xref: /freebsd/sys/netinet/sctp_auth.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
5  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * a) Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  *
14  * b) Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * c) Neither the name of Cisco Systems, Inc. nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <netinet/sctp_os.h>
39 #include <netinet/sctp.h>
40 #include <netinet/sctp_header.h>
41 #include <netinet/sctp_pcb.h>
42 #include <netinet/sctp_var.h>
43 #include <netinet/sctp_sysctl.h>
44 #include <netinet/sctputil.h>
45 #include <netinet/sctp_indata.h>
46 #include <netinet/sctp_output.h>
47 #include <netinet/sctp_auth.h>
48 
49 #ifdef SCTP_DEBUG
50 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
51 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
52 #endif				/* SCTP_DEBUG */
53 
54 
55 void
56 sctp_clear_chunklist(sctp_auth_chklist_t *chklist)
57 {
58 	memset(chklist, 0, sizeof(*chklist));
59 	/* chklist->num_chunks = 0; */
60 }
61 
62 sctp_auth_chklist_t *
63 sctp_alloc_chunklist(void)
64 {
65 	sctp_auth_chklist_t *chklist;
66 
67 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
68 	    SCTP_M_AUTH_CL);
69 	if (chklist == NULL) {
70 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
71 	} else {
72 		sctp_clear_chunklist(chklist);
73 	}
74 	return (chklist);
75 }
76 
77 void
78 sctp_free_chunklist(sctp_auth_chklist_t *list)
79 {
80 	if (list != NULL)
81 		SCTP_FREE(list, SCTP_M_AUTH_CL);
82 }
83 
84 sctp_auth_chklist_t *
85 sctp_copy_chunklist(sctp_auth_chklist_t *list)
86 {
87 	sctp_auth_chklist_t *new_list;
88 
89 	if (list == NULL)
90 		return (NULL);
91 
92 	/* get a new list */
93 	new_list = sctp_alloc_chunklist();
94 	if (new_list == NULL)
95 		return (NULL);
96 	/* copy it */
97 	memcpy(new_list, list, sizeof(*new_list));
98 
99 	return (new_list);
100 }
101 
102 
103 /*
104  * add a chunk to the required chunks list
105  */
106 int
107 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
108 {
109 	if (list == NULL)
110 		return (-1);
111 
112 	/* is chunk restricted? */
113 	if ((chunk == SCTP_INITIATION) ||
114 	    (chunk == SCTP_INITIATION_ACK) ||
115 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
116 	    (chunk == SCTP_AUTHENTICATION)) {
117 		return (-1);
118 	}
119 	if (list->chunks[chunk] == 0) {
120 		list->chunks[chunk] = 1;
121 		list->num_chunks++;
122 		SCTPDBG(SCTP_DEBUG_AUTH1,
123 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
124 		    chunk, chunk);
125 	}
126 	return (0);
127 }
128 
129 /*
130  * delete a chunk from the required chunks list
131  */
132 int
133 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
134 {
135 	if (list == NULL)
136 		return (-1);
137 
138 	if (list->chunks[chunk] == 1) {
139 		list->chunks[chunk] = 0;
140 		list->num_chunks--;
141 		SCTPDBG(SCTP_DEBUG_AUTH1,
142 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
143 		    chunk, chunk);
144 	}
145 	return (0);
146 }
147 
148 size_t
149 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list)
150 {
151 	if (list == NULL)
152 		return (0);
153 	else
154 		return (list->num_chunks);
155 }
156 
157 /*
158  * return the current number and list of required chunks caller must
159  * guarantee ptr has space for up to 256 bytes
160  */
161 int
162 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
163 {
164 	int i, count = 0;
165 
166 	if (list == NULL)
167 		return (0);
168 
169 	for (i = 0; i < 256; i++) {
170 		if (list->chunks[i] != 0) {
171 			*ptr++ = i;
172 			count++;
173 		}
174 	}
175 	return (count);
176 }
177 
178 int
179 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
180 {
181 	int i, size = 0;
182 
183 	if (list == NULL)
184 		return (0);
185 
186 	if (list->num_chunks <= 32) {
187 		/* just list them, one byte each */
188 		for (i = 0; i < 256; i++) {
189 			if (list->chunks[i] != 0) {
190 				*ptr++ = i;
191 				size++;
192 			}
193 		}
194 	} else {
195 		int index, offset;
196 
197 		/* pack into a 32 byte bitfield */
198 		for (i = 0; i < 256; i++) {
199 			if (list->chunks[i] != 0) {
200 				index = i / 8;
201 				offset = i % 8;
202 				ptr[index] |= (1 << offset);
203 			}
204 		}
205 		size = 32;
206 	}
207 	return (size);
208 }
209 
210 int
211 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks,
212     sctp_auth_chklist_t *list)
213 {
214 	int i;
215 	int size;
216 
217 	if (list == NULL)
218 		return (0);
219 
220 	if (num_chunks <= 32) {
221 		/* just pull them, one byte each */
222 		for (i = 0; i < num_chunks; i++) {
223 			(void)sctp_auth_add_chunk(*ptr++, list);
224 		}
225 		size = num_chunks;
226 	} else {
227 		int index, offset;
228 
229 		/* unpack from a 32 byte bitfield */
230 		for (index = 0; index < 32; index++) {
231 			for (offset = 0; offset < 8; offset++) {
232 				if (ptr[index] & (1 << offset)) {
233 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
234 				}
235 			}
236 		}
237 		size = 32;
238 	}
239 	return (size);
240 }
241 
242 
243 /*
244  * allocate structure space for a key of length keylen
245  */
246 sctp_key_t *
247 sctp_alloc_key(uint32_t keylen)
248 {
249 	sctp_key_t *new_key;
250 
251 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
252 	    SCTP_M_AUTH_KY);
253 	if (new_key == NULL) {
254 		/* out of memory */
255 		return (NULL);
256 	}
257 	new_key->keylen = keylen;
258 	return (new_key);
259 }
260 
261 void
262 sctp_free_key(sctp_key_t *key)
263 {
264 	if (key != NULL)
265 		SCTP_FREE(key, SCTP_M_AUTH_KY);
266 }
267 
268 void
269 sctp_print_key(sctp_key_t *key, const char *str)
270 {
271 	uint32_t i;
272 
273 	if (key == NULL) {
274 		SCTP_PRINTF("%s: [Null key]\n", str);
275 		return;
276 	}
277 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
278 	if (key->keylen) {
279 		for (i = 0; i < key->keylen; i++)
280 			SCTP_PRINTF("%02x", key->key[i]);
281 		SCTP_PRINTF("\n");
282 	} else {
283 		SCTP_PRINTF("[Null key]\n");
284 	}
285 }
286 
287 void
288 sctp_show_key(sctp_key_t *key, const char *str)
289 {
290 	uint32_t i;
291 
292 	if (key == NULL) {
293 		SCTP_PRINTF("%s: [Null key]\n", str);
294 		return;
295 	}
296 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
297 	if (key->keylen) {
298 		for (i = 0; i < key->keylen; i++)
299 			SCTP_PRINTF("%02x", key->key[i]);
300 		SCTP_PRINTF("\n");
301 	} else {
302 		SCTP_PRINTF("[Null key]\n");
303 	}
304 }
305 
306 static uint32_t
307 sctp_get_keylen(sctp_key_t *key)
308 {
309 	if (key != NULL)
310 		return (key->keylen);
311 	else
312 		return (0);
313 }
314 
315 /*
316  * generate a new random key of length 'keylen'
317  */
318 sctp_key_t *
319 sctp_generate_random_key(uint32_t keylen)
320 {
321 	sctp_key_t *new_key;
322 
323 	new_key = sctp_alloc_key(keylen);
324 	if (new_key == NULL) {
325 		/* out of memory */
326 		return (NULL);
327 	}
328 	SCTP_READ_RANDOM(new_key->key, keylen);
329 	new_key->keylen = keylen;
330 	return (new_key);
331 }
332 
333 sctp_key_t *
334 sctp_set_key(uint8_t *key, uint32_t keylen)
335 {
336 	sctp_key_t *new_key;
337 
338 	new_key = sctp_alloc_key(keylen);
339 	if (new_key == NULL) {
340 		/* out of memory */
341 		return (NULL);
342 	}
343 	memcpy(new_key->key, key, keylen);
344 	return (new_key);
345 }
346 
347 /*-
348  * given two keys of variable size, compute which key is "larger/smaller"
349  * returns:  1 if key1 > key2
350  *          -1 if key1 < key2
351  *           0 if key1 = key2
352  */
353 static int
354 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2)
355 {
356 	uint32_t maxlen;
357 	uint32_t i;
358 	uint32_t key1len, key2len;
359 	uint8_t *key_1, *key_2;
360 	uint8_t val1, val2;
361 
362 	/* sanity/length check */
363 	key1len = sctp_get_keylen(key1);
364 	key2len = sctp_get_keylen(key2);
365 	if ((key1len == 0) && (key2len == 0))
366 		return (0);
367 	else if (key1len == 0)
368 		return (-1);
369 	else if (key2len == 0)
370 		return (1);
371 
372 	if (key1len < key2len) {
373 		maxlen = key2len;
374 	} else {
375 		maxlen = key1len;
376 	}
377 	key_1 = key1->key;
378 	key_2 = key2->key;
379 	/* check for numeric equality */
380 	for (i = 0; i < maxlen; i++) {
381 		/* left-pad with zeros */
382 		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
383 		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
384 		if (val1 > val2) {
385 			return (1);
386 		} else if (val1 < val2) {
387 			return (-1);
388 		}
389 	}
390 	/* keys are equal value, so check lengths */
391 	if (key1len == key2len)
392 		return (0);
393 	else if (key1len < key2len)
394 		return (-1);
395 	else
396 		return (1);
397 }
398 
399 /*
400  * generate the concatenated keying material based on the two keys and the
401  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
402  * order for concatenation
403  */
404 sctp_key_t *
405 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared)
406 {
407 	uint32_t keylen;
408 	sctp_key_t *new_key;
409 	uint8_t *key_ptr;
410 
411 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
412 	    sctp_get_keylen(shared);
413 
414 	if (keylen > 0) {
415 		/* get space for the new key */
416 		new_key = sctp_alloc_key(keylen);
417 		if (new_key == NULL) {
418 			/* out of memory */
419 			return (NULL);
420 		}
421 		new_key->keylen = keylen;
422 		key_ptr = new_key->key;
423 	} else {
424 		/* all keys empty/null?! */
425 		return (NULL);
426 	}
427 
428 	/* concatenate the keys */
429 	if (sctp_compare_key(key1, key2) <= 0) {
430 		/* key is shared + key1 + key2 */
431 		if (sctp_get_keylen(shared)) {
432 			memcpy(key_ptr, shared->key, shared->keylen);
433 			key_ptr += shared->keylen;
434 		}
435 		if (sctp_get_keylen(key1)) {
436 			memcpy(key_ptr, key1->key, key1->keylen);
437 			key_ptr += key1->keylen;
438 		}
439 		if (sctp_get_keylen(key2)) {
440 			memcpy(key_ptr, key2->key, key2->keylen);
441 		}
442 	} else {
443 		/* key is shared + key2 + key1 */
444 		if (sctp_get_keylen(shared)) {
445 			memcpy(key_ptr, shared->key, shared->keylen);
446 			key_ptr += shared->keylen;
447 		}
448 		if (sctp_get_keylen(key2)) {
449 			memcpy(key_ptr, key2->key, key2->keylen);
450 			key_ptr += key2->keylen;
451 		}
452 		if (sctp_get_keylen(key1)) {
453 			memcpy(key_ptr, key1->key, key1->keylen);
454 		}
455 	}
456 	return (new_key);
457 }
458 
459 
460 sctp_sharedkey_t *
461 sctp_alloc_sharedkey(void)
462 {
463 	sctp_sharedkey_t *new_key;
464 
465 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
466 	    SCTP_M_AUTH_KY);
467 	if (new_key == NULL) {
468 		/* out of memory */
469 		return (NULL);
470 	}
471 	new_key->keyid = 0;
472 	new_key->key = NULL;
473 	new_key->refcount = 1;
474 	new_key->deactivated = 0;
475 	return (new_key);
476 }
477 
478 void
479 sctp_free_sharedkey(sctp_sharedkey_t *skey)
480 {
481 	if (skey == NULL)
482 		return;
483 
484 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
485 		if (skey->key != NULL)
486 			sctp_free_key(skey->key);
487 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
488 	}
489 }
490 
491 sctp_sharedkey_t *
492 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
493 {
494 	sctp_sharedkey_t *skey;
495 
496 	LIST_FOREACH(skey, shared_keys, next) {
497 		if (skey->keyid == key_id)
498 			return (skey);
499 	}
500 	return (NULL);
501 }
502 
503 int
504 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
505     sctp_sharedkey_t *new_skey)
506 {
507 	sctp_sharedkey_t *skey;
508 
509 	if ((shared_keys == NULL) || (new_skey == NULL))
510 		return (EINVAL);
511 
512 	/* insert into an empty list? */
513 	if (LIST_EMPTY(shared_keys)) {
514 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
515 		return (0);
516 	}
517 	/* insert into the existing list, ordered by key id */
518 	LIST_FOREACH(skey, shared_keys, next) {
519 		if (new_skey->keyid < skey->keyid) {
520 			/* insert it before here */
521 			LIST_INSERT_BEFORE(skey, new_skey, next);
522 			return (0);
523 		} else if (new_skey->keyid == skey->keyid) {
524 			/* replace the existing key */
525 			/* verify this key *can* be replaced */
526 			if ((skey->deactivated) || (skey->refcount > 1)) {
527 				SCTPDBG(SCTP_DEBUG_AUTH1,
528 				    "can't replace shared key id %u\n",
529 				    new_skey->keyid);
530 				return (EBUSY);
531 			}
532 			SCTPDBG(SCTP_DEBUG_AUTH1,
533 			    "replacing shared key id %u\n",
534 			    new_skey->keyid);
535 			LIST_INSERT_BEFORE(skey, new_skey, next);
536 			LIST_REMOVE(skey, next);
537 			sctp_free_sharedkey(skey);
538 			return (0);
539 		}
540 		if (LIST_NEXT(skey, next) == NULL) {
541 			/* belongs at the end of the list */
542 			LIST_INSERT_AFTER(skey, new_skey, next);
543 			return (0);
544 		}
545 	}
546 	/* shouldn't reach here */
547 	return (EINVAL);
548 }
549 
550 void
551 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
552 {
553 	sctp_sharedkey_t *skey;
554 
555 	/* find the shared key */
556 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
557 
558 	/* bump the ref count */
559 	if (skey) {
560 		atomic_add_int(&skey->refcount, 1);
561 		SCTPDBG(SCTP_DEBUG_AUTH2,
562 		    "%s: stcb %p key %u refcount acquire to %d\n",
563 		    __func__, (void *)stcb, key_id, skey->refcount);
564 	}
565 }
566 
567 void
568 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
569 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
570     SCTP_UNUSED
571 #endif
572 )
573 {
574 	sctp_sharedkey_t *skey;
575 
576 	/* find the shared key */
577 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
578 
579 	/* decrement the ref count */
580 	if (skey) {
581 		SCTPDBG(SCTP_DEBUG_AUTH2,
582 		    "%s: stcb %p key %u refcount release to %d\n",
583 		    __func__, (void *)stcb, key_id, skey->refcount);
584 
585 		/* see if a notification should be generated */
586 		if ((skey->refcount <= 2) && (skey->deactivated)) {
587 			/* notify ULP that key is no longer used */
588 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
589 			    key_id, 0, so_locked);
590 			SCTPDBG(SCTP_DEBUG_AUTH2,
591 			    "%s: stcb %p key %u no longer used, %d\n",
592 			    __func__, (void *)stcb, key_id, skey->refcount);
593 		}
594 		sctp_free_sharedkey(skey);
595 	}
596 }
597 
598 static sctp_sharedkey_t *
599 sctp_copy_sharedkey(const sctp_sharedkey_t *skey)
600 {
601 	sctp_sharedkey_t *new_skey;
602 
603 	if (skey == NULL)
604 		return (NULL);
605 	new_skey = sctp_alloc_sharedkey();
606 	if (new_skey == NULL)
607 		return (NULL);
608 	if (skey->key != NULL)
609 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
610 	else
611 		new_skey->key = NULL;
612 	new_skey->keyid = skey->keyid;
613 	return (new_skey);
614 }
615 
616 int
617 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
618 {
619 	sctp_sharedkey_t *skey, *new_skey;
620 	int count = 0;
621 
622 	if ((src == NULL) || (dest == NULL))
623 		return (0);
624 	LIST_FOREACH(skey, src, next) {
625 		new_skey = sctp_copy_sharedkey(skey);
626 		if (new_skey != NULL) {
627 			if (sctp_insert_sharedkey(dest, new_skey)) {
628 				sctp_free_sharedkey(new_skey);
629 			} else {
630 				count++;
631 			}
632 		}
633 	}
634 	return (count);
635 }
636 
637 
638 sctp_hmaclist_t *
639 sctp_alloc_hmaclist(uint16_t num_hmacs)
640 {
641 	sctp_hmaclist_t *new_list;
642 	int alloc_size;
643 
644 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
645 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
646 	    SCTP_M_AUTH_HL);
647 	if (new_list == NULL) {
648 		/* out of memory */
649 		return (NULL);
650 	}
651 	new_list->max_algo = num_hmacs;
652 	new_list->num_algo = 0;
653 	return (new_list);
654 }
655 
656 void
657 sctp_free_hmaclist(sctp_hmaclist_t *list)
658 {
659 	if (list != NULL) {
660 		SCTP_FREE(list, SCTP_M_AUTH_HL);
661 		list = NULL;
662 	}
663 }
664 
665 int
666 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id)
667 {
668 	int i;
669 
670 	if (list == NULL)
671 		return (-1);
672 	if (list->num_algo == list->max_algo) {
673 		SCTPDBG(SCTP_DEBUG_AUTH1,
674 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
675 		return (-1);
676 	}
677 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
678 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
679 		return (-1);
680 	}
681 	/* Now is it already in the list */
682 	for (i = 0; i < list->num_algo; i++) {
683 		if (list->hmac[i] == hmac_id) {
684 			/* already in list */
685 			return (-1);
686 		}
687 	}
688 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
689 	list->hmac[list->num_algo++] = hmac_id;
690 	return (0);
691 }
692 
693 sctp_hmaclist_t *
694 sctp_copy_hmaclist(sctp_hmaclist_t *list)
695 {
696 	sctp_hmaclist_t *new_list;
697 	int i;
698 
699 	if (list == NULL)
700 		return (NULL);
701 	/* get a new list */
702 	new_list = sctp_alloc_hmaclist(list->max_algo);
703 	if (new_list == NULL)
704 		return (NULL);
705 	/* copy it */
706 	new_list->max_algo = list->max_algo;
707 	new_list->num_algo = list->num_algo;
708 	for (i = 0; i < list->num_algo; i++)
709 		new_list->hmac[i] = list->hmac[i];
710 	return (new_list);
711 }
712 
713 sctp_hmaclist_t *
714 sctp_default_supported_hmaclist(void)
715 {
716 	sctp_hmaclist_t *new_list;
717 
718 	new_list = sctp_alloc_hmaclist(2);
719 	if (new_list == NULL)
720 		return (NULL);
721 	/* We prefer SHA256, so list it first */
722 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
723 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
724 	return (new_list);
725 }
726 
727 /*-
728  * HMAC algos are listed in priority/preference order
729  * find the best HMAC id to use for the peer based on local support
730  */
731 uint16_t
732 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local)
733 {
734 	int i, j;
735 
736 	if ((local == NULL) || (peer == NULL))
737 		return (SCTP_AUTH_HMAC_ID_RSVD);
738 
739 	for (i = 0; i < peer->num_algo; i++) {
740 		for (j = 0; j < local->num_algo; j++) {
741 			if (peer->hmac[i] == local->hmac[j]) {
742 				/* found the "best" one */
743 				SCTPDBG(SCTP_DEBUG_AUTH1,
744 				    "SCTP: negotiated peer HMAC id %u\n",
745 				    peer->hmac[i]);
746 				return (peer->hmac[i]);
747 			}
748 		}
749 	}
750 	/* didn't find one! */
751 	return (SCTP_AUTH_HMAC_ID_RSVD);
752 }
753 
754 /*-
755  * serialize the HMAC algo list and return space used
756  * caller must guarantee ptr has appropriate space
757  */
758 int
759 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr)
760 {
761 	int i;
762 	uint16_t hmac_id;
763 
764 	if (list == NULL)
765 		return (0);
766 
767 	for (i = 0; i < list->num_algo; i++) {
768 		hmac_id = htons(list->hmac[i]);
769 		memcpy(ptr, &hmac_id, sizeof(hmac_id));
770 		ptr += sizeof(hmac_id);
771 	}
772 	return (list->num_algo * sizeof(hmac_id));
773 }
774 
775 int
776 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
777 {
778 	uint32_t i;
779 
780 	for (i = 0; i < num_hmacs; i++) {
781 		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
782 			return (0);
783 		}
784 	}
785 	return (-1);
786 }
787 
788 sctp_authinfo_t *
789 sctp_alloc_authinfo(void)
790 {
791 	sctp_authinfo_t *new_authinfo;
792 
793 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
794 	    SCTP_M_AUTH_IF);
795 
796 	if (new_authinfo == NULL) {
797 		/* out of memory */
798 		return (NULL);
799 	}
800 	memset(new_authinfo, 0, sizeof(*new_authinfo));
801 	return (new_authinfo);
802 }
803 
804 void
805 sctp_free_authinfo(sctp_authinfo_t *authinfo)
806 {
807 	if (authinfo == NULL)
808 		return;
809 
810 	if (authinfo->random != NULL)
811 		sctp_free_key(authinfo->random);
812 	if (authinfo->peer_random != NULL)
813 		sctp_free_key(authinfo->peer_random);
814 	if (authinfo->assoc_key != NULL)
815 		sctp_free_key(authinfo->assoc_key);
816 	if (authinfo->recv_key != NULL)
817 		sctp_free_key(authinfo->recv_key);
818 
819 	/* We are NOT dynamically allocating authinfo's right now... */
820 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
821 }
822 
823 
824 uint32_t
825 sctp_get_auth_chunk_len(uint16_t hmac_algo)
826 {
827 	int size;
828 
829 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
830 	return (SCTP_SIZE32(size));
831 }
832 
833 uint32_t
834 sctp_get_hmac_digest_len(uint16_t hmac_algo)
835 {
836 	switch (hmac_algo) {
837 	case SCTP_AUTH_HMAC_ID_SHA1:
838 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
839 	case SCTP_AUTH_HMAC_ID_SHA256:
840 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
841 	default:
842 		/* unknown HMAC algorithm: can't do anything */
843 		return (0);
844 	}			/* end switch */
845 }
846 
847 static inline int
848 sctp_get_hmac_block_len(uint16_t hmac_algo)
849 {
850 	switch (hmac_algo) {
851 	case SCTP_AUTH_HMAC_ID_SHA1:
852 		return (64);
853 	case SCTP_AUTH_HMAC_ID_SHA256:
854 		return (64);
855 	case SCTP_AUTH_HMAC_ID_RSVD:
856 	default:
857 		/* unknown HMAC algorithm: can't do anything */
858 		return (0);
859 	}			/* end switch */
860 }
861 
862 static void
863 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx)
864 {
865 	switch (hmac_algo) {
866 	case SCTP_AUTH_HMAC_ID_SHA1:
867 		SCTP_SHA1_INIT(&ctx->sha1);
868 		break;
869 	case SCTP_AUTH_HMAC_ID_SHA256:
870 		SCTP_SHA256_INIT(&ctx->sha256);
871 		break;
872 	case SCTP_AUTH_HMAC_ID_RSVD:
873 	default:
874 		/* unknown HMAC algorithm: can't do anything */
875 		return;
876 	}			/* end switch */
877 }
878 
879 static void
880 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx,
881     uint8_t *text, uint32_t textlen)
882 {
883 	switch (hmac_algo) {
884 	case SCTP_AUTH_HMAC_ID_SHA1:
885 		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
886 		break;
887 	case SCTP_AUTH_HMAC_ID_SHA256:
888 		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
889 		break;
890 	case SCTP_AUTH_HMAC_ID_RSVD:
891 	default:
892 		/* unknown HMAC algorithm: can't do anything */
893 		return;
894 	}			/* end switch */
895 }
896 
897 static void
898 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx,
899     uint8_t *digest)
900 {
901 	switch (hmac_algo) {
902 	case SCTP_AUTH_HMAC_ID_SHA1:
903 		SCTP_SHA1_FINAL(digest, &ctx->sha1);
904 		break;
905 	case SCTP_AUTH_HMAC_ID_SHA256:
906 		SCTP_SHA256_FINAL(digest, &ctx->sha256);
907 		break;
908 	case SCTP_AUTH_HMAC_ID_RSVD:
909 	default:
910 		/* unknown HMAC algorithm: can't do anything */
911 		return;
912 	}			/* end switch */
913 }
914 
915 /*-
916  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
917  *
918  * Compute the HMAC digest using the desired hash key, text, and HMAC
919  * algorithm.  Resulting digest is placed in 'digest' and digest length
920  * is returned, if the HMAC was performed.
921  *
922  * WARNING: it is up to the caller to supply sufficient space to hold the
923  * resultant digest.
924  */
925 uint32_t
926 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
927     uint8_t *text, uint32_t textlen, uint8_t *digest)
928 {
929 	uint32_t digestlen;
930 	uint32_t blocklen;
931 	sctp_hash_context_t ctx;
932 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
933 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
934 	uint32_t i;
935 
936 	/* sanity check the material and length */
937 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
938 	    (textlen == 0) || (digest == NULL)) {
939 		/* can't do HMAC with empty key or text or digest store */
940 		return (0);
941 	}
942 	/* validate the hmac algo and get the digest length */
943 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
944 	if (digestlen == 0)
945 		return (0);
946 
947 	/* hash the key if it is longer than the hash block size */
948 	blocklen = sctp_get_hmac_block_len(hmac_algo);
949 	if (keylen > blocklen) {
950 		sctp_hmac_init(hmac_algo, &ctx);
951 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
952 		sctp_hmac_final(hmac_algo, &ctx, temp);
953 		/* set the hashed key as the key */
954 		keylen = digestlen;
955 		key = temp;
956 	}
957 	/* initialize the inner/outer pads with the key and "append" zeroes */
958 	memset(ipad, 0, blocklen);
959 	memset(opad, 0, blocklen);
960 	memcpy(ipad, key, keylen);
961 	memcpy(opad, key, keylen);
962 
963 	/* XOR the key with ipad and opad values */
964 	for (i = 0; i < blocklen; i++) {
965 		ipad[i] ^= 0x36;
966 		opad[i] ^= 0x5c;
967 	}
968 
969 	/* perform inner hash */
970 	sctp_hmac_init(hmac_algo, &ctx);
971 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
972 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
973 	sctp_hmac_final(hmac_algo, &ctx, temp);
974 
975 	/* perform outer hash */
976 	sctp_hmac_init(hmac_algo, &ctx);
977 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
978 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
979 	sctp_hmac_final(hmac_algo, &ctx, digest);
980 
981 	return (digestlen);
982 }
983 
984 /* mbuf version */
985 uint32_t
986 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
987     struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer)
988 {
989 	uint32_t digestlen;
990 	uint32_t blocklen;
991 	sctp_hash_context_t ctx;
992 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
993 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
994 	uint32_t i;
995 	struct mbuf *m_tmp;
996 
997 	/* sanity check the material and length */
998 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
999 		/* can't do HMAC with empty key or text or digest store */
1000 		return (0);
1001 	}
1002 	/* validate the hmac algo and get the digest length */
1003 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1004 	if (digestlen == 0)
1005 		return (0);
1006 
1007 	/* hash the key if it is longer than the hash block size */
1008 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1009 	if (keylen > blocklen) {
1010 		sctp_hmac_init(hmac_algo, &ctx);
1011 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1012 		sctp_hmac_final(hmac_algo, &ctx, temp);
1013 		/* set the hashed key as the key */
1014 		keylen = digestlen;
1015 		key = temp;
1016 	}
1017 	/* initialize the inner/outer pads with the key and "append" zeroes */
1018 	memset(ipad, 0, blocklen);
1019 	memset(opad, 0, blocklen);
1020 	memcpy(ipad, key, keylen);
1021 	memcpy(opad, key, keylen);
1022 
1023 	/* XOR the key with ipad and opad values */
1024 	for (i = 0; i < blocklen; i++) {
1025 		ipad[i] ^= 0x36;
1026 		opad[i] ^= 0x5c;
1027 	}
1028 
1029 	/* perform inner hash */
1030 	sctp_hmac_init(hmac_algo, &ctx);
1031 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1032 	/* find the correct starting mbuf and offset (get start of text) */
1033 	m_tmp = m;
1034 	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1035 		m_offset -= SCTP_BUF_LEN(m_tmp);
1036 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1037 	}
1038 	/* now use the rest of the mbuf chain for the text */
1039 	while (m_tmp != NULL) {
1040 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1041 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1042 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1043 		} else {
1044 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1045 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1046 		}
1047 
1048 		/* clear the offset since it's only for the first mbuf */
1049 		m_offset = 0;
1050 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1051 	}
1052 	sctp_hmac_final(hmac_algo, &ctx, temp);
1053 
1054 	/* perform outer hash */
1055 	sctp_hmac_init(hmac_algo, &ctx);
1056 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1057 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1058 	sctp_hmac_final(hmac_algo, &ctx, digest);
1059 
1060 	return (digestlen);
1061 }
1062 
1063 /*
1064  * computes the requested HMAC using a key struct (which may be modified if
1065  * the keylen exceeds the HMAC block len).
1066  */
1067 uint32_t
1068 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text,
1069     uint32_t textlen, uint8_t *digest)
1070 {
1071 	uint32_t digestlen;
1072 	uint32_t blocklen;
1073 	sctp_hash_context_t ctx;
1074 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1075 
1076 	/* sanity check */
1077 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1078 	    (digest == NULL)) {
1079 		/* can't do HMAC with empty key or text or digest store */
1080 		return (0);
1081 	}
1082 	/* validate the hmac algo and get the digest length */
1083 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1084 	if (digestlen == 0)
1085 		return (0);
1086 
1087 	/* hash the key if it is longer than the hash block size */
1088 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1089 	if (key->keylen > blocklen) {
1090 		sctp_hmac_init(hmac_algo, &ctx);
1091 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1092 		sctp_hmac_final(hmac_algo, &ctx, temp);
1093 		/* save the hashed key as the new key */
1094 		key->keylen = digestlen;
1095 		memcpy(key->key, temp, key->keylen);
1096 	}
1097 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1098 	    digest));
1099 }
1100 
1101 /* mbuf version */
1102 uint32_t
1103 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m,
1104     uint32_t m_offset, uint8_t *digest)
1105 {
1106 	uint32_t digestlen;
1107 	uint32_t blocklen;
1108 	sctp_hash_context_t ctx;
1109 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1110 
1111 	/* sanity check */
1112 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1113 		/* can't do HMAC with empty key or text or digest store */
1114 		return (0);
1115 	}
1116 	/* validate the hmac algo and get the digest length */
1117 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1118 	if (digestlen == 0)
1119 		return (0);
1120 
1121 	/* hash the key if it is longer than the hash block size */
1122 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1123 	if (key->keylen > blocklen) {
1124 		sctp_hmac_init(hmac_algo, &ctx);
1125 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1126 		sctp_hmac_final(hmac_algo, &ctx, temp);
1127 		/* save the hashed key as the new key */
1128 		key->keylen = digestlen;
1129 		memcpy(key->key, temp, key->keylen);
1130 	}
1131 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1132 }
1133 
1134 int
1135 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id)
1136 {
1137 	int i;
1138 
1139 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1140 		return (0);
1141 
1142 	for (i = 0; i < list->num_algo; i++)
1143 		if (list->hmac[i] == id)
1144 			return (1);
1145 
1146 	/* not in the list */
1147 	return (0);
1148 }
1149 
1150 
1151 /*-
1152  * clear any cached key(s) if they match the given key id on an association.
1153  * the cached key(s) will be recomputed and re-cached at next use.
1154  * ASSUMES TCB_LOCK is already held
1155  */
1156 void
1157 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1158 {
1159 	if (stcb == NULL)
1160 		return;
1161 
1162 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1163 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1164 		stcb->asoc.authinfo.assoc_key = NULL;
1165 	}
1166 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1167 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1168 		stcb->asoc.authinfo.recv_key = NULL;
1169 	}
1170 }
1171 
1172 /*-
1173  * clear any cached key(s) if they match the given key id for all assocs on
1174  * an endpoint.
1175  * ASSUMES INP_WLOCK is already held
1176  */
1177 void
1178 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1179 {
1180 	struct sctp_tcb *stcb;
1181 
1182 	if (inp == NULL)
1183 		return;
1184 
1185 	/* clear the cached keys on all assocs on this instance */
1186 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1187 		SCTP_TCB_LOCK(stcb);
1188 		sctp_clear_cachedkeys(stcb, keyid);
1189 		SCTP_TCB_UNLOCK(stcb);
1190 	}
1191 }
1192 
1193 /*-
1194  * delete a shared key from an association
1195  * ASSUMES TCB_LOCK is already held
1196  */
1197 int
1198 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1199 {
1200 	sctp_sharedkey_t *skey;
1201 
1202 	if (stcb == NULL)
1203 		return (-1);
1204 
1205 	/* is the keyid the assoc active sending key */
1206 	if (keyid == stcb->asoc.authinfo.active_keyid)
1207 		return (-1);
1208 
1209 	/* does the key exist? */
1210 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1211 	if (skey == NULL)
1212 		return (-1);
1213 
1214 	/* are there other refcount holders on the key? */
1215 	if (skey->refcount > 1)
1216 		return (-1);
1217 
1218 	/* remove it */
1219 	LIST_REMOVE(skey, next);
1220 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1221 
1222 	/* clear any cached keys */
1223 	sctp_clear_cachedkeys(stcb, keyid);
1224 	return (0);
1225 }
1226 
1227 /*-
1228  * deletes a shared key from the endpoint
1229  * ASSUMES INP_WLOCK is already held
1230  */
1231 int
1232 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1233 {
1234 	sctp_sharedkey_t *skey;
1235 
1236 	if (inp == NULL)
1237 		return (-1);
1238 
1239 	/* is the keyid the active sending key on the endpoint */
1240 	if (keyid == inp->sctp_ep.default_keyid)
1241 		return (-1);
1242 
1243 	/* does the key exist? */
1244 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1245 	if (skey == NULL)
1246 		return (-1);
1247 
1248 	/* endpoint keys are not refcounted */
1249 
1250 	/* remove it */
1251 	LIST_REMOVE(skey, next);
1252 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1253 
1254 	/* clear any cached keys */
1255 	sctp_clear_cachedkeys_ep(inp, keyid);
1256 	return (0);
1257 }
1258 
1259 /*-
1260  * set the active key on an association
1261  * ASSUMES TCB_LOCK is already held
1262  */
1263 int
1264 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1265 {
1266 	sctp_sharedkey_t *skey = NULL;
1267 
1268 	/* find the key on the assoc */
1269 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1270 	if (skey == NULL) {
1271 		/* that key doesn't exist */
1272 		return (-1);
1273 	}
1274 	if ((skey->deactivated) && (skey->refcount > 1)) {
1275 		/* can't reactivate a deactivated key with other refcounts */
1276 		return (-1);
1277 	}
1278 
1279 	/* set the (new) active key */
1280 	stcb->asoc.authinfo.active_keyid = keyid;
1281 	/* reset the deactivated flag */
1282 	skey->deactivated = 0;
1283 
1284 	return (0);
1285 }
1286 
1287 /*-
1288  * set the active key on an endpoint
1289  * ASSUMES INP_WLOCK is already held
1290  */
1291 int
1292 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1293 {
1294 	sctp_sharedkey_t *skey;
1295 
1296 	/* find the key */
1297 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1298 	if (skey == NULL) {
1299 		/* that key doesn't exist */
1300 		return (-1);
1301 	}
1302 	inp->sctp_ep.default_keyid = keyid;
1303 	return (0);
1304 }
1305 
1306 /*-
1307  * deactivates a shared key from the association
1308  * ASSUMES INP_WLOCK is already held
1309  */
1310 int
1311 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1312 {
1313 	sctp_sharedkey_t *skey;
1314 
1315 	if (stcb == NULL)
1316 		return (-1);
1317 
1318 	/* is the keyid the assoc active sending key */
1319 	if (keyid == stcb->asoc.authinfo.active_keyid)
1320 		return (-1);
1321 
1322 	/* does the key exist? */
1323 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1324 	if (skey == NULL)
1325 		return (-1);
1326 
1327 	/* are there other refcount holders on the key? */
1328 	if (skey->refcount == 1) {
1329 		/* no other users, send a notification for this key */
1330 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1331 		    SCTP_SO_LOCKED);
1332 	}
1333 
1334 	/* mark the key as deactivated */
1335 	skey->deactivated = 1;
1336 
1337 	return (0);
1338 }
1339 
1340 /*-
1341  * deactivates a shared key from the endpoint
1342  * ASSUMES INP_WLOCK is already held
1343  */
1344 int
1345 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1346 {
1347 	sctp_sharedkey_t *skey;
1348 
1349 	if (inp == NULL)
1350 		return (-1);
1351 
1352 	/* is the keyid the active sending key on the endpoint */
1353 	if (keyid == inp->sctp_ep.default_keyid)
1354 		return (-1);
1355 
1356 	/* does the key exist? */
1357 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1358 	if (skey == NULL)
1359 		return (-1);
1360 
1361 	/* endpoint keys are not refcounted */
1362 
1363 	/* remove it */
1364 	LIST_REMOVE(skey, next);
1365 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1366 
1367 	return (0);
1368 }
1369 
1370 /*
1371  * get local authentication parameters from cookie (from INIT-ACK)
1372  */
1373 void
1374 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1375     uint32_t offset, uint32_t length)
1376 {
1377 	struct sctp_paramhdr *phdr, tmp_param;
1378 	uint16_t plen, ptype;
1379 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1380 	struct sctp_auth_random *p_random = NULL;
1381 	uint16_t random_len = 0;
1382 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1383 	struct sctp_auth_hmac_algo *hmacs = NULL;
1384 	uint16_t hmacs_len = 0;
1385 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1386 	struct sctp_auth_chunk_list *chunks = NULL;
1387 	uint16_t num_chunks = 0;
1388 	sctp_key_t *new_key;
1389 	uint32_t keylen;
1390 
1391 	/* convert to upper bound */
1392 	length += offset;
1393 
1394 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1395 	    sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param);
1396 	while (phdr != NULL) {
1397 		ptype = ntohs(phdr->param_type);
1398 		plen = ntohs(phdr->param_length);
1399 
1400 		if ((plen < sizeof(struct sctp_paramhdr)) ||
1401 		    (offset + plen > length))
1402 			break;
1403 
1404 		if (ptype == SCTP_RANDOM) {
1405 			if (plen > sizeof(random_store))
1406 				break;
1407 			phdr = sctp_get_next_param(m, offset,
1408 			    (struct sctp_paramhdr *)random_store, plen);
1409 			if (phdr == NULL)
1410 				return;
1411 			/* save the random and length for the key */
1412 			p_random = (struct sctp_auth_random *)phdr;
1413 			random_len = plen - sizeof(*p_random);
1414 		} else if (ptype == SCTP_HMAC_LIST) {
1415 			uint16_t num_hmacs;
1416 			uint16_t i;
1417 
1418 			if (plen > sizeof(hmacs_store))
1419 				break;
1420 			phdr = sctp_get_next_param(m, offset,
1421 			    (struct sctp_paramhdr *)hmacs_store, plen);
1422 			if (phdr == NULL)
1423 				return;
1424 			/* save the hmacs list and num for the key */
1425 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1426 			hmacs_len = plen - sizeof(*hmacs);
1427 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1428 			if (stcb->asoc.local_hmacs != NULL)
1429 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1430 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1431 			if (stcb->asoc.local_hmacs != NULL) {
1432 				for (i = 0; i < num_hmacs; i++) {
1433 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1434 					    ntohs(hmacs->hmac_ids[i]));
1435 				}
1436 			}
1437 		} else if (ptype == SCTP_CHUNK_LIST) {
1438 			int i;
1439 
1440 			if (plen > sizeof(chunks_store))
1441 				break;
1442 			phdr = sctp_get_next_param(m, offset,
1443 			    (struct sctp_paramhdr *)chunks_store, plen);
1444 			if (phdr == NULL)
1445 				return;
1446 			chunks = (struct sctp_auth_chunk_list *)phdr;
1447 			num_chunks = plen - sizeof(*chunks);
1448 			/* save chunks list and num for the key */
1449 			if (stcb->asoc.local_auth_chunks != NULL)
1450 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1451 			else
1452 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1453 			for (i = 0; i < num_chunks; i++) {
1454 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1455 				    stcb->asoc.local_auth_chunks);
1456 			}
1457 		}
1458 		/* get next parameter */
1459 		offset += SCTP_SIZE32(plen);
1460 		if (offset + sizeof(struct sctp_paramhdr) > length)
1461 			break;
1462 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1463 		    (uint8_t *)&tmp_param);
1464 	}
1465 	/* concatenate the full random key */
1466 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1467 	if (chunks != NULL) {
1468 		keylen += sizeof(*chunks) + num_chunks;
1469 	}
1470 	new_key = sctp_alloc_key(keylen);
1471 	if (new_key != NULL) {
1472 		/* copy in the RANDOM */
1473 		if (p_random != NULL) {
1474 			keylen = sizeof(*p_random) + random_len;
1475 			memcpy(new_key->key, p_random, keylen);
1476 		} else {
1477 			keylen = 0;
1478 		}
1479 		/* append in the AUTH chunks */
1480 		if (chunks != NULL) {
1481 			memcpy(new_key->key + keylen, chunks,
1482 			    sizeof(*chunks) + num_chunks);
1483 			keylen += sizeof(*chunks) + num_chunks;
1484 		}
1485 		/* append in the HMACs */
1486 		if (hmacs != NULL) {
1487 			memcpy(new_key->key + keylen, hmacs,
1488 			    sizeof(*hmacs) + hmacs_len);
1489 		}
1490 	}
1491 	if (stcb->asoc.authinfo.random != NULL)
1492 		sctp_free_key(stcb->asoc.authinfo.random);
1493 	stcb->asoc.authinfo.random = new_key;
1494 	stcb->asoc.authinfo.random_len = random_len;
1495 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1496 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1497 
1498 	/* negotiate what HMAC to use for the peer */
1499 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1500 	    stcb->asoc.local_hmacs);
1501 
1502 	/* copy defaults from the endpoint */
1503 	/* FIX ME: put in cookie? */
1504 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1505 	/* copy out the shared key list (by reference) from the endpoint */
1506 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1507 	    &stcb->asoc.shared_keys);
1508 }
1509 
1510 /*
1511  * compute and fill in the HMAC digest for a packet
1512  */
1513 void
1514 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1515     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1516 {
1517 	uint32_t digestlen;
1518 	sctp_sharedkey_t *skey;
1519 	sctp_key_t *key;
1520 
1521 	if ((stcb == NULL) || (auth == NULL))
1522 		return;
1523 
1524 	/* zero the digest + chunk padding */
1525 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1526 	memset(auth->hmac, 0, SCTP_SIZE32(digestlen));
1527 
1528 	/* is the desired key cached? */
1529 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1530 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1531 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1532 			/* free the old cached key */
1533 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1534 		}
1535 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1536 		/* the only way skey is NULL is if null key id 0 is used */
1537 		if (skey != NULL)
1538 			key = skey->key;
1539 		else
1540 			key = NULL;
1541 		/* compute a new assoc key and cache it */
1542 		stcb->asoc.authinfo.assoc_key =
1543 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1544 		    stcb->asoc.authinfo.peer_random, key);
1545 		stcb->asoc.authinfo.assoc_keyid = keyid;
1546 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1547 		    stcb->asoc.authinfo.assoc_keyid);
1548 #ifdef SCTP_DEBUG
1549 		if (SCTP_AUTH_DEBUG)
1550 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1551 			    "Assoc Key");
1552 #endif
1553 	}
1554 
1555 	/* set in the active key id */
1556 	auth->shared_key_id = htons(keyid);
1557 
1558 	/* compute and fill in the digest */
1559 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1560 	    m, auth_offset, auth->hmac);
1561 }
1562 
1563 
1564 static void
1565 sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1566 {
1567 	struct mbuf *m_tmp;
1568 	uint8_t *data;
1569 
1570 	/* sanity check */
1571 	if (m == NULL)
1572 		return;
1573 
1574 	/* find the correct starting mbuf and offset (get start position) */
1575 	m_tmp = m;
1576 	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1577 		m_offset -= SCTP_BUF_LEN(m_tmp);
1578 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1579 	}
1580 	/* now use the rest of the mbuf chain */
1581 	while ((m_tmp != NULL) && (size > 0)) {
1582 		data = mtod(m_tmp, uint8_t *)+m_offset;
1583 		if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) {
1584 			memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset);
1585 			size -= SCTP_BUF_LEN(m_tmp) - m_offset;
1586 		} else {
1587 			memset(data, 0, size);
1588 			size = 0;
1589 		}
1590 		/* clear the offset since it's only for the first mbuf */
1591 		m_offset = 0;
1592 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1593 	}
1594 }
1595 
1596 /*-
1597  * process the incoming Authentication chunk
1598  * return codes:
1599  *   -1 on any authentication error
1600  *    0 on authentication verification
1601  */
1602 int
1603 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1604     struct mbuf *m, uint32_t offset)
1605 {
1606 	uint16_t chunklen;
1607 	uint16_t shared_key_id;
1608 	uint16_t hmac_id;
1609 	sctp_sharedkey_t *skey;
1610 	uint32_t digestlen;
1611 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1612 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1613 
1614 	/* auth is checked for NULL by caller */
1615 	chunklen = ntohs(auth->ch.chunk_length);
1616 	if (chunklen < sizeof(*auth)) {
1617 		SCTP_STAT_INCR(sctps_recvauthfailed);
1618 		return (-1);
1619 	}
1620 	SCTP_STAT_INCR(sctps_recvauth);
1621 
1622 	/* get the auth params */
1623 	shared_key_id = ntohs(auth->shared_key_id);
1624 	hmac_id = ntohs(auth->hmac_id);
1625 	SCTPDBG(SCTP_DEBUG_AUTH1,
1626 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1627 	    shared_key_id, hmac_id);
1628 
1629 	/* is the indicated HMAC supported? */
1630 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1631 		struct mbuf *op_err;
1632 		struct sctp_error_auth_invalid_hmac *cause;
1633 
1634 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1635 		SCTPDBG(SCTP_DEBUG_AUTH1,
1636 		    "SCTP Auth: unsupported HMAC id %u\n",
1637 		    hmac_id);
1638 		/*
1639 		 * report this in an Error Chunk: Unsupported HMAC
1640 		 * Identifier
1641 		 */
1642 		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1643 		    0, M_NOWAIT, 1, MT_HEADER);
1644 		if (op_err != NULL) {
1645 			/* pre-reserve some space */
1646 			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1647 			/* fill in the error */
1648 			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1649 			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1650 			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1651 			cause->hmac_id = ntohs(hmac_id);
1652 			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1653 			/* queue it */
1654 			sctp_queue_op_err(stcb, op_err);
1655 		}
1656 		return (-1);
1657 	}
1658 	/* get the indicated shared key, if available */
1659 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1660 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1661 		/* find the shared key on the assoc first */
1662 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1663 		    shared_key_id);
1664 		/* if the shared key isn't found, discard the chunk */
1665 		if (skey == NULL) {
1666 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1667 			SCTPDBG(SCTP_DEBUG_AUTH1,
1668 			    "SCTP Auth: unknown key id %u\n",
1669 			    shared_key_id);
1670 			return (-1);
1671 		}
1672 		/* generate a notification if this is a new key id */
1673 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1674 			/*
1675 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1676 			 * shared_key_id, (void
1677 			 * *)stcb->asoc.authinfo.recv_keyid);
1678 			 */
1679 			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1680 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1681 			    SCTP_SO_NOT_LOCKED);
1682 		/* compute a new recv assoc key and cache it */
1683 		if (stcb->asoc.authinfo.recv_key != NULL)
1684 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1685 		stcb->asoc.authinfo.recv_key =
1686 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1687 		    stcb->asoc.authinfo.peer_random, skey->key);
1688 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1689 #ifdef SCTP_DEBUG
1690 		if (SCTP_AUTH_DEBUG)
1691 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1692 #endif
1693 	}
1694 	/* validate the digest length */
1695 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1696 	if (chunklen < (sizeof(*auth) + digestlen)) {
1697 		/* invalid digest length */
1698 		SCTP_STAT_INCR(sctps_recvauthfailed);
1699 		SCTPDBG(SCTP_DEBUG_AUTH1,
1700 		    "SCTP Auth: chunk too short for HMAC\n");
1701 		return (-1);
1702 	}
1703 	/* save a copy of the digest, zero the pseudo header, and validate */
1704 	memcpy(digest, auth->hmac, digestlen);
1705 	sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1706 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1707 	    m, offset, computed_digest);
1708 
1709 	/* compare the computed digest with the one in the AUTH chunk */
1710 	if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) {
1711 		SCTP_STAT_INCR(sctps_recvauthfailed);
1712 		SCTPDBG(SCTP_DEBUG_AUTH1,
1713 		    "SCTP Auth: HMAC digest check failed\n");
1714 		return (-1);
1715 	}
1716 	return (0);
1717 }
1718 
1719 /*
1720  * Generate NOTIFICATION
1721  */
1722 void
1723 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1724     uint16_t keyid, uint16_t alt_keyid, int so_locked
1725 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1726     SCTP_UNUSED
1727 #endif
1728 )
1729 {
1730 	struct mbuf *m_notify;
1731 	struct sctp_authkey_event *auth;
1732 	struct sctp_queued_to_read *control;
1733 
1734 	if ((stcb == NULL) ||
1735 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1736 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1737 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1738 	    ) {
1739 		/* If the socket is gone we are out of here */
1740 		return;
1741 	}
1742 
1743 	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1744 		/* event not enabled */
1745 		return;
1746 
1747 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1748 	    0, M_NOWAIT, 1, MT_HEADER);
1749 	if (m_notify == NULL)
1750 		/* no space left */
1751 		return;
1752 
1753 	SCTP_BUF_LEN(m_notify) = 0;
1754 	auth = mtod(m_notify, struct sctp_authkey_event *);
1755 	memset(auth, 0, sizeof(struct sctp_authkey_event));
1756 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1757 	auth->auth_flags = 0;
1758 	auth->auth_length = sizeof(*auth);
1759 	auth->auth_keynumber = keyid;
1760 	auth->auth_altkeynumber = alt_keyid;
1761 	auth->auth_indication = indication;
1762 	auth->auth_assoc_id = sctp_get_associd(stcb);
1763 
1764 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1765 	SCTP_BUF_NEXT(m_notify) = NULL;
1766 
1767 	/* append to socket */
1768 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1769 	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1770 	if (control == NULL) {
1771 		/* no memory */
1772 		sctp_m_freem(m_notify);
1773 		return;
1774 	}
1775 	control->length = SCTP_BUF_LEN(m_notify);
1776 	control->spec_flags = M_NOTIFICATION;
1777 	/* not that we need this */
1778 	control->tail_mbuf = m_notify;
1779 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1780 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1781 }
1782 
1783 
1784 /*-
1785  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1786  * Note: currently only used for INIT as INIT-ACK is handled inline
1787  * with sctp_load_addresses_from_init()
1788  */
1789 int
1790 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1791 {
1792 	struct sctp_paramhdr *phdr, param_buf;
1793 	uint16_t ptype, plen;
1794 	int peer_supports_asconf = 0;
1795 	int peer_supports_auth = 0;
1796 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1797 	uint8_t saw_asconf = 0;
1798 	uint8_t saw_asconf_ack = 0;
1799 
1800 	/* go through each of the params. */
1801 	phdr = sctp_get_next_param(m, offset, &param_buf, sizeof(param_buf));
1802 	while (phdr) {
1803 		ptype = ntohs(phdr->param_type);
1804 		plen = ntohs(phdr->param_length);
1805 
1806 		if (offset + plen > limit) {
1807 			break;
1808 		}
1809 		if (plen < sizeof(struct sctp_paramhdr)) {
1810 			break;
1811 		}
1812 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1813 			/* A supported extension chunk */
1814 			struct sctp_supported_chunk_types_param *pr_supported;
1815 			uint8_t local_store[SCTP_SMALL_CHUNK_STORE];
1816 			int num_ent, i;
1817 
1818 			if (plen > sizeof(local_store)) {
1819 				break;
1820 			}
1821 			phdr = sctp_get_next_param(m, offset,
1822 			    (struct sctp_paramhdr *)&local_store,
1823 			    plen);
1824 			if (phdr == NULL) {
1825 				return (-1);
1826 			}
1827 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1828 			num_ent = plen - sizeof(struct sctp_paramhdr);
1829 			for (i = 0; i < num_ent; i++) {
1830 				switch (pr_supported->chunk_types[i]) {
1831 				case SCTP_ASCONF:
1832 				case SCTP_ASCONF_ACK:
1833 					peer_supports_asconf = 1;
1834 					break;
1835 				default:
1836 					/* one we don't care about */
1837 					break;
1838 				}
1839 			}
1840 		} else if (ptype == SCTP_RANDOM) {
1841 			/* enforce the random length */
1842 			if (plen != (sizeof(struct sctp_auth_random) +
1843 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1844 				SCTPDBG(SCTP_DEBUG_AUTH1,
1845 				    "SCTP: invalid RANDOM len\n");
1846 				return (-1);
1847 			}
1848 			got_random = 1;
1849 		} else if (ptype == SCTP_HMAC_LIST) {
1850 			struct sctp_auth_hmac_algo *hmacs;
1851 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1852 			int num_hmacs;
1853 
1854 			if (plen > sizeof(store)) {
1855 				break;
1856 			}
1857 			phdr = sctp_get_next_param(m, offset,
1858 			    (struct sctp_paramhdr *)store,
1859 			    plen);
1860 			if (phdr == NULL) {
1861 				return (-1);
1862 			}
1863 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1864 			num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]);
1865 			/* validate the hmac list */
1866 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1867 				SCTPDBG(SCTP_DEBUG_AUTH1,
1868 				    "SCTP: invalid HMAC param\n");
1869 				return (-1);
1870 			}
1871 			got_hmacs = 1;
1872 		} else if (ptype == SCTP_CHUNK_LIST) {
1873 			struct sctp_auth_chunk_list *chunks;
1874 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1875 			int i, num_chunks;
1876 
1877 			if (plen > sizeof(chunks_store)) {
1878 				break;
1879 			}
1880 			phdr = sctp_get_next_param(m, offset,
1881 			    (struct sctp_paramhdr *)chunks_store,
1882 			    plen);
1883 			if (phdr == NULL) {
1884 				return (-1);
1885 			}
1886 			/*-
1887 			 * Flip through the list and mark that the
1888 			 * peer supports asconf/asconf_ack.
1889 			 */
1890 			chunks = (struct sctp_auth_chunk_list *)phdr;
1891 			num_chunks = plen - sizeof(*chunks);
1892 			for (i = 0; i < num_chunks; i++) {
1893 				/* record asconf/asconf-ack if listed */
1894 				if (chunks->chunk_types[i] == SCTP_ASCONF)
1895 					saw_asconf = 1;
1896 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1897 					saw_asconf_ack = 1;
1898 
1899 			}
1900 			if (num_chunks)
1901 				got_chklist = 1;
1902 		}
1903 
1904 		offset += SCTP_SIZE32(plen);
1905 		if (offset >= limit) {
1906 			break;
1907 		}
1908 		phdr = sctp_get_next_param(m, offset, &param_buf,
1909 		    sizeof(param_buf));
1910 	}
1911 	/* validate authentication required parameters */
1912 	if (got_random && got_hmacs) {
1913 		peer_supports_auth = 1;
1914 	} else {
1915 		peer_supports_auth = 0;
1916 	}
1917 	if (!peer_supports_auth && got_chklist) {
1918 		SCTPDBG(SCTP_DEBUG_AUTH1,
1919 		    "SCTP: peer sent chunk list w/o AUTH\n");
1920 		return (-1);
1921 	}
1922 	if (peer_supports_asconf && !peer_supports_auth) {
1923 		SCTPDBG(SCTP_DEBUG_AUTH1,
1924 		    "SCTP: peer supports ASCONF but not AUTH\n");
1925 		return (-1);
1926 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1927 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1928 		return (-2);
1929 	}
1930 	return (0);
1931 }
1932 
1933 void
1934 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1935 {
1936 	uint16_t chunks_len = 0;
1937 	uint16_t hmacs_len = 0;
1938 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1939 	sctp_key_t *new_key;
1940 	uint16_t keylen;
1941 
1942 	/* initialize hmac list from endpoint */
1943 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1944 	if (stcb->asoc.local_hmacs != NULL) {
1945 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1946 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1947 	}
1948 	/* initialize auth chunks list from endpoint */
1949 	stcb->asoc.local_auth_chunks =
1950 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1951 	if (stcb->asoc.local_auth_chunks != NULL) {
1952 		int i;
1953 
1954 		for (i = 0; i < 256; i++) {
1955 			if (stcb->asoc.local_auth_chunks->chunks[i])
1956 				chunks_len++;
1957 		}
1958 	}
1959 	/* copy defaults from the endpoint */
1960 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1961 
1962 	/* copy out the shared key list (by reference) from the endpoint */
1963 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1964 	    &stcb->asoc.shared_keys);
1965 
1966 	/* now set the concatenated key (random + chunks + hmacs) */
1967 	/* key includes parameter headers */
1968 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1969 	    hmacs_len;
1970 	new_key = sctp_alloc_key(keylen);
1971 	if (new_key != NULL) {
1972 		struct sctp_paramhdr *ph;
1973 		int plen;
1974 
1975 		/* generate and copy in the RANDOM */
1976 		ph = (struct sctp_paramhdr *)new_key->key;
1977 		ph->param_type = htons(SCTP_RANDOM);
1978 		plen = sizeof(*ph) + random_len;
1979 		ph->param_length = htons(plen);
1980 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1981 		keylen = plen;
1982 
1983 		/* append in the AUTH chunks */
1984 		/* NOTE: currently we always have chunks to list */
1985 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1986 		ph->param_type = htons(SCTP_CHUNK_LIST);
1987 		plen = sizeof(*ph) + chunks_len;
1988 		ph->param_length = htons(plen);
1989 		keylen += sizeof(*ph);
1990 		if (stcb->asoc.local_auth_chunks) {
1991 			int i;
1992 
1993 			for (i = 0; i < 256; i++) {
1994 				if (stcb->asoc.local_auth_chunks->chunks[i])
1995 					new_key->key[keylen++] = i;
1996 			}
1997 		}
1998 
1999 		/* append in the HMACs */
2000 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2001 		ph->param_type = htons(SCTP_HMAC_LIST);
2002 		plen = sizeof(*ph) + hmacs_len;
2003 		ph->param_length = htons(plen);
2004 		keylen += sizeof(*ph);
2005 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2006 		    new_key->key + keylen);
2007 	}
2008 	if (stcb->asoc.authinfo.random != NULL)
2009 		sctp_free_key(stcb->asoc.authinfo.random);
2010 	stcb->asoc.authinfo.random = new_key;
2011 	stcb->asoc.authinfo.random_len = random_len;
2012 }
2013