xref: /freebsd/sys/netinet/ip_output.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipsec.h"
37 #include "opt_route.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 #include "opt_sctp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/ucred.h>
54 
55 #include <net/if.h>
56 #include <net/if_llatbl.h>
57 #include <net/netisr.h>
58 #include <net/pfil.h>
59 #include <net/route.h>
60 #include <net/flowtable.h>
61 #ifdef RADIX_MPATH
62 #include <net/radix_mpath.h>
63 #endif
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #ifdef SCTP
74 #include <netinet/sctp.h>
75 #include <netinet/sctp_crc32.h>
76 #endif
77 
78 #ifdef IPSEC
79 #include <netinet/ip_ipsec.h>
80 #include <netipsec/ipsec.h>
81 #endif /* IPSEC*/
82 
83 #include <machine/in_cksum.h>
84 
85 #include <security/mac/mac_framework.h>
86 
87 VNET_DEFINE(u_short, ip_id);
88 
89 #ifdef MBUF_STRESS_TEST
90 int mbuf_frag_size = 0;
91 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93 #endif
94 
95 static void	ip_mloopback
96 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
97 
98 
99 extern int in_mcast_loop;
100 extern	struct protosw inetsw[];
101 
102 /*
103  * IP output.  The packet in mbuf chain m contains a skeletal IP
104  * header (with len, off, ttl, proto, tos, src, dst).
105  * ip_len and ip_off are in host format.
106  * The mbuf chain containing the packet will be freed.
107  * The mbuf opt, if present, will not be freed.
108  * In the IP forwarding case, the packet will arrive with options already
109  * inserted, so must have a NULL opt pointer.
110  */
111 int
112 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
113     struct ip_moptions *imo, struct inpcb *inp)
114 {
115 	struct ip *ip;
116 	struct ifnet *ifp = NULL;	/* keep compiler happy */
117 	struct mbuf *m0;
118 	int hlen = sizeof (struct ip);
119 	int mtu;
120 	int n;	/* scratchpad */
121 	int error = 0;
122 	int nortfree = 0;
123 	struct sockaddr_in *dst;
124 	struct in_ifaddr *ia = NULL;
125 	int isbroadcast, sw_csum;
126 	struct route iproute;
127 	struct rtentry *rte;	/* cache for ro->ro_rt */
128 	struct in_addr odst;
129 #ifdef IPFIREWALL_FORWARD
130 	struct m_tag *fwd_tag = NULL;
131 #endif
132 #ifdef IPSEC
133 	int no_route_but_check_spd = 0;
134 #endif
135 	M_ASSERTPKTHDR(m);
136 
137 	if (inp != NULL) {
138 		INP_LOCK_ASSERT(inp);
139 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
140 		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
141 			m->m_pkthdr.flowid = inp->inp_flowid;
142 			m->m_flags |= M_FLOWID;
143 		}
144 	}
145 
146 	if (ro == NULL) {
147 		ro = &iproute;
148 		bzero(ro, sizeof (*ro));
149 
150 #ifdef FLOWTABLE
151 		{
152 			struct flentry *fle;
153 
154 			/*
155 			 * The flow table returns route entries valid for up to 30
156 			 * seconds; we rely on the remainder of ip_output() taking no
157 			 * longer than that long for the stability of ro_rt.  The
158 			 * flow ID assignment must have happened before this point.
159 			 */
160 			if ((fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET)) != NULL) {
161 				flow_to_route(fle, ro);
162 				nortfree = 1;
163 			}
164 		}
165 #endif
166 	}
167 
168 	if (opt) {
169 		int len = 0;
170 		m = ip_insertoptions(m, opt, &len);
171 		if (len != 0)
172 			hlen = len; /* ip->ip_hl is updated above */
173 	}
174 	ip = mtod(m, struct ip *);
175 
176 	/*
177 	 * Fill in IP header.  If we are not allowing fragmentation,
178 	 * then the ip_id field is meaningless, but we don't set it
179 	 * to zero.  Doing so causes various problems when devices along
180 	 * the path (routers, load balancers, firewalls, etc.) illegally
181 	 * disable DF on our packet.  Note that a 16-bit counter
182 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
183 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
184 	 * for Counting NATted Hosts", Proc. IMW'02, available at
185 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
186 	 */
187 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
188 		ip->ip_v = IPVERSION;
189 		ip->ip_hl = hlen >> 2;
190 		ip->ip_id = ip_newid();
191 		IPSTAT_INC(ips_localout);
192 	} else {
193 		/* Header already set, fetch hlen from there */
194 		hlen = ip->ip_hl << 2;
195 	}
196 
197 	dst = (struct sockaddr_in *)&ro->ro_dst;
198 again:
199 	/*
200 	 * If there is a cached route,
201 	 * check that it is to the same destination
202 	 * and is still up.  If not, free it and try again.
203 	 * The address family should also be checked in case of sharing the
204 	 * cache with IPv6.
205 	 */
206 	rte = ro->ro_rt;
207 	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
208 		    rte->rt_ifp == NULL ||
209 		    !RT_LINK_IS_UP(rte->rt_ifp) ||
210 			  dst->sin_family != AF_INET ||
211 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
212 		if (!nortfree)
213 			RTFREE(rte);
214 		rte = ro->ro_rt = (struct rtentry *)NULL;
215 		ro->ro_lle = (struct llentry *)NULL;
216 	}
217 #ifdef IPFIREWALL_FORWARD
218 	if (rte == NULL && fwd_tag == NULL) {
219 #else
220 	if (rte == NULL) {
221 #endif
222 		bzero(dst, sizeof(*dst));
223 		dst->sin_family = AF_INET;
224 		dst->sin_len = sizeof(*dst);
225 		dst->sin_addr = ip->ip_dst;
226 	}
227 	/*
228 	 * If routing to interface only, short circuit routing lookup.
229 	 * The use of an all-ones broadcast address implies this; an
230 	 * interface is specified by the broadcast address of an interface,
231 	 * or the destination address of a ptp interface.
232 	 */
233 	if (flags & IP_SENDONES) {
234 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
235 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
236 			IPSTAT_INC(ips_noroute);
237 			error = ENETUNREACH;
238 			goto bad;
239 		}
240 		ip->ip_dst.s_addr = INADDR_BROADCAST;
241 		dst->sin_addr = ip->ip_dst;
242 		ifp = ia->ia_ifp;
243 		ip->ip_ttl = 1;
244 		isbroadcast = 1;
245 	} else if (flags & IP_ROUTETOIF) {
246 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
247 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
248 			IPSTAT_INC(ips_noroute);
249 			error = ENETUNREACH;
250 			goto bad;
251 		}
252 		ifp = ia->ia_ifp;
253 		ip->ip_ttl = 1;
254 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
255 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
256 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
257 		/*
258 		 * Bypass the normal routing lookup for multicast
259 		 * packets if the interface is specified.
260 		 */
261 		ifp = imo->imo_multicast_ifp;
262 		IFP_TO_IA(ifp, ia);
263 		isbroadcast = 0;	/* fool gcc */
264 	} else {
265 		/*
266 		 * We want to do any cloning requested by the link layer,
267 		 * as this is probably required in all cases for correct
268 		 * operation (as it is for ARP).
269 		 */
270 		if (rte == NULL) {
271 #ifdef RADIX_MPATH
272 			rtalloc_mpath_fib(ro,
273 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
274 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
275 #else
276 			in_rtalloc_ign(ro, 0,
277 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
278 #endif
279 			rte = ro->ro_rt;
280 		}
281 		if (rte == NULL ||
282 		    rte->rt_ifp == NULL ||
283 		    !RT_LINK_IS_UP(rte->rt_ifp)) {
284 #ifdef IPSEC
285 			/*
286 			 * There is no route for this packet, but it is
287 			 * possible that a matching SPD entry exists.
288 			 */
289 			no_route_but_check_spd = 1;
290 			mtu = 0; /* Silence GCC warning. */
291 			goto sendit;
292 #endif
293 			IPSTAT_INC(ips_noroute);
294 			error = EHOSTUNREACH;
295 			goto bad;
296 		}
297 		ia = ifatoia(rte->rt_ifa);
298 		ifa_ref(&ia->ia_ifa);
299 		ifp = rte->rt_ifp;
300 		rte->rt_rmx.rmx_pksent++;
301 		if (rte->rt_flags & RTF_GATEWAY)
302 			dst = (struct sockaddr_in *)rte->rt_gateway;
303 		if (rte->rt_flags & RTF_HOST)
304 			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
305 		else
306 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
307 	}
308 	/*
309 	 * Calculate MTU.  If we have a route that is up, use that,
310 	 * otherwise use the interface's MTU.
311 	 */
312 	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
313 		/*
314 		 * This case can happen if the user changed the MTU
315 		 * of an interface after enabling IP on it.  Because
316 		 * most netifs don't keep track of routes pointing to
317 		 * them, there is no way for one to update all its
318 		 * routes when the MTU is changed.
319 		 */
320 		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
321 			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
322 		mtu = rte->rt_rmx.rmx_mtu;
323 	} else {
324 		mtu = ifp->if_mtu;
325 	}
326 	/* Catch a possible divide by zero later. */
327 	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
328 	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
329 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
330 		m->m_flags |= M_MCAST;
331 		/*
332 		 * IP destination address is multicast.  Make sure "dst"
333 		 * still points to the address in "ro".  (It may have been
334 		 * changed to point to a gateway address, above.)
335 		 */
336 		dst = (struct sockaddr_in *)&ro->ro_dst;
337 		/*
338 		 * See if the caller provided any multicast options
339 		 */
340 		if (imo != NULL) {
341 			ip->ip_ttl = imo->imo_multicast_ttl;
342 			if (imo->imo_multicast_vif != -1)
343 				ip->ip_src.s_addr =
344 				    ip_mcast_src ?
345 				    ip_mcast_src(imo->imo_multicast_vif) :
346 				    INADDR_ANY;
347 		} else
348 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
349 		/*
350 		 * Confirm that the outgoing interface supports multicast.
351 		 */
352 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
353 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
354 				IPSTAT_INC(ips_noroute);
355 				error = ENETUNREACH;
356 				goto bad;
357 			}
358 		}
359 		/*
360 		 * If source address not specified yet, use address
361 		 * of outgoing interface.
362 		 */
363 		if (ip->ip_src.s_addr == INADDR_ANY) {
364 			/* Interface may have no addresses. */
365 			if (ia != NULL)
366 				ip->ip_src = IA_SIN(ia)->sin_addr;
367 		}
368 
369 		if ((imo == NULL && in_mcast_loop) ||
370 		    (imo && imo->imo_multicast_loop)) {
371 			/*
372 			 * Loop back multicast datagram if not expressly
373 			 * forbidden to do so, even if we are not a member
374 			 * of the group; ip_input() will filter it later,
375 			 * thus deferring a hash lookup and mutex acquisition
376 			 * at the expense of a cheap copy using m_copym().
377 			 */
378 			ip_mloopback(ifp, m, dst, hlen);
379 		} else {
380 			/*
381 			 * If we are acting as a multicast router, perform
382 			 * multicast forwarding as if the packet had just
383 			 * arrived on the interface to which we are about
384 			 * to send.  The multicast forwarding function
385 			 * recursively calls this function, using the
386 			 * IP_FORWARDING flag to prevent infinite recursion.
387 			 *
388 			 * Multicasts that are looped back by ip_mloopback(),
389 			 * above, will be forwarded by the ip_input() routine,
390 			 * if necessary.
391 			 */
392 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
393 				/*
394 				 * If rsvp daemon is not running, do not
395 				 * set ip_moptions. This ensures that the packet
396 				 * is multicast and not just sent down one link
397 				 * as prescribed by rsvpd.
398 				 */
399 				if (!V_rsvp_on)
400 					imo = NULL;
401 				if (ip_mforward &&
402 				    ip_mforward(ip, ifp, m, imo) != 0) {
403 					m_freem(m);
404 					goto done;
405 				}
406 			}
407 		}
408 
409 		/*
410 		 * Multicasts with a time-to-live of zero may be looped-
411 		 * back, above, but must not be transmitted on a network.
412 		 * Also, multicasts addressed to the loopback interface
413 		 * are not sent -- the above call to ip_mloopback() will
414 		 * loop back a copy. ip_input() will drop the copy if
415 		 * this host does not belong to the destination group on
416 		 * the loopback interface.
417 		 */
418 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
419 			m_freem(m);
420 			goto done;
421 		}
422 
423 		goto sendit;
424 	}
425 
426 	/*
427 	 * If the source address is not specified yet, use the address
428 	 * of the outoing interface.
429 	 */
430 	if (ip->ip_src.s_addr == INADDR_ANY) {
431 		/* Interface may have no addresses. */
432 		if (ia != NULL) {
433 			ip->ip_src = IA_SIN(ia)->sin_addr;
434 		}
435 	}
436 
437 	/*
438 	 * Verify that we have any chance at all of being able to queue the
439 	 * packet or packet fragments, unless ALTQ is enabled on the given
440 	 * interface in which case packetdrop should be done by queueing.
441 	 */
442 	n = ip->ip_len / mtu + 1; /* how many fragments ? */
443 	if (
444 #ifdef ALTQ
445 	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
446 #endif /* ALTQ */
447 	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
448 		error = ENOBUFS;
449 		IPSTAT_INC(ips_odropped);
450 		ifp->if_snd.ifq_drops += n;
451 		goto bad;
452 	}
453 
454 	/*
455 	 * Look for broadcast address and
456 	 * verify user is allowed to send
457 	 * such a packet.
458 	 */
459 	if (isbroadcast) {
460 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
461 			error = EADDRNOTAVAIL;
462 			goto bad;
463 		}
464 		if ((flags & IP_ALLOWBROADCAST) == 0) {
465 			error = EACCES;
466 			goto bad;
467 		}
468 		/* don't allow broadcast messages to be fragmented */
469 		if (ip->ip_len > mtu) {
470 			error = EMSGSIZE;
471 			goto bad;
472 		}
473 		m->m_flags |= M_BCAST;
474 	} else {
475 		m->m_flags &= ~M_BCAST;
476 	}
477 
478 sendit:
479 #ifdef IPSEC
480 	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
481 	case 1:
482 		goto bad;
483 	case -1:
484 		goto done;
485 	case 0:
486 	default:
487 		break;	/* Continue with packet processing. */
488 	}
489 	/*
490 	 * Check if there was a route for this packet; return error if not.
491 	 */
492 	if (no_route_but_check_spd) {
493 		IPSTAT_INC(ips_noroute);
494 		error = EHOSTUNREACH;
495 		goto bad;
496 	}
497 	/* Update variables that are affected by ipsec4_output(). */
498 	ip = mtod(m, struct ip *);
499 	hlen = ip->ip_hl << 2;
500 #endif /* IPSEC */
501 
502 	/* Jump over all PFIL processing if hooks are not active. */
503 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
504 		goto passout;
505 
506 	/* Run through list of hooks for output packets. */
507 	odst.s_addr = ip->ip_dst.s_addr;
508 	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
509 	if (error != 0 || m == NULL)
510 		goto done;
511 
512 	ip = mtod(m, struct ip *);
513 
514 	/* See if destination IP address was changed by packet filter. */
515 	if (odst.s_addr != ip->ip_dst.s_addr) {
516 		m->m_flags |= M_SKIP_FIREWALL;
517 		/* If destination is now ourself drop to ip_input(). */
518 		if (in_localip(ip->ip_dst)) {
519 			m->m_flags |= M_FASTFWD_OURS;
520 			if (m->m_pkthdr.rcvif == NULL)
521 				m->m_pkthdr.rcvif = V_loif;
522 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
523 				m->m_pkthdr.csum_flags |=
524 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
525 				m->m_pkthdr.csum_data = 0xffff;
526 			}
527 			m->m_pkthdr.csum_flags |=
528 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
529 #ifdef SCTP
530 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
531 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
532 #endif
533 			error = netisr_queue(NETISR_IP, m);
534 			goto done;
535 		} else
536 			goto again;	/* Redo the routing table lookup. */
537 	}
538 
539 #ifdef IPFIREWALL_FORWARD
540 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
541 	if (m->m_flags & M_FASTFWD_OURS) {
542 		if (m->m_pkthdr.rcvif == NULL)
543 			m->m_pkthdr.rcvif = V_loif;
544 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
545 			m->m_pkthdr.csum_flags |=
546 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
547 			m->m_pkthdr.csum_data = 0xffff;
548 		}
549 #ifdef SCTP
550 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
551 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
552 #endif
553 		m->m_pkthdr.csum_flags |=
554 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
555 
556 		error = netisr_queue(NETISR_IP, m);
557 		goto done;
558 	}
559 	/* Or forward to some other address? */
560 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
561 	if (fwd_tag) {
562 		dst = (struct sockaddr_in *)&ro->ro_dst;
563 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
564 		m->m_flags |= M_SKIP_FIREWALL;
565 		m_tag_delete(m, fwd_tag);
566 		goto again;
567 	}
568 #endif /* IPFIREWALL_FORWARD */
569 
570 passout:
571 	/* 127/8 must not appear on wire - RFC1122. */
572 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
573 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
574 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
575 			IPSTAT_INC(ips_badaddr);
576 			error = EADDRNOTAVAIL;
577 			goto bad;
578 		}
579 	}
580 
581 	m->m_pkthdr.csum_flags |= CSUM_IP;
582 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
583 	if (sw_csum & CSUM_DELAY_DATA) {
584 		in_delayed_cksum(m);
585 		sw_csum &= ~CSUM_DELAY_DATA;
586 	}
587 #ifdef SCTP
588 	if (sw_csum & CSUM_SCTP) {
589 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
590 		sw_csum &= ~CSUM_SCTP;
591 	}
592 #endif
593 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
594 
595 	/*
596 	 * If small enough for interface, or the interface will take
597 	 * care of the fragmentation for us, we can just send directly.
598 	 */
599 	if (ip->ip_len <= mtu ||
600 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
601 	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
602 		ip->ip_len = htons(ip->ip_len);
603 		ip->ip_off = htons(ip->ip_off);
604 		ip->ip_sum = 0;
605 		if (sw_csum & CSUM_DELAY_IP)
606 			ip->ip_sum = in_cksum(m, hlen);
607 
608 		/*
609 		 * Record statistics for this interface address.
610 		 * With CSUM_TSO the byte/packet count will be slightly
611 		 * incorrect because we count the IP+TCP headers only
612 		 * once instead of for every generated packet.
613 		 */
614 		if (!(flags & IP_FORWARDING) && ia) {
615 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
616 				ia->ia_ifa.if_opackets +=
617 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
618 			else
619 				ia->ia_ifa.if_opackets++;
620 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
621 		}
622 #ifdef MBUF_STRESS_TEST
623 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
624 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
625 #endif
626 		/*
627 		 * Reset layer specific mbuf flags
628 		 * to avoid confusing lower layers.
629 		 */
630 		m->m_flags &= ~(M_PROTOFLAGS);
631 		error = (*ifp->if_output)(ifp, m,
632 		    		(struct sockaddr *)dst, ro);
633 		goto done;
634 	}
635 
636 	/* Balk when DF bit is set or the interface didn't support TSO. */
637 	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
638 		error = EMSGSIZE;
639 		IPSTAT_INC(ips_cantfrag);
640 		goto bad;
641 	}
642 
643 	/*
644 	 * Too large for interface; fragment if possible. If successful,
645 	 * on return, m will point to a list of packets to be sent.
646 	 */
647 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
648 	if (error)
649 		goto bad;
650 	for (; m; m = m0) {
651 		m0 = m->m_nextpkt;
652 		m->m_nextpkt = 0;
653 		if (error == 0) {
654 			/* Record statistics for this interface address. */
655 			if (ia != NULL) {
656 				ia->ia_ifa.if_opackets++;
657 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
658 			}
659 			/*
660 			 * Reset layer specific mbuf flags
661 			 * to avoid confusing upper layers.
662 			 */
663 			m->m_flags &= ~(M_PROTOFLAGS);
664 
665 			error = (*ifp->if_output)(ifp, m,
666 			    (struct sockaddr *)dst, ro);
667 		} else
668 			m_freem(m);
669 	}
670 
671 	if (error == 0)
672 		IPSTAT_INC(ips_fragmented);
673 
674 done:
675 	if (ro == &iproute && ro->ro_rt && !nortfree) {
676 		RTFREE(ro->ro_rt);
677 	}
678 	if (ia != NULL)
679 		ifa_free(&ia->ia_ifa);
680 	return (error);
681 bad:
682 	m_freem(m);
683 	goto done;
684 }
685 
686 /*
687  * Create a chain of fragments which fit the given mtu. m_frag points to the
688  * mbuf to be fragmented; on return it points to the chain with the fragments.
689  * Return 0 if no error. If error, m_frag may contain a partially built
690  * chain of fragments that should be freed by the caller.
691  *
692  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
693  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
694  */
695 int
696 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
697     u_long if_hwassist_flags, int sw_csum)
698 {
699 	int error = 0;
700 	int hlen = ip->ip_hl << 2;
701 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
702 	int off;
703 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
704 	int firstlen;
705 	struct mbuf **mnext;
706 	int nfrags;
707 
708 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
709 		IPSTAT_INC(ips_cantfrag);
710 		return EMSGSIZE;
711 	}
712 
713 	/*
714 	 * Must be able to put at least 8 bytes per fragment.
715 	 */
716 	if (len < 8)
717 		return EMSGSIZE;
718 
719 	/*
720 	 * If the interface will not calculate checksums on
721 	 * fragmented packets, then do it here.
722 	 */
723 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
724 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
725 		in_delayed_cksum(m0);
726 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
727 	}
728 #ifdef SCTP
729 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP &&
730 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
731 		sctp_delayed_cksum(m0, hlen);
732 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
733 	}
734 #endif
735 	if (len > PAGE_SIZE) {
736 		/*
737 		 * Fragment large datagrams such that each segment
738 		 * contains a multiple of PAGE_SIZE amount of data,
739 		 * plus headers. This enables a receiver to perform
740 		 * page-flipping zero-copy optimizations.
741 		 *
742 		 * XXX When does this help given that sender and receiver
743 		 * could have different page sizes, and also mtu could
744 		 * be less than the receiver's page size ?
745 		 */
746 		int newlen;
747 		struct mbuf *m;
748 
749 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
750 			off += m->m_len;
751 
752 		/*
753 		 * firstlen (off - hlen) must be aligned on an
754 		 * 8-byte boundary
755 		 */
756 		if (off < hlen)
757 			goto smart_frag_failure;
758 		off = ((off - hlen) & ~7) + hlen;
759 		newlen = (~PAGE_MASK) & mtu;
760 		if ((newlen + sizeof (struct ip)) > mtu) {
761 			/* we failed, go back the default */
762 smart_frag_failure:
763 			newlen = len;
764 			off = hlen + len;
765 		}
766 		len = newlen;
767 
768 	} else {
769 		off = hlen + len;
770 	}
771 
772 	firstlen = off - hlen;
773 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
774 
775 	/*
776 	 * Loop through length of segment after first fragment,
777 	 * make new header and copy data of each part and link onto chain.
778 	 * Here, m0 is the original packet, m is the fragment being created.
779 	 * The fragments are linked off the m_nextpkt of the original
780 	 * packet, which after processing serves as the first fragment.
781 	 */
782 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
783 		struct ip *mhip;	/* ip header on the fragment */
784 		struct mbuf *m;
785 		int mhlen = sizeof (struct ip);
786 
787 		MGETHDR(m, M_DONTWAIT, MT_DATA);
788 		if (m == NULL) {
789 			error = ENOBUFS;
790 			IPSTAT_INC(ips_odropped);
791 			goto done;
792 		}
793 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
794 		/*
795 		 * In the first mbuf, leave room for the link header, then
796 		 * copy the original IP header including options. The payload
797 		 * goes into an additional mbuf chain returned by m_copym().
798 		 */
799 		m->m_data += max_linkhdr;
800 		mhip = mtod(m, struct ip *);
801 		*mhip = *ip;
802 		if (hlen > sizeof (struct ip)) {
803 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
804 			mhip->ip_v = IPVERSION;
805 			mhip->ip_hl = mhlen >> 2;
806 		}
807 		m->m_len = mhlen;
808 		/* XXX do we need to add ip->ip_off below ? */
809 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
810 		if (off + len >= ip->ip_len) {	/* last fragment */
811 			len = ip->ip_len - off;
812 			m->m_flags |= M_LASTFRAG;
813 		} else
814 			mhip->ip_off |= IP_MF;
815 		mhip->ip_len = htons((u_short)(len + mhlen));
816 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
817 		if (m->m_next == NULL) {	/* copy failed */
818 			m_free(m);
819 			error = ENOBUFS;	/* ??? */
820 			IPSTAT_INC(ips_odropped);
821 			goto done;
822 		}
823 		m->m_pkthdr.len = mhlen + len;
824 		m->m_pkthdr.rcvif = NULL;
825 #ifdef MAC
826 		mac_netinet_fragment(m0, m);
827 #endif
828 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
829 		mhip->ip_off = htons(mhip->ip_off);
830 		mhip->ip_sum = 0;
831 		if (sw_csum & CSUM_DELAY_IP)
832 			mhip->ip_sum = in_cksum(m, mhlen);
833 		*mnext = m;
834 		mnext = &m->m_nextpkt;
835 	}
836 	IPSTAT_ADD(ips_ofragments, nfrags);
837 
838 	/* set first marker for fragment chain */
839 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
840 	m0->m_pkthdr.csum_data = nfrags;
841 
842 	/*
843 	 * Update first fragment by trimming what's been copied out
844 	 * and updating header.
845 	 */
846 	m_adj(m0, hlen + firstlen - ip->ip_len);
847 	m0->m_pkthdr.len = hlen + firstlen;
848 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
849 	ip->ip_off |= IP_MF;
850 	ip->ip_off = htons(ip->ip_off);
851 	ip->ip_sum = 0;
852 	if (sw_csum & CSUM_DELAY_IP)
853 		ip->ip_sum = in_cksum(m0, hlen);
854 
855 done:
856 	*m_frag = m0;
857 	return error;
858 }
859 
860 void
861 in_delayed_cksum(struct mbuf *m)
862 {
863 	struct ip *ip;
864 	u_short csum, offset;
865 
866 	ip = mtod(m, struct ip *);
867 	offset = ip->ip_hl << 2 ;
868 	csum = in_cksum_skip(m, ip->ip_len, offset);
869 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
870 		csum = 0xffff;
871 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
872 
873 	if (offset + sizeof(u_short) > m->m_len) {
874 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
875 		    m->m_len, offset, ip->ip_p);
876 		/*
877 		 * XXX
878 		 * this shouldn't happen, but if it does, the
879 		 * correct behavior may be to insert the checksum
880 		 * in the appropriate next mbuf in the chain.
881 		 */
882 		return;
883 	}
884 	*(u_short *)(m->m_data + offset) = csum;
885 }
886 
887 /*
888  * IP socket option processing.
889  */
890 int
891 ip_ctloutput(struct socket *so, struct sockopt *sopt)
892 {
893 	struct	inpcb *inp = sotoinpcb(so);
894 	int	error, optval;
895 
896 	error = optval = 0;
897 	if (sopt->sopt_level != IPPROTO_IP) {
898 		if ((sopt->sopt_level == SOL_SOCKET) &&
899 		    (sopt->sopt_name == SO_SETFIB)) {
900 			inp->inp_inc.inc_fibnum = so->so_fibnum;
901 			return (0);
902 		}
903 		return (EINVAL);
904 	}
905 
906 	switch (sopt->sopt_dir) {
907 	case SOPT_SET:
908 		switch (sopt->sopt_name) {
909 		case IP_OPTIONS:
910 #ifdef notyet
911 		case IP_RETOPTS:
912 #endif
913 		{
914 			struct mbuf *m;
915 			if (sopt->sopt_valsize > MLEN) {
916 				error = EMSGSIZE;
917 				break;
918 			}
919 			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
920 			if (m == NULL) {
921 				error = ENOBUFS;
922 				break;
923 			}
924 			m->m_len = sopt->sopt_valsize;
925 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
926 					    m->m_len);
927 			if (error) {
928 				m_free(m);
929 				break;
930 			}
931 			INP_WLOCK(inp);
932 			error = ip_pcbopts(inp, sopt->sopt_name, m);
933 			INP_WUNLOCK(inp);
934 			return (error);
935 		}
936 
937 		case IP_BINDANY:
938 			if (sopt->sopt_td != NULL) {
939 				error = priv_check(sopt->sopt_td,
940 				    PRIV_NETINET_BINDANY);
941 				if (error)
942 					break;
943 			}
944 			/* FALLTHROUGH */
945 		case IP_TOS:
946 		case IP_TTL:
947 		case IP_MINTTL:
948 		case IP_RECVOPTS:
949 		case IP_RECVRETOPTS:
950 		case IP_RECVDSTADDR:
951 		case IP_RECVTTL:
952 		case IP_RECVIF:
953 		case IP_FAITH:
954 		case IP_ONESBCAST:
955 		case IP_DONTFRAG:
956 			error = sooptcopyin(sopt, &optval, sizeof optval,
957 					    sizeof optval);
958 			if (error)
959 				break;
960 
961 			switch (sopt->sopt_name) {
962 			case IP_TOS:
963 				inp->inp_ip_tos = optval;
964 				break;
965 
966 			case IP_TTL:
967 				inp->inp_ip_ttl = optval;
968 				break;
969 
970 			case IP_MINTTL:
971 				if (optval >= 0 && optval <= MAXTTL)
972 					inp->inp_ip_minttl = optval;
973 				else
974 					error = EINVAL;
975 				break;
976 
977 #define	OPTSET(bit) do {						\
978 	INP_WLOCK(inp);							\
979 	if (optval)							\
980 		inp->inp_flags |= bit;					\
981 	else								\
982 		inp->inp_flags &= ~bit;					\
983 	INP_WUNLOCK(inp);						\
984 } while (0)
985 
986 			case IP_RECVOPTS:
987 				OPTSET(INP_RECVOPTS);
988 				break;
989 
990 			case IP_RECVRETOPTS:
991 				OPTSET(INP_RECVRETOPTS);
992 				break;
993 
994 			case IP_RECVDSTADDR:
995 				OPTSET(INP_RECVDSTADDR);
996 				break;
997 
998 			case IP_RECVTTL:
999 				OPTSET(INP_RECVTTL);
1000 				break;
1001 
1002 			case IP_RECVIF:
1003 				OPTSET(INP_RECVIF);
1004 				break;
1005 
1006 			case IP_FAITH:
1007 				OPTSET(INP_FAITH);
1008 				break;
1009 
1010 			case IP_ONESBCAST:
1011 				OPTSET(INP_ONESBCAST);
1012 				break;
1013 			case IP_DONTFRAG:
1014 				OPTSET(INP_DONTFRAG);
1015 				break;
1016 			case IP_BINDANY:
1017 				OPTSET(INP_BINDANY);
1018 				break;
1019 			}
1020 			break;
1021 #undef OPTSET
1022 
1023 		/*
1024 		 * Multicast socket options are processed by the in_mcast
1025 		 * module.
1026 		 */
1027 		case IP_MULTICAST_IF:
1028 		case IP_MULTICAST_VIF:
1029 		case IP_MULTICAST_TTL:
1030 		case IP_MULTICAST_LOOP:
1031 		case IP_ADD_MEMBERSHIP:
1032 		case IP_DROP_MEMBERSHIP:
1033 		case IP_ADD_SOURCE_MEMBERSHIP:
1034 		case IP_DROP_SOURCE_MEMBERSHIP:
1035 		case IP_BLOCK_SOURCE:
1036 		case IP_UNBLOCK_SOURCE:
1037 		case IP_MSFILTER:
1038 		case MCAST_JOIN_GROUP:
1039 		case MCAST_LEAVE_GROUP:
1040 		case MCAST_JOIN_SOURCE_GROUP:
1041 		case MCAST_LEAVE_SOURCE_GROUP:
1042 		case MCAST_BLOCK_SOURCE:
1043 		case MCAST_UNBLOCK_SOURCE:
1044 			error = inp_setmoptions(inp, sopt);
1045 			break;
1046 
1047 		case IP_PORTRANGE:
1048 			error = sooptcopyin(sopt, &optval, sizeof optval,
1049 					    sizeof optval);
1050 			if (error)
1051 				break;
1052 
1053 			INP_WLOCK(inp);
1054 			switch (optval) {
1055 			case IP_PORTRANGE_DEFAULT:
1056 				inp->inp_flags &= ~(INP_LOWPORT);
1057 				inp->inp_flags &= ~(INP_HIGHPORT);
1058 				break;
1059 
1060 			case IP_PORTRANGE_HIGH:
1061 				inp->inp_flags &= ~(INP_LOWPORT);
1062 				inp->inp_flags |= INP_HIGHPORT;
1063 				break;
1064 
1065 			case IP_PORTRANGE_LOW:
1066 				inp->inp_flags &= ~(INP_HIGHPORT);
1067 				inp->inp_flags |= INP_LOWPORT;
1068 				break;
1069 
1070 			default:
1071 				error = EINVAL;
1072 				break;
1073 			}
1074 			INP_WUNLOCK(inp);
1075 			break;
1076 
1077 #ifdef IPSEC
1078 		case IP_IPSEC_POLICY:
1079 		{
1080 			caddr_t req;
1081 			struct mbuf *m;
1082 
1083 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1084 				break;
1085 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1086 				break;
1087 			req = mtod(m, caddr_t);
1088 			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1089 			    m->m_len, (sopt->sopt_td != NULL) ?
1090 			    sopt->sopt_td->td_ucred : NULL);
1091 			m_freem(m);
1092 			break;
1093 		}
1094 #endif /* IPSEC */
1095 
1096 		default:
1097 			error = ENOPROTOOPT;
1098 			break;
1099 		}
1100 		break;
1101 
1102 	case SOPT_GET:
1103 		switch (sopt->sopt_name) {
1104 		case IP_OPTIONS:
1105 		case IP_RETOPTS:
1106 			if (inp->inp_options)
1107 				error = sooptcopyout(sopt,
1108 						     mtod(inp->inp_options,
1109 							  char *),
1110 						     inp->inp_options->m_len);
1111 			else
1112 				sopt->sopt_valsize = 0;
1113 			break;
1114 
1115 		case IP_TOS:
1116 		case IP_TTL:
1117 		case IP_MINTTL:
1118 		case IP_RECVOPTS:
1119 		case IP_RECVRETOPTS:
1120 		case IP_RECVDSTADDR:
1121 		case IP_RECVTTL:
1122 		case IP_RECVIF:
1123 		case IP_PORTRANGE:
1124 		case IP_FAITH:
1125 		case IP_ONESBCAST:
1126 		case IP_DONTFRAG:
1127 		case IP_BINDANY:
1128 			switch (sopt->sopt_name) {
1129 
1130 			case IP_TOS:
1131 				optval = inp->inp_ip_tos;
1132 				break;
1133 
1134 			case IP_TTL:
1135 				optval = inp->inp_ip_ttl;
1136 				break;
1137 
1138 			case IP_MINTTL:
1139 				optval = inp->inp_ip_minttl;
1140 				break;
1141 
1142 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1143 
1144 			case IP_RECVOPTS:
1145 				optval = OPTBIT(INP_RECVOPTS);
1146 				break;
1147 
1148 			case IP_RECVRETOPTS:
1149 				optval = OPTBIT(INP_RECVRETOPTS);
1150 				break;
1151 
1152 			case IP_RECVDSTADDR:
1153 				optval = OPTBIT(INP_RECVDSTADDR);
1154 				break;
1155 
1156 			case IP_RECVTTL:
1157 				optval = OPTBIT(INP_RECVTTL);
1158 				break;
1159 
1160 			case IP_RECVIF:
1161 				optval = OPTBIT(INP_RECVIF);
1162 				break;
1163 
1164 			case IP_PORTRANGE:
1165 				if (inp->inp_flags & INP_HIGHPORT)
1166 					optval = IP_PORTRANGE_HIGH;
1167 				else if (inp->inp_flags & INP_LOWPORT)
1168 					optval = IP_PORTRANGE_LOW;
1169 				else
1170 					optval = 0;
1171 				break;
1172 
1173 			case IP_FAITH:
1174 				optval = OPTBIT(INP_FAITH);
1175 				break;
1176 
1177 			case IP_ONESBCAST:
1178 				optval = OPTBIT(INP_ONESBCAST);
1179 				break;
1180 			case IP_DONTFRAG:
1181 				optval = OPTBIT(INP_DONTFRAG);
1182 				break;
1183 			case IP_BINDANY:
1184 				optval = OPTBIT(INP_BINDANY);
1185 				break;
1186 			}
1187 			error = sooptcopyout(sopt, &optval, sizeof optval);
1188 			break;
1189 
1190 		/*
1191 		 * Multicast socket options are processed by the in_mcast
1192 		 * module.
1193 		 */
1194 		case IP_MULTICAST_IF:
1195 		case IP_MULTICAST_VIF:
1196 		case IP_MULTICAST_TTL:
1197 		case IP_MULTICAST_LOOP:
1198 		case IP_MSFILTER:
1199 			error = inp_getmoptions(inp, sopt);
1200 			break;
1201 
1202 #ifdef IPSEC
1203 		case IP_IPSEC_POLICY:
1204 		{
1205 			struct mbuf *m = NULL;
1206 			caddr_t req = NULL;
1207 			size_t len = 0;
1208 
1209 			if (m != 0) {
1210 				req = mtod(m, caddr_t);
1211 				len = m->m_len;
1212 			}
1213 			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1214 			if (error == 0)
1215 				error = soopt_mcopyout(sopt, m); /* XXX */
1216 			if (error == 0)
1217 				m_freem(m);
1218 			break;
1219 		}
1220 #endif /* IPSEC */
1221 
1222 		default:
1223 			error = ENOPROTOOPT;
1224 			break;
1225 		}
1226 		break;
1227 	}
1228 	return (error);
1229 }
1230 
1231 /*
1232  * Routine called from ip_output() to loop back a copy of an IP multicast
1233  * packet to the input queue of a specified interface.  Note that this
1234  * calls the output routine of the loopback "driver", but with an interface
1235  * pointer that might NOT be a loopback interface -- evil, but easier than
1236  * replicating that code here.
1237  */
1238 static void
1239 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1240     int hlen)
1241 {
1242 	register struct ip *ip;
1243 	struct mbuf *copym;
1244 
1245 	/*
1246 	 * Make a deep copy of the packet because we're going to
1247 	 * modify the pack in order to generate checksums.
1248 	 */
1249 	copym = m_dup(m, M_DONTWAIT);
1250 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1251 		copym = m_pullup(copym, hlen);
1252 	if (copym != NULL) {
1253 		/* If needed, compute the checksum and mark it as valid. */
1254 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1255 			in_delayed_cksum(copym);
1256 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1257 			copym->m_pkthdr.csum_flags |=
1258 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1259 			copym->m_pkthdr.csum_data = 0xffff;
1260 		}
1261 		/*
1262 		 * We don't bother to fragment if the IP length is greater
1263 		 * than the interface's MTU.  Can this possibly matter?
1264 		 */
1265 		ip = mtod(copym, struct ip *);
1266 		ip->ip_len = htons(ip->ip_len);
1267 		ip->ip_off = htons(ip->ip_off);
1268 		ip->ip_sum = 0;
1269 		ip->ip_sum = in_cksum(copym, hlen);
1270 #if 1 /* XXX */
1271 		if (dst->sin_family != AF_INET) {
1272 			printf("ip_mloopback: bad address family %d\n",
1273 						dst->sin_family);
1274 			dst->sin_family = AF_INET;
1275 		}
1276 #endif
1277 		if_simloop(ifp, copym, dst->sin_family, 0);
1278 	}
1279 }
1280