1 /*-
2  * Copyright (c) 2016-2018
3  *	Netflix Inc.
4  *      All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 /*
29  * Author: Randall Stewart <rrs@netflix.com>
30  * This work is based on the ACM Queue paper
31  * BBR - Congestion Based Congestion Control
32  * and also numerous discussions with Neal, Yuchung and Van.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_ratelimit.h"
43 #include "opt_kern_tls.h"
44 #include <sys/param.h>
45 #include <sys/module.h>
46 #include <sys/kernel.h>
47 #ifdef TCP_HHOOK
48 #include <sys/hhook.h>
49 #endif
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/proc.h>
53 #include <sys/qmath.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #ifdef KERN_TLS
57 #include <sys/ktls.h>
58 #endif
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 #include <sys/tree.h>
62 #ifdef NETFLIX_STATS
63 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
64 #endif
65 #include <sys/refcount.h>
66 #include <sys/queue.h>
67 #include <sys/smp.h>
68 #include <sys/kthread.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/tim_filter.h>
72 #include <sys/time.h>
73 #include <vm/uma.h>
74 #include <sys/kern_prefetch.h>
75 
76 #include <net/route.h>
77 #include <net/vnet.h>
78 #include <net/ethernet.h>
79 #include <net/bpf.h>
80 
81 #define TCPSTATES		/* for logging */
82 
83 #include <netinet/in.h>
84 #include <netinet/in_kdtrace.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
88 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
89 #include <netinet/ip_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet6/in6_pcb.h>
92 #include <netinet6/ip6_var.h>
93 #define	TCPOUTFLAGS
94 #include <netinet/tcp.h>
95 #include <netinet/tcp_fsm.h>
96 #include <netinet/tcp_seq.h>
97 #include <netinet/tcp_timer.h>
98 #include <netinet/tcp_var.h>
99 #include <netinet/tcpip.h>
100 #include <netinet/tcp_hpts.h>
101 #include <netinet/cc/cc.h>
102 #include <netinet/tcp_log_buf.h>
103 #ifdef TCPDEBUG
104 #include <netinet/tcp_debug.h>
105 #endif				/* TCPDEBUG */
106 #ifdef TCP_OFFLOAD
107 #include <netinet/tcp_offload.h>
108 #endif
109 #ifdef INET6
110 #include <netinet6/tcp6_var.h>
111 #endif
112 #include <netinet/tcp_fastopen.h>
113 
114 #include <netipsec/ipsec_support.h>
115 #include <net/if.h>
116 #include <net/if_var.h>
117 
118 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
119 #include <netipsec/ipsec.h>
120 #include <netipsec/ipsec6.h>
121 #endif				/* IPSEC */
122 
123 #include <netinet/udp.h>
124 #include <netinet/udp_var.h>
125 #include <machine/in_cksum.h>
126 
127 #ifdef MAC
128 #include <security/mac/mac_framework.h>
129 #endif
130 #include "rack_bbr_common.h"
131 
132 /*
133  * Common TCP Functions - These are shared by borth
134  * rack and BBR.
135  */
136 
137 
138 #ifdef KERN_TLS
139 uint32_t
140 ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
141 {
142 	struct ktls_session *tls;
143 	uint32_t len;
144 
145 again:
146 	tls = so->so_snd.sb_tls_info;
147 	len = tls->params.max_frame_len;         /* max tls payload */
148 	len += tls->params.tls_hlen;      /* tls header len  */
149 	len += tls->params.tls_tlen;      /* tls trailer len */
150 	if ((len * 4) > rwnd) {
151 		/*
152 		 * Stroke this will suck counter and what
153 		 * else should we do Drew? From the
154 		 * TCP perspective I am not sure
155 		 * what should be done...
156 		 */
157 		if (tls->params.max_frame_len > 4096) {
158 			tls->params.max_frame_len -= 4096;
159 			if (tls->params.max_frame_len < 4096)
160 				tls->params.max_frame_len = 4096;
161 			goto again;
162 		}
163 	}
164 	return (len);
165 }
166 #endif
167 
168 
169 /*
170  * The function ctf_process_inbound_raw() is used by
171  * transport developers to do the steps needed to
172  * support MBUF Queuing i.e. the flags in
173  * inp->inp_flags2:
174  *
175  * - INP_SUPPORTS_MBUFQ
176  * - INP_MBUF_QUEUE_READY
177  * - INP_DONT_SACK_QUEUE
178  *
179  * These flags help control how LRO will deliver
180  * packets to the transport. You first set in inp_flags2
181  * the INP_SUPPORTS_MBUFQ to tell the LRO code that you
182  * will gladly take a queue of packets instead of a compressed
183  * single packet. You also set in your t_fb pointer the
184  * tfb_do_queued_segments to point to ctf_process_inbound_raw.
185  *
186  * This then gets you lists of inbound ACK's/Data instead
187  * of a condensed compressed ACK/DATA packet. Why would you
188  * want that? This will get you access to all the arrival
189  * times of at least LRO and possibly at the Hardware (if
190  * the interface card supports that) of the actual ACK/DATA.
191  * In some transport designs this is important since knowing
192  * the actual time we got the packet is useful information.
193  *
194  * Now there are some interesting Caveats that the transport
195  * designer needs to take into account when using this feature.
196  *
197  * 1) It is used with HPTS and pacing, when the pacing timer
198  *    for output calls it will first call the input.
199  * 2) When you set INP_MBUF_QUEUE_READY this tells LRO
200  *    queue normal packets, I am busy pacing out data and
201  *    will process the queued packets before my tfb_tcp_output
202  *    call from pacing. If a non-normal packet arrives, (e.g. sack)
203  *    you will be awoken immediately.
204  * 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
205  *    be awoken if a SACK has arrived. You would do this when
206  *    you were not only running a pacing for output timer
207  *    but a Rack timer as well i.e. you know you are in recovery
208  *    and are in the process (via the timers) of dealing with
209  *    the loss.
210  *
211  * Now a critical thing you must be aware of here is that the
212  * use of the flags has a far greater scope then just your
213  * typical LRO. Why? Well thats because in the normal compressed
214  * LRO case at the end of a driver interupt all packets are going
215  * to get presented to the transport no matter if there is one
216  * or 100. With the MBUF_QUEUE model, this is not true. You will
217  * only be awoken to process the queue of packets when:
218  *     a) The flags discussed above allow it.
219  *          <or>
220  *     b) You exceed a ack or data limit (by default the
221  *        ack limit is infinity (64k acks) and the data
222  *        limit is 64k of new TCP data)
223  *         <or>
224  *     c) The push bit has been set by the peer
225  */
226 
227 int
228 ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
229 {
230 	/*
231 	 * We are passed a raw change of mbuf packets
232 	 * that arrived in LRO. They are linked via
233 	 * the m_nextpkt link in the pkt-headers.
234 	 *
235 	 * We process each one by:
236 	 * a) saving off the next
237 	 * b) stripping off the ether-header
238 	 * c) formulating the arguments for
239 	 *    the tfb_tcp_hpts_do_segment
240 	 * d) calling each mbuf to tfb_tcp_hpts_do_segment
241 	 *    after adjusting the time to match the arrival time.
242 	 * Note that the LRO code assures no IP options are present.
243 	 *
244 	 * The symantics for calling tfb_tcp_hpts_do_segment are the
245 	 * following:
246 	 * 1) It returns 0 if all went well and you (the caller) need
247 	 *    to release the lock.
248 	 * 2) If nxt_pkt is set, then the function will surpress calls
249 	 *    to tfb_tcp_output() since you are promising to call again
250 	 *    with another packet.
251 	 * 3) If it returns 1, then you must free all the packets being
252 	 *    shipped in, the tcb has been destroyed (or about to be destroyed).
253 	 */
254 	struct mbuf *m_save;
255 	struct ether_header *eh;
256 	struct tcphdr *th;
257 #ifdef INET6
258 	struct ip6_hdr *ip6 = NULL;	/* Keep compiler happy. */
259 #endif
260 #ifdef INET
261 	struct ip *ip = NULL;		/* Keep compiler happy. */
262 #endif
263 	struct ifnet *ifp;
264 	struct timeval tv;
265 	int32_t retval, nxt_pkt, tlen, off;
266 	uint16_t etype;
267 	uint16_t drop_hdrlen;
268 	uint8_t iptos, no_vn=0, bpf_req=0;
269 
270 	NET_EPOCH_ASSERT();
271 
272 	if (m && m->m_pkthdr.rcvif)
273 		ifp = m->m_pkthdr.rcvif;
274 	else
275 		ifp = NULL;
276 	if (ifp) {
277 		bpf_req = bpf_peers_present(ifp->if_bpf);
278 	} else  {
279 		/*
280 		 * We probably should not work around
281 		 * but kassert, since lro alwasy sets rcvif.
282 		 */
283 		no_vn = 1;
284 		goto skip_vnet;
285 	}
286 	CURVNET_SET(ifp->if_vnet);
287 skip_vnet:
288 	while (m) {
289 		m_save = m->m_nextpkt;
290 		m->m_nextpkt = NULL;
291 		/* Now lets get the ether header */
292 		eh = mtod(m, struct ether_header *);
293 		etype = ntohs(eh->ether_type);
294 		/* Let the BPF see the packet */
295 		if (bpf_req && ifp)
296 			ETHER_BPF_MTAP(ifp, m);
297 		m_adj(m,  sizeof(*eh));
298 		/* Trim off the ethernet header */
299 		switch (etype) {
300 #ifdef INET6
301 		case ETHERTYPE_IPV6:
302 		{
303 			if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
304 				m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
305 				if (m == NULL) {
306 					TCPSTAT_INC(tcps_rcvshort);
307 					m_freem(m);
308 					goto skipped_pkt;
309 				}
310 			}
311 			ip6 = (struct ip6_hdr *)(eh + 1);
312 			th = (struct tcphdr *)(ip6 + 1);
313 			tlen = ntohs(ip6->ip6_plen);
314 			drop_hdrlen = sizeof(*ip6);
315 			if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
316 				if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
317 					th->th_sum = m->m_pkthdr.csum_data;
318 				else
319 					th->th_sum = in6_cksum_pseudo(ip6, tlen,
320 								      IPPROTO_TCP, m->m_pkthdr.csum_data);
321 				th->th_sum ^= 0xffff;
322 			} else
323 				th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
324 			if (th->th_sum) {
325 				TCPSTAT_INC(tcps_rcvbadsum);
326 				m_freem(m);
327 				goto skipped_pkt;
328 			}
329 			/*
330 			 * Be proactive about unspecified IPv6 address in source.
331 			 * As we use all-zero to indicate unbounded/unconnected pcb,
332 			 * unspecified IPv6 address can be used to confuse us.
333 			 *
334 			 * Note that packets with unspecified IPv6 destination is
335 			 * already dropped in ip6_input.
336 			 */
337 			if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
338 				/* XXX stat */
339 				m_freem(m);
340 				goto skipped_pkt;
341 			}
342 			iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
343 			break;
344 		}
345 #endif
346 #ifdef INET
347 		case ETHERTYPE_IP:
348 		{
349 			if (m->m_len < sizeof (struct tcpiphdr)) {
350 				if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
351 				    == NULL) {
352 					TCPSTAT_INC(tcps_rcvshort);
353 					m_freem(m);
354 					goto skipped_pkt;
355 				}
356 			}
357 			ip = (struct ip *)(eh + 1);
358 			th = (struct tcphdr *)(ip + 1);
359 			drop_hdrlen = sizeof(*ip);
360 			iptos = ip->ip_tos;
361 			tlen = ntohs(ip->ip_len) - sizeof(struct ip);
362 			if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
363 				if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
364 					th->th_sum = m->m_pkthdr.csum_data;
365 				else
366 					th->th_sum = in_pseudo(ip->ip_src.s_addr,
367 							       ip->ip_dst.s_addr,
368 							       htonl(m->m_pkthdr.csum_data + tlen +
369 								     IPPROTO_TCP));
370 				th->th_sum ^= 0xffff;
371 			} else {
372 				int len;
373 				struct ipovly *ipov = (struct ipovly *)ip;
374 				/*
375 				 * Checksum extended TCP header and data.
376 				 */
377 				len = drop_hdrlen + tlen;
378 				bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
379 				ipov->ih_len = htons(tlen);
380 				th->th_sum = in_cksum(m, len);
381 				/* Reset length for SDT probes. */
382 				ip->ip_len = htons(len);
383 				/* Reset TOS bits */
384 				ip->ip_tos = iptos;
385 				/* Re-initialization for later version check */
386 				ip->ip_v = IPVERSION;
387 				ip->ip_hl = sizeof(*ip) >> 2;
388 			}
389 			if (th->th_sum) {
390 				TCPSTAT_INC(tcps_rcvbadsum);
391 				m_freem(m);
392 				goto skipped_pkt;
393 			}
394 			break;
395 		}
396 #endif
397 		}
398 		/*
399 		 * Convert TCP protocol specific fields to host format.
400 		 */
401 		tcp_fields_to_host(th);
402 
403 		off = th->th_off << 2;
404 		if (off < sizeof (struct tcphdr) || off > tlen) {
405 			TCPSTAT_INC(tcps_rcvbadoff);
406 				m_freem(m);
407 				goto skipped_pkt;
408 		}
409 		tlen -= off;
410 		drop_hdrlen += off;
411 		/*
412 		 * Now lets setup the timeval to be when we should
413 		 * have been called (if we can).
414 		 */
415 		m->m_pkthdr.lro_nsegs = 1;
416 		if (m->m_flags & M_TSTMP_LRO) {
417 			tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
418 			tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
419 		} else {
420 			/* Should not be should we kassert instead? */
421 			tcp_get_usecs(&tv);
422 		}
423 		/* Now what about next packet? */
424 		if (m_save || has_pkt)
425 			nxt_pkt = 1;
426 		else
427 			nxt_pkt = 0;
428 		retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
429 							      iptos, nxt_pkt, &tv);
430 		if (retval) {
431 			/* We lost the lock and tcb probably */
432 			m = m_save;
433 			while(m) {
434 				m_save = m->m_nextpkt;
435 				m->m_nextpkt = NULL;
436 				m_freem(m);
437 				m = m_save;
438 			}
439 			if (no_vn == 0)
440 				CURVNET_RESTORE();
441 			return(retval);
442 		}
443 skipped_pkt:
444 		m = m_save;
445 	}
446 	if (no_vn == 0)
447 		CURVNET_RESTORE();
448 	return(retval);
449 }
450 
451 int
452 ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
453 {
454 	struct mbuf *m;
455 
456 	/* First lets see if we have old packets */
457 	if (tp->t_in_pkt) {
458 		m = tp->t_in_pkt;
459 		tp->t_in_pkt = NULL;
460 		tp->t_tail_pkt = NULL;
461 		if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
462 			/* We lost the tcpcb (maybe a RST came in)? */
463 			return(1);
464 		}
465 	}
466 	return (0);
467 }
468 
469 uint32_t
470 ctf_outstanding(struct tcpcb *tp)
471 {
472 	return(tp->snd_max - tp->snd_una);
473 }
474 
475 uint32_t
476 ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
477 {
478 	if (rc_sacked <= ctf_outstanding(tp))
479 		return(ctf_outstanding(tp) - rc_sacked);
480 	else {
481 		/* TSNH */
482 #ifdef INVARIANTS
483 		panic("tp:%p rc_sacked:%d > out:%d",
484 		      tp, rc_sacked, ctf_outstanding(tp));
485 #endif
486 		return (0);
487 	}
488 }
489 
490 void
491 ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
492     int32_t rstreason, int32_t tlen)
493 {
494 	if (tp != NULL) {
495 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
496 		INP_WUNLOCK(tp->t_inpcb);
497 	} else
498 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
499 }
500 
501 /*
502  * ctf_drop_checks returns 1 for you should not proceed. It places
503  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
504  * that the TCB is unlocked and probably dropped. The 0 indicates the
505  * TCB is still valid and locked.
506  */
507 int
508 ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp,  int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
509 {
510 	int32_t todrop;
511 	int32_t thflags;
512 	int32_t tlen;
513 
514 	thflags = *thf;
515 	tlen = *tlenp;
516 	todrop = tp->rcv_nxt - th->th_seq;
517 	if (todrop > 0) {
518 		if (thflags & TH_SYN) {
519 			thflags &= ~TH_SYN;
520 			th->th_seq++;
521 			if (th->th_urp > 1)
522 				th->th_urp--;
523 			else
524 				thflags &= ~TH_URG;
525 			todrop--;
526 		}
527 		/*
528 		 * Following if statement from Stevens, vol. 2, p. 960.
529 		 */
530 		if (todrop > tlen
531 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
532 			/*
533 			 * Any valid FIN must be to the left of the window.
534 			 * At this point the FIN must be a duplicate or out
535 			 * of sequence; drop it.
536 			 */
537 			thflags &= ~TH_FIN;
538 			/*
539 			 * Send an ACK to resynchronize and drop any data.
540 			 * But keep on processing for RST or ACK.
541 			 */
542 			tp->t_flags |= TF_ACKNOW;
543 			todrop = tlen;
544 			TCPSTAT_INC(tcps_rcvduppack);
545 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
546 		} else {
547 			TCPSTAT_INC(tcps_rcvpartduppack);
548 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
549 		}
550 		/*
551 		 * DSACK - add SACK block for dropped range
552 		 */
553 		if (tp->t_flags & TF_SACK_PERMIT) {
554 			tcp_update_sack_list(tp, th->th_seq,
555 			    th->th_seq + todrop);
556 			/*
557 			 * ACK now, as the next in-sequence segment
558 			 * will clear the DSACK block again
559 			 */
560 			tp->t_flags |= TF_ACKNOW;
561 		}
562 		*drop_hdrlen += todrop;	/* drop from the top afterwards */
563 		th->th_seq += todrop;
564 		tlen -= todrop;
565 		if (th->th_urp > todrop)
566 			th->th_urp -= todrop;
567 		else {
568 			thflags &= ~TH_URG;
569 			th->th_urp = 0;
570 		}
571 	}
572 	/*
573 	 * If segment ends after window, drop trailing data (and PUSH and
574 	 * FIN); if nothing left, just ACK.
575 	 */
576 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
577 	if (todrop > 0) {
578 		TCPSTAT_INC(tcps_rcvpackafterwin);
579 		if (todrop >= tlen) {
580 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
581 			/*
582 			 * If window is closed can only take segments at
583 			 * window edge, and have to drop data and PUSH from
584 			 * incoming segments.  Continue processing, but
585 			 * remember to ack.  Otherwise, drop segment and
586 			 * ack.
587 			 */
588 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
589 				tp->t_flags |= TF_ACKNOW;
590 				TCPSTAT_INC(tcps_rcvwinprobe);
591 			} else {
592 				ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
593 				return (1);
594 			}
595 		} else
596 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
597 		m_adj(m, -todrop);
598 		tlen -= todrop;
599 		thflags &= ~(TH_PUSH | TH_FIN);
600 	}
601 	*thf = thflags;
602 	*tlenp = tlen;
603 	return (0);
604 }
605 
606 /*
607  * The value in ret_val informs the caller
608  * if we dropped the tcb (and lock) or not.
609  * 1 = we dropped it, 0 = the TCB is still locked
610  * and valid.
611  */
612 void
613 ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
614 {
615 	/*
616 	 * Generate an ACK dropping incoming segment if it occupies sequence
617 	 * space, where the ACK reflects our state.
618 	 *
619 	 * We can now skip the test for the RST flag since all paths to this
620 	 * code happen after packets containing RST have been dropped.
621 	 *
622 	 * In the SYN-RECEIVED state, don't send an ACK unless the segment
623 	 * we received passes the SYN-RECEIVED ACK test. If it fails send a
624 	 * RST.  This breaks the loop in the "LAND" DoS attack, and also
625 	 * prevents an ACK storm between two listening ports that have been
626 	 * sent forged SYN segments, each with the source address of the
627 	 * other.
628 	 */
629 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
630 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
631 	    SEQ_GT(th->th_ack, tp->snd_max))) {
632 		*ret_val = 1;
633 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
634 		return;
635 	} else
636 		*ret_val = 0;
637 	tp->t_flags |= TF_ACKNOW;
638 	if (m)
639 		m_freem(m);
640 }
641 
642 void
643 ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
644 {
645 
646 	/*
647 	 * Drop space held by incoming segment and return.
648 	 */
649 	if (tp != NULL)
650 		INP_WUNLOCK(tp->t_inpcb);
651 	if (m)
652 		m_freem(m);
653 }
654 
655 int
656 ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
657 {
658 	/*
659 	 * RFC5961 Section 3.2
660 	 *
661 	 * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
662 	 * window, we send challenge ACK.
663 	 *
664 	 * Note: to take into account delayed ACKs, we should test against
665 	 * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
666 	 * of closed window, not covered by the RFC.
667 	 */
668 	int dropped = 0;
669 
670 	if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
671 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
672 	    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
673 
674 		KASSERT(tp->t_state != TCPS_SYN_SENT,
675 		    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
676 		    __func__, th, tp));
677 
678 		if (V_tcp_insecure_rst ||
679 		    (tp->last_ack_sent == th->th_seq) ||
680 		    (tp->rcv_nxt == th->th_seq) ||
681 		    ((tp->last_ack_sent - 1) == th->th_seq)) {
682 			TCPSTAT_INC(tcps_drops);
683 			/* Drop the connection. */
684 			switch (tp->t_state) {
685 			case TCPS_SYN_RECEIVED:
686 				so->so_error = ECONNREFUSED;
687 				goto close;
688 			case TCPS_ESTABLISHED:
689 			case TCPS_FIN_WAIT_1:
690 			case TCPS_FIN_WAIT_2:
691 			case TCPS_CLOSE_WAIT:
692 			case TCPS_CLOSING:
693 			case TCPS_LAST_ACK:
694 				so->so_error = ECONNRESET;
695 		close:
696 				tcp_state_change(tp, TCPS_CLOSED);
697 				/* FALLTHROUGH */
698 			default:
699 				tp = tcp_close(tp);
700 			}
701 			dropped = 1;
702 			ctf_do_drop(m, tp);
703 		} else {
704 			TCPSTAT_INC(tcps_badrst);
705 			/* Send challenge ACK. */
706 			tcp_respond(tp, mtod(m, void *), th, m,
707 			    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
708 			tp->last_ack_sent = tp->rcv_nxt;
709 		}
710 	} else {
711 		m_freem(m);
712 	}
713 	return (dropped);
714 }
715 
716 /*
717  * The value in ret_val informs the caller
718  * if we dropped the tcb (and lock) or not.
719  * 1 = we dropped it, 0 = the TCB is still locked
720  * and valid.
721  */
722 void
723 ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
724 {
725 
726 	NET_EPOCH_ASSERT();
727 
728 	TCPSTAT_INC(tcps_badsyn);
729 	if (V_tcp_insecure_syn &&
730 	    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
731 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
732 		tp = tcp_drop(tp, ECONNRESET);
733 		*ret_val = 1;
734 		ctf_do_drop(m, tp);
735 	} else {
736 		/* Send challenge ACK. */
737 		tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
738 		    tp->snd_nxt, TH_ACK);
739 		tp->last_ack_sent = tp->rcv_nxt;
740 		m = NULL;
741 		*ret_val = 0;
742 		ctf_do_drop(m, NULL);
743 	}
744 }
745 
746 /*
747  * bbr_ts_check returns 1 for you should not proceed, the state
748  * machine should return. It places in ret_val what should
749  * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
750  * that the TCB is unlocked and probably dropped. The 0 indicates the
751  * TCB is still valid and locked.
752  */
753 int
754 ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
755     int32_t tlen, int32_t thflags, int32_t * ret_val)
756 {
757 
758 	if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
759 		/*
760 		 * Invalidate ts_recent.  If this segment updates ts_recent,
761 		 * the age will be reset later and ts_recent will get a
762 		 * valid value.  If it does not, setting ts_recent to zero
763 		 * will at least satisfy the requirement that zero be placed
764 		 * in the timestamp echo reply when ts_recent isn't valid.
765 		 * The age isn't reset until we get a valid ts_recent
766 		 * because we don't want out-of-order segments to be dropped
767 		 * when ts_recent is old.
768 		 */
769 		tp->ts_recent = 0;
770 	} else {
771 		TCPSTAT_INC(tcps_rcvduppack);
772 		TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
773 		TCPSTAT_INC(tcps_pawsdrop);
774 		*ret_val = 0;
775 		if (tlen) {
776 			ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
777 		} else {
778 			ctf_do_drop(m, NULL);
779 		}
780 		return (1);
781 	}
782 	return (0);
783 }
784 
785 void
786 ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
787 {
788 	int32_t win;
789 
790 	/*
791 	 * Calculate amount of space in receive window, and then do TCP
792 	 * input processing. Receive window is amount of space in rcv queue,
793 	 * but not less than advertised window.
794 	 */
795 	win = sbspace(&so->so_rcv);
796 	if (win < 0)
797 		win = 0;
798 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
799 }
800 
801 void
802 ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
803     int32_t rstreason, int32_t tlen)
804 {
805 
806 	if (tp->t_inpcb) {
807 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
808 	}
809 	tcp_dropwithreset(m, th, tp, tlen, rstreason);
810 	INP_WUNLOCK(tp->t_inpcb);
811 }
812 
813 uint32_t
814 ctf_fixed_maxseg(struct tcpcb *tp)
815 {
816 	int optlen;
817 
818 	if (tp->t_flags & TF_NOOPT)
819 		return (tp->t_maxseg);
820 
821 	/*
822 	 * Here we have a simplified code from tcp_addoptions(),
823 	 * without a proper loop, and having most of paddings hardcoded.
824 	 * We only consider fixed options that we would send every
825 	 * time I.e. SACK is not considered.
826 	 *
827 	 */
828 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
829 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
830 		if (tp->t_flags & TF_RCVD_TSTMP)
831 			optlen = TCPOLEN_TSTAMP_APPA;
832 		else
833 			optlen = 0;
834 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
835 		if (tp->t_flags & TF_SIGNATURE)
836 			optlen += PAD(TCPOLEN_SIGNATURE);
837 #endif
838 	} else {
839 		if (tp->t_flags & TF_REQ_TSTMP)
840 			optlen = TCPOLEN_TSTAMP_APPA;
841 		else
842 			optlen = PAD(TCPOLEN_MAXSEG);
843 		if (tp->t_flags & TF_REQ_SCALE)
844 			optlen += PAD(TCPOLEN_WINDOW);
845 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
846 		if (tp->t_flags & TF_SIGNATURE)
847 			optlen += PAD(TCPOLEN_SIGNATURE);
848 #endif
849 		if (tp->t_flags & TF_SACK_PERMIT)
850 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
851 	}
852 #undef PAD
853 	optlen = min(optlen, TCP_MAXOLEN);
854 	return (tp->t_maxseg - optlen);
855 }
856 
857 void
858 ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
859 {
860 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
861 		union tcp_log_stackspecific log;
862 		struct timeval tv;
863 
864 		memset(&log, 0, sizeof(log));
865 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
866 		log.u_bbr.flex8 = num_sack_blks;
867 		if (num_sack_blks > 0) {
868 			log.u_bbr.flex1 = sack_blocks[0].start;
869 			log.u_bbr.flex2 = sack_blocks[0].end;
870 		}
871 		if (num_sack_blks > 1) {
872 			log.u_bbr.flex3 = sack_blocks[1].start;
873 			log.u_bbr.flex4 = sack_blocks[1].end;
874 		}
875 		if (num_sack_blks > 2) {
876 			log.u_bbr.flex5 = sack_blocks[2].start;
877 			log.u_bbr.flex6 = sack_blocks[2].end;
878 		}
879 		if (num_sack_blks > 3) {
880 			log.u_bbr.applimited = sack_blocks[3].start;
881 			log.u_bbr.pkts_out = sack_blocks[3].end;
882 		}
883 		TCP_LOG_EVENTP(tp, NULL,
884 		    &tp->t_inpcb->inp_socket->so_rcv,
885 		    &tp->t_inpcb->inp_socket->so_snd,
886 		    TCP_SACK_FILTER_RES, 0,
887 		    0, &log, false, &tv);
888 	}
889 }
890 
891 uint32_t
892 ctf_decay_count(uint32_t count, uint32_t decay)
893 {
894 	/*
895 	 * Given a count, decay it by a set percentage. The
896 	 * percentage is in thousands i.e. 100% = 1000,
897 	 * 19.3% = 193.
898 	 */
899 	uint64_t perc_count, decay_per;
900 	uint32_t decayed_count;
901 	if (decay > 1000) {
902 		/* We don't raise it */
903 		return (count);
904 	}
905 	perc_count = count;
906 	decay_per = decay;
907 	perc_count *= decay_per;
908 	perc_count /= 1000;
909 	/*
910 	 * So now perc_count holds the
911 	 * count decay value.
912 	 */
913 	decayed_count = count - (uint32_t)perc_count;
914 	return(decayed_count);
915 }
916