xref: /freebsd/sys/netinet/ip_output.c (revision 0e6acb26)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_ratelimit.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 #include "opt_route.h"
41 #include "opt_sctp.h"
42 #include "opt_rss.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/protosw.h>
53 #include <sys/rmlock.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/ucred.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_llatbl.h>
63 #include <net/netisr.h>
64 #include <net/pfil.h>
65 #include <net/route.h>
66 #include <net/flowtable.h>
67 #ifdef RADIX_MPATH
68 #include <net/radix_mpath.h>
69 #endif
70 #include <net/rss_config.h>
71 #include <net/vnet.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/in_kdtrace.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/in_rss.h>
79 #include <netinet/in_var.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/ip_options.h>
82 #ifdef SCTP
83 #include <netinet/sctp.h>
84 #include <netinet/sctp_crc32.h>
85 #endif
86 
87 #include <netipsec/ipsec_support.h>
88 
89 #include <machine/in_cksum.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #ifdef MBUF_STRESS_TEST
94 static int mbuf_frag_size = 0;
95 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
96 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
97 #endif
98 
99 static void	ip_mloopback(struct ifnet *, const struct mbuf *, int);
100 
101 
102 extern int in_mcast_loop;
103 extern	struct protosw inetsw[];
104 
105 static inline int
106 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp,
107     struct sockaddr_in *dst, int *fibnum, int *error)
108 {
109 	struct m_tag *fwd_tag = NULL;
110 	struct mbuf *m;
111 	struct in_addr odst;
112 	struct ip *ip;
113 
114 	m = *mp;
115 	ip = mtod(m, struct ip *);
116 
117 	/* Run through list of hooks for output packets. */
118 	odst.s_addr = ip->ip_dst.s_addr;
119 	*error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp);
120 	m = *mp;
121 	if ((*error) != 0 || m == NULL)
122 		return 1; /* Finished */
123 
124 	ip = mtod(m, struct ip *);
125 
126 	/* See if destination IP address was changed by packet filter. */
127 	if (odst.s_addr != ip->ip_dst.s_addr) {
128 		m->m_flags |= M_SKIP_FIREWALL;
129 		/* If destination is now ourself drop to ip_input(). */
130 		if (in_localip(ip->ip_dst)) {
131 			m->m_flags |= M_FASTFWD_OURS;
132 			if (m->m_pkthdr.rcvif == NULL)
133 				m->m_pkthdr.rcvif = V_loif;
134 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
135 				m->m_pkthdr.csum_flags |=
136 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
137 				m->m_pkthdr.csum_data = 0xffff;
138 			}
139 			m->m_pkthdr.csum_flags |=
140 				CSUM_IP_CHECKED | CSUM_IP_VALID;
141 #ifdef SCTP
142 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
143 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
144 #endif
145 			*error = netisr_queue(NETISR_IP, m);
146 			return 1; /* Finished */
147 		}
148 
149 		bzero(dst, sizeof(*dst));
150 		dst->sin_family = AF_INET;
151 		dst->sin_len = sizeof(*dst);
152 		dst->sin_addr = ip->ip_dst;
153 
154 		return -1; /* Reloop */
155 	}
156 	/* See if fib was changed by packet filter. */
157 	if ((*fibnum) != M_GETFIB(m)) {
158 		m->m_flags |= M_SKIP_FIREWALL;
159 		*fibnum = M_GETFIB(m);
160 		return -1; /* Reloop for FIB change */
161 	}
162 
163 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
164 	if (m->m_flags & M_FASTFWD_OURS) {
165 		if (m->m_pkthdr.rcvif == NULL)
166 			m->m_pkthdr.rcvif = V_loif;
167 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
168 			m->m_pkthdr.csum_flags |=
169 				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
170 			m->m_pkthdr.csum_data = 0xffff;
171 		}
172 #ifdef SCTP
173 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
174 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
175 #endif
176 		m->m_pkthdr.csum_flags |=
177 			CSUM_IP_CHECKED | CSUM_IP_VALID;
178 
179 		*error = netisr_queue(NETISR_IP, m);
180 		return 1; /* Finished */
181 	}
182 	/* Or forward to some other address? */
183 	if ((m->m_flags & M_IP_NEXTHOP) &&
184 	    ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
185 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
186 		m->m_flags |= M_SKIP_FIREWALL;
187 		m->m_flags &= ~M_IP_NEXTHOP;
188 		m_tag_delete(m, fwd_tag);
189 
190 		return -1; /* Reloop for CHANGE of dst */
191 	}
192 
193 	return 0;
194 }
195 
196 /*
197  * IP output.  The packet in mbuf chain m contains a skeletal IP
198  * header (with len, off, ttl, proto, tos, src, dst).
199  * The mbuf chain containing the packet will be freed.
200  * The mbuf opt, if present, will not be freed.
201  * If route ro is present and has ro_rt initialized, route lookup would be
202  * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
203  * then result of route lookup is stored in ro->ro_rt.
204  *
205  * In the IP forwarding case, the packet will arrive with options already
206  * inserted, so must have a NULL opt pointer.
207  */
208 int
209 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
210     struct ip_moptions *imo, struct inpcb *inp)
211 {
212 	struct rm_priotracker in_ifa_tracker;
213 	struct ip *ip;
214 	struct ifnet *ifp = NULL;	/* keep compiler happy */
215 	struct mbuf *m0;
216 	int hlen = sizeof (struct ip);
217 	int mtu;
218 	int error = 0;
219 	struct sockaddr_in *dst;
220 	const struct sockaddr_in *gw;
221 	struct in_ifaddr *ia;
222 	int isbroadcast;
223 	uint16_t ip_len, ip_off;
224 	struct route iproute;
225 	struct rtentry *rte;	/* cache for ro->ro_rt */
226 	uint32_t fibnum;
227 	int have_ia_ref;
228 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
229 	int no_route_but_check_spd = 0;
230 #endif
231 	M_ASSERTPKTHDR(m);
232 
233 	if (inp != NULL) {
234 		INP_LOCK_ASSERT(inp);
235 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
236 		if ((flags & IP_NODEFAULTFLOWID) == 0) {
237 			m->m_pkthdr.flowid = inp->inp_flowid;
238 			M_HASHTYPE_SET(m, inp->inp_flowtype);
239 		}
240 	}
241 
242 	if (ro == NULL) {
243 		ro = &iproute;
244 		bzero(ro, sizeof (*ro));
245 	}
246 
247 #ifdef FLOWTABLE
248 	if (ro->ro_rt == NULL)
249 		(void )flowtable_lookup(AF_INET, m, ro);
250 #endif
251 
252 	if (opt) {
253 		int len = 0;
254 		m = ip_insertoptions(m, opt, &len);
255 		if (len != 0)
256 			hlen = len; /* ip->ip_hl is updated above */
257 	}
258 	ip = mtod(m, struct ip *);
259 	ip_len = ntohs(ip->ip_len);
260 	ip_off = ntohs(ip->ip_off);
261 
262 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
263 		ip->ip_v = IPVERSION;
264 		ip->ip_hl = hlen >> 2;
265 		ip_fillid(ip);
266 		IPSTAT_INC(ips_localout);
267 	} else {
268 		/* Header already set, fetch hlen from there */
269 		hlen = ip->ip_hl << 2;
270 	}
271 
272 	/*
273 	 * dst/gw handling:
274 	 *
275 	 * dst can be rewritten but always points to &ro->ro_dst.
276 	 * gw is readonly but can point either to dst OR rt_gateway,
277 	 * therefore we need restore gw if we're redoing lookup.
278 	 */
279 	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
280 	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
281 	rte = ro->ro_rt;
282 	if (rte == NULL) {
283 		bzero(dst, sizeof(*dst));
284 		dst->sin_family = AF_INET;
285 		dst->sin_len = sizeof(*dst);
286 		dst->sin_addr = ip->ip_dst;
287 	}
288 again:
289 	/*
290 	 * Validate route against routing table additions;
291 	 * a better/more specific route might have been added.
292 	 */
293 	if (inp)
294 		RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
295 	/*
296 	 * If there is a cached route,
297 	 * check that it is to the same destination
298 	 * and is still up.  If not, free it and try again.
299 	 * The address family should also be checked in case of sharing the
300 	 * cache with IPv6.
301 	 * Also check whether routing cache needs invalidation.
302 	 */
303 	rte = ro->ro_rt;
304 	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
305 		    rte->rt_ifp == NULL ||
306 		    !RT_LINK_IS_UP(rte->rt_ifp) ||
307 			  dst->sin_family != AF_INET ||
308 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
309 		RTFREE(rte);
310 		rte = ro->ro_rt = (struct rtentry *)NULL;
311 		if (ro->ro_lle)
312 			LLE_FREE(ro->ro_lle);	/* zeros ro_lle */
313 		ro->ro_lle = (struct llentry *)NULL;
314 	}
315 	ia = NULL;
316 	have_ia_ref = 0;
317 	/*
318 	 * If routing to interface only, short circuit routing lookup.
319 	 * The use of an all-ones broadcast address implies this; an
320 	 * interface is specified by the broadcast address of an interface,
321 	 * or the destination address of a ptp interface.
322 	 */
323 	if (flags & IP_SENDONES) {
324 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
325 						      M_GETFIB(m)))) == NULL &&
326 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
327 						    M_GETFIB(m)))) == NULL) {
328 			IPSTAT_INC(ips_noroute);
329 			error = ENETUNREACH;
330 			goto bad;
331 		}
332 		have_ia_ref = 1;
333 		ip->ip_dst.s_addr = INADDR_BROADCAST;
334 		dst->sin_addr = ip->ip_dst;
335 		ifp = ia->ia_ifp;
336 		ip->ip_ttl = 1;
337 		isbroadcast = 1;
338 	} else if (flags & IP_ROUTETOIF) {
339 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
340 						    M_GETFIB(m)))) == NULL &&
341 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
342 						M_GETFIB(m)))) == NULL) {
343 			IPSTAT_INC(ips_noroute);
344 			error = ENETUNREACH;
345 			goto bad;
346 		}
347 		have_ia_ref = 1;
348 		ifp = ia->ia_ifp;
349 		ip->ip_ttl = 1;
350 		isbroadcast = ifp->if_flags & IFF_BROADCAST ?
351 		    in_ifaddr_broadcast(dst->sin_addr, ia) : 0;
352 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
353 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
354 		/*
355 		 * Bypass the normal routing lookup for multicast
356 		 * packets if the interface is specified.
357 		 */
358 		ifp = imo->imo_multicast_ifp;
359 		IFP_TO_IA(ifp, ia, &in_ifa_tracker);
360 		if (ia)
361 			have_ia_ref = 1;
362 		isbroadcast = 0;	/* fool gcc */
363 	} else {
364 		/*
365 		 * We want to do any cloning requested by the link layer,
366 		 * as this is probably required in all cases for correct
367 		 * operation (as it is for ARP).
368 		 */
369 		if (rte == NULL) {
370 #ifdef RADIX_MPATH
371 			rtalloc_mpath_fib(ro,
372 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
373 			    fibnum);
374 #else
375 			in_rtalloc_ign(ro, 0, fibnum);
376 #endif
377 			rte = ro->ro_rt;
378 		}
379 		if (rte == NULL ||
380 		    (rte->rt_flags & RTF_UP) == 0 ||
381 		    rte->rt_ifp == NULL ||
382 		    !RT_LINK_IS_UP(rte->rt_ifp)) {
383 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
384 			/*
385 			 * There is no route for this packet, but it is
386 			 * possible that a matching SPD entry exists.
387 			 */
388 			no_route_but_check_spd = 1;
389 			mtu = 0; /* Silence GCC warning. */
390 			goto sendit;
391 #endif
392 			IPSTAT_INC(ips_noroute);
393 			error = EHOSTUNREACH;
394 			goto bad;
395 		}
396 		ia = ifatoia(rte->rt_ifa);
397 		ifp = rte->rt_ifp;
398 		counter_u64_add(rte->rt_pksent, 1);
399 		rt_update_ro_flags(ro);
400 		if (rte->rt_flags & RTF_GATEWAY)
401 			gw = (struct sockaddr_in *)rte->rt_gateway;
402 		if (rte->rt_flags & RTF_HOST)
403 			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
404 		else if (ifp->if_flags & IFF_BROADCAST)
405 			isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia);
406 		else
407 			isbroadcast = 0;
408 	}
409 
410 	/*
411 	 * Calculate MTU.  If we have a route that is up, use that,
412 	 * otherwise use the interface's MTU.
413 	 */
414 	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST)))
415 		mtu = rte->rt_mtu;
416 	else
417 		mtu = ifp->if_mtu;
418 	/* Catch a possible divide by zero later. */
419 	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
420 	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
421 
422 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
423 		m->m_flags |= M_MCAST;
424 		/*
425 		 * IP destination address is multicast.  Make sure "gw"
426 		 * still points to the address in "ro".  (It may have been
427 		 * changed to point to a gateway address, above.)
428 		 */
429 		gw = dst;
430 		/*
431 		 * See if the caller provided any multicast options
432 		 */
433 		if (imo != NULL) {
434 			ip->ip_ttl = imo->imo_multicast_ttl;
435 			if (imo->imo_multicast_vif != -1)
436 				ip->ip_src.s_addr =
437 				    ip_mcast_src ?
438 				    ip_mcast_src(imo->imo_multicast_vif) :
439 				    INADDR_ANY;
440 		} else
441 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
442 		/*
443 		 * Confirm that the outgoing interface supports multicast.
444 		 */
445 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
446 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
447 				IPSTAT_INC(ips_noroute);
448 				error = ENETUNREACH;
449 				goto bad;
450 			}
451 		}
452 		/*
453 		 * If source address not specified yet, use address
454 		 * of outgoing interface.
455 		 */
456 		if (ip->ip_src.s_addr == INADDR_ANY) {
457 			/* Interface may have no addresses. */
458 			if (ia != NULL)
459 				ip->ip_src = IA_SIN(ia)->sin_addr;
460 		}
461 
462 		if ((imo == NULL && in_mcast_loop) ||
463 		    (imo && imo->imo_multicast_loop)) {
464 			/*
465 			 * Loop back multicast datagram if not expressly
466 			 * forbidden to do so, even if we are not a member
467 			 * of the group; ip_input() will filter it later,
468 			 * thus deferring a hash lookup and mutex acquisition
469 			 * at the expense of a cheap copy using m_copym().
470 			 */
471 			ip_mloopback(ifp, m, hlen);
472 		} else {
473 			/*
474 			 * If we are acting as a multicast router, perform
475 			 * multicast forwarding as if the packet had just
476 			 * arrived on the interface to which we are about
477 			 * to send.  The multicast forwarding function
478 			 * recursively calls this function, using the
479 			 * IP_FORWARDING flag to prevent infinite recursion.
480 			 *
481 			 * Multicasts that are looped back by ip_mloopback(),
482 			 * above, will be forwarded by the ip_input() routine,
483 			 * if necessary.
484 			 */
485 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
486 				/*
487 				 * If rsvp daemon is not running, do not
488 				 * set ip_moptions. This ensures that the packet
489 				 * is multicast and not just sent down one link
490 				 * as prescribed by rsvpd.
491 				 */
492 				if (!V_rsvp_on)
493 					imo = NULL;
494 				if (ip_mforward &&
495 				    ip_mforward(ip, ifp, m, imo) != 0) {
496 					m_freem(m);
497 					goto done;
498 				}
499 			}
500 		}
501 
502 		/*
503 		 * Multicasts with a time-to-live of zero may be looped-
504 		 * back, above, but must not be transmitted on a network.
505 		 * Also, multicasts addressed to the loopback interface
506 		 * are not sent -- the above call to ip_mloopback() will
507 		 * loop back a copy. ip_input() will drop the copy if
508 		 * this host does not belong to the destination group on
509 		 * the loopback interface.
510 		 */
511 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
512 			m_freem(m);
513 			goto done;
514 		}
515 
516 		goto sendit;
517 	}
518 
519 	/*
520 	 * If the source address is not specified yet, use the address
521 	 * of the outoing interface.
522 	 */
523 	if (ip->ip_src.s_addr == INADDR_ANY) {
524 		/* Interface may have no addresses. */
525 		if (ia != NULL) {
526 			ip->ip_src = IA_SIN(ia)->sin_addr;
527 		}
528 	}
529 
530 	/*
531 	 * Look for broadcast address and
532 	 * verify user is allowed to send
533 	 * such a packet.
534 	 */
535 	if (isbroadcast) {
536 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
537 			error = EADDRNOTAVAIL;
538 			goto bad;
539 		}
540 		if ((flags & IP_ALLOWBROADCAST) == 0) {
541 			error = EACCES;
542 			goto bad;
543 		}
544 		/* don't allow broadcast messages to be fragmented */
545 		if (ip_len > mtu) {
546 			error = EMSGSIZE;
547 			goto bad;
548 		}
549 		m->m_flags |= M_BCAST;
550 	} else {
551 		m->m_flags &= ~M_BCAST;
552 	}
553 
554 sendit:
555 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
556 	if (IPSEC_ENABLED(ipv4)) {
557 		if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) {
558 			if (error == EINPROGRESS)
559 				error = 0;
560 			goto done;
561 		}
562 	}
563 	/*
564 	 * Check if there was a route for this packet; return error if not.
565 	 */
566 	if (no_route_but_check_spd) {
567 		IPSTAT_INC(ips_noroute);
568 		error = EHOSTUNREACH;
569 		goto bad;
570 	}
571 	/* Update variables that are affected by ipsec4_output(). */
572 	ip = mtod(m, struct ip *);
573 	hlen = ip->ip_hl << 2;
574 #endif /* IPSEC */
575 
576 	/* Jump over all PFIL processing if hooks are not active. */
577 	if (PFIL_HOOKED(&V_inet_pfil_hook)) {
578 		switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) {
579 		case 1: /* Finished */
580 			goto done;
581 
582 		case 0: /* Continue normally */
583 			ip = mtod(m, struct ip *);
584 			break;
585 
586 		case -1: /* Need to try again */
587 			/* Reset everything for a new round */
588 			RO_RTFREE(ro);
589 			if (have_ia_ref)
590 				ifa_free(&ia->ia_ifa);
591 			ro->ro_prepend = NULL;
592 			rte = NULL;
593 			gw = dst;
594 			ip = mtod(m, struct ip *);
595 			goto again;
596 
597 		}
598 	}
599 
600 	/* 127/8 must not appear on wire - RFC1122. */
601 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
602 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
603 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
604 			IPSTAT_INC(ips_badaddr);
605 			error = EADDRNOTAVAIL;
606 			goto bad;
607 		}
608 	}
609 
610 	m->m_pkthdr.csum_flags |= CSUM_IP;
611 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
612 		in_delayed_cksum(m);
613 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
614 	}
615 #ifdef SCTP
616 	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
617 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
618 		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
619 	}
620 #endif
621 
622 	/*
623 	 * If small enough for interface, or the interface will take
624 	 * care of the fragmentation for us, we can just send directly.
625 	 */
626 	if (ip_len <= mtu ||
627 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
628 		ip->ip_sum = 0;
629 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
630 			ip->ip_sum = in_cksum(m, hlen);
631 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
632 		}
633 
634 		/*
635 		 * Record statistics for this interface address.
636 		 * With CSUM_TSO the byte/packet count will be slightly
637 		 * incorrect because we count the IP+TCP headers only
638 		 * once instead of for every generated packet.
639 		 */
640 		if (!(flags & IP_FORWARDING) && ia) {
641 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
642 				counter_u64_add(ia->ia_ifa.ifa_opackets,
643 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
644 			else
645 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
646 
647 			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
648 		}
649 #ifdef MBUF_STRESS_TEST
650 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
651 			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
652 #endif
653 		/*
654 		 * Reset layer specific mbuf flags
655 		 * to avoid confusing lower layers.
656 		 */
657 		m_clrprotoflags(m);
658 		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
659 #ifdef RATELIMIT
660 		if (inp != NULL) {
661 			if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED)
662 				in_pcboutput_txrtlmt(inp, ifp, m);
663 			/* stamp send tag on mbuf */
664 			m->m_pkthdr.snd_tag = inp->inp_snd_tag;
665 		} else {
666 			m->m_pkthdr.snd_tag = NULL;
667 		}
668 #endif
669 		error = (*ifp->if_output)(ifp, m,
670 		    (const struct sockaddr *)gw, ro);
671 #ifdef RATELIMIT
672 		/* check for route change */
673 		if (error == EAGAIN)
674 			in_pcboutput_eagain(inp);
675 #endif
676 		goto done;
677 	}
678 
679 	/* Balk when DF bit is set or the interface didn't support TSO. */
680 	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
681 		error = EMSGSIZE;
682 		IPSTAT_INC(ips_cantfrag);
683 		goto bad;
684 	}
685 
686 	/*
687 	 * Too large for interface; fragment if possible. If successful,
688 	 * on return, m will point to a list of packets to be sent.
689 	 */
690 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
691 	if (error)
692 		goto bad;
693 	for (; m; m = m0) {
694 		m0 = m->m_nextpkt;
695 		m->m_nextpkt = 0;
696 		if (error == 0) {
697 			/* Record statistics for this interface address. */
698 			if (ia != NULL) {
699 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
700 				counter_u64_add(ia->ia_ifa.ifa_obytes,
701 				    m->m_pkthdr.len);
702 			}
703 			/*
704 			 * Reset layer specific mbuf flags
705 			 * to avoid confusing upper layers.
706 			 */
707 			m_clrprotoflags(m);
708 
709 			IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
710 			    mtod(m, struct ip *), NULL);
711 #ifdef RATELIMIT
712 			if (inp != NULL) {
713 				if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED)
714 					in_pcboutput_txrtlmt(inp, ifp, m);
715 				/* stamp send tag on mbuf */
716 				m->m_pkthdr.snd_tag = inp->inp_snd_tag;
717 			} else {
718 				m->m_pkthdr.snd_tag = NULL;
719 			}
720 #endif
721 			error = (*ifp->if_output)(ifp, m,
722 			    (const struct sockaddr *)gw, ro);
723 #ifdef RATELIMIT
724 			/* check for route change */
725 			if (error == EAGAIN)
726 				in_pcboutput_eagain(inp);
727 #endif
728 		} else
729 			m_freem(m);
730 	}
731 
732 	if (error == 0)
733 		IPSTAT_INC(ips_fragmented);
734 
735 done:
736 	if (ro == &iproute)
737 		RO_RTFREE(ro);
738 	else if (rte == NULL)
739 		/*
740 		 * If the caller supplied a route but somehow the reference
741 		 * to it has been released need to prevent the caller
742 		 * calling RTFREE on it again.
743 		 */
744 		ro->ro_rt = NULL;
745 	if (have_ia_ref)
746 		ifa_free(&ia->ia_ifa);
747 	return (error);
748 bad:
749 	m_freem(m);
750 	goto done;
751 }
752 
753 /*
754  * Create a chain of fragments which fit the given mtu. m_frag points to the
755  * mbuf to be fragmented; on return it points to the chain with the fragments.
756  * Return 0 if no error. If error, m_frag may contain a partially built
757  * chain of fragments that should be freed by the caller.
758  *
759  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
760  */
761 int
762 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
763     u_long if_hwassist_flags)
764 {
765 	int error = 0;
766 	int hlen = ip->ip_hl << 2;
767 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
768 	int off;
769 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
770 	int firstlen;
771 	struct mbuf **mnext;
772 	int nfrags;
773 	uint16_t ip_len, ip_off;
774 
775 	ip_len = ntohs(ip->ip_len);
776 	ip_off = ntohs(ip->ip_off);
777 
778 	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
779 		IPSTAT_INC(ips_cantfrag);
780 		return EMSGSIZE;
781 	}
782 
783 	/*
784 	 * Must be able to put at least 8 bytes per fragment.
785 	 */
786 	if (len < 8)
787 		return EMSGSIZE;
788 
789 	/*
790 	 * If the interface will not calculate checksums on
791 	 * fragmented packets, then do it here.
792 	 */
793 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
794 		in_delayed_cksum(m0);
795 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
796 	}
797 #ifdef SCTP
798 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
799 		sctp_delayed_cksum(m0, hlen);
800 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
801 	}
802 #endif
803 	if (len > PAGE_SIZE) {
804 		/*
805 		 * Fragment large datagrams such that each segment
806 		 * contains a multiple of PAGE_SIZE amount of data,
807 		 * plus headers. This enables a receiver to perform
808 		 * page-flipping zero-copy optimizations.
809 		 *
810 		 * XXX When does this help given that sender and receiver
811 		 * could have different page sizes, and also mtu could
812 		 * be less than the receiver's page size ?
813 		 */
814 		int newlen;
815 
816 		off = MIN(mtu, m0->m_pkthdr.len);
817 
818 		/*
819 		 * firstlen (off - hlen) must be aligned on an
820 		 * 8-byte boundary
821 		 */
822 		if (off < hlen)
823 			goto smart_frag_failure;
824 		off = ((off - hlen) & ~7) + hlen;
825 		newlen = (~PAGE_MASK) & mtu;
826 		if ((newlen + sizeof (struct ip)) > mtu) {
827 			/* we failed, go back the default */
828 smart_frag_failure:
829 			newlen = len;
830 			off = hlen + len;
831 		}
832 		len = newlen;
833 
834 	} else {
835 		off = hlen + len;
836 	}
837 
838 	firstlen = off - hlen;
839 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
840 
841 	/*
842 	 * Loop through length of segment after first fragment,
843 	 * make new header and copy data of each part and link onto chain.
844 	 * Here, m0 is the original packet, m is the fragment being created.
845 	 * The fragments are linked off the m_nextpkt of the original
846 	 * packet, which after processing serves as the first fragment.
847 	 */
848 	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
849 		struct ip *mhip;	/* ip header on the fragment */
850 		struct mbuf *m;
851 		int mhlen = sizeof (struct ip);
852 
853 		m = m_gethdr(M_NOWAIT, MT_DATA);
854 		if (m == NULL) {
855 			error = ENOBUFS;
856 			IPSTAT_INC(ips_odropped);
857 			goto done;
858 		}
859 		/*
860 		 * Make sure the complete packet header gets copied
861 		 * from the originating mbuf to the newly created
862 		 * mbuf. This also ensures that existing firewall
863 		 * classification(s), VLAN tags and so on get copied
864 		 * to the resulting fragmented packet(s):
865 		 */
866 		if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
867 			m_free(m);
868 			error = ENOBUFS;
869 			IPSTAT_INC(ips_odropped);
870 			goto done;
871 		}
872 		/*
873 		 * In the first mbuf, leave room for the link header, then
874 		 * copy the original IP header including options. The payload
875 		 * goes into an additional mbuf chain returned by m_copym().
876 		 */
877 		m->m_data += max_linkhdr;
878 		mhip = mtod(m, struct ip *);
879 		*mhip = *ip;
880 		if (hlen > sizeof (struct ip)) {
881 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
882 			mhip->ip_v = IPVERSION;
883 			mhip->ip_hl = mhlen >> 2;
884 		}
885 		m->m_len = mhlen;
886 		/* XXX do we need to add ip_off below ? */
887 		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
888 		if (off + len >= ip_len)
889 			len = ip_len - off;
890 		else
891 			mhip->ip_off |= IP_MF;
892 		mhip->ip_len = htons((u_short)(len + mhlen));
893 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
894 		if (m->m_next == NULL) {	/* copy failed */
895 			m_free(m);
896 			error = ENOBUFS;	/* ??? */
897 			IPSTAT_INC(ips_odropped);
898 			goto done;
899 		}
900 		m->m_pkthdr.len = mhlen + len;
901 #ifdef MAC
902 		mac_netinet_fragment(m0, m);
903 #endif
904 		mhip->ip_off = htons(mhip->ip_off);
905 		mhip->ip_sum = 0;
906 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
907 			mhip->ip_sum = in_cksum(m, mhlen);
908 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
909 		}
910 		*mnext = m;
911 		mnext = &m->m_nextpkt;
912 	}
913 	IPSTAT_ADD(ips_ofragments, nfrags);
914 
915 	/*
916 	 * Update first fragment by trimming what's been copied out
917 	 * and updating header.
918 	 */
919 	m_adj(m0, hlen + firstlen - ip_len);
920 	m0->m_pkthdr.len = hlen + firstlen;
921 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
922 	ip->ip_off = htons(ip_off | IP_MF);
923 	ip->ip_sum = 0;
924 	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
925 		ip->ip_sum = in_cksum(m0, hlen);
926 		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
927 	}
928 
929 done:
930 	*m_frag = m0;
931 	return error;
932 }
933 
934 void
935 in_delayed_cksum(struct mbuf *m)
936 {
937 	struct ip *ip;
938 	uint16_t csum, offset, ip_len;
939 
940 	ip = mtod(m, struct ip *);
941 	offset = ip->ip_hl << 2 ;
942 	ip_len = ntohs(ip->ip_len);
943 	csum = in_cksum_skip(m, ip_len, offset);
944 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
945 		csum = 0xffff;
946 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
947 
948 	/* find the mbuf in the chain where the checksum starts*/
949 	while ((m != NULL) && (offset >= m->m_len)) {
950 		offset -= m->m_len;
951 		m = m->m_next;
952 	}
953 	KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain."));
954 	KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs."));
955 	*(u_short *)(m->m_data + offset) = csum;
956 }
957 
958 /*
959  * IP socket option processing.
960  */
961 int
962 ip_ctloutput(struct socket *so, struct sockopt *sopt)
963 {
964 	struct	inpcb *inp = sotoinpcb(so);
965 	int	error, optval;
966 #ifdef	RSS
967 	uint32_t rss_bucket;
968 	int retval;
969 #endif
970 
971 	error = optval = 0;
972 	if (sopt->sopt_level != IPPROTO_IP) {
973 		error = EINVAL;
974 
975 		if (sopt->sopt_level == SOL_SOCKET &&
976 		    sopt->sopt_dir == SOPT_SET) {
977 			switch (sopt->sopt_name) {
978 			case SO_REUSEADDR:
979 				INP_WLOCK(inp);
980 				if ((so->so_options & SO_REUSEADDR) != 0)
981 					inp->inp_flags2 |= INP_REUSEADDR;
982 				else
983 					inp->inp_flags2 &= ~INP_REUSEADDR;
984 				INP_WUNLOCK(inp);
985 				error = 0;
986 				break;
987 			case SO_REUSEPORT:
988 				INP_WLOCK(inp);
989 				if ((so->so_options & SO_REUSEPORT) != 0)
990 					inp->inp_flags2 |= INP_REUSEPORT;
991 				else
992 					inp->inp_flags2 &= ~INP_REUSEPORT;
993 				INP_WUNLOCK(inp);
994 				error = 0;
995 				break;
996 			case SO_SETFIB:
997 				INP_WLOCK(inp);
998 				inp->inp_inc.inc_fibnum = so->so_fibnum;
999 				INP_WUNLOCK(inp);
1000 				error = 0;
1001 				break;
1002 			case SO_MAX_PACING_RATE:
1003 #ifdef RATELIMIT
1004 				INP_WLOCK(inp);
1005 				inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1006 				INP_WUNLOCK(inp);
1007 				error = 0;
1008 #else
1009 				error = EOPNOTSUPP;
1010 #endif
1011 				break;
1012 			default:
1013 				break;
1014 			}
1015 		}
1016 		return (error);
1017 	}
1018 
1019 	switch (sopt->sopt_dir) {
1020 	case SOPT_SET:
1021 		switch (sopt->sopt_name) {
1022 		case IP_OPTIONS:
1023 #ifdef notyet
1024 		case IP_RETOPTS:
1025 #endif
1026 		{
1027 			struct mbuf *m;
1028 			if (sopt->sopt_valsize > MLEN) {
1029 				error = EMSGSIZE;
1030 				break;
1031 			}
1032 			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
1033 			if (m == NULL) {
1034 				error = ENOBUFS;
1035 				break;
1036 			}
1037 			m->m_len = sopt->sopt_valsize;
1038 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1039 					    m->m_len);
1040 			if (error) {
1041 				m_free(m);
1042 				break;
1043 			}
1044 			INP_WLOCK(inp);
1045 			error = ip_pcbopts(inp, sopt->sopt_name, m);
1046 			INP_WUNLOCK(inp);
1047 			return (error);
1048 		}
1049 
1050 		case IP_BINDANY:
1051 			if (sopt->sopt_td != NULL) {
1052 				error = priv_check(sopt->sopt_td,
1053 				    PRIV_NETINET_BINDANY);
1054 				if (error)
1055 					break;
1056 			}
1057 			/* FALLTHROUGH */
1058 		case IP_BINDMULTI:
1059 #ifdef	RSS
1060 		case IP_RSS_LISTEN_BUCKET:
1061 #endif
1062 		case IP_TOS:
1063 		case IP_TTL:
1064 		case IP_MINTTL:
1065 		case IP_RECVOPTS:
1066 		case IP_RECVRETOPTS:
1067 		case IP_ORIGDSTADDR:
1068 		case IP_RECVDSTADDR:
1069 		case IP_RECVTTL:
1070 		case IP_RECVIF:
1071 		case IP_ONESBCAST:
1072 		case IP_DONTFRAG:
1073 		case IP_RECVTOS:
1074 		case IP_RECVFLOWID:
1075 #ifdef	RSS
1076 		case IP_RECVRSSBUCKETID:
1077 #endif
1078 			error = sooptcopyin(sopt, &optval, sizeof optval,
1079 					    sizeof optval);
1080 			if (error)
1081 				break;
1082 
1083 			switch (sopt->sopt_name) {
1084 			case IP_TOS:
1085 				inp->inp_ip_tos = optval;
1086 				break;
1087 
1088 			case IP_TTL:
1089 				inp->inp_ip_ttl = optval;
1090 				break;
1091 
1092 			case IP_MINTTL:
1093 				if (optval >= 0 && optval <= MAXTTL)
1094 					inp->inp_ip_minttl = optval;
1095 				else
1096 					error = EINVAL;
1097 				break;
1098 
1099 #define	OPTSET(bit) do {						\
1100 	INP_WLOCK(inp);							\
1101 	if (optval)							\
1102 		inp->inp_flags |= bit;					\
1103 	else								\
1104 		inp->inp_flags &= ~bit;					\
1105 	INP_WUNLOCK(inp);						\
1106 } while (0)
1107 
1108 #define	OPTSET2(bit, val) do {						\
1109 	INP_WLOCK(inp);							\
1110 	if (val)							\
1111 		inp->inp_flags2 |= bit;					\
1112 	else								\
1113 		inp->inp_flags2 &= ~bit;				\
1114 	INP_WUNLOCK(inp);						\
1115 } while (0)
1116 
1117 			case IP_RECVOPTS:
1118 				OPTSET(INP_RECVOPTS);
1119 				break;
1120 
1121 			case IP_RECVRETOPTS:
1122 				OPTSET(INP_RECVRETOPTS);
1123 				break;
1124 
1125 			case IP_RECVDSTADDR:
1126 				OPTSET(INP_RECVDSTADDR);
1127 				break;
1128 
1129 			case IP_ORIGDSTADDR:
1130 				OPTSET2(INP_ORIGDSTADDR, optval);
1131 				break;
1132 
1133 			case IP_RECVTTL:
1134 				OPTSET(INP_RECVTTL);
1135 				break;
1136 
1137 			case IP_RECVIF:
1138 				OPTSET(INP_RECVIF);
1139 				break;
1140 
1141 			case IP_ONESBCAST:
1142 				OPTSET(INP_ONESBCAST);
1143 				break;
1144 			case IP_DONTFRAG:
1145 				OPTSET(INP_DONTFRAG);
1146 				break;
1147 			case IP_BINDANY:
1148 				OPTSET(INP_BINDANY);
1149 				break;
1150 			case IP_RECVTOS:
1151 				OPTSET(INP_RECVTOS);
1152 				break;
1153 			case IP_BINDMULTI:
1154 				OPTSET2(INP_BINDMULTI, optval);
1155 				break;
1156 			case IP_RECVFLOWID:
1157 				OPTSET2(INP_RECVFLOWID, optval);
1158 				break;
1159 #ifdef	RSS
1160 			case IP_RSS_LISTEN_BUCKET:
1161 				if ((optval >= 0) &&
1162 				    (optval < rss_getnumbuckets())) {
1163 					inp->inp_rss_listen_bucket = optval;
1164 					OPTSET2(INP_RSS_BUCKET_SET, 1);
1165 				} else {
1166 					error = EINVAL;
1167 				}
1168 				break;
1169 			case IP_RECVRSSBUCKETID:
1170 				OPTSET2(INP_RECVRSSBUCKETID, optval);
1171 				break;
1172 #endif
1173 			}
1174 			break;
1175 #undef OPTSET
1176 #undef OPTSET2
1177 
1178 		/*
1179 		 * Multicast socket options are processed by the in_mcast
1180 		 * module.
1181 		 */
1182 		case IP_MULTICAST_IF:
1183 		case IP_MULTICAST_VIF:
1184 		case IP_MULTICAST_TTL:
1185 		case IP_MULTICAST_LOOP:
1186 		case IP_ADD_MEMBERSHIP:
1187 		case IP_DROP_MEMBERSHIP:
1188 		case IP_ADD_SOURCE_MEMBERSHIP:
1189 		case IP_DROP_SOURCE_MEMBERSHIP:
1190 		case IP_BLOCK_SOURCE:
1191 		case IP_UNBLOCK_SOURCE:
1192 		case IP_MSFILTER:
1193 		case MCAST_JOIN_GROUP:
1194 		case MCAST_LEAVE_GROUP:
1195 		case MCAST_JOIN_SOURCE_GROUP:
1196 		case MCAST_LEAVE_SOURCE_GROUP:
1197 		case MCAST_BLOCK_SOURCE:
1198 		case MCAST_UNBLOCK_SOURCE:
1199 			error = inp_setmoptions(inp, sopt);
1200 			break;
1201 
1202 		case IP_PORTRANGE:
1203 			error = sooptcopyin(sopt, &optval, sizeof optval,
1204 					    sizeof optval);
1205 			if (error)
1206 				break;
1207 
1208 			INP_WLOCK(inp);
1209 			switch (optval) {
1210 			case IP_PORTRANGE_DEFAULT:
1211 				inp->inp_flags &= ~(INP_LOWPORT);
1212 				inp->inp_flags &= ~(INP_HIGHPORT);
1213 				break;
1214 
1215 			case IP_PORTRANGE_HIGH:
1216 				inp->inp_flags &= ~(INP_LOWPORT);
1217 				inp->inp_flags |= INP_HIGHPORT;
1218 				break;
1219 
1220 			case IP_PORTRANGE_LOW:
1221 				inp->inp_flags &= ~(INP_HIGHPORT);
1222 				inp->inp_flags |= INP_LOWPORT;
1223 				break;
1224 
1225 			default:
1226 				error = EINVAL;
1227 				break;
1228 			}
1229 			INP_WUNLOCK(inp);
1230 			break;
1231 
1232 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1233 		case IP_IPSEC_POLICY:
1234 			if (IPSEC_ENABLED(ipv4)) {
1235 				error = IPSEC_PCBCTL(ipv4, inp, sopt);
1236 				break;
1237 			}
1238 			/* FALLTHROUGH */
1239 #endif /* IPSEC */
1240 
1241 		default:
1242 			error = ENOPROTOOPT;
1243 			break;
1244 		}
1245 		break;
1246 
1247 	case SOPT_GET:
1248 		switch (sopt->sopt_name) {
1249 		case IP_OPTIONS:
1250 		case IP_RETOPTS:
1251 			if (inp->inp_options)
1252 				error = sooptcopyout(sopt,
1253 						     mtod(inp->inp_options,
1254 							  char *),
1255 						     inp->inp_options->m_len);
1256 			else
1257 				sopt->sopt_valsize = 0;
1258 			break;
1259 
1260 		case IP_TOS:
1261 		case IP_TTL:
1262 		case IP_MINTTL:
1263 		case IP_RECVOPTS:
1264 		case IP_RECVRETOPTS:
1265 		case IP_ORIGDSTADDR:
1266 		case IP_RECVDSTADDR:
1267 		case IP_RECVTTL:
1268 		case IP_RECVIF:
1269 		case IP_PORTRANGE:
1270 		case IP_ONESBCAST:
1271 		case IP_DONTFRAG:
1272 		case IP_BINDANY:
1273 		case IP_RECVTOS:
1274 		case IP_BINDMULTI:
1275 		case IP_FLOWID:
1276 		case IP_FLOWTYPE:
1277 		case IP_RECVFLOWID:
1278 #ifdef	RSS
1279 		case IP_RSSBUCKETID:
1280 		case IP_RECVRSSBUCKETID:
1281 #endif
1282 			switch (sopt->sopt_name) {
1283 
1284 			case IP_TOS:
1285 				optval = inp->inp_ip_tos;
1286 				break;
1287 
1288 			case IP_TTL:
1289 				optval = inp->inp_ip_ttl;
1290 				break;
1291 
1292 			case IP_MINTTL:
1293 				optval = inp->inp_ip_minttl;
1294 				break;
1295 
1296 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1297 #define	OPTBIT2(bit)	(inp->inp_flags2 & bit ? 1 : 0)
1298 
1299 			case IP_RECVOPTS:
1300 				optval = OPTBIT(INP_RECVOPTS);
1301 				break;
1302 
1303 			case IP_RECVRETOPTS:
1304 				optval = OPTBIT(INP_RECVRETOPTS);
1305 				break;
1306 
1307 			case IP_RECVDSTADDR:
1308 				optval = OPTBIT(INP_RECVDSTADDR);
1309 				break;
1310 
1311 			case IP_ORIGDSTADDR:
1312 				optval = OPTBIT2(INP_ORIGDSTADDR);
1313 				break;
1314 
1315 			case IP_RECVTTL:
1316 				optval = OPTBIT(INP_RECVTTL);
1317 				break;
1318 
1319 			case IP_RECVIF:
1320 				optval = OPTBIT(INP_RECVIF);
1321 				break;
1322 
1323 			case IP_PORTRANGE:
1324 				if (inp->inp_flags & INP_HIGHPORT)
1325 					optval = IP_PORTRANGE_HIGH;
1326 				else if (inp->inp_flags & INP_LOWPORT)
1327 					optval = IP_PORTRANGE_LOW;
1328 				else
1329 					optval = 0;
1330 				break;
1331 
1332 			case IP_ONESBCAST:
1333 				optval = OPTBIT(INP_ONESBCAST);
1334 				break;
1335 			case IP_DONTFRAG:
1336 				optval = OPTBIT(INP_DONTFRAG);
1337 				break;
1338 			case IP_BINDANY:
1339 				optval = OPTBIT(INP_BINDANY);
1340 				break;
1341 			case IP_RECVTOS:
1342 				optval = OPTBIT(INP_RECVTOS);
1343 				break;
1344 			case IP_FLOWID:
1345 				optval = inp->inp_flowid;
1346 				break;
1347 			case IP_FLOWTYPE:
1348 				optval = inp->inp_flowtype;
1349 				break;
1350 			case IP_RECVFLOWID:
1351 				optval = OPTBIT2(INP_RECVFLOWID);
1352 				break;
1353 #ifdef	RSS
1354 			case IP_RSSBUCKETID:
1355 				retval = rss_hash2bucket(inp->inp_flowid,
1356 				    inp->inp_flowtype,
1357 				    &rss_bucket);
1358 				if (retval == 0)
1359 					optval = rss_bucket;
1360 				else
1361 					error = EINVAL;
1362 				break;
1363 			case IP_RECVRSSBUCKETID:
1364 				optval = OPTBIT2(INP_RECVRSSBUCKETID);
1365 				break;
1366 #endif
1367 			case IP_BINDMULTI:
1368 				optval = OPTBIT2(INP_BINDMULTI);
1369 				break;
1370 			}
1371 			error = sooptcopyout(sopt, &optval, sizeof optval);
1372 			break;
1373 
1374 		/*
1375 		 * Multicast socket options are processed by the in_mcast
1376 		 * module.
1377 		 */
1378 		case IP_MULTICAST_IF:
1379 		case IP_MULTICAST_VIF:
1380 		case IP_MULTICAST_TTL:
1381 		case IP_MULTICAST_LOOP:
1382 		case IP_MSFILTER:
1383 			error = inp_getmoptions(inp, sopt);
1384 			break;
1385 
1386 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1387 		case IP_IPSEC_POLICY:
1388 			if (IPSEC_ENABLED(ipv4)) {
1389 				error = IPSEC_PCBCTL(ipv4, inp, sopt);
1390 				break;
1391 			}
1392 			/* FALLTHROUGH */
1393 #endif /* IPSEC */
1394 
1395 		default:
1396 			error = ENOPROTOOPT;
1397 			break;
1398 		}
1399 		break;
1400 	}
1401 	return (error);
1402 }
1403 
1404 /*
1405  * Routine called from ip_output() to loop back a copy of an IP multicast
1406  * packet to the input queue of a specified interface.  Note that this
1407  * calls the output routine of the loopback "driver", but with an interface
1408  * pointer that might NOT be a loopback interface -- evil, but easier than
1409  * replicating that code here.
1410  */
1411 static void
1412 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1413 {
1414 	struct ip *ip;
1415 	struct mbuf *copym;
1416 
1417 	/*
1418 	 * Make a deep copy of the packet because we're going to
1419 	 * modify the pack in order to generate checksums.
1420 	 */
1421 	copym = m_dup(m, M_NOWAIT);
1422 	if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1423 		copym = m_pullup(copym, hlen);
1424 	if (copym != NULL) {
1425 		/* If needed, compute the checksum and mark it as valid. */
1426 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1427 			in_delayed_cksum(copym);
1428 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1429 			copym->m_pkthdr.csum_flags |=
1430 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1431 			copym->m_pkthdr.csum_data = 0xffff;
1432 		}
1433 		/*
1434 		 * We don't bother to fragment if the IP length is greater
1435 		 * than the interface's MTU.  Can this possibly matter?
1436 		 */
1437 		ip = mtod(copym, struct ip *);
1438 		ip->ip_sum = 0;
1439 		ip->ip_sum = in_cksum(copym, hlen);
1440 		if_simloop(ifp, copym, AF_INET, 0);
1441 	}
1442 }
1443