xref: /freebsd/sys/netinet/ip_output.c (revision 38069501)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_ratelimit.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 #include "opt_route.h"
41 #include "opt_sctp.h"
42 #include "opt_rss.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/protosw.h>
53 #include <sys/rmlock.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/ucred.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_llatbl.h>
63 #include <net/netisr.h>
64 #include <net/pfil.h>
65 #include <net/route.h>
66 #ifdef RADIX_MPATH
67 #include <net/radix_mpath.h>
68 #endif
69 #include <net/rss_config.h>
70 #include <net/vnet.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/in_rss.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip_var.h>
80 #include <netinet/ip_options.h>
81 #ifdef SCTP
82 #include <netinet/sctp.h>
83 #include <netinet/sctp_crc32.h>
84 #endif
85 
86 #include <netipsec/ipsec_support.h>
87 
88 #include <machine/in_cksum.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #ifdef MBUF_STRESS_TEST
93 static int mbuf_frag_size = 0;
94 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
95 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
96 #endif
97 
98 static void	ip_mloopback(struct ifnet *, const struct mbuf *, int);
99 
100 
101 extern int in_mcast_loop;
102 extern	struct protosw inetsw[];
103 
104 static inline int
105 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp,
106     struct sockaddr_in *dst, int *fibnum, int *error)
107 {
108 	struct m_tag *fwd_tag = NULL;
109 	struct mbuf *m;
110 	struct in_addr odst;
111 	struct ip *ip;
112 
113 	m = *mp;
114 	ip = mtod(m, struct ip *);
115 
116 	/* Run through list of hooks for output packets. */
117 	odst.s_addr = ip->ip_dst.s_addr;
118 	*error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp);
119 	m = *mp;
120 	if ((*error) != 0 || m == NULL)
121 		return 1; /* Finished */
122 
123 	ip = mtod(m, struct ip *);
124 
125 	/* See if destination IP address was changed by packet filter. */
126 	if (odst.s_addr != ip->ip_dst.s_addr) {
127 		m->m_flags |= M_SKIP_FIREWALL;
128 		/* If destination is now ourself drop to ip_input(). */
129 		if (in_localip(ip->ip_dst)) {
130 			m->m_flags |= M_FASTFWD_OURS;
131 			if (m->m_pkthdr.rcvif == NULL)
132 				m->m_pkthdr.rcvif = V_loif;
133 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
134 				m->m_pkthdr.csum_flags |=
135 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
136 				m->m_pkthdr.csum_data = 0xffff;
137 			}
138 			m->m_pkthdr.csum_flags |=
139 				CSUM_IP_CHECKED | CSUM_IP_VALID;
140 #ifdef SCTP
141 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
142 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
143 #endif
144 			*error = netisr_queue(NETISR_IP, m);
145 			return 1; /* Finished */
146 		}
147 
148 		bzero(dst, sizeof(*dst));
149 		dst->sin_family = AF_INET;
150 		dst->sin_len = sizeof(*dst);
151 		dst->sin_addr = ip->ip_dst;
152 
153 		return -1; /* Reloop */
154 	}
155 	/* See if fib was changed by packet filter. */
156 	if ((*fibnum) != M_GETFIB(m)) {
157 		m->m_flags |= M_SKIP_FIREWALL;
158 		*fibnum = M_GETFIB(m);
159 		return -1; /* Reloop for FIB change */
160 	}
161 
162 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
163 	if (m->m_flags & M_FASTFWD_OURS) {
164 		if (m->m_pkthdr.rcvif == NULL)
165 			m->m_pkthdr.rcvif = V_loif;
166 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
167 			m->m_pkthdr.csum_flags |=
168 				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
169 			m->m_pkthdr.csum_data = 0xffff;
170 		}
171 #ifdef SCTP
172 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
173 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
174 #endif
175 		m->m_pkthdr.csum_flags |=
176 			CSUM_IP_CHECKED | CSUM_IP_VALID;
177 
178 		*error = netisr_queue(NETISR_IP, m);
179 		return 1; /* Finished */
180 	}
181 	/* Or forward to some other address? */
182 	if ((m->m_flags & M_IP_NEXTHOP) &&
183 	    ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
184 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
185 		m->m_flags |= M_SKIP_FIREWALL;
186 		m->m_flags &= ~M_IP_NEXTHOP;
187 		m_tag_delete(m, fwd_tag);
188 
189 		return -1; /* Reloop for CHANGE of dst */
190 	}
191 
192 	return 0;
193 }
194 
195 /*
196  * IP output.  The packet in mbuf chain m contains a skeletal IP
197  * header (with len, off, ttl, proto, tos, src, dst).
198  * The mbuf chain containing the packet will be freed.
199  * The mbuf opt, if present, will not be freed.
200  * If route ro is present and has ro_rt initialized, route lookup would be
201  * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
202  * then result of route lookup is stored in ro->ro_rt.
203  *
204  * In the IP forwarding case, the packet will arrive with options already
205  * inserted, so must have a NULL opt pointer.
206  */
207 int
208 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
209     struct ip_moptions *imo, struct inpcb *inp)
210 {
211 	struct rm_priotracker in_ifa_tracker;
212 	struct ip *ip;
213 	struct ifnet *ifp = NULL;	/* keep compiler happy */
214 	struct mbuf *m0;
215 	int hlen = sizeof (struct ip);
216 	int mtu;
217 	int error = 0;
218 	struct sockaddr_in *dst;
219 	const struct sockaddr_in *gw;
220 	struct in_ifaddr *ia;
221 	int isbroadcast;
222 	uint16_t ip_len, ip_off;
223 	struct route iproute;
224 	struct rtentry *rte;	/* cache for ro->ro_rt */
225 	uint32_t fibnum;
226 	int have_ia_ref;
227 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
228 	int no_route_but_check_spd = 0;
229 #endif
230 	M_ASSERTPKTHDR(m);
231 
232 	if (inp != NULL) {
233 		INP_LOCK_ASSERT(inp);
234 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
235 		if ((flags & IP_NODEFAULTFLOWID) == 0) {
236 			m->m_pkthdr.flowid = inp->inp_flowid;
237 			M_HASHTYPE_SET(m, inp->inp_flowtype);
238 		}
239 	}
240 
241 	if (ro == NULL) {
242 		ro = &iproute;
243 		bzero(ro, sizeof (*ro));
244 	}
245 
246 	if (opt) {
247 		int len = 0;
248 		m = ip_insertoptions(m, opt, &len);
249 		if (len != 0)
250 			hlen = len; /* ip->ip_hl is updated above */
251 	}
252 	ip = mtod(m, struct ip *);
253 	ip_len = ntohs(ip->ip_len);
254 	ip_off = ntohs(ip->ip_off);
255 
256 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
257 		ip->ip_v = IPVERSION;
258 		ip->ip_hl = hlen >> 2;
259 		ip_fillid(ip);
260 		IPSTAT_INC(ips_localout);
261 	} else {
262 		/* Header already set, fetch hlen from there */
263 		hlen = ip->ip_hl << 2;
264 	}
265 
266 	/*
267 	 * dst/gw handling:
268 	 *
269 	 * dst can be rewritten but always points to &ro->ro_dst.
270 	 * gw is readonly but can point either to dst OR rt_gateway,
271 	 * therefore we need restore gw if we're redoing lookup.
272 	 */
273 	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
274 	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
275 	rte = ro->ro_rt;
276 	if (rte == NULL) {
277 		bzero(dst, sizeof(*dst));
278 		dst->sin_family = AF_INET;
279 		dst->sin_len = sizeof(*dst);
280 		dst->sin_addr = ip->ip_dst;
281 	}
282 again:
283 	/*
284 	 * Validate route against routing table additions;
285 	 * a better/more specific route might have been added.
286 	 */
287 	if (inp)
288 		RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
289 	/*
290 	 * If there is a cached route,
291 	 * check that it is to the same destination
292 	 * and is still up.  If not, free it and try again.
293 	 * The address family should also be checked in case of sharing the
294 	 * cache with IPv6.
295 	 * Also check whether routing cache needs invalidation.
296 	 */
297 	rte = ro->ro_rt;
298 	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
299 		    rte->rt_ifp == NULL ||
300 		    !RT_LINK_IS_UP(rte->rt_ifp) ||
301 			  dst->sin_family != AF_INET ||
302 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
303 		RTFREE(rte);
304 		rte = ro->ro_rt = (struct rtentry *)NULL;
305 		if (ro->ro_lle)
306 			LLE_FREE(ro->ro_lle);	/* zeros ro_lle */
307 		ro->ro_lle = (struct llentry *)NULL;
308 	}
309 	ia = NULL;
310 	have_ia_ref = 0;
311 	/*
312 	 * If routing to interface only, short circuit routing lookup.
313 	 * The use of an all-ones broadcast address implies this; an
314 	 * interface is specified by the broadcast address of an interface,
315 	 * or the destination address of a ptp interface.
316 	 */
317 	if (flags & IP_SENDONES) {
318 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
319 						      M_GETFIB(m)))) == NULL &&
320 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
321 						    M_GETFIB(m)))) == NULL) {
322 			IPSTAT_INC(ips_noroute);
323 			error = ENETUNREACH;
324 			goto bad;
325 		}
326 		have_ia_ref = 1;
327 		ip->ip_dst.s_addr = INADDR_BROADCAST;
328 		dst->sin_addr = ip->ip_dst;
329 		ifp = ia->ia_ifp;
330 		ip->ip_ttl = 1;
331 		isbroadcast = 1;
332 	} else if (flags & IP_ROUTETOIF) {
333 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
334 						    M_GETFIB(m)))) == NULL &&
335 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
336 						M_GETFIB(m)))) == NULL) {
337 			IPSTAT_INC(ips_noroute);
338 			error = ENETUNREACH;
339 			goto bad;
340 		}
341 		have_ia_ref = 1;
342 		ifp = ia->ia_ifp;
343 		ip->ip_ttl = 1;
344 		isbroadcast = ifp->if_flags & IFF_BROADCAST ?
345 		    in_ifaddr_broadcast(dst->sin_addr, ia) : 0;
346 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
347 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
348 		/*
349 		 * Bypass the normal routing lookup for multicast
350 		 * packets if the interface is specified.
351 		 */
352 		ifp = imo->imo_multicast_ifp;
353 		IFP_TO_IA(ifp, ia, &in_ifa_tracker);
354 		if (ia)
355 			have_ia_ref = 1;
356 		isbroadcast = 0;	/* fool gcc */
357 	} else {
358 		/*
359 		 * We want to do any cloning requested by the link layer,
360 		 * as this is probably required in all cases for correct
361 		 * operation (as it is for ARP).
362 		 */
363 		if (rte == NULL) {
364 #ifdef RADIX_MPATH
365 			rtalloc_mpath_fib(ro,
366 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
367 			    fibnum);
368 #else
369 			in_rtalloc_ign(ro, 0, fibnum);
370 #endif
371 			rte = ro->ro_rt;
372 		}
373 		if (rte == NULL ||
374 		    (rte->rt_flags & RTF_UP) == 0 ||
375 		    rte->rt_ifp == NULL ||
376 		    !RT_LINK_IS_UP(rte->rt_ifp)) {
377 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
378 			/*
379 			 * There is no route for this packet, but it is
380 			 * possible that a matching SPD entry exists.
381 			 */
382 			no_route_but_check_spd = 1;
383 			mtu = 0; /* Silence GCC warning. */
384 			goto sendit;
385 #endif
386 			IPSTAT_INC(ips_noroute);
387 			error = EHOSTUNREACH;
388 			goto bad;
389 		}
390 		ia = ifatoia(rte->rt_ifa);
391 		ifp = rte->rt_ifp;
392 		counter_u64_add(rte->rt_pksent, 1);
393 		rt_update_ro_flags(ro);
394 		if (rte->rt_flags & RTF_GATEWAY)
395 			gw = (struct sockaddr_in *)rte->rt_gateway;
396 		if (rte->rt_flags & RTF_HOST)
397 			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
398 		else if (ifp->if_flags & IFF_BROADCAST)
399 			isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia);
400 		else
401 			isbroadcast = 0;
402 	}
403 
404 	/*
405 	 * Calculate MTU.  If we have a route that is up, use that,
406 	 * otherwise use the interface's MTU.
407 	 */
408 	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST)))
409 		mtu = rte->rt_mtu;
410 	else
411 		mtu = ifp->if_mtu;
412 	/* Catch a possible divide by zero later. */
413 	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
414 	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
415 
416 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
417 		m->m_flags |= M_MCAST;
418 		/*
419 		 * IP destination address is multicast.  Make sure "gw"
420 		 * still points to the address in "ro".  (It may have been
421 		 * changed to point to a gateway address, above.)
422 		 */
423 		gw = dst;
424 		/*
425 		 * See if the caller provided any multicast options
426 		 */
427 		if (imo != NULL) {
428 			ip->ip_ttl = imo->imo_multicast_ttl;
429 			if (imo->imo_multicast_vif != -1)
430 				ip->ip_src.s_addr =
431 				    ip_mcast_src ?
432 				    ip_mcast_src(imo->imo_multicast_vif) :
433 				    INADDR_ANY;
434 		} else
435 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
436 		/*
437 		 * Confirm that the outgoing interface supports multicast.
438 		 */
439 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
440 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
441 				IPSTAT_INC(ips_noroute);
442 				error = ENETUNREACH;
443 				goto bad;
444 			}
445 		}
446 		/*
447 		 * If source address not specified yet, use address
448 		 * of outgoing interface.
449 		 */
450 		if (ip->ip_src.s_addr == INADDR_ANY) {
451 			/* Interface may have no addresses. */
452 			if (ia != NULL)
453 				ip->ip_src = IA_SIN(ia)->sin_addr;
454 		}
455 
456 		if ((imo == NULL && in_mcast_loop) ||
457 		    (imo && imo->imo_multicast_loop)) {
458 			/*
459 			 * Loop back multicast datagram if not expressly
460 			 * forbidden to do so, even if we are not a member
461 			 * of the group; ip_input() will filter it later,
462 			 * thus deferring a hash lookup and mutex acquisition
463 			 * at the expense of a cheap copy using m_copym().
464 			 */
465 			ip_mloopback(ifp, m, hlen);
466 		} else {
467 			/*
468 			 * If we are acting as a multicast router, perform
469 			 * multicast forwarding as if the packet had just
470 			 * arrived on the interface to which we are about
471 			 * to send.  The multicast forwarding function
472 			 * recursively calls this function, using the
473 			 * IP_FORWARDING flag to prevent infinite recursion.
474 			 *
475 			 * Multicasts that are looped back by ip_mloopback(),
476 			 * above, will be forwarded by the ip_input() routine,
477 			 * if necessary.
478 			 */
479 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
480 				/*
481 				 * If rsvp daemon is not running, do not
482 				 * set ip_moptions. This ensures that the packet
483 				 * is multicast and not just sent down one link
484 				 * as prescribed by rsvpd.
485 				 */
486 				if (!V_rsvp_on)
487 					imo = NULL;
488 				if (ip_mforward &&
489 				    ip_mforward(ip, ifp, m, imo) != 0) {
490 					m_freem(m);
491 					goto done;
492 				}
493 			}
494 		}
495 
496 		/*
497 		 * Multicasts with a time-to-live of zero may be looped-
498 		 * back, above, but must not be transmitted on a network.
499 		 * Also, multicasts addressed to the loopback interface
500 		 * are not sent -- the above call to ip_mloopback() will
501 		 * loop back a copy. ip_input() will drop the copy if
502 		 * this host does not belong to the destination group on
503 		 * the loopback interface.
504 		 */
505 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
506 			m_freem(m);
507 			goto done;
508 		}
509 
510 		goto sendit;
511 	}
512 
513 	/*
514 	 * If the source address is not specified yet, use the address
515 	 * of the outoing interface.
516 	 */
517 	if (ip->ip_src.s_addr == INADDR_ANY) {
518 		/* Interface may have no addresses. */
519 		if (ia != NULL) {
520 			ip->ip_src = IA_SIN(ia)->sin_addr;
521 		}
522 	}
523 
524 	/*
525 	 * Look for broadcast address and
526 	 * verify user is allowed to send
527 	 * such a packet.
528 	 */
529 	if (isbroadcast) {
530 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
531 			error = EADDRNOTAVAIL;
532 			goto bad;
533 		}
534 		if ((flags & IP_ALLOWBROADCAST) == 0) {
535 			error = EACCES;
536 			goto bad;
537 		}
538 		/* don't allow broadcast messages to be fragmented */
539 		if (ip_len > mtu) {
540 			error = EMSGSIZE;
541 			goto bad;
542 		}
543 		m->m_flags |= M_BCAST;
544 	} else {
545 		m->m_flags &= ~M_BCAST;
546 	}
547 
548 sendit:
549 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
550 	if (IPSEC_ENABLED(ipv4)) {
551 		if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) {
552 			if (error == EINPROGRESS)
553 				error = 0;
554 			goto done;
555 		}
556 	}
557 	/*
558 	 * Check if there was a route for this packet; return error if not.
559 	 */
560 	if (no_route_but_check_spd) {
561 		IPSTAT_INC(ips_noroute);
562 		error = EHOSTUNREACH;
563 		goto bad;
564 	}
565 	/* Update variables that are affected by ipsec4_output(). */
566 	ip = mtod(m, struct ip *);
567 	hlen = ip->ip_hl << 2;
568 #endif /* IPSEC */
569 
570 	/* Jump over all PFIL processing if hooks are not active. */
571 	if (PFIL_HOOKED(&V_inet_pfil_hook)) {
572 		switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) {
573 		case 1: /* Finished */
574 			goto done;
575 
576 		case 0: /* Continue normally */
577 			ip = mtod(m, struct ip *);
578 			break;
579 
580 		case -1: /* Need to try again */
581 			/* Reset everything for a new round */
582 			RO_RTFREE(ro);
583 			if (have_ia_ref)
584 				ifa_free(&ia->ia_ifa);
585 			ro->ro_prepend = NULL;
586 			rte = NULL;
587 			gw = dst;
588 			ip = mtod(m, struct ip *);
589 			goto again;
590 
591 		}
592 	}
593 
594 	/* 127/8 must not appear on wire - RFC1122. */
595 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
596 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
597 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
598 			IPSTAT_INC(ips_badaddr);
599 			error = EADDRNOTAVAIL;
600 			goto bad;
601 		}
602 	}
603 
604 	m->m_pkthdr.csum_flags |= CSUM_IP;
605 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
606 		in_delayed_cksum(m);
607 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
608 	}
609 #ifdef SCTP
610 	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
611 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
612 		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
613 	}
614 #endif
615 
616 	/*
617 	 * If small enough for interface, or the interface will take
618 	 * care of the fragmentation for us, we can just send directly.
619 	 */
620 	if (ip_len <= mtu ||
621 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
622 		ip->ip_sum = 0;
623 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
624 			ip->ip_sum = in_cksum(m, hlen);
625 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
626 		}
627 
628 		/*
629 		 * Record statistics for this interface address.
630 		 * With CSUM_TSO the byte/packet count will be slightly
631 		 * incorrect because we count the IP+TCP headers only
632 		 * once instead of for every generated packet.
633 		 */
634 		if (!(flags & IP_FORWARDING) && ia) {
635 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
636 				counter_u64_add(ia->ia_ifa.ifa_opackets,
637 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
638 			else
639 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
640 
641 			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
642 		}
643 #ifdef MBUF_STRESS_TEST
644 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
645 			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
646 #endif
647 		/*
648 		 * Reset layer specific mbuf flags
649 		 * to avoid confusing lower layers.
650 		 */
651 		m_clrprotoflags(m);
652 		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
653 #ifdef RATELIMIT
654 		if (inp != NULL) {
655 			if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED)
656 				in_pcboutput_txrtlmt(inp, ifp, m);
657 			/* stamp send tag on mbuf */
658 			m->m_pkthdr.snd_tag = inp->inp_snd_tag;
659 		} else {
660 			m->m_pkthdr.snd_tag = NULL;
661 		}
662 #endif
663 		error = (*ifp->if_output)(ifp, m,
664 		    (const struct sockaddr *)gw, ro);
665 #ifdef RATELIMIT
666 		/* check for route change */
667 		if (error == EAGAIN)
668 			in_pcboutput_eagain(inp);
669 #endif
670 		goto done;
671 	}
672 
673 	/* Balk when DF bit is set or the interface didn't support TSO. */
674 	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
675 		error = EMSGSIZE;
676 		IPSTAT_INC(ips_cantfrag);
677 		goto bad;
678 	}
679 
680 	/*
681 	 * Too large for interface; fragment if possible. If successful,
682 	 * on return, m will point to a list of packets to be sent.
683 	 */
684 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
685 	if (error)
686 		goto bad;
687 	for (; m; m = m0) {
688 		m0 = m->m_nextpkt;
689 		m->m_nextpkt = 0;
690 		if (error == 0) {
691 			/* Record statistics for this interface address. */
692 			if (ia != NULL) {
693 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
694 				counter_u64_add(ia->ia_ifa.ifa_obytes,
695 				    m->m_pkthdr.len);
696 			}
697 			/*
698 			 * Reset layer specific mbuf flags
699 			 * to avoid confusing upper layers.
700 			 */
701 			m_clrprotoflags(m);
702 
703 			IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
704 			    mtod(m, struct ip *), NULL);
705 #ifdef RATELIMIT
706 			if (inp != NULL) {
707 				if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED)
708 					in_pcboutput_txrtlmt(inp, ifp, m);
709 				/* stamp send tag on mbuf */
710 				m->m_pkthdr.snd_tag = inp->inp_snd_tag;
711 			} else {
712 				m->m_pkthdr.snd_tag = NULL;
713 			}
714 #endif
715 			error = (*ifp->if_output)(ifp, m,
716 			    (const struct sockaddr *)gw, ro);
717 #ifdef RATELIMIT
718 			/* check for route change */
719 			if (error == EAGAIN)
720 				in_pcboutput_eagain(inp);
721 #endif
722 		} else
723 			m_freem(m);
724 	}
725 
726 	if (error == 0)
727 		IPSTAT_INC(ips_fragmented);
728 
729 done:
730 	if (ro == &iproute)
731 		RO_RTFREE(ro);
732 	else if (rte == NULL)
733 		/*
734 		 * If the caller supplied a route but somehow the reference
735 		 * to it has been released need to prevent the caller
736 		 * calling RTFREE on it again.
737 		 */
738 		ro->ro_rt = NULL;
739 	if (have_ia_ref)
740 		ifa_free(&ia->ia_ifa);
741 	return (error);
742 bad:
743 	m_freem(m);
744 	goto done;
745 }
746 
747 /*
748  * Create a chain of fragments which fit the given mtu. m_frag points to the
749  * mbuf to be fragmented; on return it points to the chain with the fragments.
750  * Return 0 if no error. If error, m_frag may contain a partially built
751  * chain of fragments that should be freed by the caller.
752  *
753  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
754  */
755 int
756 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
757     u_long if_hwassist_flags)
758 {
759 	int error = 0;
760 	int hlen = ip->ip_hl << 2;
761 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
762 	int off;
763 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
764 	int firstlen;
765 	struct mbuf **mnext;
766 	int nfrags;
767 	uint16_t ip_len, ip_off;
768 
769 	ip_len = ntohs(ip->ip_len);
770 	ip_off = ntohs(ip->ip_off);
771 
772 	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
773 		IPSTAT_INC(ips_cantfrag);
774 		return EMSGSIZE;
775 	}
776 
777 	/*
778 	 * Must be able to put at least 8 bytes per fragment.
779 	 */
780 	if (len < 8)
781 		return EMSGSIZE;
782 
783 	/*
784 	 * If the interface will not calculate checksums on
785 	 * fragmented packets, then do it here.
786 	 */
787 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
788 		in_delayed_cksum(m0);
789 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
790 	}
791 #ifdef SCTP
792 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
793 		sctp_delayed_cksum(m0, hlen);
794 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
795 	}
796 #endif
797 	if (len > PAGE_SIZE) {
798 		/*
799 		 * Fragment large datagrams such that each segment
800 		 * contains a multiple of PAGE_SIZE amount of data,
801 		 * plus headers. This enables a receiver to perform
802 		 * page-flipping zero-copy optimizations.
803 		 *
804 		 * XXX When does this help given that sender and receiver
805 		 * could have different page sizes, and also mtu could
806 		 * be less than the receiver's page size ?
807 		 */
808 		int newlen;
809 
810 		off = MIN(mtu, m0->m_pkthdr.len);
811 
812 		/*
813 		 * firstlen (off - hlen) must be aligned on an
814 		 * 8-byte boundary
815 		 */
816 		if (off < hlen)
817 			goto smart_frag_failure;
818 		off = ((off - hlen) & ~7) + hlen;
819 		newlen = (~PAGE_MASK) & mtu;
820 		if ((newlen + sizeof (struct ip)) > mtu) {
821 			/* we failed, go back the default */
822 smart_frag_failure:
823 			newlen = len;
824 			off = hlen + len;
825 		}
826 		len = newlen;
827 
828 	} else {
829 		off = hlen + len;
830 	}
831 
832 	firstlen = off - hlen;
833 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
834 
835 	/*
836 	 * Loop through length of segment after first fragment,
837 	 * make new header and copy data of each part and link onto chain.
838 	 * Here, m0 is the original packet, m is the fragment being created.
839 	 * The fragments are linked off the m_nextpkt of the original
840 	 * packet, which after processing serves as the first fragment.
841 	 */
842 	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
843 		struct ip *mhip;	/* ip header on the fragment */
844 		struct mbuf *m;
845 		int mhlen = sizeof (struct ip);
846 
847 		m = m_gethdr(M_NOWAIT, MT_DATA);
848 		if (m == NULL) {
849 			error = ENOBUFS;
850 			IPSTAT_INC(ips_odropped);
851 			goto done;
852 		}
853 		/*
854 		 * Make sure the complete packet header gets copied
855 		 * from the originating mbuf to the newly created
856 		 * mbuf. This also ensures that existing firewall
857 		 * classification(s), VLAN tags and so on get copied
858 		 * to the resulting fragmented packet(s):
859 		 */
860 		if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
861 			m_free(m);
862 			error = ENOBUFS;
863 			IPSTAT_INC(ips_odropped);
864 			goto done;
865 		}
866 		/*
867 		 * In the first mbuf, leave room for the link header, then
868 		 * copy the original IP header including options. The payload
869 		 * goes into an additional mbuf chain returned by m_copym().
870 		 */
871 		m->m_data += max_linkhdr;
872 		mhip = mtod(m, struct ip *);
873 		*mhip = *ip;
874 		if (hlen > sizeof (struct ip)) {
875 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
876 			mhip->ip_v = IPVERSION;
877 			mhip->ip_hl = mhlen >> 2;
878 		}
879 		m->m_len = mhlen;
880 		/* XXX do we need to add ip_off below ? */
881 		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
882 		if (off + len >= ip_len)
883 			len = ip_len - off;
884 		else
885 			mhip->ip_off |= IP_MF;
886 		mhip->ip_len = htons((u_short)(len + mhlen));
887 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
888 		if (m->m_next == NULL) {	/* copy failed */
889 			m_free(m);
890 			error = ENOBUFS;	/* ??? */
891 			IPSTAT_INC(ips_odropped);
892 			goto done;
893 		}
894 		m->m_pkthdr.len = mhlen + len;
895 #ifdef MAC
896 		mac_netinet_fragment(m0, m);
897 #endif
898 		mhip->ip_off = htons(mhip->ip_off);
899 		mhip->ip_sum = 0;
900 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
901 			mhip->ip_sum = in_cksum(m, mhlen);
902 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
903 		}
904 		*mnext = m;
905 		mnext = &m->m_nextpkt;
906 	}
907 	IPSTAT_ADD(ips_ofragments, nfrags);
908 
909 	/*
910 	 * Update first fragment by trimming what's been copied out
911 	 * and updating header.
912 	 */
913 	m_adj(m0, hlen + firstlen - ip_len);
914 	m0->m_pkthdr.len = hlen + firstlen;
915 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
916 	ip->ip_off = htons(ip_off | IP_MF);
917 	ip->ip_sum = 0;
918 	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
919 		ip->ip_sum = in_cksum(m0, hlen);
920 		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
921 	}
922 
923 done:
924 	*m_frag = m0;
925 	return error;
926 }
927 
928 void
929 in_delayed_cksum(struct mbuf *m)
930 {
931 	struct ip *ip;
932 	uint16_t csum, offset, ip_len;
933 
934 	ip = mtod(m, struct ip *);
935 	offset = ip->ip_hl << 2 ;
936 	ip_len = ntohs(ip->ip_len);
937 	csum = in_cksum_skip(m, ip_len, offset);
938 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
939 		csum = 0xffff;
940 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
941 
942 	/* find the mbuf in the chain where the checksum starts*/
943 	while ((m != NULL) && (offset >= m->m_len)) {
944 		offset -= m->m_len;
945 		m = m->m_next;
946 	}
947 	KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain."));
948 	KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs."));
949 	*(u_short *)(m->m_data + offset) = csum;
950 }
951 
952 /*
953  * IP socket option processing.
954  */
955 int
956 ip_ctloutput(struct socket *so, struct sockopt *sopt)
957 {
958 	struct	inpcb *inp = sotoinpcb(so);
959 	int	error, optval;
960 #ifdef	RSS
961 	uint32_t rss_bucket;
962 	int retval;
963 #endif
964 
965 	error = optval = 0;
966 	if (sopt->sopt_level != IPPROTO_IP) {
967 		error = EINVAL;
968 
969 		if (sopt->sopt_level == SOL_SOCKET &&
970 		    sopt->sopt_dir == SOPT_SET) {
971 			switch (sopt->sopt_name) {
972 			case SO_REUSEADDR:
973 				INP_WLOCK(inp);
974 				if ((so->so_options & SO_REUSEADDR) != 0)
975 					inp->inp_flags2 |= INP_REUSEADDR;
976 				else
977 					inp->inp_flags2 &= ~INP_REUSEADDR;
978 				INP_WUNLOCK(inp);
979 				error = 0;
980 				break;
981 			case SO_REUSEPORT:
982 				INP_WLOCK(inp);
983 				if ((so->so_options & SO_REUSEPORT) != 0)
984 					inp->inp_flags2 |= INP_REUSEPORT;
985 				else
986 					inp->inp_flags2 &= ~INP_REUSEPORT;
987 				INP_WUNLOCK(inp);
988 				error = 0;
989 				break;
990 			case SO_SETFIB:
991 				INP_WLOCK(inp);
992 				inp->inp_inc.inc_fibnum = so->so_fibnum;
993 				INP_WUNLOCK(inp);
994 				error = 0;
995 				break;
996 			case SO_MAX_PACING_RATE:
997 #ifdef RATELIMIT
998 				INP_WLOCK(inp);
999 				inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1000 				INP_WUNLOCK(inp);
1001 				error = 0;
1002 #else
1003 				error = EOPNOTSUPP;
1004 #endif
1005 				break;
1006 			default:
1007 				break;
1008 			}
1009 		}
1010 		return (error);
1011 	}
1012 
1013 	switch (sopt->sopt_dir) {
1014 	case SOPT_SET:
1015 		switch (sopt->sopt_name) {
1016 		case IP_OPTIONS:
1017 #ifdef notyet
1018 		case IP_RETOPTS:
1019 #endif
1020 		{
1021 			struct mbuf *m;
1022 			if (sopt->sopt_valsize > MLEN) {
1023 				error = EMSGSIZE;
1024 				break;
1025 			}
1026 			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
1027 			if (m == NULL) {
1028 				error = ENOBUFS;
1029 				break;
1030 			}
1031 			m->m_len = sopt->sopt_valsize;
1032 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1033 					    m->m_len);
1034 			if (error) {
1035 				m_free(m);
1036 				break;
1037 			}
1038 			INP_WLOCK(inp);
1039 			error = ip_pcbopts(inp, sopt->sopt_name, m);
1040 			INP_WUNLOCK(inp);
1041 			return (error);
1042 		}
1043 
1044 		case IP_BINDANY:
1045 			if (sopt->sopt_td != NULL) {
1046 				error = priv_check(sopt->sopt_td,
1047 				    PRIV_NETINET_BINDANY);
1048 				if (error)
1049 					break;
1050 			}
1051 			/* FALLTHROUGH */
1052 		case IP_BINDMULTI:
1053 #ifdef	RSS
1054 		case IP_RSS_LISTEN_BUCKET:
1055 #endif
1056 		case IP_TOS:
1057 		case IP_TTL:
1058 		case IP_MINTTL:
1059 		case IP_RECVOPTS:
1060 		case IP_RECVRETOPTS:
1061 		case IP_ORIGDSTADDR:
1062 		case IP_RECVDSTADDR:
1063 		case IP_RECVTTL:
1064 		case IP_RECVIF:
1065 		case IP_ONESBCAST:
1066 		case IP_DONTFRAG:
1067 		case IP_RECVTOS:
1068 		case IP_RECVFLOWID:
1069 #ifdef	RSS
1070 		case IP_RECVRSSBUCKETID:
1071 #endif
1072 			error = sooptcopyin(sopt, &optval, sizeof optval,
1073 					    sizeof optval);
1074 			if (error)
1075 				break;
1076 
1077 			switch (sopt->sopt_name) {
1078 			case IP_TOS:
1079 				inp->inp_ip_tos = optval;
1080 				break;
1081 
1082 			case IP_TTL:
1083 				inp->inp_ip_ttl = optval;
1084 				break;
1085 
1086 			case IP_MINTTL:
1087 				if (optval >= 0 && optval <= MAXTTL)
1088 					inp->inp_ip_minttl = optval;
1089 				else
1090 					error = EINVAL;
1091 				break;
1092 
1093 #define	OPTSET(bit) do {						\
1094 	INP_WLOCK(inp);							\
1095 	if (optval)							\
1096 		inp->inp_flags |= bit;					\
1097 	else								\
1098 		inp->inp_flags &= ~bit;					\
1099 	INP_WUNLOCK(inp);						\
1100 } while (0)
1101 
1102 #define	OPTSET2(bit, val) do {						\
1103 	INP_WLOCK(inp);							\
1104 	if (val)							\
1105 		inp->inp_flags2 |= bit;					\
1106 	else								\
1107 		inp->inp_flags2 &= ~bit;				\
1108 	INP_WUNLOCK(inp);						\
1109 } while (0)
1110 
1111 			case IP_RECVOPTS:
1112 				OPTSET(INP_RECVOPTS);
1113 				break;
1114 
1115 			case IP_RECVRETOPTS:
1116 				OPTSET(INP_RECVRETOPTS);
1117 				break;
1118 
1119 			case IP_RECVDSTADDR:
1120 				OPTSET(INP_RECVDSTADDR);
1121 				break;
1122 
1123 			case IP_ORIGDSTADDR:
1124 				OPTSET2(INP_ORIGDSTADDR, optval);
1125 				break;
1126 
1127 			case IP_RECVTTL:
1128 				OPTSET(INP_RECVTTL);
1129 				break;
1130 
1131 			case IP_RECVIF:
1132 				OPTSET(INP_RECVIF);
1133 				break;
1134 
1135 			case IP_ONESBCAST:
1136 				OPTSET(INP_ONESBCAST);
1137 				break;
1138 			case IP_DONTFRAG:
1139 				OPTSET(INP_DONTFRAG);
1140 				break;
1141 			case IP_BINDANY:
1142 				OPTSET(INP_BINDANY);
1143 				break;
1144 			case IP_RECVTOS:
1145 				OPTSET(INP_RECVTOS);
1146 				break;
1147 			case IP_BINDMULTI:
1148 				OPTSET2(INP_BINDMULTI, optval);
1149 				break;
1150 			case IP_RECVFLOWID:
1151 				OPTSET2(INP_RECVFLOWID, optval);
1152 				break;
1153 #ifdef	RSS
1154 			case IP_RSS_LISTEN_BUCKET:
1155 				if ((optval >= 0) &&
1156 				    (optval < rss_getnumbuckets())) {
1157 					inp->inp_rss_listen_bucket = optval;
1158 					OPTSET2(INP_RSS_BUCKET_SET, 1);
1159 				} else {
1160 					error = EINVAL;
1161 				}
1162 				break;
1163 			case IP_RECVRSSBUCKETID:
1164 				OPTSET2(INP_RECVRSSBUCKETID, optval);
1165 				break;
1166 #endif
1167 			}
1168 			break;
1169 #undef OPTSET
1170 #undef OPTSET2
1171 
1172 		/*
1173 		 * Multicast socket options are processed by the in_mcast
1174 		 * module.
1175 		 */
1176 		case IP_MULTICAST_IF:
1177 		case IP_MULTICAST_VIF:
1178 		case IP_MULTICAST_TTL:
1179 		case IP_MULTICAST_LOOP:
1180 		case IP_ADD_MEMBERSHIP:
1181 		case IP_DROP_MEMBERSHIP:
1182 		case IP_ADD_SOURCE_MEMBERSHIP:
1183 		case IP_DROP_SOURCE_MEMBERSHIP:
1184 		case IP_BLOCK_SOURCE:
1185 		case IP_UNBLOCK_SOURCE:
1186 		case IP_MSFILTER:
1187 		case MCAST_JOIN_GROUP:
1188 		case MCAST_LEAVE_GROUP:
1189 		case MCAST_JOIN_SOURCE_GROUP:
1190 		case MCAST_LEAVE_SOURCE_GROUP:
1191 		case MCAST_BLOCK_SOURCE:
1192 		case MCAST_UNBLOCK_SOURCE:
1193 			error = inp_setmoptions(inp, sopt);
1194 			break;
1195 
1196 		case IP_PORTRANGE:
1197 			error = sooptcopyin(sopt, &optval, sizeof optval,
1198 					    sizeof optval);
1199 			if (error)
1200 				break;
1201 
1202 			INP_WLOCK(inp);
1203 			switch (optval) {
1204 			case IP_PORTRANGE_DEFAULT:
1205 				inp->inp_flags &= ~(INP_LOWPORT);
1206 				inp->inp_flags &= ~(INP_HIGHPORT);
1207 				break;
1208 
1209 			case IP_PORTRANGE_HIGH:
1210 				inp->inp_flags &= ~(INP_LOWPORT);
1211 				inp->inp_flags |= INP_HIGHPORT;
1212 				break;
1213 
1214 			case IP_PORTRANGE_LOW:
1215 				inp->inp_flags &= ~(INP_HIGHPORT);
1216 				inp->inp_flags |= INP_LOWPORT;
1217 				break;
1218 
1219 			default:
1220 				error = EINVAL;
1221 				break;
1222 			}
1223 			INP_WUNLOCK(inp);
1224 			break;
1225 
1226 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1227 		case IP_IPSEC_POLICY:
1228 			if (IPSEC_ENABLED(ipv4)) {
1229 				error = IPSEC_PCBCTL(ipv4, inp, sopt);
1230 				break;
1231 			}
1232 			/* FALLTHROUGH */
1233 #endif /* IPSEC */
1234 
1235 		default:
1236 			error = ENOPROTOOPT;
1237 			break;
1238 		}
1239 		break;
1240 
1241 	case SOPT_GET:
1242 		switch (sopt->sopt_name) {
1243 		case IP_OPTIONS:
1244 		case IP_RETOPTS:
1245 			if (inp->inp_options)
1246 				error = sooptcopyout(sopt,
1247 						     mtod(inp->inp_options,
1248 							  char *),
1249 						     inp->inp_options->m_len);
1250 			else
1251 				sopt->sopt_valsize = 0;
1252 			break;
1253 
1254 		case IP_TOS:
1255 		case IP_TTL:
1256 		case IP_MINTTL:
1257 		case IP_RECVOPTS:
1258 		case IP_RECVRETOPTS:
1259 		case IP_ORIGDSTADDR:
1260 		case IP_RECVDSTADDR:
1261 		case IP_RECVTTL:
1262 		case IP_RECVIF:
1263 		case IP_PORTRANGE:
1264 		case IP_ONESBCAST:
1265 		case IP_DONTFRAG:
1266 		case IP_BINDANY:
1267 		case IP_RECVTOS:
1268 		case IP_BINDMULTI:
1269 		case IP_FLOWID:
1270 		case IP_FLOWTYPE:
1271 		case IP_RECVFLOWID:
1272 #ifdef	RSS
1273 		case IP_RSSBUCKETID:
1274 		case IP_RECVRSSBUCKETID:
1275 #endif
1276 			switch (sopt->sopt_name) {
1277 
1278 			case IP_TOS:
1279 				optval = inp->inp_ip_tos;
1280 				break;
1281 
1282 			case IP_TTL:
1283 				optval = inp->inp_ip_ttl;
1284 				break;
1285 
1286 			case IP_MINTTL:
1287 				optval = inp->inp_ip_minttl;
1288 				break;
1289 
1290 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1291 #define	OPTBIT2(bit)	(inp->inp_flags2 & bit ? 1 : 0)
1292 
1293 			case IP_RECVOPTS:
1294 				optval = OPTBIT(INP_RECVOPTS);
1295 				break;
1296 
1297 			case IP_RECVRETOPTS:
1298 				optval = OPTBIT(INP_RECVRETOPTS);
1299 				break;
1300 
1301 			case IP_RECVDSTADDR:
1302 				optval = OPTBIT(INP_RECVDSTADDR);
1303 				break;
1304 
1305 			case IP_ORIGDSTADDR:
1306 				optval = OPTBIT2(INP_ORIGDSTADDR);
1307 				break;
1308 
1309 			case IP_RECVTTL:
1310 				optval = OPTBIT(INP_RECVTTL);
1311 				break;
1312 
1313 			case IP_RECVIF:
1314 				optval = OPTBIT(INP_RECVIF);
1315 				break;
1316 
1317 			case IP_PORTRANGE:
1318 				if (inp->inp_flags & INP_HIGHPORT)
1319 					optval = IP_PORTRANGE_HIGH;
1320 				else if (inp->inp_flags & INP_LOWPORT)
1321 					optval = IP_PORTRANGE_LOW;
1322 				else
1323 					optval = 0;
1324 				break;
1325 
1326 			case IP_ONESBCAST:
1327 				optval = OPTBIT(INP_ONESBCAST);
1328 				break;
1329 			case IP_DONTFRAG:
1330 				optval = OPTBIT(INP_DONTFRAG);
1331 				break;
1332 			case IP_BINDANY:
1333 				optval = OPTBIT(INP_BINDANY);
1334 				break;
1335 			case IP_RECVTOS:
1336 				optval = OPTBIT(INP_RECVTOS);
1337 				break;
1338 			case IP_FLOWID:
1339 				optval = inp->inp_flowid;
1340 				break;
1341 			case IP_FLOWTYPE:
1342 				optval = inp->inp_flowtype;
1343 				break;
1344 			case IP_RECVFLOWID:
1345 				optval = OPTBIT2(INP_RECVFLOWID);
1346 				break;
1347 #ifdef	RSS
1348 			case IP_RSSBUCKETID:
1349 				retval = rss_hash2bucket(inp->inp_flowid,
1350 				    inp->inp_flowtype,
1351 				    &rss_bucket);
1352 				if (retval == 0)
1353 					optval = rss_bucket;
1354 				else
1355 					error = EINVAL;
1356 				break;
1357 			case IP_RECVRSSBUCKETID:
1358 				optval = OPTBIT2(INP_RECVRSSBUCKETID);
1359 				break;
1360 #endif
1361 			case IP_BINDMULTI:
1362 				optval = OPTBIT2(INP_BINDMULTI);
1363 				break;
1364 			}
1365 			error = sooptcopyout(sopt, &optval, sizeof optval);
1366 			break;
1367 
1368 		/*
1369 		 * Multicast socket options are processed by the in_mcast
1370 		 * module.
1371 		 */
1372 		case IP_MULTICAST_IF:
1373 		case IP_MULTICAST_VIF:
1374 		case IP_MULTICAST_TTL:
1375 		case IP_MULTICAST_LOOP:
1376 		case IP_MSFILTER:
1377 			error = inp_getmoptions(inp, sopt);
1378 			break;
1379 
1380 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1381 		case IP_IPSEC_POLICY:
1382 			if (IPSEC_ENABLED(ipv4)) {
1383 				error = IPSEC_PCBCTL(ipv4, inp, sopt);
1384 				break;
1385 			}
1386 			/* FALLTHROUGH */
1387 #endif /* IPSEC */
1388 
1389 		default:
1390 			error = ENOPROTOOPT;
1391 			break;
1392 		}
1393 		break;
1394 	}
1395 	return (error);
1396 }
1397 
1398 /*
1399  * Routine called from ip_output() to loop back a copy of an IP multicast
1400  * packet to the input queue of a specified interface.  Note that this
1401  * calls the output routine of the loopback "driver", but with an interface
1402  * pointer that might NOT be a loopback interface -- evil, but easier than
1403  * replicating that code here.
1404  */
1405 static void
1406 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1407 {
1408 	struct ip *ip;
1409 	struct mbuf *copym;
1410 
1411 	/*
1412 	 * Make a deep copy of the packet because we're going to
1413 	 * modify the pack in order to generate checksums.
1414 	 */
1415 	copym = m_dup(m, M_NOWAIT);
1416 	if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1417 		copym = m_pullup(copym, hlen);
1418 	if (copym != NULL) {
1419 		/* If needed, compute the checksum and mark it as valid. */
1420 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1421 			in_delayed_cksum(copym);
1422 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1423 			copym->m_pkthdr.csum_flags |=
1424 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1425 			copym->m_pkthdr.csum_data = 0xffff;
1426 		}
1427 		/*
1428 		 * We don't bother to fragment if the IP length is greater
1429 		 * than the interface's MTU.  Can this possibly matter?
1430 		 */
1431 		ip = mtod(copym, struct ip *);
1432 		ip->ip_sum = 0;
1433 		ip->ip_sum = in_cksum(copym, hlen);
1434 		if_simloop(ifp, copym, AF_INET, 0);
1435 	}
1436 }
1437