1 /*-
2  * Copyright (c) 2016-2018
3  *	Netflix Inc.
4  *      All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 /*
29  * Author: Randall Stewart <rrs@netflix.com>
30  * This work is based on the ACM Queue paper
31  * BBR - Congestion Based Congestion Control
32  * and also numerous discussions with Neal, Yuchung and Van.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_ratelimit.h"
43 /*#include "opt_kern_tls.h"*/
44 #include <sys/param.h>
45 #include <sys/module.h>
46 #include <sys/kernel.h>
47 #ifdef TCP_HHOOK
48 #include <sys/hhook.h>
49 #endif
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #ifdef KERN_TLS
56 #include <sys/sockbuf_tls.h>
57 #endif
58 #include <sys/sysctl.h>
59 #include <sys/systm.h>
60 #include <sys/tree.h>
61 #include <sys/refcount.h>
62 #include <sys/queue.h>
63 #include <sys/smp.h>
64 #include <sys/kthread.h>
65 #include <sys/lock.h>
66 #include <sys/mutex.h>
67 #include <sys/time.h>
68 #include <vm/uma.h>
69 #include <sys/kern_prefetch.h>
70 
71 #include <net/route.h>
72 #include <net/vnet.h>
73 #include <net/ethernet.h>
74 #include <net/bpf.h>
75 
76 #define TCPSTATES		/* for logging */
77 
78 #include <netinet/in.h>
79 #include <netinet/in_kdtrace.h>
80 #include <netinet/in_pcb.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
83 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
84 #include <netinet/ip_var.h>
85 #include <netinet/ip6.h>
86 #include <netinet6/in6_pcb.h>
87 #include <netinet6/ip6_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/tcpip.h>
94 #include <netinet/tcp_hpts.h>
95 #include <netinet/cc/cc.h>
96 #include <netinet/tcp_log_buf.h>
97 #ifdef TCPDEBUG
98 #include <netinet/tcp_debug.h>
99 #endif				/* TCPDEBUG */
100 #ifdef TCP_OFFLOAD
101 #include <netinet/tcp_offload.h>
102 #endif
103 #ifdef INET6
104 #include <netinet6/tcp6_var.h>
105 #endif
106 #include <netinet/tcp_fastopen.h>
107 
108 #include <netipsec/ipsec_support.h>
109 #include <net/if.h>
110 #include <net/if_var.h>
111 
112 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
113 #include <netipsec/ipsec.h>
114 #include <netipsec/ipsec6.h>
115 #endif				/* IPSEC */
116 
117 #include <netinet/udp.h>
118 #include <netinet/udp_var.h>
119 #include <machine/in_cksum.h>
120 
121 #ifdef MAC
122 #include <security/mac/mac_framework.h>
123 #endif
124 #include "rack_bbr_common.h"
125 
126 /*
127  * Common TCP Functions - These are shared by borth
128  * rack and BBR.
129  */
130 
131 
132 #ifdef KERN_TLS
133 uint32_t
134 ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
135 {
136 	struct sbtls_info *tls;
137 	uint32_t len;
138 
139 again:
140 	tls = so->so_snd.sb_tls_info;
141 	len = tls->sb_params.sb_maxlen;         /* max tls payload */
142 	len += tls->sb_params.sb_tls_hlen;      /* tls header len  */
143 	len += tls->sb_params.sb_tls_tlen;      /* tls trailer len */
144 	if ((len * 4) > rwnd) {
145 		/*
146 		 * Stroke this will suck counter and what
147 		 * else should we do Drew? From the
148 		 * TCP perspective I am not sure
149 		 * what should be done...
150 		 */
151 		if (tls->sb_params.sb_maxlen > 4096) {
152 			tls->sb_params.sb_maxlen -= 4096;
153 			if (tls->sb_params.sb_maxlen < 4096)
154 				tls->sb_params.sb_maxlen = 4096;
155 			goto again;
156 		}
157 	}
158 	return (len);
159 }
160 #endif
161 
162 int
163 ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
164 {
165 	/*
166 	 * We are passed a raw change of mbuf packets
167 	 * that arrived in LRO. They are linked via
168 	 * the m_nextpkt link in the pkt-headers.
169 	 *
170 	 * We process each one by:
171 	 * a) saving off the next
172 	 * b) stripping off the ether-header
173 	 * c) formulating the arguments for
174 	 *    the tfb_tcp_hpts_do_segment
175 	 * d) calling each mbuf to tfb_tcp_hpts_do_segment
176 	 *    after adjusting the time to match the arrival time.
177 	 * Note that the LRO code assures no IP options are present.
178 	 *
179 	 * The symantics for calling tfb_tcp_hpts_do_segment are the
180 	 * following:
181 	 * 1) It returns 0 if all went well and you (the caller) need
182 	 *    to release the lock.
183 	 * 2) If nxt_pkt is set, then the function will surpress calls
184 	 *    to tfb_tcp_output() since you are promising to call again
185 	 *    with another packet.
186 	 * 3) If it returns 1, then you must free all the packets being
187 	 *    shipped in, the tcb has been destroyed (or about to be destroyed).
188 	 */
189 	struct mbuf *m_save;
190 	struct ether_header *eh;
191 	struct epoch_tracker et;
192 	struct tcphdr *th;
193 #ifdef INET6
194 	struct ip6_hdr *ip6 = NULL;	/* Keep compiler happy. */
195 #endif
196 #ifdef INET
197 	struct ip *ip = NULL;		/* Keep compiler happy. */
198 #endif
199 	struct ifnet *ifp;
200 	struct timeval tv;
201 	int32_t retval, nxt_pkt, tlen, off;
202 	uint16_t etype;
203 	uint16_t drop_hdrlen;
204 	uint8_t iptos, no_vn=0, bpf_req=0;
205 
206 	/*
207 	 * This is a bit deceptive, we get the
208 	 * "info epoch" which is really the network
209 	 * epoch. This covers us on both any INP
210 	 * type change but also if the ifp goes
211 	 * away it covers us as well.
212 	 */
213 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
214 	if (m && m->m_pkthdr.rcvif)
215 		ifp = m->m_pkthdr.rcvif;
216 	else
217 		ifp = NULL;
218 	if (ifp) {
219 		bpf_req = bpf_peers_present(ifp->if_bpf);
220 	} else  {
221 		/*
222 		 * We probably should not work around
223 		 * but kassert, since lro alwasy sets rcvif.
224 		 */
225 		no_vn = 1;
226 		goto skip_vnet;
227 	}
228 	CURVNET_SET(ifp->if_vnet);
229 skip_vnet:
230 	while (m) {
231 		m_save = m->m_nextpkt;
232 		m->m_nextpkt = NULL;
233 		/* Now lets get the ether header */
234 		eh = mtod(m, struct ether_header *);
235 		etype = ntohs(eh->ether_type);
236 		/* Let the BPF see the packet */
237 		if (bpf_req && ifp)
238 			ETHER_BPF_MTAP(ifp, m);
239 		m_adj(m,  sizeof(*eh));
240 		/* Trim off the ethernet header */
241 		switch (etype) {
242 #ifdef INET6
243 		case ETHERTYPE_IPV6:
244 		{
245 			if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
246 				m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
247 				if (m == NULL) {
248 					TCPSTAT_INC(tcps_rcvshort);
249 					m_freem(m);
250 					goto skipped_pkt;
251 				}
252 			}
253 			ip6 = (struct ip6_hdr *)(eh + 1);
254 			th = (struct tcphdr *)(ip6 + 1);
255 			tlen = ntohs(ip6->ip6_plen);
256 			drop_hdrlen = sizeof(*ip6);
257 			if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
258 				if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
259 					th->th_sum = m->m_pkthdr.csum_data;
260 				else
261 					th->th_sum = in6_cksum_pseudo(ip6, tlen,
262 								      IPPROTO_TCP, m->m_pkthdr.csum_data);
263 				th->th_sum ^= 0xffff;
264 			} else
265 				th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
266 			if (th->th_sum) {
267 				TCPSTAT_INC(tcps_rcvbadsum);
268 				m_freem(m);
269 				goto skipped_pkt;
270 			}
271 			/*
272 			 * Be proactive about unspecified IPv6 address in source.
273 			 * As we use all-zero to indicate unbounded/unconnected pcb,
274 			 * unspecified IPv6 address can be used to confuse us.
275 			 *
276 			 * Note that packets with unspecified IPv6 destination is
277 			 * already dropped in ip6_input.
278 			 */
279 			if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
280 				/* XXX stat */
281 				m_freem(m);
282 				goto skipped_pkt;
283 			}
284 			iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
285 			break;
286 		}
287 #endif
288 #ifdef INET
289 		case ETHERTYPE_IP:
290 		{
291 			if (m->m_len < sizeof (struct tcpiphdr)) {
292 				if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
293 				    == NULL) {
294 					TCPSTAT_INC(tcps_rcvshort);
295 					m_freem(m);
296 					goto skipped_pkt;
297 				}
298 			}
299 			ip = (struct ip *)(eh + 1);
300 			th = (struct tcphdr *)(ip + 1);
301 			drop_hdrlen = sizeof(*ip);
302 			iptos = ip->ip_tos;
303 			tlen = ntohs(ip->ip_len) - sizeof(struct ip);
304 			if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
305 				if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
306 					th->th_sum = m->m_pkthdr.csum_data;
307 				else
308 					th->th_sum = in_pseudo(ip->ip_src.s_addr,
309 							       ip->ip_dst.s_addr,
310 							       htonl(m->m_pkthdr.csum_data + tlen +
311 								     IPPROTO_TCP));
312 				th->th_sum ^= 0xffff;
313 			} else {
314 				int len;
315 				struct ipovly *ipov = (struct ipovly *)ip;
316 				/*
317 				 * Checksum extended TCP header and data.
318 				 */
319 				len = drop_hdrlen + tlen;
320 				bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
321 				ipov->ih_len = htons(tlen);
322 				th->th_sum = in_cksum(m, len);
323 				/* Reset length for SDT probes. */
324 				ip->ip_len = htons(len);
325 				/* Reset TOS bits */
326 				ip->ip_tos = iptos;
327 				/* Re-initialization for later version check */
328 				ip->ip_v = IPVERSION;
329 				ip->ip_hl = sizeof(*ip) >> 2;
330 			}
331 			if (th->th_sum) {
332 				TCPSTAT_INC(tcps_rcvbadsum);
333 				m_freem(m);
334 				goto skipped_pkt;
335 			}
336 			break;
337 		}
338 #endif
339 		}
340 		/*
341 		 * Convert TCP protocol specific fields to host format.
342 		 */
343 		tcp_fields_to_host(th);
344 
345 		off = th->th_off << 2;
346 		if (off < sizeof (struct tcphdr) || off > tlen) {
347 			TCPSTAT_INC(tcps_rcvbadoff);
348 				m_freem(m);
349 				goto skipped_pkt;
350 		}
351 		tlen -= off;
352 		drop_hdrlen += off;
353 		/*
354 		 * Now lets setup the timeval to be when we should
355 		 * have been called (if we can).
356 		 */
357 		m->m_pkthdr.lro_nsegs = 1;
358 		if (m->m_flags & M_TSTMP_LRO) {
359 			tv.tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000;
360 			tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000) / 1000;
361 		} else {
362 			/* Should not be should we kassert instead? */
363 			tcp_get_usecs(&tv);
364 		}
365 		/* Now what about next packet? */
366 		if (m_save || has_pkt)
367 			nxt_pkt = 1;
368 		else
369 			nxt_pkt = 0;
370 		retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
371 							      iptos, nxt_pkt, &tv);
372 		if (retval) {
373 			/* We lost the lock and tcb probably */
374 			m = m_save;
375 			while (m) {
376 				m_save = m->m_nextpkt;
377 				m->m_nextpkt = NULL;
378 				m_freem(m);
379 				m = m_save;
380 			}
381 			if (no_vn == 0)
382 				CURVNET_RESTORE();
383 			INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
384 			return (retval);
385 		}
386 skipped_pkt:
387 		m = m_save;
388 	}
389 	if (no_vn == 0)
390 		CURVNET_RESTORE();
391 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
392 	return (retval);
393 }
394 
395 int
396 ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
397 {
398 	struct mbuf *m;
399 
400 	/* First lets see if we have old packets */
401 	if (tp->t_in_pkt) {
402 		m = tp->t_in_pkt;
403 		tp->t_in_pkt = NULL;
404 		tp->t_tail_pkt = NULL;
405 		if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
406 			/* We lost the tcpcb (maybe a RST came in)? */
407 			return (1);
408 		}
409 	}
410 	return (0);
411 }
412 
413 uint32_t
414 ctf_outstanding(struct tcpcb *tp)
415 {
416 	return (tp->snd_max - tp->snd_una);
417 }
418 
419 uint32_t
420 ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
421 {
422 	if (rc_sacked <= ctf_outstanding(tp))
423 		return (ctf_outstanding(tp) - rc_sacked);
424 	else {
425 		/* TSNH */
426 #ifdef INVARIANTS
427 		panic("tp:%p rc_sacked:%d > out:%d",
428 		      tp, rc_sacked, ctf_outstanding(tp));
429 #endif
430 		return (0);
431 	}
432 }
433 
434 void
435 ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
436     int32_t rstreason, int32_t tlen)
437 {
438 	if (tp != NULL) {
439 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
440 		INP_WUNLOCK(tp->t_inpcb);
441 	} else
442 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
443 }
444 
445 /*
446  * ctf_drop_checks returns 1 for you should not proceed. It places
447  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
448  * that the TCB is unlocked and probably dropped. The 0 indicates the
449  * TCB is still valid and locked.
450  */
451 int
452 ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp,  int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
453 {
454 	int32_t todrop;
455 	int32_t thflags;
456 	int32_t tlen;
457 
458 	thflags = *thf;
459 	tlen = *tlenp;
460 	todrop = tp->rcv_nxt - th->th_seq;
461 	if (todrop > 0) {
462 		if (thflags & TH_SYN) {
463 			thflags &= ~TH_SYN;
464 			th->th_seq++;
465 			if (th->th_urp > 1)
466 				th->th_urp--;
467 			else
468 				thflags &= ~TH_URG;
469 			todrop--;
470 		}
471 		/*
472 		 * Following if statement from Stevens, vol. 2, p. 960.
473 		 */
474 		if (todrop > tlen
475 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
476 			/*
477 			 * Any valid FIN must be to the left of the window.
478 			 * At this point the FIN must be a duplicate or out
479 			 * of sequence; drop it.
480 			 */
481 			thflags &= ~TH_FIN;
482 			/*
483 			 * Send an ACK to resynchronize and drop any data.
484 			 * But keep on processing for RST or ACK.
485 			 */
486 			tp->t_flags |= TF_ACKNOW;
487 			todrop = tlen;
488 			TCPSTAT_INC(tcps_rcvduppack);
489 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
490 		} else {
491 			TCPSTAT_INC(tcps_rcvpartduppack);
492 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
493 		}
494 		/*
495 		 * DSACK - add SACK block for dropped range
496 		 */
497 		if (tp->t_flags & TF_SACK_PERMIT) {
498 			tcp_update_sack_list(tp, th->th_seq,
499 			    th->th_seq + todrop);
500 			/*
501 			 * ACK now, as the next in-sequence segment
502 			 * will clear the DSACK block again
503 			 */
504 			tp->t_flags |= TF_ACKNOW;
505 		}
506 		*drop_hdrlen += todrop;	/* drop from the top afterwards */
507 		th->th_seq += todrop;
508 		tlen -= todrop;
509 		if (th->th_urp > todrop)
510 			th->th_urp -= todrop;
511 		else {
512 			thflags &= ~TH_URG;
513 			th->th_urp = 0;
514 		}
515 	}
516 	/*
517 	 * If segment ends after window, drop trailing data (and PUSH and
518 	 * FIN); if nothing left, just ACK.
519 	 */
520 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
521 	if (todrop > 0) {
522 		TCPSTAT_INC(tcps_rcvpackafterwin);
523 		if (todrop >= tlen) {
524 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
525 			/*
526 			 * If window is closed can only take segments at
527 			 * window edge, and have to drop data and PUSH from
528 			 * incoming segments.  Continue processing, but
529 			 * remember to ack.  Otherwise, drop segment and
530 			 * ack.
531 			 */
532 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
533 				tp->t_flags |= TF_ACKNOW;
534 				TCPSTAT_INC(tcps_rcvwinprobe);
535 			} else {
536 				ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
537 				return (1);
538 			}
539 		} else
540 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
541 		m_adj(m, -todrop);
542 		tlen -= todrop;
543 		thflags &= ~(TH_PUSH | TH_FIN);
544 	}
545 	*thf = thflags;
546 	*tlenp = tlen;
547 	return (0);
548 }
549 
550 /*
551  * The value in ret_val informs the caller
552  * if we dropped the tcb (and lock) or not.
553  * 1 = we dropped it, 0 = the TCB is still locked
554  * and valid.
555  */
556 void
557 ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
558 {
559 	/*
560 	 * Generate an ACK dropping incoming segment if it occupies sequence
561 	 * space, where the ACK reflects our state.
562 	 *
563 	 * We can now skip the test for the RST flag since all paths to this
564 	 * code happen after packets containing RST have been dropped.
565 	 *
566 	 * In the SYN-RECEIVED state, don't send an ACK unless the segment
567 	 * we received passes the SYN-RECEIVED ACK test. If it fails send a
568 	 * RST.  This breaks the loop in the "LAND" DoS attack, and also
569 	 * prevents an ACK storm between two listening ports that have been
570 	 * sent forged SYN segments, each with the source address of the
571 	 * other.
572 	 */
573 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
574 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
575 	    SEQ_GT(th->th_ack, tp->snd_max))) {
576 		*ret_val = 1;
577 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
578 		return;
579 	} else
580 		*ret_val = 0;
581 	tp->t_flags |= TF_ACKNOW;
582 	if (m)
583 		m_freem(m);
584 }
585 
586 void
587 ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
588 {
589 
590 	/*
591 	 * Drop space held by incoming segment and return.
592 	 */
593 	if (tp != NULL)
594 		INP_WUNLOCK(tp->t_inpcb);
595 	if (m)
596 		m_freem(m);
597 }
598 
599 int
600 ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
601 {
602 	/*
603 	 * RFC5961 Section 3.2
604 	 *
605 	 * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
606 	 * window, we send challenge ACK.
607 	 *
608 	 * Note: to take into account delayed ACKs, we should test against
609 	 * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
610 	 * of closed window, not covered by the RFC.
611 	 */
612 	int dropped = 0;
613 
614 	if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
615 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
616 	    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
617 
618 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
619 		KASSERT(tp->t_state != TCPS_SYN_SENT,
620 		    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
621 		    __func__, th, tp));
622 
623 		if (V_tcp_insecure_rst ||
624 		    (tp->last_ack_sent == th->th_seq) ||
625 		    (tp->rcv_nxt == th->th_seq) ||
626 		    ((tp->last_ack_sent - 1) == th->th_seq)) {
627 			TCPSTAT_INC(tcps_drops);
628 			/* Drop the connection. */
629 			switch (tp->t_state) {
630 			case TCPS_SYN_RECEIVED:
631 				so->so_error = ECONNREFUSED;
632 				goto close;
633 			case TCPS_ESTABLISHED:
634 			case TCPS_FIN_WAIT_1:
635 			case TCPS_FIN_WAIT_2:
636 			case TCPS_CLOSE_WAIT:
637 			case TCPS_CLOSING:
638 			case TCPS_LAST_ACK:
639 				so->so_error = ECONNRESET;
640 		close:
641 				tcp_state_change(tp, TCPS_CLOSED);
642 				/* FALLTHROUGH */
643 			default:
644 				tp = tcp_close(tp);
645 			}
646 			dropped = 1;
647 			ctf_do_drop(m, tp);
648 		} else {
649 			TCPSTAT_INC(tcps_badrst);
650 			/* Send challenge ACK. */
651 			tcp_respond(tp, mtod(m, void *), th, m,
652 			    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
653 			tp->last_ack_sent = tp->rcv_nxt;
654 		}
655 	} else {
656 		m_freem(m);
657 	}
658 	return (dropped);
659 }
660 
661 /*
662  * The value in ret_val informs the caller
663  * if we dropped the tcb (and lock) or not.
664  * 1 = we dropped it, 0 = the TCB is still locked
665  * and valid.
666  */
667 void
668 ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
669 {
670 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
671 
672 	TCPSTAT_INC(tcps_badsyn);
673 	if (V_tcp_insecure_syn &&
674 	    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
675 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
676 		tp = tcp_drop(tp, ECONNRESET);
677 		*ret_val = 1;
678 		ctf_do_drop(m, tp);
679 	} else {
680 		/* Send challenge ACK. */
681 		tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
682 		    tp->snd_nxt, TH_ACK);
683 		tp->last_ack_sent = tp->rcv_nxt;
684 		m = NULL;
685 		*ret_val = 0;
686 		ctf_do_drop(m, NULL);
687 	}
688 }
689 
690 /*
691  * bbr_ts_check returns 1 for you should not proceed, the state
692  * machine should return. It places in ret_val what should
693  * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
694  * that the TCB is unlocked and probably dropped. The 0 indicates the
695  * TCB is still valid and locked.
696  */
697 int
698 ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
699     int32_t tlen, int32_t thflags, int32_t * ret_val)
700 {
701 
702 	if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
703 		/*
704 		 * Invalidate ts_recent.  If this segment updates ts_recent,
705 		 * the age will be reset later and ts_recent will get a
706 		 * valid value.  If it does not, setting ts_recent to zero
707 		 * will at least satisfy the requirement that zero be placed
708 		 * in the timestamp echo reply when ts_recent isn't valid.
709 		 * The age isn't reset until we get a valid ts_recent
710 		 * because we don't want out-of-order segments to be dropped
711 		 * when ts_recent is old.
712 		 */
713 		tp->ts_recent = 0;
714 	} else {
715 		TCPSTAT_INC(tcps_rcvduppack);
716 		TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
717 		TCPSTAT_INC(tcps_pawsdrop);
718 		*ret_val = 0;
719 		if (tlen) {
720 			ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
721 		} else {
722 			ctf_do_drop(m, NULL);
723 		}
724 		return (1);
725 	}
726 	return (0);
727 }
728 
729 void
730 ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
731 {
732 	int32_t win;
733 
734 	/*
735 	 * Calculate amount of space in receive window, and then do TCP
736 	 * input processing. Receive window is amount of space in rcv queue,
737 	 * but not less than advertised window.
738 	 */
739 	win = sbspace(&so->so_rcv);
740 	if (win < 0)
741 		win = 0;
742 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
743 }
744 
745 void
746 ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
747     int32_t rstreason, int32_t tlen)
748 {
749 
750 	if (tp->t_inpcb) {
751 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
752 	}
753 	tcp_dropwithreset(m, th, tp, tlen, rstreason);
754 	INP_WUNLOCK(tp->t_inpcb);
755 }
756 
757 uint32_t
758 ctf_fixed_maxseg(struct tcpcb *tp)
759 {
760 	int optlen;
761 
762 	if (tp->t_flags & TF_NOOPT)
763 		return (tp->t_maxseg);
764 
765 	/*
766 	 * Here we have a simplified code from tcp_addoptions(),
767 	 * without a proper loop, and having most of paddings hardcoded.
768 	 * We only consider fixed options that we would send every
769 	 * time I.e. SACK is not considered.
770 	 *
771 	 */
772 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
773 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
774 		if (tp->t_flags & TF_RCVD_TSTMP)
775 			optlen = TCPOLEN_TSTAMP_APPA;
776 		else
777 			optlen = 0;
778 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
779 		if (tp->t_flags & TF_SIGNATURE)
780 			optlen += PAD(TCPOLEN_SIGNATURE);
781 #endif
782 	} else {
783 		if (tp->t_flags & TF_REQ_TSTMP)
784 			optlen = TCPOLEN_TSTAMP_APPA;
785 		else
786 			optlen = PAD(TCPOLEN_MAXSEG);
787 		if (tp->t_flags & TF_REQ_SCALE)
788 			optlen += PAD(TCPOLEN_WINDOW);
789 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
790 		if (tp->t_flags & TF_SIGNATURE)
791 			optlen += PAD(TCPOLEN_SIGNATURE);
792 #endif
793 		if (tp->t_flags & TF_SACK_PERMIT)
794 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
795 	}
796 #undef PAD
797 	optlen = min(optlen, TCP_MAXOLEN);
798 	return (tp->t_maxseg - optlen);
799 }
800 
801 void
802 ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
803 {
804 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
805 		union tcp_log_stackspecific log;
806 		struct timeval tv;
807 
808 		memset(&log, 0, sizeof(log));
809 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
810 		log.u_bbr.flex8 = num_sack_blks;
811 		if (num_sack_blks > 0) {
812 			log.u_bbr.flex1 = sack_blocks[0].start;
813 			log.u_bbr.flex2 = sack_blocks[0].end;
814 		}
815 		if (num_sack_blks > 1) {
816 			log.u_bbr.flex3 = sack_blocks[1].start;
817 			log.u_bbr.flex4 = sack_blocks[1].end;
818 		}
819 		if (num_sack_blks > 2) {
820 			log.u_bbr.flex5 = sack_blocks[2].start;
821 			log.u_bbr.flex6 = sack_blocks[2].end;
822 		}
823 		if (num_sack_blks > 3) {
824 			log.u_bbr.applimited = sack_blocks[3].start;
825 			log.u_bbr.pkts_out = sack_blocks[3].end;
826 		}
827 		TCP_LOG_EVENTP(tp, NULL,
828 		    &tp->t_inpcb->inp_socket->so_rcv,
829 		    &tp->t_inpcb->inp_socket->so_snd,
830 		    TCP_SACK_FILTER_RES, 0,
831 		    0, &log, false, &tv);
832 	}
833 }
834 
835 uint32_t
836 ctf_decay_count(uint32_t count, uint32_t decay)
837 {
838 	/*
839 	 * Given a count, decay it by a set percentage. The
840 	 * percentage is in thousands i.e. 100% = 1000,
841 	 * 19.3% = 193.
842 	 */
843 	uint64_t perc_count, decay_per;
844 	uint32_t decayed_count;
845 	if (decay > 1000) {
846 		/* We don't raise it */
847 		return (count);
848 	}
849 	perc_count = count;
850 	decay_per = decay;
851 	perc_count *= decay_per;
852 	perc_count /= 1000;
853 	/*
854 	 * So now perc_count holds the
855 	 * count decay value.
856 	 */
857 	decayed_count = count - (uint32_t)perc_count;
858 	return (decayed_count);
859 }
860