, 1);
760     V_mrt_api_config = 0;
761 
762     /*
763      * Wait for all epoch sections to complete to ensure
764      * V_ip_mrouter = NULL is visible to others.
765      */
766     epoch_wait_preempt(net_epoch_preempt);
767 
768     /* Stop and drain task queue */
769     taskqueue_block(V_task_queue);
770     while (taskqueue_cancel(V_task_queue, &V_task, NULL)) {
771     	taskqueue_drain(V_task_queue, &V_task);
772     }
773 
774     ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK);
775 
776     MRW_WLOCK();
777     taskqueue_cancel(V_task_queue, &V_task, NULL);
778 
779     /* Destroy upcall ring */
780     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
781 	free(bu, M_MRTABLE);
782     }
783     buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
784     mtx_destroy(&V_bw_upcalls_ring_mtx);
785 
786     /*
787      * For each phyint in use, prepare to disable promiscuous reception
788      * of all IP multicasts.  Defer the actual call until the lock is released;
789      * just record the list of interfaces while locked.  Some interfaces use
790      * sx locks in their ioctl routines, which is not allowed while holding
791      * a non-sleepable lock.
792      */
793     KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible"));
794     for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) {
795 	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
796 		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
797 	    ifps[nifp++] = V_viftable[vifi].v_ifp;
798 	}
799     }
800     bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
801     V_numvifs = 0;
802     V_pim_assert_enabled = 0;
803 
804     callout_stop(&V_expire_upcalls_ch);
805     callout_stop(&V_bw_upcalls_ch);
806 
807     /*
808      * Free all multicast forwarding cache entries.
809      * Do not use hashdestroy(), as we must perform other cleanup.
810      */
811     for (i = 0; i < mfchashsize; i++) {
812 	struct mfc *rt, *nrt;
813 
814 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
815 		expire_mfc(rt);
816 	}
817     }
818     free(V_mfchashtbl, M_MRTABLE);
819     V_mfchashtbl = NULL;
820 
821     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
822 
823     V_reg_vif_num = VIFI_INVALID;
824 
825     mtx_destroy(&V_buf_ring_mtx);
826 
827     MRW_WUNLOCK();
828 
829     /*
830      * Now drop our claim on promiscuous multicast on the interfaces recorded
831      * above.  This is safe to do now because ALLMULTI is reference counted.
832      */
833     for (vifi = 0; vifi < nifp; vifi++)
834 	    if_allmulti(ifps[vifi], 0);
835     free(ifps, M_TEMP);
836 
837     CTR1(KTR_IPMF, "%s: done", __func__);
838 
839     return 0;
840 }
841 
842 /*
843  * Set PIM assert processing global
844  */
845 static int
846 set_assert(int i)
847 {
848     if ((i != 1) && (i != 0))
849 	return EINVAL;
850 
851     V_pim_assert_enabled = i;
852 
853     return 0;
854 }
855 
856 /*
857  * Configure API capabilities
858  */
859 int
860 set_api_config(uint32_t *apival)
861 {
862     u_long i;
863 
864     /*
865      * We can set the API capabilities only if it is the first operation
866      * after MRT_INIT. I.e.:
867      *  - there are no vifs installed
868      *  - pim_assert is not enabled
869      *  - the MFC table is empty
870      */
871     if (V_numvifs > 0) {
872 	*apival = 0;
873 	return EPERM;
874     }
875     if (V_pim_assert_enabled) {
876 	*apival = 0;
877 	return EPERM;
878     }
879 
880     MRW_RLOCK();
881 
882     for (i = 0; i < mfchashsize; i++) {
883 	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
884 	    MRW_RUNLOCK();
885 	    *apival = 0;
886 	    return EPERM;
887 	}
888     }
889 
890     MRW_RUNLOCK();
891 
892     V_mrt_api_config = *apival & mrt_api_support;
893     *apival = V_mrt_api_config;
894 
895     return 0;
896 }
897 
898 /*
899  * Add a vif to the vif table
900  */
901 static int
902 add_vif(struct vifctl *vifcp)
903 {
904     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
905     struct sockaddr_in sin = {sizeof sin, AF_INET};
906     struct ifaddr *ifa;
907     struct ifnet *ifp;
908     int error;
909 
910 
911     if (vifcp->vifc_vifi >= MAXVIFS)
912 	return EINVAL;
913     /* rate limiting is no longer supported by this code */
914     if (vifcp->vifc_rate_limit != 0) {
915 	log(LOG_ERR, "rate limiting is no longer supported\n");
916 	return EINVAL;
917     }
918 
919     if (in_nullhost(vifcp->vifc_lcl_addr))
920 	return EADDRNOTAVAIL;
921 
922     /* Find the interface with an address in AF_INET family */
923     if (vifcp->vifc_flags & VIFF_REGISTER) {
924 	/*
925 	 * XXX: Because VIFF_REGISTER does not really need a valid
926 	 * local interface (e.g. it could be 127.0.0.2), we don't
927 	 * check its address.
928 	 */
929 	ifp = NULL;
930     } else {
931 	struct epoch_tracker et;
932 
933 	sin.sin_addr = vifcp->vifc_lcl_addr;
934 	NET_EPOCH_ENTER(et);
935 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
936 	if (ifa == NULL) {
937 	    NET_EPOCH_EXIT(et);
938 	    return EADDRNOTAVAIL;
939 	}
940 	ifp = ifa->ifa_ifp;
941 	/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
942 	NET_EPOCH_EXIT(et);
943     }
944 
945     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
946 	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
947 	return EOPNOTSUPP;
948     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
949 	ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
950 	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
951 	if (V_reg_vif_num == VIFI_INVALID) {
952 	    if_initname(V_multicast_register_if, "register_vif", 0);
953 	    V_reg_vif_num = vifcp->vifc_vifi;
954 	}
955     } else {		/* Make sure the interface supports multicast */
956 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
957 	    return EOPNOTSUPP;
958 
959 	/* Enable promiscuous reception of all IP multicasts from the if */
960 	error = if_allmulti(ifp, 1);
961 	if (error)
962 	    return error;
963     }
964 
965     MRW_WLOCK();
966 
967     if (!in_nullhost(vifp->v_lcl_addr)) {
968 	if (ifp)
969 		V_multicast_register_if = NULL;
970 	MRW_WUNLOCK();
971 	if (ifp)
972 		if_free(ifp);
973 	return EADDRINUSE;
974     }
975 
976     vifp->v_flags     = vifcp->vifc_flags;
977     vifp->v_threshold = vifcp->vifc_threshold;
978     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
979     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
980     vifp->v_ifp       = ifp;
981     /* initialize per vif pkt counters */
982     vifp->v_pkt_in    = 0;
983     vifp->v_pkt_out   = 0;
984     vifp->v_bytes_in  = 0;
985     vifp->v_bytes_out = 0;
986     sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
987     mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
988 
989     /* Adjust numvifs up if the vifi is higher than numvifs */
990     if (V_numvifs <= vifcp->vifc_vifi)
991 	V_numvifs = vifcp->vifc_vifi + 1;
992 
993     MRW_WUNLOCK();
994 
995     CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
996 	(int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
997 	(int)vifcp->vifc_threshold);
998 
999     return 0;
1000 }
1001 
1002 /*
1003  * Delete a vif from the vif table
1004  */
1005 static int
1006 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free)
1007 {
1008     struct vif *vifp;
1009 
1010     *ifp_free = NULL;
1011 
1012     MRW_WLOCK_ASSERT();
1013 
1014     if (vifi >= V_numvifs) {
1015 	return EINVAL;
1016     }
1017     vifp = &V_viftable[vifi];
1018     if (in_nullhost(vifp->v_lcl_addr)) {
1019 	return EADDRNOTAVAIL;
1020     }
1021 
1022     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1023 	if_allmulti(vifp->v_ifp, 0);
1024 
1025     if (vifp->v_flags & VIFF_REGISTER) {
1026 	V_reg_vif_num = VIFI_INVALID;
1027 	if (vifp->v_ifp) {
1028 	    if (vifp->v_ifp == V_multicast_register_if)
1029 	        V_multicast_register_if = NULL;
1030 	    *ifp_free = vifp->v_ifp;
1031 	}
1032     }
1033 
1034     mtx_destroy(&vifp->v_spin);
1035 
1036     bzero((caddr_t)vifp, sizeof (*vifp));
1037 
1038     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
1039 
1040     /* Adjust numvifs down */
1041     for (vifi = V_numvifs; vifi > 0; vifi--)
1042 	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
1043 	    break;
1044     V_numvifs = vifi;
1045 
1046     return 0;
1047 }
1048 
1049 static int
1050 del_vif(vifi_t vifi)
1051 {
1052     int cc;
1053     struct ifnet *free_ptr;
1054 
1055     MRW_WLOCK();
1056     cc = del_vif_locked(vifi, &free_ptr);
1057     MRW_WUNLOCK();
1058 
1059     if (free_ptr)
1060 	    if_free(free_ptr);
1061 
1062     return cc;
1063 }
1064 
1065 /*
1066  * update an mfc entry without resetting counters and S,G addresses.
1067  */
1068 static void
1069 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1070 {
1071     int i;
1072 
1073     rt->mfc_parent = mfccp->mfcc_parent;
1074     for (i = 0; i < V_numvifs; i++) {
1075 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1076 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1077 	    MRT_MFC_FLAGS_ALL;
1078     }
1079     /* set the RP address */
1080     if (V_mrt_api_config & MRT_MFC_RP)
1081 	rt->mfc_rp = mfccp->mfcc_rp;
1082     else
1083 	rt->mfc_rp.s_addr = INADDR_ANY;
1084 }
1085 
1086 /*
1087  * fully initialize an mfc entry from the parameter.
1088  */
1089 static void
1090 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1091 {
1092     rt->mfc_origin     = mfccp->mfcc_origin;
1093     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1094 
1095     update_mfc_params(rt, mfccp);
1096 
1097     /* initialize pkt counters per src-grp */
1098     rt->mfc_pkt_cnt    = 0;
1099     rt->mfc_byte_cnt   = 0;
1100     rt->mfc_wrong_if   = 0;
1101     timevalclear(&rt->mfc_last_assert);
1102 }
1103 
1104 static void
1105 expire_mfc(struct mfc *rt)
1106 {
1107 	struct rtdetq *rte;
1108 
1109 	MRW_WLOCK_ASSERT();
1110 
1111 	free_bw_list(rt->mfc_bw_meter_leq);
1112 	free_bw_list(rt->mfc_bw_meter_geq);
1113 
1114 	while (!buf_ring_empty(rt->mfc_stall_ring)) {
1115 		rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1116 		if (rte) {
1117 			m_freem(rte->m);
1118 			free(rte, M_MRTABLE);
1119 		}
1120 	}
1121 	buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
1122 
1123 	LIST_REMOVE(rt, mfc_hash);
1124 	free(rt, M_MRTABLE);
1125 }
1126 
1127 /*
1128  * Add an mfc entry
1129  */
1130 static int
1131 add_mfc(struct mfcctl2 *mfccp)
1132 {
1133     struct mfc *rt;
1134     struct rtdetq *rte;
1135     u_long hash = 0;
1136     u_short nstl;
1137     struct epoch_tracker et;
1138 
1139     MRW_WLOCK();
1140     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1141 
1142     /* If an entry already exists, just update the fields */
1143     if (rt) {
1144 	CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1145 	    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1146 	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1147 	    mfccp->mfcc_parent);
1148 	update_mfc_params(rt, mfccp);
1149 	MRW_WUNLOCK();
1150 	return (0);
1151     }
1152 
1153     /*
1154      * Find the entry for which the upcall was made and update
1155      */
1156     nstl = 0;
1157     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1158     NET_EPOCH_ENTER(et);
1159     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1160 	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1161 	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1162 	    !buf_ring_empty(rt->mfc_stall_ring)) {
1163 		CTR5(KTR_IPMF,
1164 		    "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1165 		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1166 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1167 		    mfccp->mfcc_parent,
1168 		    rt->mfc_stall_ring);
1169 		if (nstl++)
1170 			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1171 
1172 		init_mfc_params(rt, mfccp);
1173 		rt->mfc_expire = 0;	/* Don't clean this guy up */
1174 		V_nexpire[hash]--;
1175 
1176 		/* Free queued packets, but attempt to forward them first. */
1177 		while (!buf_ring_empty(rt->mfc_stall_ring)) {
1178 			rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1179 			if (rte->ifp != NULL)
1180 				ip_mdq(rte->m, rte->ifp, rt, -1);
1181 			m_freem(rte->m);
1182 			free(rte, M_MRTABLE);
1183 		}
1184 	}
1185     }
1186     NET_EPOCH_EXIT(et);
1187 
1188     /*
1189      * It is possible that an entry is being inserted without an upcall
1190      */
1191     if (nstl == 0) {
1192 	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1193 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1194 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1195 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1196 			init_mfc_params(rt, mfccp);
1197 			if (rt->mfc_expire)
1198 			    V_nexpire[hash]--;
1199 			rt->mfc_expire = 0;
1200 			break; /* XXX */
1201 		}
1202 	}
1203 
1204 	if (rt == NULL) {		/* no upcall, so make a new entry */
1205 	    rt = mfc_alloc();
1206 	    if (rt == NULL) {
1207 		MRW_WUNLOCK();
1208 		return (ENOBUFS);
1209 	    }
1210 
1211 	    init_mfc_params(rt, mfccp);
1212 
1213 	    rt->mfc_expire     = 0;
1214 	    rt->mfc_bw_meter_leq = NULL;
1215 	    rt->mfc_bw_meter_geq = NULL;
1216 
1217 	    /* insert new entry at head of hash chain */
1218 	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1219 	}
1220     }
1221 
1222     MRW_WUNLOCK();
1223 
1224     return (0);
1225 }
1226 
1227 /*
1228  * Delete an mfc entry
1229  */
1230 static int
1231 del_mfc(struct mfcctl2 *mfccp)
1232 {
1233     struct in_addr	origin;
1234     struct in_addr	mcastgrp;
1235     struct mfc		*rt;
1236 
1237     origin = mfccp->mfcc_origin;
1238     mcastgrp = mfccp->mfcc_mcastgrp;
1239 
1240     CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1241 	ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1242 
1243     MRW_WLOCK();
1244 
1245     rt = mfc_find(&origin, &mcastgrp);
1246     if (rt == NULL) {
1247 	MRW_WUNLOCK();
1248 	return EADDRNOTAVAIL;
1249     }
1250 
1251     /*
1252      * free the bw_meter entries
1253      */
1254     free_bw_list(rt->mfc_bw_meter_leq);
1255     rt->mfc_bw_meter_leq = NULL;
1256     free_bw_list(rt->mfc_bw_meter_geq);
1257     rt->mfc_bw_meter_geq = NULL;
1258 
1259     LIST_REMOVE(rt, mfc_hash);
1260     free(rt, M_MRTABLE);
1261 
1262     MRW_WUNLOCK();
1263 
1264     return (0);
1265 }
1266 
1267 /*
1268  * Send a message to the routing daemon on the multicast routing socket.
1269  */
1270 static int
1271 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1272 {
1273     if (s) {
1274 	SOCKBUF_LOCK(&s->so_rcv);
1275 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1276 	    NULL) != 0) {
1277 	    sorwakeup_locked(s);
1278 	    return 0;
1279 	}
1280 	soroverflow_locked(s);
1281     }
1282     m_freem(mm);
1283     return -1;
1284 }
1285 
1286 /*
1287  * IP multicast forwarding function. This function assumes that the packet
1288  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1289  * pointed to by "ifp", and the packet is to be relayed to other networks
1290  * that have members of the packet's destination IP multicast group.
1291  *
1292  * The packet is returned unscathed to the caller, unless it is
1293  * erroneous, in which case a non-zero return value tells the caller to
1294  * discard it.
1295  */
1296 
1297 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1298 
1299 static int
1300 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1301     struct ip_moptions *imo)
1302 {
1303 	struct mfc *rt;
1304 	int error;
1305 	vifi_t vifi;
1306 	struct mbuf *mb0;
1307 	struct rtdetq *rte;
1308 	u_long hash;
1309 	int hlen;
1310 
1311 	CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1312 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1313 
1314 	if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1315 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1316 		/*
1317 		 * Packet arrived via a physical interface or
1318 		 * an encapsulated tunnel or a register_vif.
1319 		 */
1320 	} else {
1321 		/*
1322 		 * Packet arrived through a source-route tunnel.
1323 		 * Source-route tunnels are no longer supported.
1324 		 */
1325 		return (1);
1326 	}
1327 
1328 	/*
1329 	 * BEGIN: MCAST ROUTING HOT PATH
1330 	 */
1331 	MRW_RLOCK();
1332 	if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1333 		if (ip->ip_ttl < MAXTTL)
1334 			ip->ip_ttl++; /* compensate for -1 in *_send routines */
1335 		error = ip_mdq(m, ifp, NULL, vifi);
1336 		MRW_RUNLOCK();
1337 		return error;
1338 	}
1339 
1340 	/*
1341 	 * Don't forward a packet with time-to-live of zero or one,
1342 	 * or a packet destined to a local-only group.
1343 	 */
1344 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1345 		MRW_RUNLOCK();
1346 		return 0;
1347 	}
1348 
1349 	mfc_find_retry:
1350 	/*
1351 	 * Determine forwarding vifs from the forwarding cache table
1352 	 */
1353 	MRTSTAT_INC(mrts_mfc_lookups);
1354 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1355 
1356 	/* Entry exists, so forward if necessary */
1357 	if (rt != NULL) {
1358 		error = ip_mdq(m, ifp, rt, -1);
1359 		/* Generic unlock here as we might release R or W lock */
1360 		MRW_UNLOCK();
1361 		return error;
1362 	}
1363 
1364 	/*
1365 	 * END: MCAST ROUTING HOT PATH
1366 	 */
1367 
1368 	/* Further processing must be done with WLOCK taken */
1369 	if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1370 		MRW_RUNLOCK();
1371 		MRW_WLOCK();
1372 		goto mfc_find_retry;
1373 	}
1374 
1375 	/*
1376 	 * If we don't have a route for packet's origin,
1377 	 * Make a copy of the packet & send message to routing daemon
1378 	 */
1379 	hlen = ip->ip_hl << 2;
1380 
1381 	MRTSTAT_INC(mrts_mfc_misses);
1382 	MRTSTAT_INC(mrts_no_route);
1383 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1384 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1385 
1386 	/*
1387 	 * Allocate mbufs early so that we don't do extra work if we are
1388 	 * just going to fail anyway.  Make sure to pullup the header so
1389 	 * that other people can't step on it.
1390 	 */
1391 	rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE,
1392 	    M_NOWAIT|M_ZERO);
1393 	if (rte == NULL) {
1394 		MRW_WUNLOCK();
1395 		return ENOBUFS;
1396 	}
1397 
1398 	mb0 = m_copypacket(m, M_NOWAIT);
1399 	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1400 		mb0 = m_pullup(mb0, hlen);
1401 	if (mb0 == NULL) {
1402 		free(rte, M_MRTABLE);
1403 		MRW_WUNLOCK();
1404 		return ENOBUFS;
1405 	}
1406 
1407 	/* is there an upcall waiting for this flow ? */
1408 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1409 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
1410 	{
1411 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1412 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1413 		    !buf_ring_empty(rt->mfc_stall_ring))
1414 			break;
1415 	}
1416 
1417 	if (rt == NULL) {
1418 		int i;
1419 		struct igmpmsg *im;
1420 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1421 		struct mbuf *mm;
1422 
1423 		/*
1424 		 * Locate the vifi for the incoming interface for this packet.
1425 		 * If none found, drop packet.
1426 		 */
1427 		for (vifi = 0; vifi < V_numvifs &&
1428 		    V_viftable[vifi].v_ifp != ifp; vifi++)
1429 			;
1430 		if (vifi >= V_numvifs) /* vif not found, drop packet */
1431 			goto non_fatal;
1432 
1433 		/* no upcall, so make a new entry */
1434 		rt = mfc_alloc();
1435 		if (rt == NULL)
1436 			goto fail;
1437 
1438 		/* Make a copy of the header to send to the user level process */
1439 		mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1440 		if (mm == NULL)
1441 			goto fail1;
1442 
1443 		/*
1444 		 * Send message to routing daemon to install
1445 		 * a route into the kernel table
1446 		 */
1447 
1448 		im = mtod(mm, struct igmpmsg*);
1449 		im->im_msgtype = IGMPMSG_NOCACHE;
1450 		im->im_mbz = 0;
1451 		im->im_vif = vifi;
1452 
1453 		MRTSTAT_INC(mrts_upcalls);
1454 
1455 		k_igmpsrc.sin_addr = ip->ip_src;
1456 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1457 			CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1458 			MRTSTAT_INC(mrts_upq_sockfull);
1459 			fail1: free(rt, M_MRTABLE);
1460 			fail: free(rte, M_MRTABLE);
1461 			m_freem(mb0);
1462 			MRW_WUNLOCK();
1463 			return ENOBUFS;
1464 		}
1465 
1466 		/* insert new entry at head of hash chain */
1467 		rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1468 		rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1469 		rt->mfc_expire = UPCALL_EXPIRE;
1470 		V_nexpire[hash]++;
1471 		for (i = 0; i < V_numvifs; i++) {
1472 			rt->mfc_ttls[i] = 0;
1473 			rt->mfc_flags[i] = 0;
1474 		}
1475 		rt->mfc_parent = -1;
1476 
1477 		/* clear the RP address */
1478 		rt->mfc_rp.s_addr = INADDR_ANY;
1479 		rt->mfc_bw_meter_leq = NULL;
1480 		rt->mfc_bw_meter_geq = NULL;
1481 
1482 		/* initialize pkt counters per src-grp */
1483 		rt->mfc_pkt_cnt = 0;
1484 		rt->mfc_byte_cnt = 0;
1485 		rt->mfc_wrong_if = 0;
1486 		timevalclear(&rt->mfc_last_assert);
1487 
1488 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1489 
1490 		/* Add RT to hashtable as it didn't exist before */
1491 		LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1492 	} else {
1493 		/* determine if queue has overflowed */
1494 		if (buf_ring_full(rt->mfc_stall_ring)) {
1495 			MRTSTAT_INC(mrts_upq_ovflw);
1496 			non_fatal: free(rte, M_MRTABLE);
1497 			m_freem(mb0);
1498 			MRW_WUNLOCK();
1499 			return (0);
1500 		}
1501 
1502 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1503 	}
1504 
1505 	rte->m = mb0;
1506 	rte->ifp = ifp;
1507 
1508 	MRW_WUNLOCK();
1509 
1510 	return 0;
1511 }
1512 
1513 /*
1514  * Clean up the cache entry if upcall is not serviced
1515  */
1516 static void
1517 expire_upcalls(void *arg)
1518 {
1519     u_long i;
1520 
1521     CURVNET_SET((struct vnet *) arg);
1522 
1523     /*This callout is always run with MRW_WLOCK taken. */
1524 
1525     for (i = 0; i < mfchashsize; i++) {
1526 	struct mfc *rt, *nrt;
1527 
1528 	if (V_nexpire[i] == 0)
1529 	    continue;
1530 
1531 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1532 		if (buf_ring_empty(rt->mfc_stall_ring))
1533 			continue;
1534 
1535 		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1536 			continue;
1537 
1538 		MRTSTAT_INC(mrts_cache_cleanups);
1539 		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1540 		    (u_long)ntohl(rt->mfc_origin.s_addr),
1541 		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1542 
1543 		expire_mfc(rt);
1544 	    }
1545     }
1546 
1547     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1548 	curvnet);
1549 
1550     CURVNET_RESTORE();
1551 }
1552 
1553 /*
1554  * Packet forwarding routine once entry in the cache is made
1555  */
1556 static int
1557 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1558 {
1559     struct ip  *ip = mtod(m, struct ip *);
1560     vifi_t vifi;
1561     int plen = ntohs(ip->ip_len);
1562 
1563     MRW_LOCK_ASSERT();
1564     NET_EPOCH_ASSERT();
1565 
1566     /*
1567      * If xmt_vif is not -1, send on only the requested vif.
1568      *
1569      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1570      */
1571     if (xmt_vif < V_numvifs) {
1572 	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1573 		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1574 	else
1575 		phyint_send(ip, V_viftable + xmt_vif, m);
1576 	return 1;
1577     }
1578 
1579     /*
1580      * Don't forward if it didn't arrive from the parent vif for its origin.
1581      */
1582     vifi = rt->mfc_parent;
1583     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1584 	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1585 	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1586 	MRTSTAT_INC(mrts_wrong_if);
1587 	++rt->mfc_wrong_if;
1588 	/*
1589 	 * If we are doing PIM assert processing, send a message
1590 	 * to the routing daemon.
1591 	 *
1592 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1593 	 * can complete the SPT switch, regardless of the type
1594 	 * of the iif (broadcast media, GRE tunnel, etc).
1595 	 */
1596 	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1597 	    V_viftable[vifi].v_ifp) {
1598 	    if (ifp == V_multicast_register_if)
1599 		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1600 
1601 	    /* Get vifi for the incoming packet */
1602 	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1603 		vifi++)
1604 		;
1605 	    if (vifi >= V_numvifs)
1606 		return 0;	/* The iif is not found: ignore the packet. */
1607 
1608 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1609 		return 0;	/* WRONGVIF disabled: ignore the packet */
1610 
1611 	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1612 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1613 		struct igmpmsg *im;
1614 		int hlen = ip->ip_hl << 2;
1615 		struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1616 
1617 		if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1618 		    mm = m_pullup(mm, hlen);
1619 		if (mm == NULL)
1620 		    return ENOBUFS;
1621 
1622 		im = mtod(mm, struct igmpmsg *);
1623 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1624 		im->im_mbz		= 0;
1625 		im->im_vif		= vifi;
1626 
1627 		MRTSTAT_INC(mrts_upcalls);
1628 
1629 		k_igmpsrc.sin_addr = im->im_src;
1630 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1631 		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1632 		    MRTSTAT_INC(mrts_upq_sockfull);
1633 		    return ENOBUFS;
1634 		}
1635 	    }
1636 	}
1637 	return 0;
1638     }
1639 
1640     /* If I sourced this packet, it counts as output, else it was input. */
1641     mtx_lock_spin(&V_viftable[vifi].v_spin);
1642     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1643 	V_viftable[vifi].v_pkt_out++;
1644 	V_viftable[vifi].v_bytes_out += plen;
1645     } else {
1646 	V_viftable[vifi].v_pkt_in++;
1647 	V_viftable[vifi].v_bytes_in += plen;
1648     }
1649     mtx_unlock_spin(&V_viftable[vifi].v_spin);
1650 
1651     rt->mfc_pkt_cnt++;
1652     rt->mfc_byte_cnt += plen;
1653 
1654     /*
1655      * For each vif, decide if a copy of the packet should be forwarded.
1656      * Forward if:
1657      *		- the ttl exceeds the vif's threshold
1658      *		- there are group members downstream on interface
1659      */
1660     for (vifi = 0; vifi < V_numvifs; vifi++)
1661 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1662 	    V_viftable[vifi].v_pkt_out++;
1663 	    V_viftable[vifi].v_bytes_out += plen;
1664 	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1665 		pim_register_send(ip, V_viftable + vifi, m, rt);
1666 	    else
1667 		phyint_send(ip, V_viftable + vifi, m);
1668 	}
1669 
1670     /*
1671      * Perform upcall-related bw measuring.
1672      */
1673     if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
1674 	struct bw_meter *x;
1675 	struct timeval now;
1676 
1677 	microtime(&now);
1678 	/* Process meters for Greater-or-EQual case */
1679 	for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
1680 		bw_meter_geq_receive_packet(x, plen, &now);
1681 
1682 	/* Process meters for Lower-or-EQual case */
1683 	for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
1684 		/*
1685 		 * Record that a packet is received.
1686 		 * Spin lock has to be taken as callout context
1687 		 * (expire_bw_meter_leq) might modify these fields
1688 		 * as well
1689 		 */
1690 		mtx_lock_spin(&x->bm_spin);
1691 		x->bm_measured.b_packets++;
1692 		x->bm_measured.b_bytes += plen;
1693 		mtx_unlock_spin(&x->bm_spin);
1694 	}
1695     }
1696 
1697     return 0;
1698 }
1699 
1700 /*
1701  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1702  */
1703 static int
1704 X_legal_vif_num(int vif)
1705 {
1706 	int ret;
1707 
1708 	ret = 0;
1709 	if (vif < 0)
1710 		return (ret);
1711 
1712 	MRW_RLOCK();
1713 	if (vif < V_numvifs)
1714 		ret = 1;
1715 	MRW_RUNLOCK();
1716 
1717 	return (ret);
1718 }
1719 
1720 /*
1721  * Return the local address used by this vif
1722  */
1723 static u_long
1724 X_ip_mcast_src(int vifi)
1725 {
1726 	in_addr_t addr;
1727 
1728 	addr = INADDR_ANY;
1729 	if (vifi < 0)
1730 		return (addr);
1731 
1732 	MRW_RLOCK();
1733 	if (vifi < V_numvifs)
1734 		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1735 	MRW_RUNLOCK();
1736 
1737 	return (addr);
1738 }
1739 
1740 static void
1741 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1742 {
1743     struct mbuf *mb_copy;
1744     int hlen = ip->ip_hl << 2;
1745 
1746     MRW_LOCK_ASSERT();
1747 
1748     /*
1749      * Make a new reference to the packet; make sure that
1750      * the IP header is actually copied, not just referenced,
1751      * so that ip_output() only scribbles on the copy.
1752      */
1753     mb_copy = m_copypacket(m, M_NOWAIT);
1754     if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1755 	mb_copy = m_pullup(mb_copy, hlen);
1756     if (mb_copy == NULL)
1757 	return;
1758 
1759     send_packet(vifp, mb_copy);
1760 }
1761 
1762 static void
1763 send_packet(struct vif *vifp, struct mbuf *m)
1764 {
1765 	struct ip_moptions imo;
1766 	int error __unused;
1767 
1768 	MRW_LOCK_ASSERT();
1769 	NET_EPOCH_ASSERT();
1770 
1771 	imo.imo_multicast_ifp  = vifp->v_ifp;
1772 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1773 	imo.imo_multicast_loop = !!in_mcast_loop;
1774 	imo.imo_multicast_vif  = -1;
1775 	STAILQ_INIT(&imo.imo_head);
1776 
1777 	/*
1778 	 * Re-entrancy should not be a problem here, because
1779 	 * the packets that we send out and are looped back at us
1780 	 * should get rejected because they appear to come from
1781 	 * the loopback interface, thus preventing looping.
1782 	 */
1783 	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1784 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1785 	    (ptrdiff_t)(vifp - V_viftable), error);
1786 }
1787 
1788 /*
1789  * Stubs for old RSVP socket shim implementation.
1790  */
1791 
1792 static int
1793 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1794 {
1795 
1796 	return (EOPNOTSUPP);
1797 }
1798 
1799 static void
1800 X_ip_rsvp_force_done(struct socket *so __unused)
1801 {
1802 
1803 }
1804 
1805 static int
1806 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1807 {
1808 	struct mbuf *m;
1809 
1810 	m = *mp;
1811 	*mp = NULL;
1812 	if (!V_rsvp_on)
1813 		m_freem(m);
1814 	return (IPPROTO_DONE);
1815 }
1816 
1817 /*
1818  * Code for bandwidth monitors
1819  */
1820 
1821 /*
1822  * Define common interface for timeval-related methods
1823  */
1824 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1825 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1826 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1827 
1828 static uint32_t
1829 compute_bw_meter_flags(struct bw_upcall *req)
1830 {
1831     uint32_t flags = 0;
1832 
1833     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1834 	flags |= BW_METER_UNIT_PACKETS;
1835     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1836 	flags |= BW_METER_UNIT_BYTES;
1837     if (req->bu_flags & BW_UPCALL_GEQ)
1838 	flags |= BW_METER_GEQ;
1839     if (req->bu_flags & BW_UPCALL_LEQ)
1840 	flags |= BW_METER_LEQ;
1841 
1842     return flags;
1843 }
1844 
1845 static void
1846 expire_bw_meter_leq(void *arg)
1847 {
1848 	struct bw_meter *x = arg;
1849 	struct timeval now;
1850 	/*
1851 	 * INFO:
1852 	 * callout is always executed with MRW_WLOCK taken
1853 	 */
1854 
1855 	CURVNET_SET((struct vnet *)x->arg);
1856 
1857 	microtime(&now);
1858 
1859 	/*
1860 	 * Test if we should deliver an upcall
1861 	 */
1862 	if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1863 	    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1864 	    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1865 	    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1866 		/* Prepare an upcall for delivery */
1867 		bw_meter_prepare_upcall(x, &now);
1868 	}
1869 
1870 	/* Send all upcalls that are pending delivery */
1871 	taskqueue_enqueue(V_task_queue, &V_task);
1872 
1873 	/* Reset counters */
1874 	x->bm_start_time = now;
1875 	/* Spin lock has to be taken as ip_forward context
1876 	 * might modify these fields as well
1877 	 */
1878 	mtx_lock_spin(&x->bm_spin);
1879 	x->bm_measured.b_bytes = 0;
1880 	x->bm_measured.b_packets = 0;
1881 	mtx_unlock_spin(&x->bm_spin);
1882 
1883 	callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
1884 
1885 	CURVNET_RESTORE();
1886 }
1887 
1888 /*
1889  * Add a bw_meter entry
1890  */
1891 static int
1892 add_bw_upcall(struct bw_upcall *req)
1893 {
1894 	struct mfc *mfc;
1895 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1896 	BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1897 	struct timeval now;
1898 	struct bw_meter *x, **bwm_ptr;
1899 	uint32_t flags;
1900 
1901 	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1902 		return EOPNOTSUPP;
1903 
1904 	/* Test if the flags are valid */
1905 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1906 		return EINVAL;
1907 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1908 		return EINVAL;
1909 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1910 			== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1911 		return EINVAL;
1912 
1913 	/* Test if the threshold time interval is valid */
1914 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1915 		return EINVAL;
1916 
1917 	flags = compute_bw_meter_flags(req);
1918 
1919 	/*
1920 	 * Find if we have already same bw_meter entry
1921 	 */
1922 	MRW_WLOCK();
1923 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
1924 	if (mfc == NULL) {
1925 		MRW_WUNLOCK();
1926 		return EADDRNOTAVAIL;
1927 	}
1928 
1929 	/* Choose an appropriate bw_meter list */
1930 	if (req->bu_flags & BW_UPCALL_GEQ)
1931 		bwm_ptr = &mfc->mfc_bw_meter_geq;
1932 	else
1933 		bwm_ptr = &mfc->mfc_bw_meter_leq;
1934 
1935 	for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
1936 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1937 		    &req->bu_threshold.b_time, ==))
1938 		    && (x->bm_threshold.b_packets
1939 		    == req->bu_threshold.b_packets)
1940 		    && (x->bm_threshold.b_bytes
1941 		    == req->bu_threshold.b_bytes)
1942 		    && (x->bm_flags & BW_METER_USER_FLAGS)
1943 		    == flags) {
1944 			MRW_WUNLOCK();
1945 			return 0; /* XXX Already installed */
1946 		}
1947 	}
1948 
1949 	/* Allocate the new bw_meter entry */
1950 	x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER,
1951 	    M_ZERO | M_NOWAIT);
1952 	if (x == NULL) {
1953 		MRW_WUNLOCK();
1954 		return ENOBUFS;
1955 	}
1956 
1957 	/* Set the new bw_meter entry */
1958 	x->bm_threshold.b_time = req->bu_threshold.b_time;
1959 	microtime(&now);
1960 	x->bm_start_time = now;
1961 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1962 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1963 	x->bm_measured.b_packets = 0;
1964 	x->bm_measured.b_bytes = 0;
1965 	x->bm_flags = flags;
1966 	x->bm_time_next = NULL;
1967 	x->bm_mfc = mfc;
1968 	x->arg = curvnet;
1969 	sprintf(x->bm_spin_name, "BM spin %p", x);
1970 	mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
1971 
1972 	/* For LEQ case create periodic callout */
1973 	if (req->bu_flags & BW_UPCALL_LEQ) {
1974 		callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK);
1975 		callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
1976 		    expire_bw_meter_leq, x);
1977 	}
1978 
1979 	/* Add the new bw_meter entry to the front of entries for this MFC */
1980 	x->bm_mfc_next = *bwm_ptr;
1981 	*bwm_ptr = x;
1982 
1983 	MRW_WUNLOCK();
1984 
1985 	return 0;
1986 }
1987 
1988 static void
1989 free_bw_list(struct bw_meter *list)
1990 {
1991     while (list != NULL) {
1992 	struct bw_meter *x = list;
1993 
1994 	/* MRW_WLOCK must be held here */
1995 	if (x->bm_flags & BW_METER_LEQ) {
1996 		callout_drain(&x->bm_meter_callout);
1997 		mtx_destroy(&x->bm_spin);
1998 	}
1999 
2000 	list = list->bm_mfc_next;
2001 	free(x, M_BWMETER);
2002     }
2003 }
2004 
2005 /*
2006  * Delete one or multiple bw_meter entries
2007  */
2008 static int
2009 del_bw_upcall(struct bw_upcall *req)
2010 {
2011     struct mfc *mfc;
2012     struct bw_meter *x, **bwm_ptr;
2013 
2014     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
2015 	return EOPNOTSUPP;
2016 
2017     MRW_WLOCK();
2018 
2019     /* Find the corresponding MFC entry */
2020     mfc = mfc_find(&req->bu_src, &req->bu_dst);
2021     if (mfc == NULL) {
2022 	MRW_WUNLOCK();
2023 	return EADDRNOTAVAIL;
2024     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2025 	/*
2026 	 * Delete all bw_meter entries for this mfc
2027 	 */
2028 	struct bw_meter *list;
2029 
2030 	/* Free LEQ list */
2031 	list = mfc->mfc_bw_meter_leq;
2032 	mfc->mfc_bw_meter_leq = NULL;
2033 	free_bw_list(list);
2034 
2035 	/* Free GEQ list */
2036 	list = mfc->mfc_bw_meter_geq;
2037 	mfc->mfc_bw_meter_geq = NULL;
2038 	free_bw_list(list);
2039 	MRW_WUNLOCK();
2040 	return 0;
2041     } else {			/* Delete a single bw_meter entry */
2042 	struct bw_meter *prev;
2043 	uint32_t flags = 0;
2044 
2045 	flags = compute_bw_meter_flags(req);
2046 
2047 	/* Choose an appropriate bw_meter list */
2048 	if (req->bu_flags & BW_UPCALL_GEQ)
2049 		bwm_ptr = &mfc->mfc_bw_meter_geq;
2050 	else
2051 		bwm_ptr = &mfc->mfc_bw_meter_leq;
2052 
2053 	/* Find the bw_meter entry to delete */
2054 	for (prev = NULL, x = *bwm_ptr; x != NULL;
2055 	     prev = x, x = x->bm_mfc_next) {
2056 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2057 			       &req->bu_threshold.b_time, ==)) &&
2058 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2059 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2060 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2061 		break;
2062 	}
2063 	if (x != NULL) { /* Delete entry from the list for this MFC */
2064 	    if (prev != NULL)
2065 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2066 	    else
2067 		*bwm_ptr = x->bm_mfc_next;/* new head of list */
2068 
2069 	    if (req->bu_flags & BW_UPCALL_LEQ)
2070 		    callout_stop(&x->bm_meter_callout);
2071 
2072 	    MRW_WUNLOCK();
2073 	    /* Free the bw_meter entry */
2074 	    free(x, M_BWMETER);
2075 	    return 0;
2076 	} else {
2077 	    MRW_WUNLOCK();
2078 	    return EINVAL;
2079 	}
2080     }
2081     /* NOTREACHED */
2082 }
2083 
2084 /*
2085  * Perform bandwidth measurement processing that may result in an upcall
2086  */
2087 static void
2088 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2089 {
2090 	struct timeval delta;
2091 
2092 	MRW_LOCK_ASSERT();
2093 
2094 	delta = *nowp;
2095 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2096 
2097 	/*
2098 	 * Processing for ">=" type of bw_meter entry.
2099 	 * bm_spin does not have to be hold here as in GEQ
2100 	 * case this is the only context accessing bm_measured.
2101 	 */
2102 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2103 	    /* Reset the bw_meter entry */
2104 	    x->bm_start_time = *nowp;
2105 	    x->bm_measured.b_packets = 0;
2106 	    x->bm_measured.b_bytes = 0;
2107 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2108 	}
2109 
2110 	/* Record that a packet is received */
2111 	x->bm_measured.b_packets++;
2112 	x->bm_measured.b_bytes += plen;
2113 
2114 	/*
2115 	 * Test if we should deliver an upcall
2116 	 */
2117 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2118 		if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2119 		    (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2120 		    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2121 		    (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2122 			/* Prepare an upcall for delivery */
2123 			bw_meter_prepare_upcall(x, nowp);
2124 			x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2125 		}
2126 	}
2127 }
2128 
2129 /*
2130  * Prepare a bandwidth-related upcall
2131  */
2132 static void
2133 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2134 {
2135 	struct timeval delta;
2136 	struct bw_upcall *u;
2137 
2138 	MRW_LOCK_ASSERT();
2139 
2140 	/*
2141 	 * Compute the measured time interval
2142 	 */
2143 	delta = *nowp;
2144 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2145 
2146 	/*
2147 	 * Set the bw_upcall entry
2148 	 */
2149 	u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
2150 	if (!u) {
2151 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
2152 		return;
2153 	}
2154 	u->bu_src = x->bm_mfc->mfc_origin;
2155 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2156 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2157 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2158 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2159 	u->bu_measured.b_time = delta;
2160 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2161 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2162 	u->bu_flags = 0;
2163 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2164 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2165 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2166 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2167 	if (x->bm_flags & BW_METER_GEQ)
2168 		u->bu_flags |= BW_UPCALL_GEQ;
2169 	if (x->bm_flags & BW_METER_LEQ)
2170 		u->bu_flags |= BW_UPCALL_LEQ;
2171 
2172 	if (buf_ring_enqueue(V_bw_upcalls_ring, u))
2173 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2174 	if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
2175 		taskqueue_enqueue(V_task_queue, &V_task);
2176 	}
2177 }
2178 /*
2179  * Send the pending bandwidth-related upcalls
2180  */
2181 static void
2182 bw_upcalls_send(void)
2183 {
2184     struct mbuf *m;
2185     int len = 0;
2186     struct bw_upcall *bu;
2187     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2188     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2189 				      0,		/* unused2 */
2190 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2191 				      0,		/* im_mbz  */
2192 				      0,		/* im_vif  */
2193 				      0,		/* unused3 */
2194 				      { 0 },		/* im_src  */
2195 				      { 0 } };		/* im_dst  */
2196 
2197     MRW_LOCK_ASSERT();
2198 
2199     if (buf_ring_empty(V_bw_upcalls_ring))
2200 	return;
2201 
2202     /*
2203      * Allocate a new mbuf, initialize it with the header and
2204      * the payload for the pending calls.
2205      */
2206     m = m_gethdr(M_NOWAIT, MT_DATA);
2207     if (m == NULL) {
2208 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2209 	return;
2210     }
2211 
2212     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2213     len += sizeof(struct igmpmsg);
2214     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
2215 	m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
2216 	len += sizeof(struct bw_upcall);
2217 	free(bu, M_MRTABLE);
2218     }
2219 
2220     /*
2221      * Send the upcalls
2222      * XXX do we need to set the address in k_igmpsrc ?
2223      */
2224     MRTSTAT_INC(mrts_upcalls);
2225     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2226 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2227 	MRTSTAT_INC(mrts_upq_sockfull);
2228     }
2229 }
2230 
2231 /*
2232  * A periodic function for sending all upcalls that are pending delivery
2233  */
2234 static void
2235 expire_bw_upcalls_send(void *arg)
2236 {
2237     CURVNET_SET((struct vnet *) arg);
2238 
2239     /* This callout is run with MRW_RLOCK taken */
2240 
2241     bw_upcalls_send();
2242 
2243     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2244 	curvnet);
2245     CURVNET_RESTORE();
2246 }
2247 
2248 /*
2249  * End of bandwidth monitoring code
2250  */
2251 
2252 /*
2253  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2254  *
2255  */
2256 static int
2257 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2258     struct mfc *rt)
2259 {
2260     struct mbuf *mb_copy, *mm;
2261 
2262     /*
2263      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2264      * rendezvous point was unspecified, and we were told not to.
2265      */
2266     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2267 	in_nullhost(rt->mfc_rp))
2268 	return 0;
2269 
2270     mb_copy = pim_register_prepare(ip, m);
2271     if (mb_copy == NULL)
2272 	return ENOBUFS;
2273 
2274     /*
2275      * Send all the fragments. Note that the mbuf for each fragment
2276      * is freed by the sending machinery.
2277      */
2278     for (mm = mb_copy; mm; mm = mb_copy) {
2279 	mb_copy = mm->m_nextpkt;
2280 	mm->m_nextpkt = 0;
2281 	mm = m_pullup(mm, sizeof(struct ip));
2282 	if (mm != NULL) {
2283 	    ip = mtod(mm, struct ip *);
2284 	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2285 		pim_register_send_rp(ip, vifp, mm, rt);
2286 	    } else {
2287 		pim_register_send_upcall(ip, vifp, mm, rt);
2288 	    }
2289 	}
2290     }
2291 
2292     return 0;
2293 }
2294 
2295 /*
2296  * Return a copy of the data packet that is ready for PIM Register
2297  * encapsulation.
2298  * XXX: Note that in the returned copy the IP header is a valid one.
2299  */
2300 static struct mbuf *
2301 pim_register_prepare(struct ip *ip, struct mbuf *m)
2302 {
2303     struct mbuf *mb_copy = NULL;
2304     int mtu;
2305 
2306     /* Take care of delayed checksums */
2307     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2308 	in_delayed_cksum(m);
2309 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2310     }
2311 
2312     /*
2313      * Copy the old packet & pullup its IP header into the
2314      * new mbuf so we can modify it.
2315      */
2316     mb_copy = m_copypacket(m, M_NOWAIT);
2317     if (mb_copy == NULL)
2318 	return NULL;
2319     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2320     if (mb_copy == NULL)
2321 	return NULL;
2322 
2323     /* take care of the TTL */
2324     ip = mtod(mb_copy, struct ip *);
2325     --ip->ip_ttl;
2326 
2327     /* Compute the MTU after the PIM Register encapsulation */
2328     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2329 
2330     if (ntohs(ip->ip_len) <= mtu) {
2331 	/* Turn the IP header into a valid one */
2332 	ip->ip_sum = 0;
2333 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2334     } else {
2335 	/* Fragment the packet */
2336 	mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2337 	if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2338 	    m_freem(mb_copy);
2339 	    return NULL;
2340 	}
2341     }
2342     return mb_copy;
2343 }
2344 
2345 /*
2346  * Send an upcall with the data packet to the user-level process.
2347  */
2348 static int
2349 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2350     struct mbuf *mb_copy, struct mfc *rt)
2351 {
2352     struct mbuf *mb_first;
2353     int len = ntohs(ip->ip_len);
2354     struct igmpmsg *im;
2355     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2356 
2357     MRW_LOCK_ASSERT();
2358 
2359     /*
2360      * Add a new mbuf with an upcall header
2361      */
2362     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2363     if (mb_first == NULL) {
2364 	m_freem(mb_copy);
2365 	return ENOBUFS;
2366     }
2367     mb_first->m_data += max_linkhdr;
2368     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2369     mb_first->m_len = sizeof(struct igmpmsg);
2370     mb_first->m_next = mb_copy;
2371 
2372     /* Send message to routing daemon */
2373     im = mtod(mb_first, struct igmpmsg *);
2374     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2375     im->im_mbz		= 0;
2376     im->im_vif		= vifp - V_viftable;
2377     im->im_src		= ip->ip_src;
2378     im->im_dst		= ip->ip_dst;
2379 
2380     k_igmpsrc.sin_addr	= ip->ip_src;
2381 
2382     MRTSTAT_INC(mrts_upcalls);
2383 
2384     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2385 	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2386 	MRTSTAT_INC(mrts_upq_sockfull);
2387 	return ENOBUFS;
2388     }
2389 
2390     /* Keep statistics */
2391     PIMSTAT_INC(pims_snd_registers_msgs);
2392     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2393 
2394     return 0;
2395 }
2396 
2397 /*
2398  * Encapsulate the data packet in PIM Register message and send it to the RP.
2399  */
2400 static int
2401 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2402     struct mfc *rt)
2403 {
2404     struct mbuf *mb_first;
2405     struct ip *ip_outer;
2406     struct pim_encap_pimhdr *pimhdr;
2407     int len = ntohs(ip->ip_len);
2408     vifi_t vifi = rt->mfc_parent;
2409 
2410     MRW_LOCK_ASSERT();
2411 
2412     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2413 	m_freem(mb_copy);
2414 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2415     }
2416 
2417     /*
2418      * Add a new mbuf with the encapsulating header
2419      */
2420     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2421     if (mb_first == NULL) {
2422 	m_freem(mb_copy);
2423 	return ENOBUFS;
2424     }
2425     mb_first->m_data += max_linkhdr;
2426     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2427     mb_first->m_next = mb_copy;
2428 
2429     mb_first->m_pkthdr.len = len + mb_first->m_len;
2430 
2431     /*
2432      * Fill in the encapsulating IP and PIM header
2433      */
2434     ip_outer = mtod(mb_first, struct ip *);
2435     *ip_outer = pim_encap_iphdr;
2436     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2437 	sizeof(pim_encap_pimhdr));
2438     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2439     ip_outer->ip_dst = rt->mfc_rp;
2440     /*
2441      * Copy the inner header TOS to the outer header, and take care of the
2442      * IP_DF bit.
2443      */
2444     ip_outer->ip_tos = ip->ip_tos;
2445     if (ip->ip_off & htons(IP_DF))
2446 	ip_outer->ip_off |= htons(IP_DF);
2447     ip_fillid(ip_outer);
2448     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2449 					 + sizeof(pim_encap_iphdr));
2450     *pimhdr = pim_encap_pimhdr;
2451     /* If the iif crosses a border, set the Border-bit */
2452     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2453 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2454 
2455     mb_first->m_data += sizeof(pim_encap_iphdr);
2456     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2457     mb_first->m_data -= sizeof(pim_encap_iphdr);
2458 
2459     send_packet(vifp, mb_first);
2460 
2461     /* Keep statistics */
2462     PIMSTAT_INC(pims_snd_registers_msgs);
2463     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2464 
2465     return 0;
2466 }
2467 
2468 /*
2469  * pim_encapcheck() is called by the encap4_input() path at runtime to
2470  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2471  * into the kernel.
2472  */
2473 static int
2474 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2475     int proto __unused, void *arg __unused)
2476 {
2477 
2478     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2479     return (8);		/* claim the datagram. */
2480 }
2481 
2482 /*
2483  * PIM-SMv2 and PIM-DM messages processing.
2484  * Receives and verifies the PIM control messages, and passes them
2485  * up to the listening socket, using rip_input().
2486  * The only message with special processing is the PIM_REGISTER message
2487  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2488  * is passed to if_simloop().
2489  */
2490 static int
2491 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2492 {
2493     struct ip *ip = mtod(m, struct ip *);
2494     struct pim *pim;
2495     int iphlen = off;
2496     int minlen;
2497     int datalen = ntohs(ip->ip_len) - iphlen;
2498     int ip_tos;
2499 
2500     /* Keep statistics */
2501     PIMSTAT_INC(pims_rcv_total_msgs);
2502     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2503 
2504     /*
2505      * Validate lengths
2506      */
2507     if (datalen < PIM_MINLEN) {
2508 	PIMSTAT_INC(pims_rcv_tooshort);
2509 	CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2510 	    __func__, datalen, ntohl(ip->ip_src.s_addr));
2511 	m_freem(m);
2512 	return (IPPROTO_DONE);
2513     }
2514 
2515     /*
2516      * If the packet is at least as big as a REGISTER, go agead
2517      * and grab the PIM REGISTER header size, to avoid another
2518      * possible m_pullup() later.
2519      *
2520      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2521      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2522      */
2523     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2524     /*
2525      * Get the IP and PIM headers in contiguous memory, and
2526      * possibly the PIM REGISTER header.
2527      */
2528     if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2529 	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2530 	return (IPPROTO_DONE);
2531     }
2532 
2533     /* m_pullup() may have given us a new mbuf so reset ip. */
2534     ip = mtod(m, struct ip *);
2535     ip_tos = ip->ip_tos;
2536 
2537     /* adjust mbuf to point to the PIM header */
2538     m->m_data += iphlen;
2539     m->m_len  -= iphlen;
2540     pim = mtod(m, struct pim *);
2541 
2542     /*
2543      * Validate checksum. If PIM REGISTER, exclude the data packet.
2544      *
2545      * XXX: some older PIMv2 implementations don't make this distinction,
2546      * so for compatibility reason perform the checksum over part of the
2547      * message, and if error, then over the whole message.
2548      */
2549     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2550 	/* do nothing, checksum okay */
2551     } else if (in_cksum(m, datalen)) {
2552 	PIMSTAT_INC(pims_rcv_badsum);
2553 	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2554 	m_freem(m);
2555 	return (IPPROTO_DONE);
2556     }
2557 
2558     /* PIM version check */
2559     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2560 	PIMSTAT_INC(pims_rcv_badversion);
2561 	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2562 	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2563 	m_freem(m);
2564 	return (IPPROTO_DONE);
2565     }
2566 
2567     /* restore mbuf back to the outer IP */
2568     m->m_data -= iphlen;
2569     m->m_len  += iphlen;
2570 
2571     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2572 	/*
2573 	 * Since this is a REGISTER, we'll make a copy of the register
2574 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2575 	 * routing daemon.
2576 	 */
2577 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2578 	struct mbuf *mcp;
2579 	struct ip *encap_ip;
2580 	u_int32_t *reghdr;
2581 	struct ifnet *vifp;
2582 
2583 	MRW_RLOCK();
2584 	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2585 	    MRW_RUNLOCK();
2586 	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2587 		(int)V_reg_vif_num);
2588 	    m_freem(m);
2589 	    return (IPPROTO_DONE);
2590 	}
2591 	/* XXX need refcnt? */
2592 	vifp = V_viftable[V_reg_vif_num].v_ifp;
2593 	MRW_RUNLOCK();
2594 
2595 	/*
2596 	 * Validate length
2597 	 */
2598 	if (datalen < PIM_REG_MINLEN) {
2599 	    PIMSTAT_INC(pims_rcv_tooshort);
2600 	    PIMSTAT_INC(pims_rcv_badregisters);
2601 	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2602 	    m_freem(m);
2603 	    return (IPPROTO_DONE);
2604 	}
2605 
2606 	reghdr = (u_int32_t *)(pim + 1);
2607 	encap_ip = (struct ip *)(reghdr + 1);
2608 
2609 	CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2610 	    __func__, ntohl(encap_ip->ip_src.s_addr),
2611 	    ntohs(encap_ip->ip_len));
2612 
2613 	/* verify the version number of the inner packet */
2614 	if (encap_ip->ip_v != IPVERSION) {
2615 	    PIMSTAT_INC(pims_rcv_badregisters);
2616 	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2617 	    m_freem(m);
2618 	    return (IPPROTO_DONE);
2619 	}
2620 
2621 	/* verify the inner packet is destined to a mcast group */
2622 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2623 	    PIMSTAT_INC(pims_rcv_badregisters);
2624 	    CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2625 		ntohl(encap_ip->ip_dst.s_addr));
2626 	    m_freem(m);
2627 	    return (IPPROTO_DONE);
2628 	}
2629 
2630 	/* If a NULL_REGISTER, pass it to the daemon */
2631 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2632 	    goto pim_input_to_daemon;
2633 
2634 	/*
2635 	 * Copy the TOS from the outer IP header to the inner IP header.
2636 	 */
2637 	if (encap_ip->ip_tos != ip_tos) {
2638 	    /* Outer TOS -> inner TOS */
2639 	    encap_ip->ip_tos = ip_tos;
2640 	    /* Recompute the inner header checksum. Sigh... */
2641 
2642 	    /* adjust mbuf to point to the inner IP header */
2643 	    m->m_data += (iphlen + PIM_MINLEN);
2644 	    m->m_len  -= (iphlen + PIM_MINLEN);
2645 
2646 	    encap_ip->ip_sum = 0;
2647 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2648 
2649 	    /* restore mbuf to point back to the outer IP header */
2650 	    m->m_data -= (iphlen + PIM_MINLEN);
2651 	    m->m_len  += (iphlen + PIM_MINLEN);
2652 	}
2653 
2654 	/*
2655 	 * Decapsulate the inner IP packet and loopback to forward it
2656 	 * as a normal multicast packet. Also, make a copy of the
2657 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2658 	 * to pass to the daemon later, so it can take the appropriate
2659 	 * actions (e.g., send back PIM_REGISTER_STOP).
2660 	 * XXX: here m->m_data points to the outer IP header.
2661 	 */
2662 	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2663 	if (mcp == NULL) {
2664 	    CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2665 	    m_freem(m);
2666 	    return (IPPROTO_DONE);
2667 	}
2668 
2669 	/* Keep statistics */
2670 	/* XXX: registers_bytes include only the encap. mcast pkt */
2671 	PIMSTAT_INC(pims_rcv_registers_msgs);
2672 	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2673 
2674 	/*
2675 	 * forward the inner ip packet; point m_data at the inner ip.
2676 	 */
2677 	m_adj(m, iphlen + PIM_MINLEN);
2678 
2679 	CTR4(KTR_IPMF,
2680 	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2681 	    __func__,
2682 	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2683 	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2684 	    (int)V_reg_vif_num);
2685 
2686 	/* NB: vifp was collected above; can it change on us? */
2687 	if_simloop(vifp, m, dst.sin_family, 0);
2688 
2689 	/* prepare the register head to send to the mrouting daemon */
2690 	m = mcp;
2691     }
2692 
2693 pim_input_to_daemon:
2694     /*
2695      * Pass the PIM message up to the daemon; if it is a Register message,
2696      * pass the 'head' only up to the daemon. This includes the
2697      * outer IP header, PIM header, PIM-Register header and the
2698      * inner IP header.
2699      * XXX: the outer IP header pkt size of a Register is not adjust to
2700      * reflect the fact that the inner multicast data is truncated.
2701      */
2702     return (rip_input(&m, &off, proto));
2703 }
2704 
2705 static int
2706 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2707 {
2708 	struct mfc	*rt;
2709 	int		 error, i;
2710 
2711 	if (req->newptr)
2712 		return (EPERM);
2713 	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2714 		return (0);
2715 	error = sysctl_wire_old_buffer(req, 0);
2716 	if (error)
2717 		return (error);
2718 
2719 	MRW_RLOCK();
2720 	for (i = 0; i < mfchashsize; i++) {
2721 		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2722 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2723 			if (error)
2724 				goto out_locked;
2725 		}
2726 	}
2727 out_locked:
2728 	MRW_RUNLOCK();
2729 	return (error);
2730 }
2731 
2732 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2733     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2734     "IPv4 Multicast Forwarding Table "
2735     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2736 
2737 static int
2738 sysctl_viflist(SYSCTL_HANDLER_ARGS)
2739 {
2740 	int error, i;
2741 
2742 	if (req->newptr)
2743 		return (EPERM);
2744 	if (V_viftable == NULL)		/* XXX unlocked */
2745 		return (0);
2746 	error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS);
2747 	if (error)
2748 		return (error);
2749 
2750 	MRW_RLOCK();
2751 	/* Copy out user-visible portion of vif entry. */
2752 	for (i = 0; i < MAXVIFS; i++) {
2753 		error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN);
2754 		if (error)
2755 			break;
2756 	}
2757 	MRW_RUNLOCK();
2758 	return (error);
2759 }
2760 
2761 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2762     CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2763     sysctl_viflist, "S,vif[MAXVIFS]",
2764     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2765 
2766 static void
2767 vnet_mroute_init(const void *unused __unused)
2768 {
2769 
2770 	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2771 
2772 	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2773 	    M_MRTABLE, M_WAITOK|M_ZERO);
2774 
2775 	callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0);
2776 	callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0);
2777 
2778 	/* Prepare taskqueue */
2779 	V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT,
2780 		    taskqueue_thread_enqueue, &V_task_queue);
2781 	taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task");
2782 }
2783 
2784 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2785 	NULL);
2786 
2787 static void
2788 vnet_mroute_uninit(const void *unused __unused)
2789 {
2790 
2791 	/* Taskqueue should be cancelled and drained before freeing */
2792 	taskqueue_free(V_task_queue);
2793 
2794 	free(V_viftable, M_MRTABLE);
2795 	free(V_nexpire, M_MRTABLE);
2796 	V_nexpire = NULL;
2797 }
2798 
2799 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2800 	vnet_mroute_uninit, NULL);
2801 
2802 static int
2803 ip_mroute_modevent(module_t mod, int type, void *unused)
2804 {
2805 
2806     switch (type) {
2807     case MOD_LOAD:
2808 	MRW_LOCK_INIT();
2809 
2810 	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2811 	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2812 	if (if_detach_event_tag == NULL) {
2813 		printf("ip_mroute: unable to register "
2814 		    "ifnet_departure_event handler\n");
2815 		MRW_LOCK_DESTROY();
2816 		return (EINVAL);
2817 	}
2818 
2819 	mfchashsize = MFCHASHSIZE;
2820 	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2821 	    !powerof2(mfchashsize)) {
2822 		printf("WARNING: %s not a power of 2; using default\n",
2823 		    "net.inet.ip.mfchashsize");
2824 		mfchashsize = MFCHASHSIZE;
2825 	}
2826 
2827 	pim_squelch_wholepkt = 0;
2828 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2829 	    &pim_squelch_wholepkt);
2830 
2831 	pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2832 	if (pim_encap_cookie == NULL) {
2833 		printf("ip_mroute: unable to attach pim encap\n");
2834 		MRW_LOCK_DESTROY();
2835 		return (EINVAL);
2836 	}
2837 
2838 	ip_mcast_src = X_ip_mcast_src;
2839 	ip_mforward = X_ip_mforward;
2840 	ip_mrouter_done = X_ip_mrouter_done;
2841 	ip_mrouter_get = X_ip_mrouter_get;
2842 	ip_mrouter_set = X_ip_mrouter_set;
2843 
2844 	ip_rsvp_force_done = X_ip_rsvp_force_done;
2845 	ip_rsvp_vif = X_ip_rsvp_vif;
2846 
2847 	legal_vif_num = X_legal_vif_num;
2848 	mrt_ioctl = X_mrt_ioctl;
2849 	rsvp_input_p = X_rsvp_input;
2850 	break;
2851 
2852     case MOD_UNLOAD:
2853 	/*
2854 	 * Typically module unload happens after the user-level
2855 	 * process has shutdown the kernel services (the check
2856 	 * below insures someone can't just yank the module out
2857 	 * from under a running process).  But if the module is
2858 	 * just loaded and then unloaded w/o starting up a user
2859 	 * process we still need to cleanup.
2860 	 */
2861 	MRW_WLOCK();
2862 	if (ip_mrouter_cnt != 0) {
2863 	    MRW_WUNLOCK();
2864 	    return (EINVAL);
2865 	}
2866 	ip_mrouter_unloading = 1;
2867 	MRW_WUNLOCK();
2868 
2869 	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2870 
2871 	if (pim_encap_cookie) {
2872 	    ip_encap_detach(pim_encap_cookie);
2873 	    pim_encap_cookie = NULL;
2874 	}
2875 
2876 	ip_mcast_src = NULL;
2877 	ip_mforward = NULL;
2878 	ip_mrouter_done = NULL;
2879 	ip_mrouter_get = NULL;
2880 	ip_mrouter_set = NULL;
2881 
2882 	ip_rsvp_force_done = NULL;
2883 	ip_rsvp_vif = NULL;
2884 
2885 	legal_vif_num = NULL;
2886 	mrt_ioctl = NULL;
2887 	rsvp_input_p = NULL;
2888 
2889 	MRW_LOCK_DESTROY();
2890 	break;
2891 
2892     default:
2893 	return EOPNOTSUPP;
2894     }
2895     return 0;
2896 }
2897 
2898 static moduledata_t ip_mroutemod = {
2899     "ip_mroute",
2900     ip_mroute_modevent,
2901     0
2902 };
2903 
2904 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2905