xref: /freebsd/sys/netinet/tcp_hpts.c (revision c03c5b1c)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33 
34 /**
35  * Some notes about usage.
36  *
37  * The tcp_hpts system is designed to provide a high precision timer
38  * system for tcp. Its main purpose is to provide a mechanism for
39  * pacing packets out onto the wire. It can be used in two ways
40  * by a given TCP stack (and those two methods can be used simultaneously).
41  *
42  * First, and probably the main thing its used by Rack and BBR, it can
43  * be used to call tcp_output() of a transport stack at some time in the future.
44  * The normal way this is done is that tcp_output() of the stack schedules
45  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46  * slot is the time from now that the stack wants to be called but it
47  * must be converted to tcp_hpts's notion of slot. This is done with
48  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49  * call from the tcp_output() routine might look like:
50  *
51  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52  *
53  * The above would schedule tcp_ouput() to be called in 550 useconds.
54  * Note that if using this mechanism the stack will want to add near
55  * its top a check to prevent unwanted calls (from user land or the
56  * arrival of incoming ack's). So it would add something like:
57  *
58  * if (tcp_in_hpts(inp))
59  *    return;
60  *
61  * to prevent output processing until the time alotted has gone by.
62  * Of course this is a bare bones example and the stack will probably
63  * have more consideration then just the above.
64  *
65  * In order to run input queued segments from the HPTS context the
66  * tcp stack must define an input function for
67  * tfb_do_queued_segments(). This function understands
68  * how to dequeue a array of packets that were input and
69  * knows how to call the correct processing routine.
70  *
71  * Locking in this is important as well so most likely the
72  * stack will need to define the tfb_do_segment_nounlock()
73  * splitting tfb_do_segment() into two parts. The main processing
74  * part that does not unlock the INP and returns a value of 1 or 0.
75  * It returns 0 if all is well and the lock was not released. It
76  * returns 1 if we had to destroy the TCB (a reset received etc).
77  * The remains of tfb_do_segment() then become just a simple call
78  * to the tfb_do_segment_nounlock() function and check the return
79  * code and possibly unlock.
80  *
81  * The stack must also set the flag on the INP that it supports this
82  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
83  * this flag as well and will queue packets when it is set.
84  * There are other flags as well INP_MBUF_QUEUE_READY and
85  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
86  * that we are in the pacer for output so there is no
87  * need to wake up the hpts system to get immediate
88  * input. The second tells the LRO code that its okay
89  * if a SACK arrives you can still defer input and let
90  * the current hpts timer run (this is usually set when
91  * a rack timer is up so we know SACK's are happening
92  * on the connection already and don't want to wakeup yet).
93  *
94  * There is a common functions within the rack_bbr_common code
95  * version i.e. ctf_do_queued_segments(). This function
96  * knows how to take the input queue of packets from
97  * tp->t_in_pkts and process them digging out
98  * all the arguments, calling any bpf tap and
99  * calling into tfb_do_segment_nounlock(). The common
100  * function (ctf_do_queued_segments())  requires that
101  * you have defined the tfb_do_segment_nounlock() as
102  * described above.
103  */
104 
105 #include <sys/param.h>
106 #include <sys/bus.h>
107 #include <sys/interrupt.h>
108 #include <sys/module.h>
109 #include <sys/kernel.h>
110 #include <sys/hhook.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/proc.h>		/* for proc0 declaration */
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/sysctl.h>
117 #include <sys/systm.h>
118 #include <sys/refcount.h>
119 #include <sys/sched.h>
120 #include <sys/queue.h>
121 #include <sys/smp.h>
122 #include <sys/counter.h>
123 #include <sys/time.h>
124 #include <sys/kthread.h>
125 #include <sys/kern_prefetch.h>
126 
127 #include <vm/uma.h>
128 #include <vm/vm.h>
129 
130 #include <net/route.h>
131 #include <net/vnet.h>
132 
133 #ifdef RSS
134 #include <net/netisr.h>
135 #include <net/rss_config.h>
136 #endif
137 
138 #define TCPSTATES		/* for logging */
139 
140 #include <netinet/in.h>
141 #include <netinet/in_kdtrace.h>
142 #include <netinet/in_pcb.h>
143 #include <netinet/ip.h>
144 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
145 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
146 #include <netinet/ip_var.h>
147 #include <netinet/ip6.h>
148 #include <netinet6/in6_pcb.h>
149 #include <netinet6/ip6_var.h>
150 #include <netinet/tcp.h>
151 #include <netinet/tcp_fsm.h>
152 #include <netinet/tcp_seq.h>
153 #include <netinet/tcp_timer.h>
154 #include <netinet/tcp_var.h>
155 #include <netinet/tcpip.h>
156 #include <netinet/cc/cc.h>
157 #include <netinet/tcp_hpts.h>
158 #include <netinet/tcp_log_buf.h>
159 
160 #ifdef tcpdebug
161 #include <netinet/tcp_debug.h>
162 #endif				/* tcpdebug */
163 #ifdef tcp_offload
164 #include <netinet/tcp_offload.h>
165 #endif
166 
167 /*
168  * The hpts uses a 102400 wheel. The wheel
169  * defines the time in 10 usec increments (102400 x 10).
170  * This gives a range of 10usec - 1024ms to place
171  * an entry within. If the user requests more than
172  * 1.024 second, a remaineder is attached and the hpts
173  * when seeing the remainder will re-insert the
174  * inpcb forward in time from where it is until
175  * the remainder is zero.
176  */
177 
178 #define NUM_OF_HPTSI_SLOTS 102400
179 
180 /* Each hpts has its own p_mtx which is used for locking */
181 #define	HPTS_MTX_ASSERT(hpts)	mtx_assert(&(hpts)->p_mtx, MA_OWNED)
182 #define	HPTS_LOCK(hpts)		mtx_lock(&(hpts)->p_mtx)
183 #define	HPTS_UNLOCK(hpts)	mtx_unlock(&(hpts)->p_mtx)
184 struct tcp_hpts_entry {
185 	/* Cache line 0x00 */
186 	struct mtx p_mtx;	/* Mutex for hpts */
187 	struct timeval p_mysleep;	/* Our min sleep time */
188 	uint64_t syscall_cnt;
189 	uint64_t sleeping;	/* What the actual sleep was (if sleeping) */
190 	uint16_t p_hpts_active; /* Flag that says hpts is awake  */
191 	uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
192 	uint32_t p_curtick;	/* Tick in 10 us the hpts is going to */
193 	uint32_t p_runningslot; /* Current tick we are at if we are running */
194 	uint32_t p_prev_slot;	/* Previous slot we were on */
195 	uint32_t p_cur_slot;	/* Current slot in wheel hpts is draining */
196 	uint32_t p_nxt_slot;	/* The next slot outside the current range of
197 				 * slots that the hpts is running on. */
198 	int32_t p_on_queue_cnt;	/* Count on queue in this hpts */
199 	uint32_t p_lasttick;	/* Last tick before the current one */
200 	uint8_t p_direct_wake :1, /* boolean */
201 		p_on_min_sleep:1, /* boolean */
202 		p_hpts_wake_scheduled:1, /* boolean */
203 		p_avail:5;
204 	uint8_t p_fill[3];	  /* Fill to 32 bits */
205 	/* Cache line 0x40 */
206 	struct hptsh {
207 		TAILQ_HEAD(, inpcb)	head;
208 		uint32_t		count;
209 		uint32_t		gencnt;
210 	} *p_hptss;			/* Hptsi wheel */
211 	uint32_t p_hpts_sleep_time;	/* Current sleep interval having a max
212 					 * of 255ms */
213 	uint32_t overidden_sleep;	/* what was overrided by min-sleep for logging */
214 	uint32_t saved_lasttick;	/* for logging */
215 	uint32_t saved_curtick;		/* for logging */
216 	uint32_t saved_curslot;		/* for logging */
217 	uint32_t saved_prev_slot;       /* for logging */
218 	uint32_t p_delayed_by;	/* How much were we delayed by */
219 	/* Cache line 0x80 */
220 	struct sysctl_ctx_list hpts_ctx;
221 	struct sysctl_oid *hpts_root;
222 	struct intr_event *ie;
223 	void *ie_cookie;
224 	uint16_t p_num;		/* The hpts number one per cpu */
225 	uint16_t p_cpu;		/* The hpts CPU */
226 	/* There is extra space in here */
227 	/* Cache line 0x100 */
228 	struct callout co __aligned(CACHE_LINE_SIZE);
229 }               __aligned(CACHE_LINE_SIZE);
230 
231 static struct tcp_hptsi {
232 	struct tcp_hpts_entry **rp_ent;	/* Array of hptss */
233 	uint32_t *cts_last_ran;
234 	uint32_t rp_num_hptss;	/* Number of hpts threads */
235 } tcp_pace;
236 
237 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
238 #ifdef RSS
239 static int tcp_bind_threads = 1;
240 #else
241 static int tcp_bind_threads = 2;
242 #endif
243 static int tcp_use_irq_cpu = 0;
244 static uint32_t *cts_last_ran;
245 static int hpts_does_tp_logging = 0;
246 static int hpts_use_assigned_cpu = 1;
247 static int32_t hpts_uses_oldest = OLDEST_THRESHOLD;
248 
249 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
250 static void tcp_hpts_thread(void *ctx);
251 static void tcp_init_hptsi(void *st);
252 
253 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
254 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
255 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
256 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
257 
258 
259 
260 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
261     "TCP Hpts controls");
262 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
263     "TCP Hpts statistics");
264 
265 #define	timersub(tvp, uvp, vvp)						\
266 	do {								\
267 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
268 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
269 		if ((vvp)->tv_usec < 0) {				\
270 			(vvp)->tv_sec--;				\
271 			(vvp)->tv_usec += 1000000;			\
272 		}							\
273 	} while (0)
274 
275 static int32_t tcp_hpts_precision = 120;
276 
277 static struct hpts_domain_info {
278 	int count;
279 	int cpu[MAXCPU];
280 } hpts_domains[MAXMEMDOM];
281 
282 enum {
283 	IHPTS_NONE = 0,
284 	IHPTS_ONQUEUE,
285 	IHPTS_MOVING,
286 };
287 
288 counter_u64_t hpts_hopelessly_behind;
289 
290 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
291     &hpts_hopelessly_behind,
292     "Number of times hpts could not catch up and was behind hopelessly");
293 
294 counter_u64_t hpts_loops;
295 
296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
297     &hpts_loops, "Number of times hpts had to loop to catch up");
298 
299 counter_u64_t back_tosleep;
300 
301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
302     &back_tosleep, "Number of times hpts found no tcbs");
303 
304 counter_u64_t combined_wheel_wrap;
305 
306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
307     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
308 
309 counter_u64_t wheel_wrap;
310 
311 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
312     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
313 
314 counter_u64_t hpts_direct_call;
315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
316     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
317 
318 counter_u64_t hpts_wake_timeout;
319 
320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
321     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
322 
323 counter_u64_t hpts_direct_awakening;
324 
325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
326     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
327 
328 counter_u64_t hpts_back_tosleep;
329 
330 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
331     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
332 
333 counter_u64_t cpu_uses_flowid;
334 counter_u64_t cpu_uses_random;
335 
336 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
337     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
338 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
339     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
340 
341 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
342 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
344     &tcp_bind_threads, 2,
345     "Thread Binding tunable");
346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
347     &tcp_use_irq_cpu, 0,
348     "Use of irq CPU  tunable");
349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
350     &tcp_hpts_precision, 120,
351     "Value for PRE() precision of callout");
352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
353     &conn_cnt_thresh, 0,
354     "How many connections (below) make us use the callout based mechanism");
355 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
356     &hpts_does_tp_logging, 0,
357     "Do we add to any tp that has logging on pacer logs");
358 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_assigned_cpu, CTLFLAG_RW,
359     &hpts_use_assigned_cpu, 0,
360     "Do we start any hpts timer on the assigned cpu?");
361 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_oldest, CTLFLAG_RW,
362     &hpts_uses_oldest, OLDEST_THRESHOLD,
363     "Do syscalls look for the hpts that has been the longest since running (or just use cpu no if 0)?");
364 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
365     &dynamic_min_sleep, 250,
366     "What is the dynamic minsleep value?");
367 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
368     &dynamic_max_sleep, 5000,
369     "What is the dynamic maxsleep value?");
370 
371 
372 
373 
374 
375 static int32_t max_pacer_loops = 10;
376 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
377     &max_pacer_loops, 10,
378     "What is the maximum number of times the pacer will loop trying to catch up");
379 
380 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
381 
382 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
383 
384 static int
385 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
386 {
387 	int error;
388 	uint32_t new;
389 
390 	new = hpts_sleep_max;
391 	error = sysctl_handle_int(oidp, &new, 0, req);
392 	if (error == 0 && req->newptr) {
393 		if ((new < dynamic_min_sleep) ||
394 		    (new > HPTS_MAX_SLEEP_ALLOWED))
395 			error = EINVAL;
396 		else
397 			hpts_sleep_max = new;
398 	}
399 	return (error);
400 }
401 
402 static int
403 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
404 {
405 	int error;
406 	uint32_t new;
407 
408 	new = tcp_min_hptsi_time;
409 	error = sysctl_handle_int(oidp, &new, 0, req);
410 	if (error == 0 && req->newptr) {
411 		if (new < LOWEST_SLEEP_ALLOWED)
412 			error = EINVAL;
413 		else
414 			tcp_min_hptsi_time = new;
415 	}
416 	return (error);
417 }
418 
419 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
420     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
421     &hpts_sleep_max, 0,
422     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
423     "Maximum time hpts will sleep");
424 
425 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
426     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
427     &tcp_min_hptsi_time, 0,
428     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
429     "The minimum time the hpts must sleep before processing more slots");
430 
431 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
432 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
433 static int tcp_hpts_no_wake_over_thresh = 1;
434 
435 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
436     &ticks_indicate_more_sleep, 0,
437     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
438 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
439     &ticks_indicate_less_sleep, 0,
440     "If we process this many or more on a timeout, we need less sleep on the next callout");
441 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
442     &tcp_hpts_no_wake_over_thresh, 0,
443     "When we are over the threshold on the pacer do we prohibit wakeups?");
444 
445 static void
446 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
447 	     int slots_to_run, int idx, int from_callout)
448 {
449 	union tcp_log_stackspecific log;
450 	/*
451 	 * Unused logs are
452 	 * 64 bit - delRate, rttProp, bw_inuse
453 	 * 16 bit - cwnd_gain
454 	 *  8 bit - bbr_state, bbr_substate, inhpts;
455 	 */
456 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
457 	log.u_bbr.flex1 = hpts->p_nxt_slot;
458 	log.u_bbr.flex2 = hpts->p_cur_slot;
459 	log.u_bbr.flex3 = hpts->p_prev_slot;
460 	log.u_bbr.flex4 = idx;
461 	log.u_bbr.flex5 = hpts->p_curtick;
462 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
463 	log.u_bbr.flex7 = hpts->p_cpu;
464 	log.u_bbr.flex8 = (uint8_t)from_callout;
465 	log.u_bbr.inflight = slots_to_run;
466 	log.u_bbr.applimited = hpts->overidden_sleep;
467 	log.u_bbr.delivered = hpts->saved_curtick;
468 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
469 	log.u_bbr.epoch = hpts->saved_curslot;
470 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
471 	log.u_bbr.pkts_out = hpts->p_delayed_by;
472 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
473 	log.u_bbr.pacing_gain = hpts->p_cpu;
474 	log.u_bbr.pkt_epoch = hpts->p_runningslot;
475 	log.u_bbr.use_lt_bw = 1;
476 	TCP_LOG_EVENTP(tp, NULL,
477 		       &tp->t_inpcb->inp_socket->so_rcv,
478 		       &tp->t_inpcb->inp_socket->so_snd,
479 		       BBR_LOG_HPTSDIAG, 0,
480 		       0, &log, false, tv);
481 }
482 
483 static void
484 tcp_wakehpts(struct tcp_hpts_entry *hpts)
485 {
486 	HPTS_MTX_ASSERT(hpts);
487 
488 	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
489 		hpts->p_direct_wake = 0;
490 		return;
491 	}
492 	if (hpts->p_hpts_wake_scheduled == 0) {
493 		hpts->p_hpts_wake_scheduled = 1;
494 		swi_sched(hpts->ie_cookie, 0);
495 	}
496 }
497 
498 static void
499 hpts_timeout_swi(void *arg)
500 {
501 	struct tcp_hpts_entry *hpts;
502 
503 	hpts = (struct tcp_hpts_entry *)arg;
504 	swi_sched(hpts->ie_cookie, 0);
505 }
506 
507 static void
508 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
509 {
510 	struct hptsh *hptsh;
511 
512 	INP_WLOCK_ASSERT(inp);
513 	HPTS_MTX_ASSERT(hpts);
514 	MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
515 	MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
516 
517 	hptsh = &hpts->p_hptss[inp->inp_hptsslot];
518 
519 	if (inp->inp_in_hpts == IHPTS_NONE) {
520 		inp->inp_in_hpts = IHPTS_ONQUEUE;
521 		in_pcbref(inp);
522 	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
523 		inp->inp_in_hpts = IHPTS_ONQUEUE;
524 	} else
525 		MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
526 	inp->inp_hpts_gencnt = hptsh->gencnt;
527 
528 	TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
529 	hptsh->count++;
530 	hpts->p_on_queue_cnt++;
531 }
532 
533 static struct tcp_hpts_entry *
534 tcp_hpts_lock(struct inpcb *inp)
535 {
536 	struct tcp_hpts_entry *hpts;
537 
538 	INP_LOCK_ASSERT(inp);
539 
540 	hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
541 	HPTS_LOCK(hpts);
542 
543 	return (hpts);
544 }
545 
546 static void
547 inp_hpts_release(struct inpcb *inp)
548 {
549 	bool released __diagused;
550 
551 	inp->inp_in_hpts = IHPTS_NONE;
552 	released = in_pcbrele_wlocked(inp);
553 	MPASS(released == false);
554 }
555 
556 /*
557  * Called normally with the INP_LOCKED but it
558  * does not matter, the hpts lock is the key
559  * but the lock order allows us to hold the
560  * INP lock and then get the hpts lock.
561  */
562 void
563 tcp_hpts_remove(struct inpcb *inp)
564 {
565 	struct tcp_hpts_entry *hpts;
566 	struct hptsh *hptsh;
567 
568 	INP_WLOCK_ASSERT(inp);
569 
570 	hpts = tcp_hpts_lock(inp);
571 	if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
572 		hptsh = &hpts->p_hptss[inp->inp_hptsslot];
573 		inp->inp_hpts_request = 0;
574 		if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
575 			TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
576 			MPASS(hptsh->count > 0);
577 			hptsh->count--;
578 			MPASS(hpts->p_on_queue_cnt > 0);
579 			hpts->p_on_queue_cnt--;
580 			inp_hpts_release(inp);
581 		} else {
582 			/*
583 			 * tcp_hptsi() now owns the TAILQ head of this inp.
584 			 * Can't TAILQ_REMOVE, just mark it.
585 			 */
586 #ifdef INVARIANTS
587 			struct inpcb *tmp;
588 
589 			TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
590 				MPASS(tmp != inp);
591 #endif
592 			inp->inp_in_hpts = IHPTS_MOVING;
593 			inp->inp_hptsslot = -1;
594 		}
595 	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
596 		/*
597 		 * Handle a special race condition:
598 		 * tcp_hptsi() moves inpcb to detached tailq
599 		 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
600 		 * tcp_hpts_insert() sets slot to a meaningful value
601 		 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
602 		 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
603 		 */
604 		inp->inp_hptsslot = -1;
605 	}
606 	HPTS_UNLOCK(hpts);
607 }
608 
609 bool
610 tcp_in_hpts(struct inpcb *inp)
611 {
612 
613 	return (inp->inp_in_hpts == IHPTS_ONQUEUE);
614 }
615 
616 static inline int
617 hpts_slot(uint32_t wheel_slot, uint32_t plus)
618 {
619 	/*
620 	 * Given a slot on the wheel, what slot
621 	 * is that plus ticks out?
622 	 */
623 	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
624 	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
625 }
626 
627 static inline int
628 tick_to_wheel(uint32_t cts_in_wticks)
629 {
630 	/*
631 	 * Given a timestamp in ticks (so by
632 	 * default to get it to a real time one
633 	 * would multiply by 10.. i.e the number
634 	 * of ticks in a slot) map it to our limited
635 	 * space wheel.
636 	 */
637 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
638 }
639 
640 static inline int
641 hpts_slots_diff(int prev_slot, int slot_now)
642 {
643 	/*
644 	 * Given two slots that are someplace
645 	 * on our wheel. How far are they apart?
646 	 */
647 	if (slot_now > prev_slot)
648 		return (slot_now - prev_slot);
649 	else if (slot_now == prev_slot)
650 		/*
651 		 * Special case, same means we can go all of our
652 		 * wheel less one slot.
653 		 */
654 		return (NUM_OF_HPTSI_SLOTS - 1);
655 	else
656 		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
657 }
658 
659 /*
660  * Given a slot on the wheel that is the current time
661  * mapped to the wheel (wheel_slot), what is the maximum
662  * distance forward that can be obtained without
663  * wrapping past either prev_slot or running_slot
664  * depending on the htps state? Also if passed
665  * a uint32_t *, fill it with the slot location.
666  *
667  * Note if you do not give this function the current
668  * time (that you think it is) mapped to the wheel slot
669  * then the results will not be what you expect and
670  * could lead to invalid inserts.
671  */
672 static inline int32_t
673 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
674 {
675 	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
676 
677 	if ((hpts->p_hpts_active == 1) &&
678 	    (hpts->p_wheel_complete == 0)) {
679 		end_slot = hpts->p_runningslot;
680 		/* Back up one tick */
681 		if (end_slot == 0)
682 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
683 		else
684 			end_slot--;
685 		if (target_slot)
686 			*target_slot = end_slot;
687 	} else {
688 		/*
689 		 * For the case where we are
690 		 * not active, or we have
691 		 * completed the pass over
692 		 * the wheel, we can use the
693 		 * prev tick and subtract one from it. This puts us
694 		 * as far out as possible on the wheel.
695 		 */
696 		end_slot = hpts->p_prev_slot;
697 		if (end_slot == 0)
698 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
699 		else
700 			end_slot--;
701 		if (target_slot)
702 			*target_slot = end_slot;
703 		/*
704 		 * Now we have close to the full wheel left minus the
705 		 * time it has been since the pacer went to sleep. Note
706 		 * that wheel_tick, passed in, should be the current time
707 		 * from the perspective of the caller, mapped to the wheel.
708 		 */
709 		if (hpts->p_prev_slot != wheel_slot)
710 			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
711 		else
712 			dis_to_travel = 1;
713 		/*
714 		 * dis_to_travel in this case is the space from when the
715 		 * pacer stopped (p_prev_slot) and where our wheel_slot
716 		 * is now. To know how many slots we can put it in we
717 		 * subtract from the wheel size. We would not want
718 		 * to place something after p_prev_slot or it will
719 		 * get ran too soon.
720 		 */
721 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
722 	}
723 	/*
724 	 * So how many slots are open between p_runningslot -> p_cur_slot
725 	 * that is what is currently un-available for insertion. Special
726 	 * case when we are at the last slot, this gets 1, so that
727 	 * the answer to how many slots are available is all but 1.
728 	 */
729 	if (hpts->p_runningslot == hpts->p_cur_slot)
730 		dis_to_travel = 1;
731 	else
732 		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
733 	/*
734 	 * How long has the pacer been running?
735 	 */
736 	if (hpts->p_cur_slot != wheel_slot) {
737 		/* The pacer is a bit late */
738 		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
739 	} else {
740 		/* The pacer is right on time, now == pacers start time */
741 		pacer_to_now = 0;
742 	}
743 	/*
744 	 * To get the number left we can insert into we simply
745 	 * subract the distance the pacer has to run from how
746 	 * many slots there are.
747 	 */
748 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
749 	/*
750 	 * Now how many of those we will eat due to the pacer's
751 	 * time (p_cur_slot) of start being behind the
752 	 * real time (wheel_slot)?
753 	 */
754 	if (avail_on_wheel <= pacer_to_now) {
755 		/*
756 		 * Wheel wrap, we can't fit on the wheel, that
757 		 * is unusual the system must be way overloaded!
758 		 * Insert into the assured slot, and return special
759 		 * "0".
760 		 */
761 		counter_u64_add(combined_wheel_wrap, 1);
762 		*target_slot = hpts->p_nxt_slot;
763 		return (0);
764 	} else {
765 		/*
766 		 * We know how many slots are open
767 		 * on the wheel (the reverse of what
768 		 * is left to run. Take away the time
769 		 * the pacer started to now (wheel_slot)
770 		 * and that tells you how many slots are
771 		 * open that can be inserted into that won't
772 		 * be touched by the pacer until later.
773 		 */
774 		return (avail_on_wheel - pacer_to_now);
775 	}
776 }
777 
778 
779 #ifdef INVARIANTS
780 static void
781 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
782 {
783 	/*
784 	 * Sanity checks for the pacer with invariants
785 	 * on insert.
786 	 */
787 	KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
788 		("hpts:%p inp:%p slot:%d > max",
789 		 hpts, inp, inp_hptsslot));
790 	if ((hpts->p_hpts_active) &&
791 	    (hpts->p_wheel_complete == 0)) {
792 		/*
793 		 * If the pacer is processing a arc
794 		 * of the wheel, we need to make
795 		 * sure we are not inserting within
796 		 * that arc.
797 		 */
798 		int distance, yet_to_run;
799 
800 		distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
801 		if (hpts->p_runningslot != hpts->p_cur_slot)
802 			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
803 		else
804 			yet_to_run = 0;	/* processing last slot */
805 		KASSERT(yet_to_run <= distance,
806 			("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
807 			 hpts, inp, inp_hptsslot,
808 			 distance, yet_to_run,
809 			 hpts->p_runningslot, hpts->p_cur_slot));
810 	}
811 }
812 #endif
813 
814 uint32_t
815 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
816 {
817 	struct tcp_hpts_entry *hpts;
818 	struct timeval tv;
819 	uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
820 	int32_t wheel_slot, maxslots;
821 	int cpu;
822 	bool need_wakeup = false;
823 
824 	INP_WLOCK_ASSERT(inp);
825 	MPASS(!tcp_in_hpts(inp));
826 	MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
827 
828 	/*
829 	 * We now return the next-slot the hpts will be on, beyond its
830 	 * current run (if up) or where it was when it stopped if it is
831 	 * sleeping.
832 	 */
833 	hpts = tcp_hpts_lock(inp);
834 	microuptime(&tv);
835 	if (diag) {
836 		memset(diag, 0, sizeof(struct hpts_diag));
837 		diag->p_hpts_active = hpts->p_hpts_active;
838 		diag->p_prev_slot = hpts->p_prev_slot;
839 		diag->p_runningslot = hpts->p_runningslot;
840 		diag->p_nxt_slot = hpts->p_nxt_slot;
841 		diag->p_cur_slot = hpts->p_cur_slot;
842 		diag->p_curtick = hpts->p_curtick;
843 		diag->p_lasttick = hpts->p_lasttick;
844 		diag->slot_req = slot;
845 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
846 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
847 	}
848 	if (slot == 0) {
849 		/* Ok we need to set it on the hpts in the current slot */
850 		inp->inp_hpts_request = 0;
851 		if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
852 			/*
853 			 * A sleeping hpts we want in next slot to run
854 			 * note that in this state p_prev_slot == p_cur_slot
855 			 */
856 			inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
857 			if ((hpts->p_on_min_sleep == 0) &&
858 			    (hpts->p_hpts_active == 0))
859 				need_wakeup = true;
860 		} else
861 			inp->inp_hptsslot = hpts->p_runningslot;
862 		if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
863 			inp_hpts_insert(inp, hpts);
864 		if (need_wakeup) {
865 			/*
866 			 * Activate the hpts if it is sleeping and its
867 			 * timeout is not 1.
868 			 */
869 			hpts->p_direct_wake = 1;
870 			tcp_wakehpts(hpts);
871 		}
872 		slot_on = hpts->p_nxt_slot;
873 		HPTS_UNLOCK(hpts);
874 
875 		return (slot_on);
876 	}
877 	/* Get the current time relative to the wheel */
878 	wheel_cts = tcp_tv_to_hptstick(&tv);
879 	/* Map it onto the wheel */
880 	wheel_slot = tick_to_wheel(wheel_cts);
881 	/* Now what's the max we can place it at? */
882 	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
883 	if (diag) {
884 		diag->wheel_slot = wheel_slot;
885 		diag->maxslots = maxslots;
886 		diag->wheel_cts = wheel_cts;
887 	}
888 	if (maxslots == 0) {
889 		/* The pacer is in a wheel wrap behind, yikes! */
890 		if (slot > 1) {
891 			/*
892 			 * Reduce by 1 to prevent a forever loop in
893 			 * case something else is wrong. Note this
894 			 * probably does not hurt because the pacer
895 			 * if its true is so far behind we will be
896 			 * > 1second late calling anyway.
897 			 */
898 			slot--;
899 		}
900 		inp->inp_hptsslot = last_slot;
901 		inp->inp_hpts_request = slot;
902 	} else 	if (maxslots >= slot) {
903 		/* It all fits on the wheel */
904 		inp->inp_hpts_request = 0;
905 		inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
906 	} else {
907 		/* It does not fit */
908 		inp->inp_hpts_request = slot - maxslots;
909 		inp->inp_hptsslot = last_slot;
910 	}
911 	if (diag) {
912 		diag->slot_remaining = inp->inp_hpts_request;
913 		diag->inp_hptsslot = inp->inp_hptsslot;
914 	}
915 #ifdef INVARIANTS
916 	check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
917 #endif
918 	if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
919 		inp_hpts_insert(inp, hpts);
920 	if ((hpts->p_hpts_active == 0) &&
921 	    (inp->inp_hpts_request == 0) &&
922 	    (hpts->p_on_min_sleep == 0)) {
923 		/*
924 		 * The hpts is sleeping and NOT on a minimum
925 		 * sleep time, we need to figure out where
926 		 * it will wake up at and if we need to reschedule
927 		 * its time-out.
928 		 */
929 		uint32_t have_slept, yet_to_sleep;
930 
931 		/* Now do we need to restart the hpts's timer? */
932 		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
933 		if (have_slept < hpts->p_hpts_sleep_time)
934 			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
935 		else {
936 			/* We are over-due */
937 			yet_to_sleep = 0;
938 			need_wakeup = 1;
939 		}
940 		if (diag) {
941 			diag->have_slept = have_slept;
942 			diag->yet_to_sleep = yet_to_sleep;
943 		}
944 		if (yet_to_sleep &&
945 		    (yet_to_sleep > slot)) {
946 			/*
947 			 * We need to reschedule the hpts's time-out.
948 			 */
949 			hpts->p_hpts_sleep_time = slot;
950 			need_new_to = slot * HPTS_TICKS_PER_SLOT;
951 		}
952 	}
953 	/*
954 	 * Now how far is the hpts sleeping to? if active is 1, its
955 	 * up and ticking we do nothing, otherwise we may need to
956 	 * reschedule its callout if need_new_to is set from above.
957 	 */
958 	if (need_wakeup) {
959 		hpts->p_direct_wake = 1;
960 		tcp_wakehpts(hpts);
961 		if (diag) {
962 			diag->need_new_to = 0;
963 			diag->co_ret = 0xffff0000;
964 		}
965 	} else if (need_new_to) {
966 		int32_t co_ret;
967 		struct timeval tv;
968 		sbintime_t sb;
969 
970 		tv.tv_sec = 0;
971 		tv.tv_usec = 0;
972 		while (need_new_to > HPTS_USEC_IN_SEC) {
973 			tv.tv_sec++;
974 			need_new_to -= HPTS_USEC_IN_SEC;
975 		}
976 		tv.tv_usec = need_new_to;
977 		sb = tvtosbt(tv);
978 		cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
979 		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
980 					      hpts_timeout_swi, hpts, cpu,
981 					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
982 		if (diag) {
983 			diag->need_new_to = need_new_to;
984 			diag->co_ret = co_ret;
985 		}
986 	}
987 	slot_on = hpts->p_nxt_slot;
988 	HPTS_UNLOCK(hpts);
989 
990 	return (slot_on);
991 }
992 
993 uint16_t
994 hpts_random_cpu(struct inpcb *inp){
995 	/*
996 	 * No flow type set distribute the load randomly.
997 	 */
998 	uint16_t cpuid;
999 	uint32_t ran;
1000 
1001 	/*
1002 	 * Shortcut if it is already set. XXXGL: does it happen?
1003 	 */
1004 	if (inp->inp_hpts_cpu_set) {
1005 		return (inp->inp_hpts_cpu);
1006 	}
1007 	/* Nothing set use a random number */
1008 	ran = arc4random();
1009 	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
1010 	return (cpuid);
1011 }
1012 
1013 static uint16_t
1014 hpts_cpuid(struct inpcb *inp, int *failed)
1015 {
1016 	u_int cpuid;
1017 #ifdef NUMA
1018 	struct hpts_domain_info *di;
1019 #endif
1020 
1021 	*failed = 0;
1022 	if (inp->inp_hpts_cpu_set) {
1023 		return (inp->inp_hpts_cpu);
1024 	}
1025 	/*
1026 	 * If we are using the irq cpu set by LRO or
1027 	 * the driver then it overrides all other domains.
1028 	 */
1029 	if (tcp_use_irq_cpu) {
1030 		if (inp->inp_irq_cpu_set == 0) {
1031 			*failed = 1;
1032 			return(0);
1033 		}
1034 		return(inp->inp_irq_cpu);
1035 	}
1036 	/* If one is set the other must be the same */
1037 #ifdef RSS
1038 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1039 	if (cpuid == NETISR_CPUID_NONE)
1040 		return (hpts_random_cpu(inp));
1041 	else
1042 		return (cpuid);
1043 #endif
1044 	/*
1045 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1046 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1047 	 * than defaulting to swi 0.
1048 	 */
1049 	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1050 		counter_u64_add(cpu_uses_random, 1);
1051 		return (hpts_random_cpu(inp));
1052 	}
1053 	/*
1054 	 * Hash to a thread based on the flowid.  If we are using numa,
1055 	 * then restrict the hash to the numa domain where the inp lives.
1056 	 */
1057 #ifdef NUMA
1058 	if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1059 		di = &hpts_domains[inp->inp_numa_domain];
1060 		cpuid = di->cpu[inp->inp_flowid % di->count];
1061 	} else
1062 #endif
1063 		cpuid = inp->inp_flowid % mp_ncpus;
1064 	counter_u64_add(cpu_uses_flowid, 1);
1065 	return (cpuid);
1066 }
1067 
1068 static void
1069 tcp_drop_in_pkts(struct tcpcb *tp)
1070 {
1071 	struct mbuf *m, *n;
1072 
1073 	m = tp->t_in_pkt;
1074 	if (m)
1075 		n = m->m_nextpkt;
1076 	else
1077 		n = NULL;
1078 	tp->t_in_pkt = NULL;
1079 	while (m) {
1080 		m_freem(m);
1081 		m = n;
1082 		if (m)
1083 			n = m->m_nextpkt;
1084 	}
1085 }
1086 
1087 static void
1088 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1089 {
1090 	uint32_t t = 0, i, fnd = 0;
1091 
1092 	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1093 		/*
1094 		 * Find next slot that is occupied and use that to
1095 		 * be the sleep time.
1096 		 */
1097 		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1098 			if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1099 				fnd = 1;
1100 				break;
1101 			}
1102 			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1103 		}
1104 		KASSERT(fnd != 0, ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1105 		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1106 	} else {
1107 		/* No one on the wheel sleep for all but 400 slots or sleep max  */
1108 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1109 	}
1110 }
1111 
1112 static int32_t
1113 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1114 {
1115 	struct tcpcb *tp;
1116 	struct inpcb *inp;
1117 	struct timeval tv;
1118 	uint64_t total_slots_processed = 0;
1119 	int32_t slots_to_run, i, error;
1120 	int32_t paced_cnt = 0;
1121 	int32_t loop_cnt = 0;
1122 	int32_t did_prefetch = 0;
1123 	int32_t prefetch_ninp = 0;
1124 	int32_t prefetch_tp = 0;
1125 	int32_t wrap_loop_cnt = 0;
1126 	int32_t slot_pos_of_endpoint = 0;
1127 	int32_t orig_exit_slot;
1128 	int8_t completed_measure = 0, seen_endpoint = 0;
1129 
1130 	HPTS_MTX_ASSERT(hpts);
1131 	NET_EPOCH_ASSERT();
1132 	/* record previous info for any logging */
1133 	hpts->saved_lasttick = hpts->p_lasttick;
1134 	hpts->saved_curtick = hpts->p_curtick;
1135 	hpts->saved_curslot = hpts->p_cur_slot;
1136 	hpts->saved_prev_slot = hpts->p_prev_slot;
1137 
1138 	hpts->p_lasttick = hpts->p_curtick;
1139 	hpts->p_curtick = tcp_gethptstick(&tv);
1140 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1141 	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1142 	if ((hpts->p_on_queue_cnt == 0) ||
1143 	    (hpts->p_lasttick == hpts->p_curtick)) {
1144 		/*
1145 		 * No time has yet passed,
1146 		 * or nothing to do.
1147 		 */
1148 		hpts->p_prev_slot = hpts->p_cur_slot;
1149 		hpts->p_lasttick = hpts->p_curtick;
1150 		goto no_run;
1151 	}
1152 again:
1153 	hpts->p_wheel_complete = 0;
1154 	HPTS_MTX_ASSERT(hpts);
1155 	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1156 	if (((hpts->p_curtick - hpts->p_lasttick) >
1157 	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1158 	    (hpts->p_on_queue_cnt != 0)) {
1159 		/*
1160 		 * Wheel wrap is occuring, basically we
1161 		 * are behind and the distance between
1162 		 * run's has spread so much it has exceeded
1163 		 * the time on the wheel (1.024 seconds). This
1164 		 * is ugly and should NOT be happening. We
1165 		 * need to run the entire wheel. We last processed
1166 		 * p_prev_slot, so that needs to be the last slot
1167 		 * we run. The next slot after that should be our
1168 		 * reserved first slot for new, and then starts
1169 		 * the running postion. Now the problem is the
1170 		 * reserved "not to yet" place does not exist
1171 		 * and there may be inp's in there that need
1172 		 * running. We can merge those into the
1173 		 * first slot at the head.
1174 		 */
1175 		wrap_loop_cnt++;
1176 		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1177 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1178 		/*
1179 		 * Adjust p_cur_slot to be where we are starting from
1180 		 * hopefully we will catch up (fat chance if something
1181 		 * is broken this bad :( )
1182 		 */
1183 		hpts->p_cur_slot = hpts->p_prev_slot;
1184 		/*
1185 		 * The next slot has guys to run too, and that would
1186 		 * be where we would normally start, lets move them into
1187 		 * the next slot (p_prev_slot + 2) so that we will
1188 		 * run them, the extra 10usecs of late (by being
1189 		 * put behind) does not really matter in this situation.
1190 		 */
1191 		TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1192 		    inp_hpts) {
1193 			MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
1194 			MPASS(inp->inp_hpts_gencnt ==
1195 			    hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1196 			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1197 
1198 			/*
1199 			 * Update gencnt and nextslot accordingly to match
1200 			 * the new location. This is safe since it takes both
1201 			 * the INP lock and the pacer mutex to change the
1202 			 * inp_hptsslot and inp_hpts_gencnt.
1203 			 */
1204 			inp->inp_hpts_gencnt =
1205 			    hpts->p_hptss[hpts->p_runningslot].gencnt;
1206 			inp->inp_hptsslot = hpts->p_runningslot;
1207 		}
1208 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1209 		    &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
1210 		hpts->p_hptss[hpts->p_runningslot].count +=
1211 		    hpts->p_hptss[hpts->p_nxt_slot].count;
1212 		hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1213 		hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1214 		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1215 		counter_u64_add(wheel_wrap, 1);
1216 	} else {
1217 		/*
1218 		 * Nxt slot is always one after p_runningslot though
1219 		 * its not used usually unless we are doing wheel wrap.
1220 		 */
1221 		hpts->p_nxt_slot = hpts->p_prev_slot;
1222 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1223 	}
1224 	if (hpts->p_on_queue_cnt == 0) {
1225 		goto no_one;
1226 	}
1227 	for (i = 0; i < slots_to_run; i++) {
1228 		struct inpcb *inp, *ninp;
1229 		TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
1230 		struct hptsh *hptsh;
1231 		uint32_t runningslot;
1232 
1233 		/*
1234 		 * Calculate our delay, if there are no extra ticks there
1235 		 * was not any (i.e. if slots_to_run == 1, no delay).
1236 		 */
1237 		hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1238 		    HPTS_TICKS_PER_SLOT;
1239 
1240 		runningslot = hpts->p_runningslot;
1241 		hptsh = &hpts->p_hptss[runningslot];
1242 		TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
1243 		hpts->p_on_queue_cnt -= hptsh->count;
1244 		hptsh->count = 0;
1245 		hptsh->gencnt++;
1246 
1247 		HPTS_UNLOCK(hpts);
1248 
1249 		TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
1250 			bool set_cpu;
1251 
1252 			if (ninp != NULL) {
1253 				/* We prefetch the next inp if possible */
1254 				kern_prefetch(ninp, &prefetch_ninp);
1255 				prefetch_ninp = 1;
1256 			}
1257 
1258 			/* For debugging */
1259 			if (seen_endpoint == 0) {
1260 				seen_endpoint = 1;
1261 				orig_exit_slot = slot_pos_of_endpoint =
1262 				    runningslot;
1263 			} else if (completed_measure == 0) {
1264 				/* Record the new position */
1265 				orig_exit_slot = runningslot;
1266 			}
1267 			total_slots_processed++;
1268 			paced_cnt++;
1269 
1270 			INP_WLOCK(inp);
1271 			if (inp->inp_hpts_cpu_set == 0) {
1272 				set_cpu = true;
1273 			} else {
1274 				set_cpu = false;
1275 			}
1276 
1277 			if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
1278 				if (inp->inp_hptsslot == -1) {
1279 					inp->inp_in_hpts = IHPTS_NONE;
1280 					if (in_pcbrele_wlocked(inp) == false)
1281 						INP_WUNLOCK(inp);
1282 				} else {
1283 					HPTS_LOCK(hpts);
1284 					inp_hpts_insert(inp, hpts);
1285 					HPTS_UNLOCK(hpts);
1286 					INP_WUNLOCK(inp);
1287 				}
1288 				continue;
1289 			}
1290 
1291 			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1292 			MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
1293 			KASSERT(runningslot == inp->inp_hptsslot,
1294 				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1295 				 hpts, inp, runningslot, inp->inp_hptsslot));
1296 
1297 			if (inp->inp_hpts_request) {
1298 				/*
1299 				 * This guy is deferred out further in time
1300 				 * then our wheel had available on it.
1301 				 * Push him back on the wheel or run it
1302 				 * depending.
1303 				 */
1304 				uint32_t maxslots, last_slot, remaining_slots;
1305 
1306 				remaining_slots = slots_to_run - (i + 1);
1307 				if (inp->inp_hpts_request > remaining_slots) {
1308 					HPTS_LOCK(hpts);
1309 					/*
1310 					 * How far out can we go?
1311 					 */
1312 					maxslots = max_slots_available(hpts,
1313 					    hpts->p_cur_slot, &last_slot);
1314 					if (maxslots >= inp->inp_hpts_request) {
1315 						/* We can place it finally to
1316 						 * be processed.  */
1317 						inp->inp_hptsslot = hpts_slot(
1318 						    hpts->p_runningslot,
1319 						    inp->inp_hpts_request);
1320 						inp->inp_hpts_request = 0;
1321 					} else {
1322 						/* Work off some more time */
1323 						inp->inp_hptsslot = last_slot;
1324 						inp->inp_hpts_request -=
1325 						    maxslots;
1326 					}
1327 					inp_hpts_insert(inp, hpts);
1328 					HPTS_UNLOCK(hpts);
1329 					INP_WUNLOCK(inp);
1330 					continue;
1331 				}
1332 				inp->inp_hpts_request = 0;
1333 				/* Fall through we will so do it now */
1334 			}
1335 
1336 			inp_hpts_release(inp);
1337 			tp = intotcpcb(inp);
1338 			MPASS(tp);
1339 			if (set_cpu) {
1340 				/*
1341 				 * Setup so the next time we will move to
1342 				 * the right CPU. This should be a rare
1343 				 * event. It will sometimes happens when we
1344 				 * are the client side (usually not the
1345 				 * server). Somehow tcp_output() gets called
1346 				 * before the tcp_do_segment() sets the
1347 				 * intial state. This means the r_cpu and
1348 				 * r_hpts_cpu is 0. We get on the hpts, and
1349 				 * then tcp_input() gets called setting up
1350 				 * the r_cpu to the correct value. The hpts
1351 				 * goes off and sees the mis-match. We
1352 				 * simply correct it here and the CPU will
1353 				 * switch to the new hpts nextime the tcb
1354 				 * gets added to the the hpts (not this one)
1355 				 * :-)
1356 				 */
1357 				tcp_set_hpts(inp);
1358 			}
1359 			CURVNET_SET(inp->inp_vnet);
1360 			/* Lets do any logging that we might want to */
1361 			if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1362 				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1363 			}
1364 
1365 			if (tp->t_fb_ptr != NULL) {
1366 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1367 				did_prefetch = 1;
1368 			}
1369 			if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1370 				error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1371 				if (error) {
1372 					/* The input killed the connection */
1373 					goto skip_pacing;
1374 				}
1375 			}
1376 			inp->inp_hpts_calls = 1;
1377 			error = tcp_output(tp);
1378 			if (error < 0)
1379 				goto skip_pacing;
1380 			inp->inp_hpts_calls = 0;
1381 			if (ninp && ninp->inp_ppcb) {
1382 				/*
1383 				 * If we have a nxt inp, see if we can
1384 				 * prefetch its ppcb. Note this may seem
1385 				 * "risky" since we have no locks (other
1386 				 * than the previous inp) and there no
1387 				 * assurance that ninp was not pulled while
1388 				 * we were processing inp and freed. If this
1389 				 * occured it could mean that either:
1390 				 *
1391 				 * a) Its NULL (which is fine we won't go
1392 				 * here) <or> b) Its valid (which is cool we
1393 				 * will prefetch it) <or> c) The inp got
1394 				 * freed back to the slab which was
1395 				 * reallocated. Then the piece of memory was
1396 				 * re-used and something else (not an
1397 				 * address) is in inp_ppcb. If that occurs
1398 				 * we don't crash, but take a TLB shootdown
1399 				 * performance hit (same as if it was NULL
1400 				 * and we tried to pre-fetch it).
1401 				 *
1402 				 * Considering that the likelyhood of <c> is
1403 				 * quite rare we will take a risk on doing
1404 				 * this. If performance drops after testing
1405 				 * we can always take this out. NB: the
1406 				 * kern_prefetch on amd64 actually has
1407 				 * protection against a bad address now via
1408 				 * the DMAP_() tests. This will prevent the
1409 				 * TLB hit, and instead if <c> occurs just
1410 				 * cause us to load cache with a useless
1411 				 * address (to us).
1412 				 */
1413 				kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1414 				prefetch_tp = 1;
1415 			}
1416 			INP_WUNLOCK(inp);
1417 		skip_pacing:
1418 			CURVNET_RESTORE();
1419 		}
1420 		if (seen_endpoint) {
1421 			/*
1422 			 * We now have a accurate distance between
1423 			 * slot_pos_of_endpoint <-> orig_exit_slot
1424 			 * to tell us how late we were, orig_exit_slot
1425 			 * is where we calculated the end of our cycle to
1426 			 * be when we first entered.
1427 			 */
1428 			completed_measure = 1;
1429 		}
1430 		HPTS_LOCK(hpts);
1431 		hpts->p_runningslot++;
1432 		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1433 			hpts->p_runningslot = 0;
1434 		}
1435 	}
1436 no_one:
1437 	HPTS_MTX_ASSERT(hpts);
1438 	hpts->p_delayed_by = 0;
1439 	/*
1440 	 * Check to see if we took an excess amount of time and need to run
1441 	 * more ticks (if we did not hit eno-bufs).
1442 	 */
1443 	hpts->p_prev_slot = hpts->p_cur_slot;
1444 	hpts->p_lasttick = hpts->p_curtick;
1445 	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1446 		/*
1447 		 * Something is serious slow we have
1448 		 * looped through processing the wheel
1449 		 * and by the time we cleared the
1450 		 * needs to run max_pacer_loops time
1451 		 * we still needed to run. That means
1452 		 * the system is hopelessly behind and
1453 		 * can never catch up :(
1454 		 *
1455 		 * We will just lie to this thread
1456 		 * and let it thing p_curtick is
1457 		 * correct. When it next awakens
1458 		 * it will find itself further behind.
1459 		 */
1460 		if (from_callout)
1461 			counter_u64_add(hpts_hopelessly_behind, 1);
1462 		goto no_run;
1463 	}
1464 	hpts->p_curtick = tcp_gethptstick(&tv);
1465 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1466 	if (seen_endpoint == 0) {
1467 		/* We saw no endpoint but we may be looping */
1468 		orig_exit_slot = hpts->p_cur_slot;
1469 	}
1470 	if ((wrap_loop_cnt < 2) &&
1471 	    (hpts->p_lasttick != hpts->p_curtick)) {
1472 		counter_u64_add(hpts_loops, 1);
1473 		loop_cnt++;
1474 		goto again;
1475 	}
1476 no_run:
1477 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1478 	/*
1479 	 * Set flag to tell that we are done for
1480 	 * any slot input that happens during
1481 	 * input.
1482 	 */
1483 	hpts->p_wheel_complete = 1;
1484 	/*
1485 	 * Now did we spend too long running input and need to run more ticks?
1486 	 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1487 	 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1488 	 * is greater than 2, then the condtion most likely are *not* true.
1489 	 * Also if we are called not from the callout, we don't run the wheel
1490 	 * multiple times so the slots may not align either.
1491 	 */
1492 	KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1493 		 (wrap_loop_cnt >= 2) || (from_callout == 0)),
1494 		("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1495 		 hpts->p_prev_slot, hpts->p_cur_slot));
1496 	KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1497 		 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1498 		("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1499 		 hpts->p_lasttick, hpts->p_curtick));
1500 	if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1501 		hpts->p_curtick = tcp_gethptstick(&tv);
1502 		counter_u64_add(hpts_loops, 1);
1503 		hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1504 		goto again;
1505 	}
1506 
1507 	if (from_callout){
1508 		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1509 	}
1510 	if (seen_endpoint)
1511 		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1512 	else
1513 		return (0);
1514 }
1515 
1516 void
1517 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1518 {
1519 	struct tcp_hpts_entry *hpts;
1520 	int failed;
1521 
1522 	INP_WLOCK_ASSERT(inp);
1523 	hpts = tcp_hpts_lock(inp);
1524 	if ((inp->inp_in_hpts == 0) &&
1525 	    (inp->inp_hpts_cpu_set == 0)) {
1526 		inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1527 		if (failed == 0)
1528 			inp->inp_hpts_cpu_set = 1;
1529 	}
1530 	mtx_unlock(&hpts->p_mtx);
1531 }
1532 
1533 static void
1534 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1535 {
1536 	int ticks_ran;
1537 
1538 	if (hpts->p_hpts_active) {
1539 		/* Already active */
1540 		return;
1541 	}
1542 	if (mtx_trylock(&hpts->p_mtx) == 0) {
1543 		/* Someone else got the lock */
1544 		return;
1545 	}
1546 	if (hpts->p_hpts_active)
1547 		goto out_with_mtx;
1548 	hpts->syscall_cnt++;
1549 	counter_u64_add(hpts_direct_call, 1);
1550 	hpts->p_hpts_active = 1;
1551 	ticks_ran = tcp_hptsi(hpts, 0);
1552 	/* We may want to adjust the sleep values here */
1553 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1554 		if (ticks_ran > ticks_indicate_less_sleep) {
1555 			struct timeval tv;
1556 			sbintime_t sb;
1557 			int cpu;
1558 
1559 			hpts->p_mysleep.tv_usec /= 2;
1560 			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1561 				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1562 			/* Reschedule with new to value */
1563 			tcp_hpts_set_max_sleep(hpts, 0);
1564 			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1565 			/* Validate its in the right ranges */
1566 			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1567 				hpts->overidden_sleep = tv.tv_usec;
1568 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1569 			} else if (tv.tv_usec > dynamic_max_sleep) {
1570 				/* Lets not let sleep get above this value */
1571 				hpts->overidden_sleep = tv.tv_usec;
1572 				tv.tv_usec = dynamic_max_sleep;
1573 			}
1574 			/*
1575 			 * In this mode the timer is a backstop to
1576 			 * all the userret/lro_flushes so we use
1577 			 * the dynamic value and set the on_min_sleep
1578 			 * flag so we will not be awoken.
1579 			 */
1580 			sb = tvtosbt(tv);
1581 			cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
1582 			/* Store off to make visible the actual sleep time */
1583 			hpts->sleeping = tv.tv_usec;
1584 			callout_reset_sbt_on(&hpts->co, sb, 0,
1585 					     hpts_timeout_swi, hpts, cpu,
1586 					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1587 		} else if (ticks_ran < ticks_indicate_more_sleep) {
1588 			/* For the further sleep, don't reschedule  hpts */
1589 			hpts->p_mysleep.tv_usec *= 2;
1590 			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1591 				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1592 		}
1593 		hpts->p_on_min_sleep = 1;
1594 	}
1595 	hpts->p_hpts_active = 0;
1596 out_with_mtx:
1597 	HPTS_MTX_ASSERT(hpts);
1598 	mtx_unlock(&hpts->p_mtx);
1599 }
1600 
1601 static struct tcp_hpts_entry *
1602 tcp_choose_hpts_to_run()
1603 {
1604 	int i, oldest_idx;
1605 	uint32_t cts, time_since_ran, calc;
1606 
1607 	if ((hpts_uses_oldest == 0) ||
1608 	    ((hpts_uses_oldest > 1) &&
1609 	     (tcp_pace.rp_ent[(tcp_pace.rp_num_hptss-1)]->p_on_queue_cnt >= hpts_uses_oldest))) {
1610 		/*
1611 		 * We have either disabled the feature (0), or
1612 		 * we have crossed over the oldest threshold on the
1613 		 * last hpts. We use the last one for simplification
1614 		 * since we don't want to use the first one (it may
1615 		 * have starting connections that have not settled
1616 		 * on the cpu yet).
1617 		 */
1618 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1619 	}
1620 	/* Lets find the oldest hpts to attempt to run */
1621 	cts = tcp_get_usecs(NULL);
1622 	time_since_ran = 0;
1623 	oldest_idx = -1;
1624 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1625 		if (TSTMP_GT(cts, cts_last_ran[i]))
1626 			calc = cts - cts_last_ran[i];
1627 		else
1628 			calc = 0;
1629 		if (calc > time_since_ran) {
1630 			oldest_idx = i;
1631 			time_since_ran = calc;
1632 		}
1633 	}
1634 	if (oldest_idx >= 0)
1635 		return(tcp_pace.rp_ent[oldest_idx]);
1636 	else
1637 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1638 }
1639 
1640 
1641 void
1642 tcp_run_hpts(void)
1643 {
1644 	static struct tcp_hpts_entry *hpts;
1645 	struct epoch_tracker et;
1646 
1647 	NET_EPOCH_ENTER(et);
1648 	hpts = tcp_choose_hpts_to_run();
1649 	__tcp_run_hpts(hpts);
1650 	NET_EPOCH_EXIT(et);
1651 }
1652 
1653 
1654 static void
1655 tcp_hpts_thread(void *ctx)
1656 {
1657 	struct tcp_hpts_entry *hpts;
1658 	struct epoch_tracker et;
1659 	struct timeval tv;
1660 	sbintime_t sb;
1661 	int cpu, ticks_ran;
1662 
1663 	hpts = (struct tcp_hpts_entry *)ctx;
1664 	mtx_lock(&hpts->p_mtx);
1665 	if (hpts->p_direct_wake) {
1666 		/* Signaled by input or output with low occupancy count. */
1667 		callout_stop(&hpts->co);
1668 		counter_u64_add(hpts_direct_awakening, 1);
1669 	} else {
1670 		/* Timed out, the normal case. */
1671 		counter_u64_add(hpts_wake_timeout, 1);
1672 		if (callout_pending(&hpts->co) ||
1673 		    !callout_active(&hpts->co)) {
1674 			mtx_unlock(&hpts->p_mtx);
1675 			return;
1676 		}
1677 	}
1678 	callout_deactivate(&hpts->co);
1679 	hpts->p_hpts_wake_scheduled = 0;
1680 	NET_EPOCH_ENTER(et);
1681 	if (hpts->p_hpts_active) {
1682 		/*
1683 		 * We are active already. This means that a syscall
1684 		 * trap or LRO is running in behalf of hpts. In that case
1685 		 * we need to double our timeout since there seems to be
1686 		 * enough activity in the system that we don't need to
1687 		 * run as often (if we were not directly woken).
1688 		 */
1689 		if (hpts->p_direct_wake == 0) {
1690 			counter_u64_add(hpts_back_tosleep, 1);
1691 			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1692 				hpts->p_mysleep.tv_usec *= 2;
1693 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1694 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1695 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1696 				hpts->p_on_min_sleep = 1;
1697 			} else {
1698 				/*
1699 				 * Here we have low count on the wheel, but
1700 				 * somehow we still collided with one of the
1701 				 * connections. Lets go back to sleep for a
1702 				 * min sleep time, but clear the flag so we
1703 				 * can be awoken by insert.
1704 				 */
1705 				hpts->p_on_min_sleep = 0;
1706 				tv.tv_usec = tcp_min_hptsi_time;
1707 			}
1708 		} else {
1709 			/*
1710 			 * Directly woken most likely to reset the
1711 			 * callout time.
1712 			 */
1713 			tv.tv_sec = 0;
1714 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1715 		}
1716 		goto back_to_sleep;
1717 	}
1718 	hpts->sleeping = 0;
1719 	hpts->p_hpts_active = 1;
1720 	ticks_ran = tcp_hptsi(hpts, 1);
1721 	tv.tv_sec = 0;
1722 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1723 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1724 		if(hpts->p_direct_wake == 0) {
1725 			/*
1726 			 * Only adjust sleep time if we were
1727 			 * called from the callout i.e. direct_wake == 0.
1728 			 */
1729 			if (ticks_ran < ticks_indicate_more_sleep) {
1730 				hpts->p_mysleep.tv_usec *= 2;
1731 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1732 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1733 			} else if (ticks_ran > ticks_indicate_less_sleep) {
1734 				hpts->p_mysleep.tv_usec /= 2;
1735 				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1736 					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1737 			}
1738 		}
1739 		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1740 			hpts->overidden_sleep = tv.tv_usec;
1741 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1742 		} else if (tv.tv_usec > dynamic_max_sleep) {
1743 			/* Lets not let sleep get above this value */
1744 			hpts->overidden_sleep = tv.tv_usec;
1745 			tv.tv_usec = dynamic_max_sleep;
1746 		}
1747 		/*
1748 		 * In this mode the timer is a backstop to
1749 		 * all the userret/lro_flushes so we use
1750 		 * the dynamic value and set the on_min_sleep
1751 		 * flag so we will not be awoken.
1752 		 */
1753 		hpts->p_on_min_sleep = 1;
1754 	} else if (hpts->p_on_queue_cnt == 0)  {
1755 		/*
1756 		 * No one on the wheel, please wake us up
1757 		 * if you insert on the wheel.
1758 		 */
1759 		hpts->p_on_min_sleep = 0;
1760 		hpts->overidden_sleep = 0;
1761 	} else {
1762 		/*
1763 		 * We hit here when we have a low number of
1764 		 * clients on the wheel (our else clause).
1765 		 * We may need to go on min sleep, if we set
1766 		 * the flag we will not be awoken if someone
1767 		 * is inserted ahead of us. Clearing the flag
1768 		 * means we can be awoken. This is "old mode"
1769 		 * where the timer is what runs hpts mainly.
1770 		 */
1771 		if (tv.tv_usec < tcp_min_hptsi_time) {
1772 			/*
1773 			 * Yes on min sleep, which means
1774 			 * we cannot be awoken.
1775 			 */
1776 			hpts->overidden_sleep = tv.tv_usec;
1777 			tv.tv_usec = tcp_min_hptsi_time;
1778 			hpts->p_on_min_sleep = 1;
1779 		} else {
1780 			/* Clear the min sleep flag */
1781 			hpts->overidden_sleep = 0;
1782 			hpts->p_on_min_sleep = 0;
1783 		}
1784 	}
1785 	HPTS_MTX_ASSERT(hpts);
1786 	hpts->p_hpts_active = 0;
1787 back_to_sleep:
1788 	hpts->p_direct_wake = 0;
1789 	sb = tvtosbt(tv);
1790 	cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
1791 	/* Store off to make visible the actual sleep time */
1792 	hpts->sleeping = tv.tv_usec;
1793 	callout_reset_sbt_on(&hpts->co, sb, 0,
1794 			     hpts_timeout_swi, hpts, cpu,
1795 			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1796 	NET_EPOCH_EXIT(et);
1797 	mtx_unlock(&hpts->p_mtx);
1798 }
1799 
1800 #undef	timersub
1801 
1802 static void
1803 tcp_init_hptsi(void *st)
1804 {
1805 	int32_t i, j, error, bound = 0, created = 0;
1806 	size_t sz, asz;
1807 	struct timeval tv;
1808 	sbintime_t sb;
1809 	struct tcp_hpts_entry *hpts;
1810 	struct pcpu *pc;
1811 	cpuset_t cs;
1812 	char unit[16];
1813 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1814 	int count, domain, cpu;
1815 
1816 	tcp_pace.rp_num_hptss = ncpus;
1817 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1818 	hpts_loops = counter_u64_alloc(M_WAITOK);
1819 	back_tosleep = counter_u64_alloc(M_WAITOK);
1820 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1821 	wheel_wrap = counter_u64_alloc(M_WAITOK);
1822 	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1823 	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1824 	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1825 	hpts_direct_call = counter_u64_alloc(M_WAITOK);
1826 	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1827 	cpu_uses_random = counter_u64_alloc(M_WAITOK);
1828 
1829 
1830 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1831 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1832 	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1833 	cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1834 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1835 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1836 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1837 		    M_TCPHPTS, M_WAITOK | M_ZERO);
1838 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
1839 		    M_TCPHPTS, M_WAITOK);
1840 		hpts = tcp_pace.rp_ent[i];
1841 		/*
1842 		 * Init all the hpts structures that are not specifically
1843 		 * zero'd by the allocations. Also lets attach them to the
1844 		 * appropriate sysctl block as well.
1845 		 */
1846 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1847 		    "hpts", MTX_DEF | MTX_DUPOK);
1848 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1849 			TAILQ_INIT(&hpts->p_hptss[j].head);
1850 			hpts->p_hptss[j].count = 0;
1851 			hpts->p_hptss[j].gencnt = 0;
1852 		}
1853 		sysctl_ctx_init(&hpts->hpts_ctx);
1854 		sprintf(unit, "%d", i);
1855 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1856 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1857 		    OID_AUTO,
1858 		    unit,
1859 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1860 		    "");
1861 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1862 		    SYSCTL_CHILDREN(hpts->hpts_root),
1863 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1864 		    &hpts->p_on_queue_cnt, 0,
1865 		    "Count TCB's awaiting output processing");
1866 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1867 		    SYSCTL_CHILDREN(hpts->hpts_root),
1868 		    OID_AUTO, "active", CTLFLAG_RD,
1869 		    &hpts->p_hpts_active, 0,
1870 		    "Is the hpts active");
1871 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1872 		    SYSCTL_CHILDREN(hpts->hpts_root),
1873 		    OID_AUTO, "curslot", CTLFLAG_RD,
1874 		    &hpts->p_cur_slot, 0,
1875 		    "What the current running pacers goal");
1876 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1877 		    SYSCTL_CHILDREN(hpts->hpts_root),
1878 		    OID_AUTO, "runtick", CTLFLAG_RD,
1879 		    &hpts->p_runningslot, 0,
1880 		    "What the running pacers current slot is");
1881 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1882 		    SYSCTL_CHILDREN(hpts->hpts_root),
1883 		    OID_AUTO, "curtick", CTLFLAG_RD,
1884 		    &hpts->p_curtick, 0,
1885 		    "What the running pacers last tick mapped to the wheel was");
1886 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1887 		    SYSCTL_CHILDREN(hpts->hpts_root),
1888 		    OID_AUTO, "lastran", CTLFLAG_RD,
1889 		    &cts_last_ran[i], 0,
1890 		    "The last usec tick that this hpts ran");
1891 		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1892 		    SYSCTL_CHILDREN(hpts->hpts_root),
1893 		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1894 		    &hpts->p_mysleep.tv_usec,
1895 		    "What the running pacers is using for p_mysleep.tv_usec");
1896 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1897 		    SYSCTL_CHILDREN(hpts->hpts_root),
1898 		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
1899 		    &hpts->sleeping, 0,
1900 		    "What the running pacers is actually sleeping for");
1901 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1902 		    SYSCTL_CHILDREN(hpts->hpts_root),
1903 		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1904 		    &hpts->syscall_cnt, 0,
1905 		    "How many times we had syscalls on this hpts");
1906 
1907 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1908 		hpts->p_num = i;
1909 		hpts->p_curtick = tcp_gethptstick(&tv);
1910 		cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1911 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1912 		hpts->p_cpu = 0xffff;
1913 		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1914 		callout_init(&hpts->co, 1);
1915 	}
1916 
1917 	/* Don't try to bind to NUMA domains if we don't have any */
1918 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1919 		tcp_bind_threads = 0;
1920 
1921 	/*
1922 	 * Now lets start ithreads to handle the hptss.
1923 	 */
1924 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1925 		hpts = tcp_pace.rp_ent[i];
1926 		hpts->p_cpu = i;
1927 		error = swi_add(&hpts->ie, "hpts",
1928 		    tcp_hpts_thread, (void *)hpts,
1929 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1930 		KASSERT(error == 0,
1931 			("Can't add hpts:%p i:%d err:%d",
1932 			 hpts, i, error));
1933 		created++;
1934 		hpts->p_mysleep.tv_sec = 0;
1935 		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1936 		if (tcp_bind_threads == 1) {
1937 			if (intr_event_bind(hpts->ie, i) == 0)
1938 				bound++;
1939 		} else if (tcp_bind_threads == 2) {
1940 			pc = pcpu_find(i);
1941 			domain = pc->pc_domain;
1942 			CPU_COPY(&cpuset_domain[domain], &cs);
1943 			if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
1944 			    == 0) {
1945 				bound++;
1946 				count = hpts_domains[domain].count;
1947 				hpts_domains[domain].cpu[count] = i;
1948 				hpts_domains[domain].count++;
1949 			}
1950 		}
1951 		tv.tv_sec = 0;
1952 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1953 		hpts->sleeping = tv.tv_usec;
1954 		sb = tvtosbt(tv);
1955 		cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
1956 		callout_reset_sbt_on(&hpts->co, sb, 0,
1957 				     hpts_timeout_swi, hpts, cpu,
1958 				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1959 	}
1960 	/*
1961 	 * If we somehow have an empty domain, fall back to choosing
1962 	 * among all htps threads.
1963 	 */
1964 	for (i = 0; i < vm_ndomains; i++) {
1965 		if (hpts_domains[i].count == 0) {
1966 			tcp_bind_threads = 0;
1967 			break;
1968 		}
1969 	}
1970 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
1971 	    created, bound,
1972 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
1973 #ifdef INVARIANTS
1974 	printf("HPTS is in INVARIANT mode!!\n");
1975 #endif
1976 }
1977 
1978 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
1979 MODULE_VERSION(tcphpts, 1);
1980