xref: /freebsd/sys/netinet/sctp_auth.c (revision 81ad6265)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
5  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * a) Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  *
14  * b) Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * c) Neither the name of Cisco Systems, Inc. nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <netinet/sctp_os.h>
39 #include <netinet/sctp.h>
40 #include <netinet/sctp_header.h>
41 #include <netinet/sctp_pcb.h>
42 #include <netinet/sctp_var.h>
43 #include <netinet/sctp_sysctl.h>
44 #include <netinet/sctputil.h>
45 #include <netinet/sctp_indata.h>
46 #include <netinet/sctp_output.h>
47 #include <netinet/sctp_auth.h>
48 
49 #ifdef SCTP_DEBUG
50 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
51 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
52 #endif				/* SCTP_DEBUG */
53 
54 void
55 sctp_clear_chunklist(sctp_auth_chklist_t *chklist)
56 {
57 	memset(chklist, 0, sizeof(*chklist));
58 	/* chklist->num_chunks = 0; */
59 }
60 
61 sctp_auth_chklist_t *
62 sctp_alloc_chunklist(void)
63 {
64 	sctp_auth_chklist_t *chklist;
65 
66 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
67 	    SCTP_M_AUTH_CL);
68 	if (chklist == NULL) {
69 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
70 	} else {
71 		sctp_clear_chunklist(chklist);
72 	}
73 	return (chklist);
74 }
75 
76 void
77 sctp_free_chunklist(sctp_auth_chklist_t *list)
78 {
79 	if (list != NULL)
80 		SCTP_FREE(list, SCTP_M_AUTH_CL);
81 }
82 
83 sctp_auth_chklist_t *
84 sctp_copy_chunklist(sctp_auth_chklist_t *list)
85 {
86 	sctp_auth_chklist_t *new_list;
87 
88 	if (list == NULL)
89 		return (NULL);
90 
91 	/* get a new list */
92 	new_list = sctp_alloc_chunklist();
93 	if (new_list == NULL)
94 		return (NULL);
95 	/* copy it */
96 	memcpy(new_list, list, sizeof(*new_list));
97 
98 	return (new_list);
99 }
100 
101 /*
102  * add a chunk to the required chunks list
103  */
104 int
105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
106 {
107 	if (list == NULL)
108 		return (-1);
109 
110 	/* is chunk restricted? */
111 	if ((chunk == SCTP_INITIATION) ||
112 	    (chunk == SCTP_INITIATION_ACK) ||
113 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114 	    (chunk == SCTP_AUTHENTICATION)) {
115 		return (-1);
116 	}
117 	if (list->chunks[chunk] == 0) {
118 		list->chunks[chunk] = 1;
119 		list->num_chunks++;
120 		SCTPDBG(SCTP_DEBUG_AUTH1,
121 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122 		    chunk, chunk);
123 	}
124 	return (0);
125 }
126 
127 /*
128  * delete a chunk from the required chunks list
129  */
130 int
131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
132 {
133 	if (list == NULL)
134 		return (-1);
135 
136 	if (list->chunks[chunk] == 1) {
137 		list->chunks[chunk] = 0;
138 		list->num_chunks--;
139 		SCTPDBG(SCTP_DEBUG_AUTH1,
140 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
141 		    chunk, chunk);
142 	}
143 	return (0);
144 }
145 
146 size_t
147 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list)
148 {
149 	if (list == NULL)
150 		return (0);
151 	else
152 		return (list->num_chunks);
153 }
154 
155 /*
156  * return the current number and list of required chunks caller must
157  * guarantee ptr has space for up to 256 bytes
158  */
159 int
160 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
161 {
162 	int i, count = 0;
163 
164 	if (list == NULL)
165 		return (0);
166 
167 	for (i = 0; i < 256; i++) {
168 		if (list->chunks[i] != 0) {
169 			*ptr++ = i;
170 			count++;
171 		}
172 	}
173 	return (count);
174 }
175 
176 int
177 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
178 {
179 	int i, size = 0;
180 
181 	if (list == NULL)
182 		return (0);
183 
184 	if (list->num_chunks <= 32) {
185 		/* just list them, one byte each */
186 		for (i = 0; i < 256; i++) {
187 			if (list->chunks[i] != 0) {
188 				*ptr++ = i;
189 				size++;
190 			}
191 		}
192 	} else {
193 		int index, offset;
194 
195 		/* pack into a 32 byte bitfield */
196 		for (i = 0; i < 256; i++) {
197 			if (list->chunks[i] != 0) {
198 				index = i / 8;
199 				offset = i % 8;
200 				ptr[index] |= (1 << offset);
201 			}
202 		}
203 		size = 32;
204 	}
205 	return (size);
206 }
207 
208 int
209 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks,
210     sctp_auth_chklist_t *list)
211 {
212 	int i;
213 	int size;
214 
215 	if (list == NULL)
216 		return (0);
217 
218 	if (num_chunks <= 32) {
219 		/* just pull them, one byte each */
220 		for (i = 0; i < num_chunks; i++) {
221 			(void)sctp_auth_add_chunk(*ptr++, list);
222 		}
223 		size = num_chunks;
224 	} else {
225 		int index, offset;
226 
227 		/* unpack from a 32 byte bitfield */
228 		for (index = 0; index < 32; index++) {
229 			for (offset = 0; offset < 8; offset++) {
230 				if (ptr[index] & (1 << offset)) {
231 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
232 				}
233 			}
234 		}
235 		size = 32;
236 	}
237 	return (size);
238 }
239 
240 /*
241  * allocate structure space for a key of length keylen
242  */
243 sctp_key_t *
244 sctp_alloc_key(uint32_t keylen)
245 {
246 	sctp_key_t *new_key;
247 
248 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
249 	    SCTP_M_AUTH_KY);
250 	if (new_key == NULL) {
251 		/* out of memory */
252 		return (NULL);
253 	}
254 	new_key->keylen = keylen;
255 	return (new_key);
256 }
257 
258 void
259 sctp_free_key(sctp_key_t *key)
260 {
261 	if (key != NULL)
262 		SCTP_FREE(key, SCTP_M_AUTH_KY);
263 }
264 
265 void
266 sctp_print_key(sctp_key_t *key, const char *str)
267 {
268 	uint32_t i;
269 
270 	if (key == NULL) {
271 		SCTP_PRINTF("%s: [Null key]\n", str);
272 		return;
273 	}
274 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
275 	if (key->keylen) {
276 		for (i = 0; i < key->keylen; i++)
277 			SCTP_PRINTF("%02x", key->key[i]);
278 		SCTP_PRINTF("\n");
279 	} else {
280 		SCTP_PRINTF("[Null key]\n");
281 	}
282 }
283 
284 void
285 sctp_show_key(sctp_key_t *key, const char *str)
286 {
287 	uint32_t i;
288 
289 	if (key == NULL) {
290 		SCTP_PRINTF("%s: [Null key]\n", str);
291 		return;
292 	}
293 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
294 	if (key->keylen) {
295 		for (i = 0; i < key->keylen; i++)
296 			SCTP_PRINTF("%02x", key->key[i]);
297 		SCTP_PRINTF("\n");
298 	} else {
299 		SCTP_PRINTF("[Null key]\n");
300 	}
301 }
302 
303 static uint32_t
304 sctp_get_keylen(sctp_key_t *key)
305 {
306 	if (key != NULL)
307 		return (key->keylen);
308 	else
309 		return (0);
310 }
311 
312 /*
313  * generate a new random key of length 'keylen'
314  */
315 sctp_key_t *
316 sctp_generate_random_key(uint32_t keylen)
317 {
318 	sctp_key_t *new_key;
319 
320 	new_key = sctp_alloc_key(keylen);
321 	if (new_key == NULL) {
322 		/* out of memory */
323 		return (NULL);
324 	}
325 	SCTP_READ_RANDOM(new_key->key, keylen);
326 	new_key->keylen = keylen;
327 	return (new_key);
328 }
329 
330 sctp_key_t *
331 sctp_set_key(uint8_t *key, uint32_t keylen)
332 {
333 	sctp_key_t *new_key;
334 
335 	new_key = sctp_alloc_key(keylen);
336 	if (new_key == NULL) {
337 		/* out of memory */
338 		return (NULL);
339 	}
340 	memcpy(new_key->key, key, keylen);
341 	return (new_key);
342 }
343 
344 /*-
345  * given two keys of variable size, compute which key is "larger/smaller"
346  * returns:  1 if key1 > key2
347  *          -1 if key1 < key2
348  *           0 if key1 = key2
349  */
350 static int
351 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2)
352 {
353 	uint32_t maxlen;
354 	uint32_t i;
355 	uint32_t key1len, key2len;
356 	uint8_t *key_1, *key_2;
357 	uint8_t val1, val2;
358 
359 	/* sanity/length check */
360 	key1len = sctp_get_keylen(key1);
361 	key2len = sctp_get_keylen(key2);
362 	if ((key1len == 0) && (key2len == 0))
363 		return (0);
364 	else if (key1len == 0)
365 		return (-1);
366 	else if (key2len == 0)
367 		return (1);
368 
369 	if (key1len < key2len) {
370 		maxlen = key2len;
371 	} else {
372 		maxlen = key1len;
373 	}
374 	key_1 = key1->key;
375 	key_2 = key2->key;
376 	/* check for numeric equality */
377 	for (i = 0; i < maxlen; i++) {
378 		/* left-pad with zeros */
379 		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
380 		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
381 		if (val1 > val2) {
382 			return (1);
383 		} else if (val1 < val2) {
384 			return (-1);
385 		}
386 	}
387 	/* keys are equal value, so check lengths */
388 	if (key1len == key2len)
389 		return (0);
390 	else if (key1len < key2len)
391 		return (-1);
392 	else
393 		return (1);
394 }
395 
396 /*
397  * generate the concatenated keying material based on the two keys and the
398  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
399  * order for concatenation
400  */
401 sctp_key_t *
402 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared)
403 {
404 	uint32_t keylen;
405 	sctp_key_t *new_key;
406 	uint8_t *key_ptr;
407 
408 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
409 	    sctp_get_keylen(shared);
410 
411 	if (keylen > 0) {
412 		/* get space for the new key */
413 		new_key = sctp_alloc_key(keylen);
414 		if (new_key == NULL) {
415 			/* out of memory */
416 			return (NULL);
417 		}
418 		new_key->keylen = keylen;
419 		key_ptr = new_key->key;
420 	} else {
421 		/* all keys empty/null?! */
422 		return (NULL);
423 	}
424 
425 	/* concatenate the keys */
426 	if (sctp_compare_key(key1, key2) <= 0) {
427 		/* key is shared + key1 + key2 */
428 		if (sctp_get_keylen(shared)) {
429 			memcpy(key_ptr, shared->key, shared->keylen);
430 			key_ptr += shared->keylen;
431 		}
432 		if (sctp_get_keylen(key1)) {
433 			memcpy(key_ptr, key1->key, key1->keylen);
434 			key_ptr += key1->keylen;
435 		}
436 		if (sctp_get_keylen(key2)) {
437 			memcpy(key_ptr, key2->key, key2->keylen);
438 		}
439 	} else {
440 		/* key is shared + key2 + key1 */
441 		if (sctp_get_keylen(shared)) {
442 			memcpy(key_ptr, shared->key, shared->keylen);
443 			key_ptr += shared->keylen;
444 		}
445 		if (sctp_get_keylen(key2)) {
446 			memcpy(key_ptr, key2->key, key2->keylen);
447 			key_ptr += key2->keylen;
448 		}
449 		if (sctp_get_keylen(key1)) {
450 			memcpy(key_ptr, key1->key, key1->keylen);
451 		}
452 	}
453 	return (new_key);
454 }
455 
456 sctp_sharedkey_t *
457 sctp_alloc_sharedkey(void)
458 {
459 	sctp_sharedkey_t *new_key;
460 
461 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
462 	    SCTP_M_AUTH_KY);
463 	if (new_key == NULL) {
464 		/* out of memory */
465 		return (NULL);
466 	}
467 	new_key->keyid = 0;
468 	new_key->key = NULL;
469 	new_key->refcount = 1;
470 	new_key->deactivated = 0;
471 	return (new_key);
472 }
473 
474 void
475 sctp_free_sharedkey(sctp_sharedkey_t *skey)
476 {
477 	if (skey == NULL)
478 		return;
479 
480 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
481 		if (skey->key != NULL)
482 			sctp_free_key(skey->key);
483 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
484 	}
485 }
486 
487 sctp_sharedkey_t *
488 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
489 {
490 	sctp_sharedkey_t *skey;
491 
492 	LIST_FOREACH(skey, shared_keys, next) {
493 		if (skey->keyid == key_id)
494 			return (skey);
495 	}
496 	return (NULL);
497 }
498 
499 int
500 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
501     sctp_sharedkey_t *new_skey)
502 {
503 	sctp_sharedkey_t *skey;
504 
505 	if ((shared_keys == NULL) || (new_skey == NULL))
506 		return (EINVAL);
507 
508 	/* insert into an empty list? */
509 	if (LIST_EMPTY(shared_keys)) {
510 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
511 		return (0);
512 	}
513 	/* insert into the existing list, ordered by key id */
514 	LIST_FOREACH(skey, shared_keys, next) {
515 		if (new_skey->keyid < skey->keyid) {
516 			/* insert it before here */
517 			LIST_INSERT_BEFORE(skey, new_skey, next);
518 			return (0);
519 		} else if (new_skey->keyid == skey->keyid) {
520 			/* replace the existing key */
521 			/* verify this key *can* be replaced */
522 			if ((skey->deactivated) || (skey->refcount > 1)) {
523 				SCTPDBG(SCTP_DEBUG_AUTH1,
524 				    "can't replace shared key id %u\n",
525 				    new_skey->keyid);
526 				return (EBUSY);
527 			}
528 			SCTPDBG(SCTP_DEBUG_AUTH1,
529 			    "replacing shared key id %u\n",
530 			    new_skey->keyid);
531 			LIST_INSERT_BEFORE(skey, new_skey, next);
532 			LIST_REMOVE(skey, next);
533 			sctp_free_sharedkey(skey);
534 			return (0);
535 		}
536 		if (LIST_NEXT(skey, next) == NULL) {
537 			/* belongs at the end of the list */
538 			LIST_INSERT_AFTER(skey, new_skey, next);
539 			return (0);
540 		}
541 	}
542 	/* shouldn't reach here */
543 	return (EINVAL);
544 }
545 
546 void
547 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
548 {
549 	sctp_sharedkey_t *skey;
550 
551 	/* find the shared key */
552 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
553 
554 	/* bump the ref count */
555 	if (skey) {
556 		atomic_add_int(&skey->refcount, 1);
557 		SCTPDBG(SCTP_DEBUG_AUTH2,
558 		    "%s: stcb %p key %u refcount acquire to %d\n",
559 		    __func__, (void *)stcb, key_id, skey->refcount);
560 	}
561 }
562 
563 void
564 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked)
565 {
566 	sctp_sharedkey_t *skey;
567 
568 	/* find the shared key */
569 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
570 
571 	/* decrement the ref count */
572 	if (skey) {
573 		SCTPDBG(SCTP_DEBUG_AUTH2,
574 		    "%s: stcb %p key %u refcount release to %d\n",
575 		    __func__, (void *)stcb, key_id, skey->refcount);
576 
577 		/* see if a notification should be generated */
578 		if ((skey->refcount <= 2) && (skey->deactivated)) {
579 			/* notify ULP that key is no longer used */
580 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
581 			    key_id, 0, so_locked);
582 			SCTPDBG(SCTP_DEBUG_AUTH2,
583 			    "%s: stcb %p key %u no longer used, %d\n",
584 			    __func__, (void *)stcb, key_id, skey->refcount);
585 		}
586 		sctp_free_sharedkey(skey);
587 	}
588 }
589 
590 static sctp_sharedkey_t *
591 sctp_copy_sharedkey(const sctp_sharedkey_t *skey)
592 {
593 	sctp_sharedkey_t *new_skey;
594 
595 	if (skey == NULL)
596 		return (NULL);
597 	new_skey = sctp_alloc_sharedkey();
598 	if (new_skey == NULL)
599 		return (NULL);
600 	if (skey->key != NULL)
601 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
602 	else
603 		new_skey->key = NULL;
604 	new_skey->keyid = skey->keyid;
605 	return (new_skey);
606 }
607 
608 int
609 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
610 {
611 	sctp_sharedkey_t *skey, *new_skey;
612 	int count = 0;
613 
614 	if ((src == NULL) || (dest == NULL))
615 		return (0);
616 	LIST_FOREACH(skey, src, next) {
617 		new_skey = sctp_copy_sharedkey(skey);
618 		if (new_skey != NULL) {
619 			if (sctp_insert_sharedkey(dest, new_skey)) {
620 				sctp_free_sharedkey(new_skey);
621 			} else {
622 				count++;
623 			}
624 		}
625 	}
626 	return (count);
627 }
628 
629 sctp_hmaclist_t *
630 sctp_alloc_hmaclist(uint16_t num_hmacs)
631 {
632 	sctp_hmaclist_t *new_list;
633 	int alloc_size;
634 
635 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
636 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
637 	    SCTP_M_AUTH_HL);
638 	if (new_list == NULL) {
639 		/* out of memory */
640 		return (NULL);
641 	}
642 	new_list->max_algo = num_hmacs;
643 	new_list->num_algo = 0;
644 	return (new_list);
645 }
646 
647 void
648 sctp_free_hmaclist(sctp_hmaclist_t *list)
649 {
650 	if (list != NULL) {
651 		SCTP_FREE(list, SCTP_M_AUTH_HL);
652 	}
653 }
654 
655 int
656 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id)
657 {
658 	int i;
659 
660 	if (list == NULL)
661 		return (-1);
662 	if (list->num_algo == list->max_algo) {
663 		SCTPDBG(SCTP_DEBUG_AUTH1,
664 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
665 		return (-1);
666 	}
667 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
668 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
669 		return (-1);
670 	}
671 	/* Now is it already in the list */
672 	for (i = 0; i < list->num_algo; i++) {
673 		if (list->hmac[i] == hmac_id) {
674 			/* already in list */
675 			return (-1);
676 		}
677 	}
678 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
679 	list->hmac[list->num_algo++] = hmac_id;
680 	return (0);
681 }
682 
683 sctp_hmaclist_t *
684 sctp_copy_hmaclist(sctp_hmaclist_t *list)
685 {
686 	sctp_hmaclist_t *new_list;
687 	int i;
688 
689 	if (list == NULL)
690 		return (NULL);
691 	/* get a new list */
692 	new_list = sctp_alloc_hmaclist(list->max_algo);
693 	if (new_list == NULL)
694 		return (NULL);
695 	/* copy it */
696 	new_list->max_algo = list->max_algo;
697 	new_list->num_algo = list->num_algo;
698 	for (i = 0; i < list->num_algo; i++)
699 		new_list->hmac[i] = list->hmac[i];
700 	return (new_list);
701 }
702 
703 sctp_hmaclist_t *
704 sctp_default_supported_hmaclist(void)
705 {
706 	sctp_hmaclist_t *new_list;
707 
708 	new_list = sctp_alloc_hmaclist(2);
709 	if (new_list == NULL)
710 		return (NULL);
711 	/* We prefer SHA256, so list it first */
712 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
713 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
714 	return (new_list);
715 }
716 
717 /*-
718  * HMAC algos are listed in priority/preference order
719  * find the best HMAC id to use for the peer based on local support
720  */
721 uint16_t
722 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local)
723 {
724 	int i, j;
725 
726 	if ((local == NULL) || (peer == NULL))
727 		return (SCTP_AUTH_HMAC_ID_RSVD);
728 
729 	for (i = 0; i < peer->num_algo; i++) {
730 		for (j = 0; j < local->num_algo; j++) {
731 			if (peer->hmac[i] == local->hmac[j]) {
732 				/* found the "best" one */
733 				SCTPDBG(SCTP_DEBUG_AUTH1,
734 				    "SCTP: negotiated peer HMAC id %u\n",
735 				    peer->hmac[i]);
736 				return (peer->hmac[i]);
737 			}
738 		}
739 	}
740 	/* didn't find one! */
741 	return (SCTP_AUTH_HMAC_ID_RSVD);
742 }
743 
744 /*-
745  * serialize the HMAC algo list and return space used
746  * caller must guarantee ptr has appropriate space
747  */
748 int
749 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr)
750 {
751 	int i;
752 	uint16_t hmac_id;
753 
754 	if (list == NULL)
755 		return (0);
756 
757 	for (i = 0; i < list->num_algo; i++) {
758 		hmac_id = htons(list->hmac[i]);
759 		memcpy(ptr, &hmac_id, sizeof(hmac_id));
760 		ptr += sizeof(hmac_id);
761 	}
762 	return (list->num_algo * sizeof(hmac_id));
763 }
764 
765 int
766 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
767 {
768 	uint32_t i;
769 
770 	for (i = 0; i < num_hmacs; i++) {
771 		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
772 			return (0);
773 		}
774 	}
775 	return (-1);
776 }
777 
778 sctp_authinfo_t *
779 sctp_alloc_authinfo(void)
780 {
781 	sctp_authinfo_t *new_authinfo;
782 
783 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
784 	    SCTP_M_AUTH_IF);
785 
786 	if (new_authinfo == NULL) {
787 		/* out of memory */
788 		return (NULL);
789 	}
790 	memset(new_authinfo, 0, sizeof(*new_authinfo));
791 	return (new_authinfo);
792 }
793 
794 void
795 sctp_free_authinfo(sctp_authinfo_t *authinfo)
796 {
797 	if (authinfo == NULL)
798 		return;
799 
800 	if (authinfo->random != NULL)
801 		sctp_free_key(authinfo->random);
802 	if (authinfo->peer_random != NULL)
803 		sctp_free_key(authinfo->peer_random);
804 	if (authinfo->assoc_key != NULL)
805 		sctp_free_key(authinfo->assoc_key);
806 	if (authinfo->recv_key != NULL)
807 		sctp_free_key(authinfo->recv_key);
808 
809 	/* We are NOT dynamically allocating authinfo's right now... */
810 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
811 }
812 
813 uint32_t
814 sctp_get_auth_chunk_len(uint16_t hmac_algo)
815 {
816 	int size;
817 
818 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
819 	return (SCTP_SIZE32(size));
820 }
821 
822 uint32_t
823 sctp_get_hmac_digest_len(uint16_t hmac_algo)
824 {
825 	switch (hmac_algo) {
826 	case SCTP_AUTH_HMAC_ID_SHA1:
827 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
828 	case SCTP_AUTH_HMAC_ID_SHA256:
829 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
830 	default:
831 		/* unknown HMAC algorithm: can't do anything */
832 		return (0);
833 	}			/* end switch */
834 }
835 
836 static inline int
837 sctp_get_hmac_block_len(uint16_t hmac_algo)
838 {
839 	switch (hmac_algo) {
840 	case SCTP_AUTH_HMAC_ID_SHA1:
841 		return (64);
842 	case SCTP_AUTH_HMAC_ID_SHA256:
843 		return (64);
844 	case SCTP_AUTH_HMAC_ID_RSVD:
845 	default:
846 		/* unknown HMAC algorithm: can't do anything */
847 		return (0);
848 	}			/* end switch */
849 }
850 
851 static void
852 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx)
853 {
854 	switch (hmac_algo) {
855 	case SCTP_AUTH_HMAC_ID_SHA1:
856 		SCTP_SHA1_INIT(&ctx->sha1);
857 		break;
858 	case SCTP_AUTH_HMAC_ID_SHA256:
859 		SCTP_SHA256_INIT(&ctx->sha256);
860 		break;
861 	case SCTP_AUTH_HMAC_ID_RSVD:
862 	default:
863 		/* unknown HMAC algorithm: can't do anything */
864 		return;
865 	}			/* end switch */
866 }
867 
868 static void
869 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx,
870     uint8_t *text, uint32_t textlen)
871 {
872 	switch (hmac_algo) {
873 	case SCTP_AUTH_HMAC_ID_SHA1:
874 		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
875 		break;
876 	case SCTP_AUTH_HMAC_ID_SHA256:
877 		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
878 		break;
879 	case SCTP_AUTH_HMAC_ID_RSVD:
880 	default:
881 		/* unknown HMAC algorithm: can't do anything */
882 		return;
883 	}			/* end switch */
884 }
885 
886 static void
887 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx,
888     uint8_t *digest)
889 {
890 	switch (hmac_algo) {
891 	case SCTP_AUTH_HMAC_ID_SHA1:
892 		SCTP_SHA1_FINAL(digest, &ctx->sha1);
893 		break;
894 	case SCTP_AUTH_HMAC_ID_SHA256:
895 		SCTP_SHA256_FINAL(digest, &ctx->sha256);
896 		break;
897 	case SCTP_AUTH_HMAC_ID_RSVD:
898 	default:
899 		/* unknown HMAC algorithm: can't do anything */
900 		return;
901 	}			/* end switch */
902 }
903 
904 /*-
905  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
906  *
907  * Compute the HMAC digest using the desired hash key, text, and HMAC
908  * algorithm.  Resulting digest is placed in 'digest' and digest length
909  * is returned, if the HMAC was performed.
910  *
911  * WARNING: it is up to the caller to supply sufficient space to hold the
912  * resultant digest.
913  */
914 uint32_t
915 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
916     uint8_t *text, uint32_t textlen, uint8_t *digest)
917 {
918 	uint32_t digestlen;
919 	uint32_t blocklen;
920 	sctp_hash_context_t ctx;
921 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
922 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
923 	uint32_t i;
924 
925 	/* sanity check the material and length */
926 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
927 	    (textlen == 0) || (digest == NULL)) {
928 		/* can't do HMAC with empty key or text or digest store */
929 		return (0);
930 	}
931 	/* validate the hmac algo and get the digest length */
932 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
933 	if (digestlen == 0)
934 		return (0);
935 
936 	/* hash the key if it is longer than the hash block size */
937 	blocklen = sctp_get_hmac_block_len(hmac_algo);
938 	if (keylen > blocklen) {
939 		sctp_hmac_init(hmac_algo, &ctx);
940 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
941 		sctp_hmac_final(hmac_algo, &ctx, temp);
942 		/* set the hashed key as the key */
943 		keylen = digestlen;
944 		key = temp;
945 	}
946 	/* initialize the inner/outer pads with the key and "append" zeroes */
947 	memset(ipad, 0, blocklen);
948 	memset(opad, 0, blocklen);
949 	memcpy(ipad, key, keylen);
950 	memcpy(opad, key, keylen);
951 
952 	/* XOR the key with ipad and opad values */
953 	for (i = 0; i < blocklen; i++) {
954 		ipad[i] ^= 0x36;
955 		opad[i] ^= 0x5c;
956 	}
957 
958 	/* perform inner hash */
959 	sctp_hmac_init(hmac_algo, &ctx);
960 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
961 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
962 	sctp_hmac_final(hmac_algo, &ctx, temp);
963 
964 	/* perform outer hash */
965 	sctp_hmac_init(hmac_algo, &ctx);
966 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
967 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
968 	sctp_hmac_final(hmac_algo, &ctx, digest);
969 
970 	return (digestlen);
971 }
972 
973 /* mbuf version */
974 uint32_t
975 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
976     struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer)
977 {
978 	uint32_t digestlen;
979 	uint32_t blocklen;
980 	sctp_hash_context_t ctx;
981 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
982 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
983 	uint32_t i;
984 	struct mbuf *m_tmp;
985 
986 	/* sanity check the material and length */
987 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
988 		/* can't do HMAC with empty key or text or digest store */
989 		return (0);
990 	}
991 	/* validate the hmac algo and get the digest length */
992 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
993 	if (digestlen == 0)
994 		return (0);
995 
996 	/* hash the key if it is longer than the hash block size */
997 	blocklen = sctp_get_hmac_block_len(hmac_algo);
998 	if (keylen > blocklen) {
999 		sctp_hmac_init(hmac_algo, &ctx);
1000 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1001 		sctp_hmac_final(hmac_algo, &ctx, temp);
1002 		/* set the hashed key as the key */
1003 		keylen = digestlen;
1004 		key = temp;
1005 	}
1006 	/* initialize the inner/outer pads with the key and "append" zeroes */
1007 	memset(ipad, 0, blocklen);
1008 	memset(opad, 0, blocklen);
1009 	memcpy(ipad, key, keylen);
1010 	memcpy(opad, key, keylen);
1011 
1012 	/* XOR the key with ipad and opad values */
1013 	for (i = 0; i < blocklen; i++) {
1014 		ipad[i] ^= 0x36;
1015 		opad[i] ^= 0x5c;
1016 	}
1017 
1018 	/* perform inner hash */
1019 	sctp_hmac_init(hmac_algo, &ctx);
1020 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1021 	/* find the correct starting mbuf and offset (get start of text) */
1022 	m_tmp = m;
1023 	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1024 		m_offset -= SCTP_BUF_LEN(m_tmp);
1025 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1026 	}
1027 	/* now use the rest of the mbuf chain for the text */
1028 	while (m_tmp != NULL) {
1029 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1030 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1031 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1032 		} else {
1033 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1034 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1035 		}
1036 
1037 		/* clear the offset since it's only for the first mbuf */
1038 		m_offset = 0;
1039 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1040 	}
1041 	sctp_hmac_final(hmac_algo, &ctx, temp);
1042 
1043 	/* perform outer hash */
1044 	sctp_hmac_init(hmac_algo, &ctx);
1045 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1046 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1047 	sctp_hmac_final(hmac_algo, &ctx, digest);
1048 
1049 	return (digestlen);
1050 }
1051 
1052 /*
1053  * computes the requested HMAC using a key struct (which may be modified if
1054  * the keylen exceeds the HMAC block len).
1055  */
1056 uint32_t
1057 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text,
1058     uint32_t textlen, uint8_t *digest)
1059 {
1060 	uint32_t digestlen;
1061 	uint32_t blocklen;
1062 	sctp_hash_context_t ctx;
1063 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1064 
1065 	/* sanity check */
1066 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1067 	    (digest == NULL)) {
1068 		/* can't do HMAC with empty key or text or digest store */
1069 		return (0);
1070 	}
1071 	/* validate the hmac algo and get the digest length */
1072 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1073 	if (digestlen == 0)
1074 		return (0);
1075 
1076 	/* hash the key if it is longer than the hash block size */
1077 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1078 	if (key->keylen > blocklen) {
1079 		sctp_hmac_init(hmac_algo, &ctx);
1080 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1081 		sctp_hmac_final(hmac_algo, &ctx, temp);
1082 		/* save the hashed key as the new key */
1083 		key->keylen = digestlen;
1084 		memcpy(key->key, temp, key->keylen);
1085 	}
1086 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1087 	    digest));
1088 }
1089 
1090 /* mbuf version */
1091 uint32_t
1092 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m,
1093     uint32_t m_offset, uint8_t *digest)
1094 {
1095 	uint32_t digestlen;
1096 	uint32_t blocklen;
1097 	sctp_hash_context_t ctx;
1098 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1099 
1100 	/* sanity check */
1101 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1102 		/* can't do HMAC with empty key or text or digest store */
1103 		return (0);
1104 	}
1105 	/* validate the hmac algo and get the digest length */
1106 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1107 	if (digestlen == 0)
1108 		return (0);
1109 
1110 	/* hash the key if it is longer than the hash block size */
1111 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1112 	if (key->keylen > blocklen) {
1113 		sctp_hmac_init(hmac_algo, &ctx);
1114 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1115 		sctp_hmac_final(hmac_algo, &ctx, temp);
1116 		/* save the hashed key as the new key */
1117 		key->keylen = digestlen;
1118 		memcpy(key->key, temp, key->keylen);
1119 	}
1120 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1121 }
1122 
1123 int
1124 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id)
1125 {
1126 	int i;
1127 
1128 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1129 		return (0);
1130 
1131 	for (i = 0; i < list->num_algo; i++)
1132 		if (list->hmac[i] == id)
1133 			return (1);
1134 
1135 	/* not in the list */
1136 	return (0);
1137 }
1138 
1139 /*-
1140  * clear any cached key(s) if they match the given key id on an association.
1141  * the cached key(s) will be recomputed and re-cached at next use.
1142  * ASSUMES TCB_LOCK is already held
1143  */
1144 void
1145 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1146 {
1147 	if (stcb == NULL)
1148 		return;
1149 
1150 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1151 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1152 		stcb->asoc.authinfo.assoc_key = NULL;
1153 	}
1154 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1155 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1156 		stcb->asoc.authinfo.recv_key = NULL;
1157 	}
1158 }
1159 
1160 /*-
1161  * clear any cached key(s) if they match the given key id for all assocs on
1162  * an endpoint.
1163  * ASSUMES INP_WLOCK is already held
1164  */
1165 void
1166 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1167 {
1168 	struct sctp_tcb *stcb;
1169 
1170 	if (inp == NULL)
1171 		return;
1172 
1173 	/* clear the cached keys on all assocs on this instance */
1174 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1175 		SCTP_TCB_LOCK(stcb);
1176 		sctp_clear_cachedkeys(stcb, keyid);
1177 		SCTP_TCB_UNLOCK(stcb);
1178 	}
1179 }
1180 
1181 /*-
1182  * delete a shared key from an association
1183  * ASSUMES TCB_LOCK is already held
1184  */
1185 int
1186 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1187 {
1188 	sctp_sharedkey_t *skey;
1189 
1190 	if (stcb == NULL)
1191 		return (-1);
1192 
1193 	/* is the keyid the assoc active sending key */
1194 	if (keyid == stcb->asoc.authinfo.active_keyid)
1195 		return (-1);
1196 
1197 	/* does the key exist? */
1198 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1199 	if (skey == NULL)
1200 		return (-1);
1201 
1202 	/* are there other refcount holders on the key? */
1203 	if (skey->refcount > 1)
1204 		return (-1);
1205 
1206 	/* remove it */
1207 	LIST_REMOVE(skey, next);
1208 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1209 
1210 	/* clear any cached keys */
1211 	sctp_clear_cachedkeys(stcb, keyid);
1212 	return (0);
1213 }
1214 
1215 /*-
1216  * deletes a shared key from the endpoint
1217  * ASSUMES INP_WLOCK is already held
1218  */
1219 int
1220 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1221 {
1222 	sctp_sharedkey_t *skey;
1223 
1224 	if (inp == NULL)
1225 		return (-1);
1226 
1227 	/* is the keyid the active sending key on the endpoint */
1228 	if (keyid == inp->sctp_ep.default_keyid)
1229 		return (-1);
1230 
1231 	/* does the key exist? */
1232 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1233 	if (skey == NULL)
1234 		return (-1);
1235 
1236 	/* endpoint keys are not refcounted */
1237 
1238 	/* remove it */
1239 	LIST_REMOVE(skey, next);
1240 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1241 
1242 	/* clear any cached keys */
1243 	sctp_clear_cachedkeys_ep(inp, keyid);
1244 	return (0);
1245 }
1246 
1247 /*-
1248  * set the active key on an association
1249  * ASSUMES TCB_LOCK is already held
1250  */
1251 int
1252 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1253 {
1254 	sctp_sharedkey_t *skey = NULL;
1255 
1256 	/* find the key on the assoc */
1257 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1258 	if (skey == NULL) {
1259 		/* that key doesn't exist */
1260 		return (-1);
1261 	}
1262 	if ((skey->deactivated) && (skey->refcount > 1)) {
1263 		/* can't reactivate a deactivated key with other refcounts */
1264 		return (-1);
1265 	}
1266 
1267 	/* set the (new) active key */
1268 	stcb->asoc.authinfo.active_keyid = keyid;
1269 	/* reset the deactivated flag */
1270 	skey->deactivated = 0;
1271 
1272 	return (0);
1273 }
1274 
1275 /*-
1276  * set the active key on an endpoint
1277  * ASSUMES INP_WLOCK is already held
1278  */
1279 int
1280 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1281 {
1282 	sctp_sharedkey_t *skey;
1283 
1284 	/* find the key */
1285 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1286 	if (skey == NULL) {
1287 		/* that key doesn't exist */
1288 		return (-1);
1289 	}
1290 	inp->sctp_ep.default_keyid = keyid;
1291 	return (0);
1292 }
1293 
1294 /*-
1295  * deactivates a shared key from the association
1296  * ASSUMES INP_WLOCK is already held
1297  */
1298 int
1299 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1300 {
1301 	sctp_sharedkey_t *skey;
1302 
1303 	if (stcb == NULL)
1304 		return (-1);
1305 
1306 	/* is the keyid the assoc active sending key */
1307 	if (keyid == stcb->asoc.authinfo.active_keyid)
1308 		return (-1);
1309 
1310 	/* does the key exist? */
1311 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1312 	if (skey == NULL)
1313 		return (-1);
1314 
1315 	/* are there other refcount holders on the key? */
1316 	if (skey->refcount == 1) {
1317 		/* no other users, send a notification for this key */
1318 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1319 		    SCTP_SO_LOCKED);
1320 	}
1321 
1322 	/* mark the key as deactivated */
1323 	skey->deactivated = 1;
1324 
1325 	return (0);
1326 }
1327 
1328 /*-
1329  * deactivates a shared key from the endpoint
1330  * ASSUMES INP_WLOCK is already held
1331  */
1332 int
1333 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1334 {
1335 	sctp_sharedkey_t *skey;
1336 
1337 	if (inp == NULL)
1338 		return (-1);
1339 
1340 	/* is the keyid the active sending key on the endpoint */
1341 	if (keyid == inp->sctp_ep.default_keyid)
1342 		return (-1);
1343 
1344 	/* does the key exist? */
1345 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1346 	if (skey == NULL)
1347 		return (-1);
1348 
1349 	/* endpoint keys are not refcounted */
1350 
1351 	/* remove it */
1352 	LIST_REMOVE(skey, next);
1353 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1354 
1355 	return (0);
1356 }
1357 
1358 /*
1359  * get local authentication parameters from cookie (from INIT-ACK)
1360  */
1361 void
1362 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1363     uint32_t offset, uint32_t length)
1364 {
1365 	struct sctp_paramhdr *phdr, tmp_param;
1366 	uint16_t plen, ptype;
1367 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1368 	struct sctp_auth_random *p_random = NULL;
1369 	uint16_t random_len = 0;
1370 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1371 	struct sctp_auth_hmac_algo *hmacs = NULL;
1372 	uint16_t hmacs_len = 0;
1373 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1374 	struct sctp_auth_chunk_list *chunks = NULL;
1375 	uint16_t num_chunks = 0;
1376 	sctp_key_t *new_key;
1377 	uint32_t keylen;
1378 
1379 	/* convert to upper bound */
1380 	length += offset;
1381 
1382 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1383 	    sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param);
1384 	while (phdr != NULL) {
1385 		ptype = ntohs(phdr->param_type);
1386 		plen = ntohs(phdr->param_length);
1387 
1388 		if ((plen < sizeof(struct sctp_paramhdr)) ||
1389 		    (offset + plen > length))
1390 			break;
1391 
1392 		if (ptype == SCTP_RANDOM) {
1393 			if (plen > sizeof(random_store))
1394 				break;
1395 			phdr = sctp_get_next_param(m, offset,
1396 			    (struct sctp_paramhdr *)random_store, plen);
1397 			if (phdr == NULL)
1398 				return;
1399 			/* save the random and length for the key */
1400 			p_random = (struct sctp_auth_random *)phdr;
1401 			random_len = plen - sizeof(*p_random);
1402 		} else if (ptype == SCTP_HMAC_LIST) {
1403 			uint16_t num_hmacs;
1404 			uint16_t i;
1405 
1406 			if (plen > sizeof(hmacs_store))
1407 				break;
1408 			phdr = sctp_get_next_param(m, offset,
1409 			    (struct sctp_paramhdr *)hmacs_store, plen);
1410 			if (phdr == NULL)
1411 				return;
1412 			/* save the hmacs list and num for the key */
1413 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1414 			hmacs_len = plen - sizeof(*hmacs);
1415 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1416 			if (stcb->asoc.local_hmacs != NULL)
1417 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1418 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1419 			if (stcb->asoc.local_hmacs != NULL) {
1420 				for (i = 0; i < num_hmacs; i++) {
1421 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1422 					    ntohs(hmacs->hmac_ids[i]));
1423 				}
1424 			}
1425 		} else if (ptype == SCTP_CHUNK_LIST) {
1426 			int i;
1427 
1428 			if (plen > sizeof(chunks_store))
1429 				break;
1430 			phdr = sctp_get_next_param(m, offset,
1431 			    (struct sctp_paramhdr *)chunks_store, plen);
1432 			if (phdr == NULL)
1433 				return;
1434 			chunks = (struct sctp_auth_chunk_list *)phdr;
1435 			num_chunks = plen - sizeof(*chunks);
1436 			/* save chunks list and num for the key */
1437 			if (stcb->asoc.local_auth_chunks != NULL)
1438 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1439 			else
1440 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1441 			for (i = 0; i < num_chunks; i++) {
1442 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1443 				    stcb->asoc.local_auth_chunks);
1444 			}
1445 		}
1446 		/* get next parameter */
1447 		offset += SCTP_SIZE32(plen);
1448 		if (offset + sizeof(struct sctp_paramhdr) > length)
1449 			break;
1450 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1451 		    (uint8_t *)&tmp_param);
1452 	}
1453 	/* concatenate the full random key */
1454 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1455 	if (chunks != NULL) {
1456 		keylen += sizeof(*chunks) + num_chunks;
1457 	}
1458 	new_key = sctp_alloc_key(keylen);
1459 	if (new_key != NULL) {
1460 		/* copy in the RANDOM */
1461 		if (p_random != NULL) {
1462 			keylen = sizeof(*p_random) + random_len;
1463 			memcpy(new_key->key, p_random, keylen);
1464 		} else {
1465 			keylen = 0;
1466 		}
1467 		/* append in the AUTH chunks */
1468 		if (chunks != NULL) {
1469 			memcpy(new_key->key + keylen, chunks,
1470 			    sizeof(*chunks) + num_chunks);
1471 			keylen += sizeof(*chunks) + num_chunks;
1472 		}
1473 		/* append in the HMACs */
1474 		if (hmacs != NULL) {
1475 			memcpy(new_key->key + keylen, hmacs,
1476 			    sizeof(*hmacs) + hmacs_len);
1477 		}
1478 	}
1479 	if (stcb->asoc.authinfo.random != NULL)
1480 		sctp_free_key(stcb->asoc.authinfo.random);
1481 	stcb->asoc.authinfo.random = new_key;
1482 	stcb->asoc.authinfo.random_len = random_len;
1483 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1484 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1485 
1486 	/* negotiate what HMAC to use for the peer */
1487 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1488 	    stcb->asoc.local_hmacs);
1489 
1490 	/* copy defaults from the endpoint */
1491 	/* FIX ME: put in cookie? */
1492 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1493 	/* copy out the shared key list (by reference) from the endpoint */
1494 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1495 	    &stcb->asoc.shared_keys);
1496 }
1497 
1498 /*
1499  * compute and fill in the HMAC digest for a packet
1500  */
1501 void
1502 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1503     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1504 {
1505 	uint32_t digestlen;
1506 	sctp_sharedkey_t *skey;
1507 	sctp_key_t *key;
1508 
1509 	if ((stcb == NULL) || (auth == NULL))
1510 		return;
1511 
1512 	/* zero the digest + chunk padding */
1513 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1514 	memset(auth->hmac, 0, SCTP_SIZE32(digestlen));
1515 
1516 	/* is the desired key cached? */
1517 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1518 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1519 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1520 			/* free the old cached key */
1521 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1522 		}
1523 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1524 		/* the only way skey is NULL is if null key id 0 is used */
1525 		if (skey != NULL)
1526 			key = skey->key;
1527 		else
1528 			key = NULL;
1529 		/* compute a new assoc key and cache it */
1530 		stcb->asoc.authinfo.assoc_key =
1531 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1532 		    stcb->asoc.authinfo.peer_random, key);
1533 		stcb->asoc.authinfo.assoc_keyid = keyid;
1534 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1535 		    stcb->asoc.authinfo.assoc_keyid);
1536 #ifdef SCTP_DEBUG
1537 		if (SCTP_AUTH_DEBUG)
1538 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1539 			    "Assoc Key");
1540 #endif
1541 	}
1542 
1543 	/* set in the active key id */
1544 	auth->shared_key_id = htons(keyid);
1545 
1546 	/* compute and fill in the digest */
1547 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1548 	    m, auth_offset, auth->hmac);
1549 }
1550 
1551 static void
1552 sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1553 {
1554 	struct mbuf *m_tmp;
1555 	uint8_t *data;
1556 
1557 	/* sanity check */
1558 	if (m == NULL)
1559 		return;
1560 
1561 	/* find the correct starting mbuf and offset (get start position) */
1562 	m_tmp = m;
1563 	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1564 		m_offset -= SCTP_BUF_LEN(m_tmp);
1565 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1566 	}
1567 	/* now use the rest of the mbuf chain */
1568 	while ((m_tmp != NULL) && (size > 0)) {
1569 		data = mtod(m_tmp, uint8_t *)+m_offset;
1570 		if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) {
1571 			memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset);
1572 			size -= SCTP_BUF_LEN(m_tmp) - m_offset;
1573 		} else {
1574 			memset(data, 0, size);
1575 			size = 0;
1576 		}
1577 		/* clear the offset since it's only for the first mbuf */
1578 		m_offset = 0;
1579 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1580 	}
1581 }
1582 
1583 /*-
1584  * process the incoming Authentication chunk
1585  * return codes:
1586  *   -1 on any authentication error
1587  *    0 on authentication verification
1588  */
1589 int
1590 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1591     struct mbuf *m, uint32_t offset)
1592 {
1593 	uint16_t chunklen;
1594 	uint16_t shared_key_id;
1595 	uint16_t hmac_id;
1596 	sctp_sharedkey_t *skey;
1597 	uint32_t digestlen;
1598 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1599 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1600 
1601 	/* auth is checked for NULL by caller */
1602 	chunklen = ntohs(auth->ch.chunk_length);
1603 	if (chunklen < sizeof(*auth)) {
1604 		SCTP_STAT_INCR(sctps_recvauthfailed);
1605 		return (-1);
1606 	}
1607 	SCTP_STAT_INCR(sctps_recvauth);
1608 
1609 	/* get the auth params */
1610 	shared_key_id = ntohs(auth->shared_key_id);
1611 	hmac_id = ntohs(auth->hmac_id);
1612 	SCTPDBG(SCTP_DEBUG_AUTH1,
1613 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1614 	    shared_key_id, hmac_id);
1615 
1616 	/* is the indicated HMAC supported? */
1617 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1618 		struct mbuf *op_err;
1619 		struct sctp_error_auth_invalid_hmac *cause;
1620 
1621 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1622 		SCTPDBG(SCTP_DEBUG_AUTH1,
1623 		    "SCTP Auth: unsupported HMAC id %u\n",
1624 		    hmac_id);
1625 		/*
1626 		 * report this in an Error Chunk: Unsupported HMAC
1627 		 * Identifier
1628 		 */
1629 		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1630 		    0, M_NOWAIT, 1, MT_HEADER);
1631 		if (op_err != NULL) {
1632 			/* pre-reserve some space */
1633 			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1634 			/* fill in the error */
1635 			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1636 			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1637 			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1638 			cause->hmac_id = ntohs(hmac_id);
1639 			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1640 			/* queue it */
1641 			sctp_queue_op_err(stcb, op_err);
1642 		}
1643 		return (-1);
1644 	}
1645 	/* get the indicated shared key, if available */
1646 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1647 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1648 		/* find the shared key on the assoc first */
1649 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1650 		    shared_key_id);
1651 		/* if the shared key isn't found, discard the chunk */
1652 		if (skey == NULL) {
1653 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1654 			SCTPDBG(SCTP_DEBUG_AUTH1,
1655 			    "SCTP Auth: unknown key id %u\n",
1656 			    shared_key_id);
1657 			return (-1);
1658 		}
1659 		/* generate a notification if this is a new key id */
1660 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1661 			/*
1662 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1663 			 * shared_key_id, (void
1664 			 * *)stcb->asoc.authinfo.recv_keyid);
1665 			 */
1666 			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1667 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1668 			    SCTP_SO_NOT_LOCKED);
1669 		/* compute a new recv assoc key and cache it */
1670 		if (stcb->asoc.authinfo.recv_key != NULL)
1671 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1672 		stcb->asoc.authinfo.recv_key =
1673 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1674 		    stcb->asoc.authinfo.peer_random, skey->key);
1675 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1676 #ifdef SCTP_DEBUG
1677 		if (SCTP_AUTH_DEBUG)
1678 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1679 #endif
1680 	}
1681 	/* validate the digest length */
1682 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1683 	if (chunklen < (sizeof(*auth) + digestlen)) {
1684 		/* invalid digest length */
1685 		SCTP_STAT_INCR(sctps_recvauthfailed);
1686 		SCTPDBG(SCTP_DEBUG_AUTH1,
1687 		    "SCTP Auth: chunk too short for HMAC\n");
1688 		return (-1);
1689 	}
1690 	/* save a copy of the digest, zero the pseudo header, and validate */
1691 	memcpy(digest, auth->hmac, digestlen);
1692 	sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1693 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1694 	    m, offset, computed_digest);
1695 
1696 	/* compare the computed digest with the one in the AUTH chunk */
1697 	if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) {
1698 		SCTP_STAT_INCR(sctps_recvauthfailed);
1699 		SCTPDBG(SCTP_DEBUG_AUTH1,
1700 		    "SCTP Auth: HMAC digest check failed\n");
1701 		return (-1);
1702 	}
1703 	return (0);
1704 }
1705 
1706 /*
1707  * Generate NOTIFICATION
1708  */
1709 void
1710 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1711     uint16_t keyid, uint16_t alt_keyid, int so_locked)
1712 {
1713 	struct mbuf *m_notify;
1714 	struct sctp_authkey_event *auth;
1715 	struct sctp_queued_to_read *control;
1716 
1717 	if ((stcb == NULL) ||
1718 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1719 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1720 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1721 	    ) {
1722 		/* If the socket is gone we are out of here */
1723 		return;
1724 	}
1725 
1726 	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1727 		/* event not enabled */
1728 		return;
1729 
1730 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1731 	    0, M_NOWAIT, 1, MT_HEADER);
1732 	if (m_notify == NULL)
1733 		/* no space left */
1734 		return;
1735 
1736 	SCTP_BUF_LEN(m_notify) = 0;
1737 	auth = mtod(m_notify, struct sctp_authkey_event *);
1738 	memset(auth, 0, sizeof(struct sctp_authkey_event));
1739 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1740 	auth->auth_flags = 0;
1741 	auth->auth_length = sizeof(*auth);
1742 	auth->auth_keynumber = keyid;
1743 	auth->auth_altkeynumber = alt_keyid;
1744 	auth->auth_indication = indication;
1745 	auth->auth_assoc_id = sctp_get_associd(stcb);
1746 
1747 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1748 	SCTP_BUF_NEXT(m_notify) = NULL;
1749 
1750 	/* append to socket */
1751 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1752 	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1753 	if (control == NULL) {
1754 		/* no memory */
1755 		sctp_m_freem(m_notify);
1756 		return;
1757 	}
1758 	control->length = SCTP_BUF_LEN(m_notify);
1759 	control->spec_flags = M_NOTIFICATION;
1760 	/* not that we need this */
1761 	control->tail_mbuf = m_notify;
1762 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1763 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1764 }
1765 
1766 /*-
1767  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1768  * Note: currently only used for INIT as INIT-ACK is handled inline
1769  * with sctp_load_addresses_from_init()
1770  */
1771 int
1772 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1773 {
1774 	struct sctp_paramhdr *phdr, param_buf;
1775 	uint16_t ptype, plen;
1776 	int peer_supports_asconf = 0;
1777 	int peer_supports_auth = 0;
1778 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1779 	uint8_t saw_asconf = 0;
1780 	uint8_t saw_asconf_ack = 0;
1781 
1782 	/* go through each of the params. */
1783 	phdr = sctp_get_next_param(m, offset, &param_buf, sizeof(param_buf));
1784 	while (phdr) {
1785 		ptype = ntohs(phdr->param_type);
1786 		plen = ntohs(phdr->param_length);
1787 
1788 		if (offset + plen > limit) {
1789 			break;
1790 		}
1791 		if (plen < sizeof(struct sctp_paramhdr)) {
1792 			break;
1793 		}
1794 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1795 			/* A supported extension chunk */
1796 			struct sctp_supported_chunk_types_param *pr_supported;
1797 			uint8_t local_store[SCTP_SMALL_CHUNK_STORE];
1798 			int num_ent, i;
1799 
1800 			if (plen > sizeof(local_store)) {
1801 				break;
1802 			}
1803 			phdr = sctp_get_next_param(m, offset,
1804 			    (struct sctp_paramhdr *)&local_store,
1805 			    plen);
1806 			if (phdr == NULL) {
1807 				return (-1);
1808 			}
1809 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1810 			num_ent = plen - sizeof(struct sctp_paramhdr);
1811 			for (i = 0; i < num_ent; i++) {
1812 				switch (pr_supported->chunk_types[i]) {
1813 				case SCTP_ASCONF:
1814 				case SCTP_ASCONF_ACK:
1815 					peer_supports_asconf = 1;
1816 					break;
1817 				default:
1818 					/* one we don't care about */
1819 					break;
1820 				}
1821 			}
1822 		} else if (ptype == SCTP_RANDOM) {
1823 			/* enforce the random length */
1824 			if (plen != (sizeof(struct sctp_auth_random) +
1825 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1826 				SCTPDBG(SCTP_DEBUG_AUTH1,
1827 				    "SCTP: invalid RANDOM len\n");
1828 				return (-1);
1829 			}
1830 			got_random = 1;
1831 		} else if (ptype == SCTP_HMAC_LIST) {
1832 			struct sctp_auth_hmac_algo *hmacs;
1833 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1834 			int num_hmacs;
1835 
1836 			if (plen > sizeof(store)) {
1837 				break;
1838 			}
1839 			phdr = sctp_get_next_param(m, offset,
1840 			    (struct sctp_paramhdr *)store,
1841 			    plen);
1842 			if (phdr == NULL) {
1843 				return (-1);
1844 			}
1845 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1846 			num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]);
1847 			/* validate the hmac list */
1848 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1849 				SCTPDBG(SCTP_DEBUG_AUTH1,
1850 				    "SCTP: invalid HMAC param\n");
1851 				return (-1);
1852 			}
1853 			got_hmacs = 1;
1854 		} else if (ptype == SCTP_CHUNK_LIST) {
1855 			struct sctp_auth_chunk_list *chunks;
1856 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1857 			int i, num_chunks;
1858 
1859 			if (plen > sizeof(chunks_store)) {
1860 				break;
1861 			}
1862 			phdr = sctp_get_next_param(m, offset,
1863 			    (struct sctp_paramhdr *)chunks_store,
1864 			    plen);
1865 			if (phdr == NULL) {
1866 				return (-1);
1867 			}
1868 			/*-
1869 			 * Flip through the list and mark that the
1870 			 * peer supports asconf/asconf_ack.
1871 			 */
1872 			chunks = (struct sctp_auth_chunk_list *)phdr;
1873 			num_chunks = plen - sizeof(*chunks);
1874 			for (i = 0; i < num_chunks; i++) {
1875 				/* record asconf/asconf-ack if listed */
1876 				if (chunks->chunk_types[i] == SCTP_ASCONF)
1877 					saw_asconf = 1;
1878 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1879 					saw_asconf_ack = 1;
1880 			}
1881 			if (num_chunks)
1882 				got_chklist = 1;
1883 		}
1884 
1885 		offset += SCTP_SIZE32(plen);
1886 		if (offset >= limit) {
1887 			break;
1888 		}
1889 		phdr = sctp_get_next_param(m, offset, &param_buf,
1890 		    sizeof(param_buf));
1891 	}
1892 	/* validate authentication required parameters */
1893 	if (got_random && got_hmacs) {
1894 		peer_supports_auth = 1;
1895 	} else {
1896 		peer_supports_auth = 0;
1897 	}
1898 	if (!peer_supports_auth && got_chklist) {
1899 		SCTPDBG(SCTP_DEBUG_AUTH1,
1900 		    "SCTP: peer sent chunk list w/o AUTH\n");
1901 		return (-1);
1902 	}
1903 	if (peer_supports_asconf && !peer_supports_auth) {
1904 		SCTPDBG(SCTP_DEBUG_AUTH1,
1905 		    "SCTP: peer supports ASCONF but not AUTH\n");
1906 		return (-1);
1907 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1908 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1909 		return (-2);
1910 	}
1911 	return (0);
1912 }
1913 
1914 void
1915 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1916 {
1917 	uint16_t chunks_len = 0;
1918 	uint16_t hmacs_len = 0;
1919 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1920 	sctp_key_t *new_key;
1921 	uint16_t keylen;
1922 
1923 	/* initialize hmac list from endpoint */
1924 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1925 	if (stcb->asoc.local_hmacs != NULL) {
1926 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1927 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1928 	}
1929 	/* initialize auth chunks list from endpoint */
1930 	stcb->asoc.local_auth_chunks =
1931 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1932 	if (stcb->asoc.local_auth_chunks != NULL) {
1933 		int i;
1934 
1935 		for (i = 0; i < 256; i++) {
1936 			if (stcb->asoc.local_auth_chunks->chunks[i])
1937 				chunks_len++;
1938 		}
1939 	}
1940 	/* copy defaults from the endpoint */
1941 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1942 
1943 	/* copy out the shared key list (by reference) from the endpoint */
1944 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1945 	    &stcb->asoc.shared_keys);
1946 
1947 	/* now set the concatenated key (random + chunks + hmacs) */
1948 	/* key includes parameter headers */
1949 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1950 	    hmacs_len;
1951 	new_key = sctp_alloc_key(keylen);
1952 	if (new_key != NULL) {
1953 		struct sctp_paramhdr *ph;
1954 		int plen;
1955 
1956 		/* generate and copy in the RANDOM */
1957 		ph = (struct sctp_paramhdr *)new_key->key;
1958 		ph->param_type = htons(SCTP_RANDOM);
1959 		plen = sizeof(*ph) + random_len;
1960 		ph->param_length = htons(plen);
1961 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1962 		keylen = plen;
1963 
1964 		/* append in the AUTH chunks */
1965 		/* NOTE: currently we always have chunks to list */
1966 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1967 		ph->param_type = htons(SCTP_CHUNK_LIST);
1968 		plen = sizeof(*ph) + chunks_len;
1969 		ph->param_length = htons(plen);
1970 		keylen += sizeof(*ph);
1971 		if (stcb->asoc.local_auth_chunks) {
1972 			int i;
1973 
1974 			for (i = 0; i < 256; i++) {
1975 				if (stcb->asoc.local_auth_chunks->chunks[i])
1976 					new_key->key[keylen++] = i;
1977 			}
1978 		}
1979 
1980 		/* append in the HMACs */
1981 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1982 		ph->param_type = htons(SCTP_HMAC_LIST);
1983 		plen = sizeof(*ph) + hmacs_len;
1984 		ph->param_length = htons(plen);
1985 		keylen += sizeof(*ph);
1986 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
1987 		    new_key->key + keylen);
1988 	}
1989 	if (stcb->asoc.authinfo.random != NULL)
1990 		sctp_free_key(stcb->asoc.authinfo.random);
1991 	stcb->asoc.authinfo.random = new_key;
1992 	stcb->asoc.authinfo.random_len = random_len;
1993 }
1994