xref: /freebsd/sys/netinet/tcp_subr.c (revision 325151a3)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/protosw.h>
60 #include <sys/random.h>
61 
62 #include <vm/uma.h>
63 
64 #include <net/route.h>
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/cc.h>
70 #include <netinet/in.h>
71 #include <netinet/in_kdtrace.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/ip_icmp.h>
77 #include <netinet/ip_var.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet6/in6_pcb.h>
81 #include <netinet6/ip6_var.h>
82 #include <netinet6/scope6_var.h>
83 #include <netinet6/nd6.h>
84 #endif
85 
86 #include <netinet/tcp_fsm.h>
87 #include <netinet/tcp_seq.h>
88 #include <netinet/tcp_timer.h>
89 #include <netinet/tcp_var.h>
90 #include <netinet/tcp_syncache.h>
91 #ifdef INET6
92 #include <netinet6/tcp6_var.h>
93 #endif
94 #include <netinet/tcpip.h>
95 #ifdef TCPPCAP
96 #include <netinet/tcp_pcap.h>
97 #endif
98 #ifdef TCPDEBUG
99 #include <netinet/tcp_debug.h>
100 #endif
101 #ifdef INET6
102 #include <netinet6/ip6protosw.h>
103 #endif
104 #ifdef TCP_OFFLOAD
105 #include <netinet/tcp_offload.h>
106 #endif
107 
108 #ifdef IPSEC
109 #include <netipsec/ipsec.h>
110 #include <netipsec/xform.h>
111 #ifdef INET6
112 #include <netipsec/ipsec6.h>
113 #endif
114 #include <netipsec/key.h>
115 #include <sys/syslog.h>
116 #endif /*IPSEC*/
117 
118 #include <machine/in_cksum.h>
119 #include <sys/md5.h>
120 
121 #include <security/mac/mac_framework.h>
122 
123 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
124 #ifdef INET6
125 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
126 #endif
127 
128 static int
129 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
130 {
131 	int error, new;
132 
133 	new = V_tcp_mssdflt;
134 	error = sysctl_handle_int(oidp, &new, 0, req);
135 	if (error == 0 && req->newptr) {
136 		if (new < TCP_MINMSS)
137 			error = EINVAL;
138 		else
139 			V_tcp_mssdflt = new;
140 	}
141 	return (error);
142 }
143 
144 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
145     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
146     &sysctl_net_inet_tcp_mss_check, "I",
147     "Default TCP Maximum Segment Size");
148 
149 #ifdef INET6
150 static int
151 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
152 {
153 	int error, new;
154 
155 	new = V_tcp_v6mssdflt;
156 	error = sysctl_handle_int(oidp, &new, 0, req);
157 	if (error == 0 && req->newptr) {
158 		if (new < TCP_MINMSS)
159 			error = EINVAL;
160 		else
161 			V_tcp_v6mssdflt = new;
162 	}
163 	return (error);
164 }
165 
166 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
167     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
168     &sysctl_net_inet_tcp_mss_v6_check, "I",
169    "Default TCP Maximum Segment Size for IPv6");
170 #endif /* INET6 */
171 
172 /*
173  * Minimum MSS we accept and use. This prevents DoS attacks where
174  * we are forced to a ridiculous low MSS like 20 and send hundreds
175  * of packets instead of one. The effect scales with the available
176  * bandwidth and quickly saturates the CPU and network interface
177  * with packet generation and sending. Set to zero to disable MINMSS
178  * checking. This setting prevents us from sending too small packets.
179  */
180 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
182      &VNET_NAME(tcp_minmss), 0,
183     "Minimum TCP Maximum Segment Size");
184 
185 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
186 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
187     &VNET_NAME(tcp_do_rfc1323), 0,
188     "Enable rfc1323 (high performance TCP) extensions");
189 
190 static int	tcp_log_debug = 0;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
192     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
193 
194 static int	tcp_tcbhashsize;
195 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
196     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
197 
198 static int	do_tcpdrain = 1;
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
200     "Enable tcp_drain routine for extra help when low on mbufs");
201 
202 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
203     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
204 
205 static VNET_DEFINE(int, icmp_may_rst) = 1;
206 #define	V_icmp_may_rst			VNET(icmp_may_rst)
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(icmp_may_rst), 0,
209     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210 
211 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
212 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
213 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
214     &VNET_NAME(tcp_isn_reseed_interval), 0,
215     "Seconds between reseeding of ISN secret");
216 
217 static int	tcp_soreceive_stream;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
219     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
220 
221 #ifdef TCP_SIGNATURE
222 static int	tcp_sig_checksigs = 1;
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
224     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
225 #endif
226 
227 VNET_DEFINE(uma_zone_t, sack_hole_zone);
228 #define	V_sack_hole_zone		VNET(sack_hole_zone)
229 
230 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
231 
232 static struct inpcb *tcp_notify(struct inpcb *, int);
233 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
234 static void tcp_mtudisc(struct inpcb *, int);
235 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
236 		    void *ip4hdr, const void *ip6hdr);
237 static void	tcp_timer_discard(struct tcpcb *, uint32_t);
238 
239 /*
240  * Target size of TCP PCB hash tables. Must be a power of two.
241  *
242  * Note that this can be overridden by the kernel environment
243  * variable net.inet.tcp.tcbhashsize
244  */
245 #ifndef TCBHASHSIZE
246 #define TCBHASHSIZE	0
247 #endif
248 
249 /*
250  * XXX
251  * Callouts should be moved into struct tcp directly.  They are currently
252  * separate because the tcpcb structure is exported to userland for sysctl
253  * parsing purposes, which do not know about callouts.
254  */
255 struct tcpcb_mem {
256 	struct	tcpcb		tcb;
257 	struct	tcp_timer	tt;
258 	struct	cc_var		ccv;
259 	struct	osd		osd;
260 };
261 
262 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
263 #define	V_tcpcb_zone			VNET(tcpcb_zone)
264 
265 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
266 static struct mtx isn_mtx;
267 
268 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
269 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
270 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
271 
272 /*
273  * TCP initialization.
274  */
275 static void
276 tcp_zone_change(void *tag)
277 {
278 
279 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
280 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
281 	tcp_tw_zone_change();
282 }
283 
284 static int
285 tcp_inpcb_init(void *mem, int size, int flags)
286 {
287 	struct inpcb *inp = mem;
288 
289 	INP_LOCK_INIT(inp, "inp", "tcpinp");
290 	return (0);
291 }
292 
293 /*
294  * Take a value and get the next power of 2 that doesn't overflow.
295  * Used to size the tcp_inpcb hash buckets.
296  */
297 static int
298 maketcp_hashsize(int size)
299 {
300 	int hashsize;
301 
302 	/*
303 	 * auto tune.
304 	 * get the next power of 2 higher than maxsockets.
305 	 */
306 	hashsize = 1 << fls(size);
307 	/* catch overflow, and just go one power of 2 smaller */
308 	if (hashsize < size) {
309 		hashsize = 1 << (fls(size) - 1);
310 	}
311 	return (hashsize);
312 }
313 
314 void
315 tcp_init(void)
316 {
317 	const char *tcbhash_tuneable;
318 	int hashsize;
319 
320 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
321 
322 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
323 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
324 		printf("%s: WARNING: unable to register helper hook\n", __func__);
325 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
326 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
327 		printf("%s: WARNING: unable to register helper hook\n", __func__);
328 
329 	hashsize = TCBHASHSIZE;
330 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
331 	if (hashsize == 0) {
332 		/*
333 		 * Auto tune the hash size based on maxsockets.
334 		 * A perfect hash would have a 1:1 mapping
335 		 * (hashsize = maxsockets) however it's been
336 		 * suggested that O(2) average is better.
337 		 */
338 		hashsize = maketcp_hashsize(maxsockets / 4);
339 		/*
340 		 * Our historical default is 512,
341 		 * do not autotune lower than this.
342 		 */
343 		if (hashsize < 512)
344 			hashsize = 512;
345 		if (bootverbose)
346 			printf("%s: %s auto tuned to %d\n", __func__,
347 			    tcbhash_tuneable, hashsize);
348 	}
349 	/*
350 	 * We require a hashsize to be a power of two.
351 	 * Previously if it was not a power of two we would just reset it
352 	 * back to 512, which could be a nasty surprise if you did not notice
353 	 * the error message.
354 	 * Instead what we do is clip it to the closest power of two lower
355 	 * than the specified hash value.
356 	 */
357 	if (!powerof2(hashsize)) {
358 		int oldhashsize = hashsize;
359 
360 		hashsize = maketcp_hashsize(hashsize);
361 		/* prevent absurdly low value */
362 		if (hashsize < 16)
363 			hashsize = 16;
364 		printf("%s: WARNING: TCB hash size not a power of 2, "
365 		    "clipped from %d to %d.\n", __func__, oldhashsize,
366 		    hashsize);
367 	}
368 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
369 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
370 	    IPI_HASHFIELDS_4TUPLE);
371 
372 	/*
373 	 * These have to be type stable for the benefit of the timers.
374 	 */
375 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
376 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
377 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
378 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
379 
380 	tcp_tw_init();
381 	syncache_init();
382 	tcp_hc_init();
383 
384 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
385 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
386 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
387 
388 	/* Skip initialization of globals for non-default instances. */
389 	if (!IS_DEFAULT_VNET(curvnet))
390 		return;
391 
392 	tcp_reass_global_init();
393 
394 	/* XXX virtualize those bellow? */
395 	tcp_delacktime = TCPTV_DELACK;
396 	tcp_keepinit = TCPTV_KEEP_INIT;
397 	tcp_keepidle = TCPTV_KEEP_IDLE;
398 	tcp_keepintvl = TCPTV_KEEPINTVL;
399 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
400 	tcp_msl = TCPTV_MSL;
401 	tcp_rexmit_min = TCPTV_MIN;
402 	if (tcp_rexmit_min < 1)
403 		tcp_rexmit_min = 1;
404 	tcp_rexmit_slop = TCPTV_CPU_VAR;
405 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
406 	tcp_tcbhashsize = hashsize;
407 
408 	if (tcp_soreceive_stream) {
409 #ifdef INET
410 		tcp_usrreqs.pru_soreceive = soreceive_stream;
411 #endif
412 #ifdef INET6
413 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
414 #endif /* INET6 */
415 	}
416 
417 #ifdef INET6
418 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
419 #else /* INET6 */
420 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
421 #endif /* INET6 */
422 	if (max_protohdr < TCP_MINPROTOHDR)
423 		max_protohdr = TCP_MINPROTOHDR;
424 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
425 		panic("tcp_init");
426 #undef TCP_MINPROTOHDR
427 
428 	ISN_LOCK_INIT();
429 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
430 		SHUTDOWN_PRI_DEFAULT);
431 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
432 		EVENTHANDLER_PRI_ANY);
433 #ifdef TCPPCAP
434 	tcp_pcap_init();
435 #endif
436 }
437 
438 #ifdef VIMAGE
439 void
440 tcp_destroy(void)
441 {
442 	int error;
443 
444 	tcp_hc_destroy();
445 	syncache_destroy();
446 	tcp_tw_destroy();
447 	in_pcbinfo_destroy(&V_tcbinfo);
448 	uma_zdestroy(V_sack_hole_zone);
449 	uma_zdestroy(V_tcpcb_zone);
450 
451 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
452 	if (error != 0) {
453 		printf("%s: WARNING: unable to deregister helper hook "
454 		    "type=%d, id=%d: error %d returned\n", __func__,
455 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
456 	}
457 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
458 	if (error != 0) {
459 		printf("%s: WARNING: unable to deregister helper hook "
460 		    "type=%d, id=%d: error %d returned\n", __func__,
461 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
462 	}
463 }
464 #endif
465 
466 void
467 tcp_fini(void *xtp)
468 {
469 
470 }
471 
472 /*
473  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
474  * tcp_template used to store this data in mbufs, but we now recopy it out
475  * of the tcpcb each time to conserve mbufs.
476  */
477 void
478 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
479 {
480 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
481 
482 	INP_WLOCK_ASSERT(inp);
483 
484 #ifdef INET6
485 	if ((inp->inp_vflag & INP_IPV6) != 0) {
486 		struct ip6_hdr *ip6;
487 
488 		ip6 = (struct ip6_hdr *)ip_ptr;
489 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
490 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
491 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
492 			(IPV6_VERSION & IPV6_VERSION_MASK);
493 		ip6->ip6_nxt = IPPROTO_TCP;
494 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
495 		ip6->ip6_src = inp->in6p_laddr;
496 		ip6->ip6_dst = inp->in6p_faddr;
497 	}
498 #endif /* INET6 */
499 #if defined(INET6) && defined(INET)
500 	else
501 #endif
502 #ifdef INET
503 	{
504 		struct ip *ip;
505 
506 		ip = (struct ip *)ip_ptr;
507 		ip->ip_v = IPVERSION;
508 		ip->ip_hl = 5;
509 		ip->ip_tos = inp->inp_ip_tos;
510 		ip->ip_len = 0;
511 		ip->ip_id = 0;
512 		ip->ip_off = 0;
513 		ip->ip_ttl = inp->inp_ip_ttl;
514 		ip->ip_sum = 0;
515 		ip->ip_p = IPPROTO_TCP;
516 		ip->ip_src = inp->inp_laddr;
517 		ip->ip_dst = inp->inp_faddr;
518 	}
519 #endif /* INET */
520 	th->th_sport = inp->inp_lport;
521 	th->th_dport = inp->inp_fport;
522 	th->th_seq = 0;
523 	th->th_ack = 0;
524 	th->th_x2 = 0;
525 	th->th_off = 5;
526 	th->th_flags = 0;
527 	th->th_win = 0;
528 	th->th_urp = 0;
529 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
530 }
531 
532 /*
533  * Create template to be used to send tcp packets on a connection.
534  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
535  * use for this function is in keepalives, which use tcp_respond.
536  */
537 struct tcptemp *
538 tcpip_maketemplate(struct inpcb *inp)
539 {
540 	struct tcptemp *t;
541 
542 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
543 	if (t == NULL)
544 		return (NULL);
545 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
546 	return (t);
547 }
548 
549 /*
550  * Send a single message to the TCP at address specified by
551  * the given TCP/IP header.  If m == NULL, then we make a copy
552  * of the tcpiphdr at th and send directly to the addressed host.
553  * This is used to force keep alive messages out using the TCP
554  * template for a connection.  If flags are given then we send
555  * a message back to the TCP which originated the segment th,
556  * and discard the mbuf containing it and any other attached mbufs.
557  *
558  * In any case the ack and sequence number of the transmitted
559  * segment are as specified by the parameters.
560  *
561  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
562  */
563 void
564 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
565     tcp_seq ack, tcp_seq seq, int flags)
566 {
567 	int tlen;
568 	int win = 0;
569 	struct ip *ip;
570 	struct tcphdr *nth;
571 #ifdef INET6
572 	struct ip6_hdr *ip6;
573 	int isipv6;
574 #endif /* INET6 */
575 	int ipflags = 0;
576 	struct inpcb *inp;
577 
578 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
579 
580 #ifdef INET6
581 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
582 	ip6 = ipgen;
583 #endif /* INET6 */
584 	ip = ipgen;
585 
586 	if (tp != NULL) {
587 		inp = tp->t_inpcb;
588 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
589 		INP_WLOCK_ASSERT(inp);
590 	} else
591 		inp = NULL;
592 
593 	if (tp != NULL) {
594 		if (!(flags & TH_RST)) {
595 			win = sbspace(&inp->inp_socket->so_rcv);
596 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
597 				win = (long)TCP_MAXWIN << tp->rcv_scale;
598 		}
599 	}
600 	if (m == NULL) {
601 		m = m_gethdr(M_NOWAIT, MT_DATA);
602 		if (m == NULL)
603 			return;
604 		tlen = 0;
605 		m->m_data += max_linkhdr;
606 #ifdef INET6
607 		if (isipv6) {
608 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
609 			      sizeof(struct ip6_hdr));
610 			ip6 = mtod(m, struct ip6_hdr *);
611 			nth = (struct tcphdr *)(ip6 + 1);
612 		} else
613 #endif /* INET6 */
614 		{
615 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
616 			ip = mtod(m, struct ip *);
617 			nth = (struct tcphdr *)(ip + 1);
618 		}
619 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
620 		flags = TH_ACK;
621 	} else {
622 		/*
623 		 *  reuse the mbuf.
624 		 * XXX MRT We inherrit the FIB, which is lucky.
625 		 */
626 		m_freem(m->m_next);
627 		m->m_next = NULL;
628 		m->m_data = (caddr_t)ipgen;
629 		/* m_len is set later */
630 		tlen = 0;
631 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
632 #ifdef INET6
633 		if (isipv6) {
634 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
635 			nth = (struct tcphdr *)(ip6 + 1);
636 		} else
637 #endif /* INET6 */
638 		{
639 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
640 			nth = (struct tcphdr *)(ip + 1);
641 		}
642 		if (th != nth) {
643 			/*
644 			 * this is usually a case when an extension header
645 			 * exists between the IPv6 header and the
646 			 * TCP header.
647 			 */
648 			nth->th_sport = th->th_sport;
649 			nth->th_dport = th->th_dport;
650 		}
651 		xchg(nth->th_dport, nth->th_sport, uint16_t);
652 #undef xchg
653 	}
654 #ifdef INET6
655 	if (isipv6) {
656 		ip6->ip6_flow = 0;
657 		ip6->ip6_vfc = IPV6_VERSION;
658 		ip6->ip6_nxt = IPPROTO_TCP;
659 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
660 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
661 	}
662 #endif
663 #if defined(INET) && defined(INET6)
664 	else
665 #endif
666 #ifdef INET
667 	{
668 		tlen += sizeof (struct tcpiphdr);
669 		ip->ip_len = htons(tlen);
670 		ip->ip_ttl = V_ip_defttl;
671 		if (V_path_mtu_discovery)
672 			ip->ip_off |= htons(IP_DF);
673 	}
674 #endif
675 	m->m_len = tlen;
676 	m->m_pkthdr.len = tlen;
677 	m->m_pkthdr.rcvif = NULL;
678 #ifdef MAC
679 	if (inp != NULL) {
680 		/*
681 		 * Packet is associated with a socket, so allow the
682 		 * label of the response to reflect the socket label.
683 		 */
684 		INP_WLOCK_ASSERT(inp);
685 		mac_inpcb_create_mbuf(inp, m);
686 	} else {
687 		/*
688 		 * Packet is not associated with a socket, so possibly
689 		 * update the label in place.
690 		 */
691 		mac_netinet_tcp_reply(m);
692 	}
693 #endif
694 	nth->th_seq = htonl(seq);
695 	nth->th_ack = htonl(ack);
696 	nth->th_x2 = 0;
697 	nth->th_off = sizeof (struct tcphdr) >> 2;
698 	nth->th_flags = flags;
699 	if (tp != NULL)
700 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
701 	else
702 		nth->th_win = htons((u_short)win);
703 	nth->th_urp = 0;
704 
705 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
706 #ifdef INET6
707 	if (isipv6) {
708 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
709 		nth->th_sum = in6_cksum_pseudo(ip6,
710 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
711 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
712 		    NULL, NULL);
713 	}
714 #endif /* INET6 */
715 #if defined(INET6) && defined(INET)
716 	else
717 #endif
718 #ifdef INET
719 	{
720 		m->m_pkthdr.csum_flags = CSUM_TCP;
721 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
722 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
723 	}
724 #endif /* INET */
725 #ifdef TCPDEBUG
726 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
727 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
728 #endif
729 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
730 	if (flags & TH_RST)
731 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
732 		    tp, nth);
733 
734 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
735 #ifdef INET6
736 	if (isipv6)
737 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
738 #endif /* INET6 */
739 #if defined(INET) && defined(INET6)
740 	else
741 #endif
742 #ifdef INET
743 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
744 #endif
745 }
746 
747 /*
748  * Create a new TCP control block, making an
749  * empty reassembly queue and hooking it to the argument
750  * protocol control block.  The `inp' parameter must have
751  * come from the zone allocator set up in tcp_init().
752  */
753 struct tcpcb *
754 tcp_newtcpcb(struct inpcb *inp)
755 {
756 	struct tcpcb_mem *tm;
757 	struct tcpcb *tp;
758 #ifdef INET6
759 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
760 #endif /* INET6 */
761 
762 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
763 	if (tm == NULL)
764 		return (NULL);
765 	tp = &tm->tcb;
766 
767 	/* Initialise cc_var struct for this tcpcb. */
768 	tp->ccv = &tm->ccv;
769 	tp->ccv->type = IPPROTO_TCP;
770 	tp->ccv->ccvc.tcp = tp;
771 
772 	/*
773 	 * Use the current system default CC algorithm.
774 	 */
775 	CC_LIST_RLOCK();
776 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
777 	CC_ALGO(tp) = CC_DEFAULT();
778 	CC_LIST_RUNLOCK();
779 
780 	if (CC_ALGO(tp)->cb_init != NULL)
781 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
782 			uma_zfree(V_tcpcb_zone, tm);
783 			return (NULL);
784 		}
785 
786 	tp->osd = &tm->osd;
787 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
788 		uma_zfree(V_tcpcb_zone, tm);
789 		return (NULL);
790 	}
791 
792 #ifdef VIMAGE
793 	tp->t_vnet = inp->inp_vnet;
794 #endif
795 	tp->t_timers = &tm->tt;
796 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
797 	tp->t_maxseg = tp->t_maxopd =
798 #ifdef INET6
799 		isipv6 ? V_tcp_v6mssdflt :
800 #endif /* INET6 */
801 		V_tcp_mssdflt;
802 
803 	/* Set up our timeouts. */
804 	callout_init(&tp->t_timers->tt_rexmt, 1);
805 	callout_init(&tp->t_timers->tt_persist, 1);
806 	callout_init(&tp->t_timers->tt_keep, 1);
807 	callout_init(&tp->t_timers->tt_2msl, 1);
808 	callout_init(&tp->t_timers->tt_delack, 1);
809 
810 	if (V_tcp_do_rfc1323)
811 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
812 	if (V_tcp_do_sack)
813 		tp->t_flags |= TF_SACK_PERMIT;
814 	TAILQ_INIT(&tp->snd_holes);
815 	/*
816 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
817 	 * is called.
818 	 */
819 	in_pcbref(inp);	/* Reference for tcpcb */
820 	tp->t_inpcb = inp;
821 
822 	/*
823 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
824 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
825 	 * reasonable initial retransmit time.
826 	 */
827 	tp->t_srtt = TCPTV_SRTTBASE;
828 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
829 	tp->t_rttmin = tcp_rexmit_min;
830 	tp->t_rxtcur = TCPTV_RTOBASE;
831 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
832 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
833 	tp->t_rcvtime = ticks;
834 	/*
835 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
836 	 * because the socket may be bound to an IPv6 wildcard address,
837 	 * which may match an IPv4-mapped IPv6 address.
838 	 */
839 	inp->inp_ip_ttl = V_ip_defttl;
840 	inp->inp_ppcb = tp;
841 #ifdef TCPPCAP
842 	/*
843 	 * Init the TCP PCAP queues.
844 	 */
845 	tcp_pcap_tcpcb_init(tp);
846 #endif
847 	return (tp);		/* XXX */
848 }
849 
850 /*
851  * Switch the congestion control algorithm back to NewReno for any active
852  * control blocks using an algorithm which is about to go away.
853  * This ensures the CC framework can allow the unload to proceed without leaving
854  * any dangling pointers which would trigger a panic.
855  * Returning non-zero would inform the CC framework that something went wrong
856  * and it would be unsafe to allow the unload to proceed. However, there is no
857  * way for this to occur with this implementation so we always return zero.
858  */
859 int
860 tcp_ccalgounload(struct cc_algo *unload_algo)
861 {
862 	struct cc_algo *tmpalgo;
863 	struct inpcb *inp;
864 	struct tcpcb *tp;
865 	VNET_ITERATOR_DECL(vnet_iter);
866 
867 	/*
868 	 * Check all active control blocks across all network stacks and change
869 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
870 	 * requires cleanup code to be run, call it.
871 	 */
872 	VNET_LIST_RLOCK();
873 	VNET_FOREACH(vnet_iter) {
874 		CURVNET_SET(vnet_iter);
875 		INP_INFO_WLOCK(&V_tcbinfo);
876 		/*
877 		 * New connections already part way through being initialised
878 		 * with the CC algo we're removing will not race with this code
879 		 * because the INP_INFO_WLOCK is held during initialisation. We
880 		 * therefore don't enter the loop below until the connection
881 		 * list has stabilised.
882 		 */
883 		LIST_FOREACH(inp, &V_tcb, inp_list) {
884 			INP_WLOCK(inp);
885 			/* Important to skip tcptw structs. */
886 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
887 			    (tp = intotcpcb(inp)) != NULL) {
888 				/*
889 				 * By holding INP_WLOCK here, we are assured
890 				 * that the connection is not currently
891 				 * executing inside the CC module's functions
892 				 * i.e. it is safe to make the switch back to
893 				 * NewReno.
894 				 */
895 				if (CC_ALGO(tp) == unload_algo) {
896 					tmpalgo = CC_ALGO(tp);
897 					/* NewReno does not require any init. */
898 					CC_ALGO(tp) = &newreno_cc_algo;
899 					if (tmpalgo->cb_destroy != NULL)
900 						tmpalgo->cb_destroy(tp->ccv);
901 				}
902 			}
903 			INP_WUNLOCK(inp);
904 		}
905 		INP_INFO_WUNLOCK(&V_tcbinfo);
906 		CURVNET_RESTORE();
907 	}
908 	VNET_LIST_RUNLOCK();
909 
910 	return (0);
911 }
912 
913 /*
914  * Drop a TCP connection, reporting
915  * the specified error.  If connection is synchronized,
916  * then send a RST to peer.
917  */
918 struct tcpcb *
919 tcp_drop(struct tcpcb *tp, int errno)
920 {
921 	struct socket *so = tp->t_inpcb->inp_socket;
922 
923 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
924 	INP_WLOCK_ASSERT(tp->t_inpcb);
925 
926 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
927 		tcp_state_change(tp, TCPS_CLOSED);
928 		(void) tcp_output(tp);
929 		TCPSTAT_INC(tcps_drops);
930 	} else
931 		TCPSTAT_INC(tcps_conndrops);
932 	if (errno == ETIMEDOUT && tp->t_softerror)
933 		errno = tp->t_softerror;
934 	so->so_error = errno;
935 	return (tcp_close(tp));
936 }
937 
938 void
939 tcp_discardcb(struct tcpcb *tp)
940 {
941 	struct inpcb *inp = tp->t_inpcb;
942 	struct socket *so = inp->inp_socket;
943 #ifdef INET6
944 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
945 #endif /* INET6 */
946 	int released;
947 
948 	INP_WLOCK_ASSERT(inp);
949 
950 	/*
951 	 * Make sure that all of our timers are stopped before we delete the
952 	 * PCB.
953 	 *
954 	 * If stopping a timer fails, we schedule a discard function in same
955 	 * callout, and the last discard function called will take care of
956 	 * deleting the tcpcb.
957 	 */
958 	tcp_timer_stop(tp, TT_REXMT);
959 	tcp_timer_stop(tp, TT_PERSIST);
960 	tcp_timer_stop(tp, TT_KEEP);
961 	tcp_timer_stop(tp, TT_2MSL);
962 	tcp_timer_stop(tp, TT_DELACK);
963 
964 	/*
965 	 * If we got enough samples through the srtt filter,
966 	 * save the rtt and rttvar in the routing entry.
967 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
968 	 * 4 samples is enough for the srtt filter to converge
969 	 * to within enough % of the correct value; fewer samples
970 	 * and we could save a bogus rtt. The danger is not high
971 	 * as tcp quickly recovers from everything.
972 	 * XXX: Works very well but needs some more statistics!
973 	 */
974 	if (tp->t_rttupdated >= 4) {
975 		struct hc_metrics_lite metrics;
976 		u_long ssthresh;
977 
978 		bzero(&metrics, sizeof(metrics));
979 		/*
980 		 * Update the ssthresh always when the conditions below
981 		 * are satisfied. This gives us better new start value
982 		 * for the congestion avoidance for new connections.
983 		 * ssthresh is only set if packet loss occured on a session.
984 		 *
985 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
986 		 * being torn down.  Ideally this code would not use 'so'.
987 		 */
988 		ssthresh = tp->snd_ssthresh;
989 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
990 			/*
991 			 * convert the limit from user data bytes to
992 			 * packets then to packet data bytes.
993 			 */
994 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
995 			if (ssthresh < 2)
996 				ssthresh = 2;
997 			ssthresh *= (u_long)(tp->t_maxseg +
998 #ifdef INET6
999 			    (isipv6 ? sizeof (struct ip6_hdr) +
1000 				sizeof (struct tcphdr) :
1001 #endif
1002 				sizeof (struct tcpiphdr)
1003 #ifdef INET6
1004 			    )
1005 #endif
1006 			    );
1007 		} else
1008 			ssthresh = 0;
1009 		metrics.rmx_ssthresh = ssthresh;
1010 
1011 		metrics.rmx_rtt = tp->t_srtt;
1012 		metrics.rmx_rttvar = tp->t_rttvar;
1013 		metrics.rmx_cwnd = tp->snd_cwnd;
1014 		metrics.rmx_sendpipe = 0;
1015 		metrics.rmx_recvpipe = 0;
1016 
1017 		tcp_hc_update(&inp->inp_inc, &metrics);
1018 	}
1019 
1020 	/* free the reassembly queue, if any */
1021 	tcp_reass_flush(tp);
1022 
1023 #ifdef TCP_OFFLOAD
1024 	/* Disconnect offload device, if any. */
1025 	if (tp->t_flags & TF_TOE)
1026 		tcp_offload_detach(tp);
1027 #endif
1028 
1029 	tcp_free_sackholes(tp);
1030 
1031 #ifdef TCPPCAP
1032 	/* Free the TCP PCAP queues. */
1033 	tcp_pcap_drain(&(tp->t_inpkts));
1034 	tcp_pcap_drain(&(tp->t_outpkts));
1035 #endif
1036 
1037 	/* Allow the CC algorithm to clean up after itself. */
1038 	if (CC_ALGO(tp)->cb_destroy != NULL)
1039 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1040 
1041 	khelp_destroy_osd(tp->osd);
1042 
1043 	CC_ALGO(tp) = NULL;
1044 	inp->inp_ppcb = NULL;
1045 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1046 		/* We own the last reference on tcpcb, let's free it. */
1047 		tp->t_inpcb = NULL;
1048 		uma_zfree(V_tcpcb_zone, tp);
1049 		released = in_pcbrele_wlocked(inp);
1050 		KASSERT(!released, ("%s: inp %p should not have been released "
1051 			"here", __func__, inp));
1052 	}
1053 }
1054 
1055 void
1056 tcp_timer_2msl_discard(void *xtp)
1057 {
1058 
1059 	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1060 }
1061 
1062 void
1063 tcp_timer_keep_discard(void *xtp)
1064 {
1065 
1066 	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1067 }
1068 
1069 void
1070 tcp_timer_persist_discard(void *xtp)
1071 {
1072 
1073 	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1074 }
1075 
1076 void
1077 tcp_timer_rexmt_discard(void *xtp)
1078 {
1079 
1080 	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1081 }
1082 
1083 void
1084 tcp_timer_delack_discard(void *xtp)
1085 {
1086 
1087 	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1088 }
1089 
1090 void
1091 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1092 {
1093 	struct inpcb *inp;
1094 
1095 	CURVNET_SET(tp->t_vnet);
1096 	INP_INFO_RLOCK(&V_tcbinfo);
1097 	inp = tp->t_inpcb;
1098 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1099 		__func__, tp));
1100 	INP_WLOCK(inp);
1101 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1102 		("%s: tcpcb has to be stopped here", __func__));
1103 	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1104 		("%s: discard callout should be running", __func__));
1105 	tp->t_timers->tt_flags &= ~timer_type;
1106 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1107 		/* We own the last reference on this tcpcb, let's free it. */
1108 		tp->t_inpcb = NULL;
1109 		uma_zfree(V_tcpcb_zone, tp);
1110 		if (in_pcbrele_wlocked(inp)) {
1111 			INP_INFO_RUNLOCK(&V_tcbinfo);
1112 			CURVNET_RESTORE();
1113 			return;
1114 		}
1115 	}
1116 	INP_WUNLOCK(inp);
1117 	INP_INFO_RUNLOCK(&V_tcbinfo);
1118 	CURVNET_RESTORE();
1119 }
1120 
1121 /*
1122  * Attempt to close a TCP control block, marking it as dropped, and freeing
1123  * the socket if we hold the only reference.
1124  */
1125 struct tcpcb *
1126 tcp_close(struct tcpcb *tp)
1127 {
1128 	struct inpcb *inp = tp->t_inpcb;
1129 	struct socket *so;
1130 
1131 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1132 	INP_WLOCK_ASSERT(inp);
1133 
1134 #ifdef TCP_OFFLOAD
1135 	if (tp->t_state == TCPS_LISTEN)
1136 		tcp_offload_listen_stop(tp);
1137 #endif
1138 	in_pcbdrop(inp);
1139 	TCPSTAT_INC(tcps_closed);
1140 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1141 	so = inp->inp_socket;
1142 	soisdisconnected(so);
1143 	if (inp->inp_flags & INP_SOCKREF) {
1144 		KASSERT(so->so_state & SS_PROTOREF,
1145 		    ("tcp_close: !SS_PROTOREF"));
1146 		inp->inp_flags &= ~INP_SOCKREF;
1147 		INP_WUNLOCK(inp);
1148 		ACCEPT_LOCK();
1149 		SOCK_LOCK(so);
1150 		so->so_state &= ~SS_PROTOREF;
1151 		sofree(so);
1152 		return (NULL);
1153 	}
1154 	return (tp);
1155 }
1156 
1157 void
1158 tcp_drain(void)
1159 {
1160 	VNET_ITERATOR_DECL(vnet_iter);
1161 
1162 	if (!do_tcpdrain)
1163 		return;
1164 
1165 	VNET_LIST_RLOCK_NOSLEEP();
1166 	VNET_FOREACH(vnet_iter) {
1167 		CURVNET_SET(vnet_iter);
1168 		struct inpcb *inpb;
1169 		struct tcpcb *tcpb;
1170 
1171 	/*
1172 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1173 	 * if there is one...
1174 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1175 	 *      reassembly queue should be flushed, but in a situation
1176 	 *	where we're really low on mbufs, this is potentially
1177 	 *	useful.
1178 	 */
1179 		INP_INFO_WLOCK(&V_tcbinfo);
1180 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1181 			if (inpb->inp_flags & INP_TIMEWAIT)
1182 				continue;
1183 			INP_WLOCK(inpb);
1184 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1185 				tcp_reass_flush(tcpb);
1186 				tcp_clean_sackreport(tcpb);
1187 			}
1188 			INP_WUNLOCK(inpb);
1189 		}
1190 		INP_INFO_WUNLOCK(&V_tcbinfo);
1191 		CURVNET_RESTORE();
1192 	}
1193 	VNET_LIST_RUNLOCK_NOSLEEP();
1194 }
1195 
1196 /*
1197  * Notify a tcp user of an asynchronous error;
1198  * store error as soft error, but wake up user
1199  * (for now, won't do anything until can select for soft error).
1200  *
1201  * Do not wake up user since there currently is no mechanism for
1202  * reporting soft errors (yet - a kqueue filter may be added).
1203  */
1204 static struct inpcb *
1205 tcp_notify(struct inpcb *inp, int error)
1206 {
1207 	struct tcpcb *tp;
1208 
1209 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1210 	INP_WLOCK_ASSERT(inp);
1211 
1212 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1213 	    (inp->inp_flags & INP_DROPPED))
1214 		return (inp);
1215 
1216 	tp = intotcpcb(inp);
1217 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1218 
1219 	/*
1220 	 * Ignore some errors if we are hooked up.
1221 	 * If connection hasn't completed, has retransmitted several times,
1222 	 * and receives a second error, give up now.  This is better
1223 	 * than waiting a long time to establish a connection that
1224 	 * can never complete.
1225 	 */
1226 	if (tp->t_state == TCPS_ESTABLISHED &&
1227 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1228 	     error == EHOSTDOWN)) {
1229 		return (inp);
1230 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1231 	    tp->t_softerror) {
1232 		tp = tcp_drop(tp, error);
1233 		if (tp != NULL)
1234 			return (inp);
1235 		else
1236 			return (NULL);
1237 	} else {
1238 		tp->t_softerror = error;
1239 		return (inp);
1240 	}
1241 #if 0
1242 	wakeup( &so->so_timeo);
1243 	sorwakeup(so);
1244 	sowwakeup(so);
1245 #endif
1246 }
1247 
1248 static int
1249 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1250 {
1251 	int error, i, m, n, pcb_count;
1252 	struct inpcb *inp, **inp_list;
1253 	inp_gen_t gencnt;
1254 	struct xinpgen xig;
1255 
1256 	/*
1257 	 * The process of preparing the TCB list is too time-consuming and
1258 	 * resource-intensive to repeat twice on every request.
1259 	 */
1260 	if (req->oldptr == NULL) {
1261 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1262 		n += imax(n / 8, 10);
1263 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1264 		return (0);
1265 	}
1266 
1267 	if (req->newptr != NULL)
1268 		return (EPERM);
1269 
1270 	/*
1271 	 * OK, now we're committed to doing something.
1272 	 */
1273 	INP_LIST_RLOCK(&V_tcbinfo);
1274 	gencnt = V_tcbinfo.ipi_gencnt;
1275 	n = V_tcbinfo.ipi_count;
1276 	INP_LIST_RUNLOCK(&V_tcbinfo);
1277 
1278 	m = syncache_pcbcount();
1279 
1280 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1281 		+ (n + m) * sizeof(struct xtcpcb));
1282 	if (error != 0)
1283 		return (error);
1284 
1285 	xig.xig_len = sizeof xig;
1286 	xig.xig_count = n + m;
1287 	xig.xig_gen = gencnt;
1288 	xig.xig_sogen = so_gencnt;
1289 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1290 	if (error)
1291 		return (error);
1292 
1293 	error = syncache_pcblist(req, m, &pcb_count);
1294 	if (error)
1295 		return (error);
1296 
1297 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1298 	if (inp_list == NULL)
1299 		return (ENOMEM);
1300 
1301 	INP_INFO_WLOCK(&V_tcbinfo);
1302 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1303 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1304 		INP_WLOCK(inp);
1305 		if (inp->inp_gencnt <= gencnt) {
1306 			/*
1307 			 * XXX: This use of cr_cansee(), introduced with
1308 			 * TCP state changes, is not quite right, but for
1309 			 * now, better than nothing.
1310 			 */
1311 			if (inp->inp_flags & INP_TIMEWAIT) {
1312 				if (intotw(inp) != NULL)
1313 					error = cr_cansee(req->td->td_ucred,
1314 					    intotw(inp)->tw_cred);
1315 				else
1316 					error = EINVAL;	/* Skip this inp. */
1317 			} else
1318 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1319 			if (error == 0) {
1320 				in_pcbref(inp);
1321 				inp_list[i++] = inp;
1322 			}
1323 		}
1324 		INP_WUNLOCK(inp);
1325 	}
1326 	INP_INFO_WUNLOCK(&V_tcbinfo);
1327 	n = i;
1328 
1329 	error = 0;
1330 	for (i = 0; i < n; i++) {
1331 		inp = inp_list[i];
1332 		INP_RLOCK(inp);
1333 		if (inp->inp_gencnt <= gencnt) {
1334 			struct xtcpcb xt;
1335 			void *inp_ppcb;
1336 
1337 			bzero(&xt, sizeof(xt));
1338 			xt.xt_len = sizeof xt;
1339 			/* XXX should avoid extra copy */
1340 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1341 			inp_ppcb = inp->inp_ppcb;
1342 			if (inp_ppcb == NULL)
1343 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1344 			else if (inp->inp_flags & INP_TIMEWAIT) {
1345 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1346 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1347 			} else {
1348 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1349 				if (xt.xt_tp.t_timers)
1350 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1351 			}
1352 			if (inp->inp_socket != NULL)
1353 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1354 			else {
1355 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1356 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1357 			}
1358 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1359 			INP_RUNLOCK(inp);
1360 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1361 		} else
1362 			INP_RUNLOCK(inp);
1363 	}
1364 	INP_INFO_RLOCK(&V_tcbinfo);
1365 	for (i = 0; i < n; i++) {
1366 		inp = inp_list[i];
1367 		INP_RLOCK(inp);
1368 		if (!in_pcbrele_rlocked(inp))
1369 			INP_RUNLOCK(inp);
1370 	}
1371 	INP_INFO_RUNLOCK(&V_tcbinfo);
1372 
1373 	if (!error) {
1374 		/*
1375 		 * Give the user an updated idea of our state.
1376 		 * If the generation differs from what we told
1377 		 * her before, she knows that something happened
1378 		 * while we were processing this request, and it
1379 		 * might be necessary to retry.
1380 		 */
1381 		INP_LIST_RLOCK(&V_tcbinfo);
1382 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1383 		xig.xig_sogen = so_gencnt;
1384 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1385 		INP_LIST_RUNLOCK(&V_tcbinfo);
1386 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1387 	}
1388 	free(inp_list, M_TEMP);
1389 	return (error);
1390 }
1391 
1392 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1393     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1394     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1395 
1396 #ifdef INET
1397 static int
1398 tcp_getcred(SYSCTL_HANDLER_ARGS)
1399 {
1400 	struct xucred xuc;
1401 	struct sockaddr_in addrs[2];
1402 	struct inpcb *inp;
1403 	int error;
1404 
1405 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1406 	if (error)
1407 		return (error);
1408 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1409 	if (error)
1410 		return (error);
1411 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1412 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1413 	if (inp != NULL) {
1414 		if (inp->inp_socket == NULL)
1415 			error = ENOENT;
1416 		if (error == 0)
1417 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1418 		if (error == 0)
1419 			cru2x(inp->inp_cred, &xuc);
1420 		INP_RUNLOCK(inp);
1421 	} else
1422 		error = ENOENT;
1423 	if (error == 0)
1424 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1425 	return (error);
1426 }
1427 
1428 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1429     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1430     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1431 #endif /* INET */
1432 
1433 #ifdef INET6
1434 static int
1435 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1436 {
1437 	struct xucred xuc;
1438 	struct sockaddr_in6 addrs[2];
1439 	struct inpcb *inp;
1440 	int error;
1441 #ifdef INET
1442 	int mapped = 0;
1443 #endif
1444 
1445 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1446 	if (error)
1447 		return (error);
1448 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1449 	if (error)
1450 		return (error);
1451 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1452 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1453 		return (error);
1454 	}
1455 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1456 #ifdef INET
1457 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1458 			mapped = 1;
1459 		else
1460 #endif
1461 			return (EINVAL);
1462 	}
1463 
1464 #ifdef INET
1465 	if (mapped == 1)
1466 		inp = in_pcblookup(&V_tcbinfo,
1467 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1468 			addrs[1].sin6_port,
1469 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1470 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1471 	else
1472 #endif
1473 		inp = in6_pcblookup(&V_tcbinfo,
1474 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1475 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1476 			INPLOOKUP_RLOCKPCB, NULL);
1477 	if (inp != NULL) {
1478 		if (inp->inp_socket == NULL)
1479 			error = ENOENT;
1480 		if (error == 0)
1481 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1482 		if (error == 0)
1483 			cru2x(inp->inp_cred, &xuc);
1484 		INP_RUNLOCK(inp);
1485 	} else
1486 		error = ENOENT;
1487 	if (error == 0)
1488 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1489 	return (error);
1490 }
1491 
1492 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1493     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1494     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1495 #endif /* INET6 */
1496 
1497 
1498 #ifdef INET
1499 void
1500 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1501 {
1502 	struct ip *ip = vip;
1503 	struct tcphdr *th;
1504 	struct in_addr faddr;
1505 	struct inpcb *inp;
1506 	struct tcpcb *tp;
1507 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1508 	struct icmp *icp;
1509 	struct in_conninfo inc;
1510 	tcp_seq icmp_tcp_seq;
1511 	int mtu;
1512 
1513 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1514 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1515 		return;
1516 
1517 	if (cmd == PRC_MSGSIZE)
1518 		notify = tcp_mtudisc_notify;
1519 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1520 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1521 		notify = tcp_drop_syn_sent;
1522 	/*
1523 	 * Redirects don't need to be handled up here.
1524 	 */
1525 	else if (PRC_IS_REDIRECT(cmd))
1526 		return;
1527 	/*
1528 	 * Hostdead is ugly because it goes linearly through all PCBs.
1529 	 * XXX: We never get this from ICMP, otherwise it makes an
1530 	 * excellent DoS attack on machines with many connections.
1531 	 */
1532 	else if (cmd == PRC_HOSTDEAD)
1533 		ip = NULL;
1534 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1535 		return;
1536 
1537 	if (ip == NULL) {
1538 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1539 		return;
1540 	}
1541 
1542 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1543 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1544 	INP_INFO_RLOCK(&V_tcbinfo);
1545 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1546 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1547 	if (inp != NULL)  {
1548 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1549 		    !(inp->inp_flags & INP_DROPPED) &&
1550 		    !(inp->inp_socket == NULL)) {
1551 			icmp_tcp_seq = ntohl(th->th_seq);
1552 			tp = intotcpcb(inp);
1553 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1554 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1555 				if (cmd == PRC_MSGSIZE) {
1556 					/*
1557 					 * MTU discovery:
1558 					 * If we got a needfrag set the MTU
1559 					 * in the route to the suggested new
1560 					 * value (if given) and then notify.
1561 					 */
1562 				    	mtu = ntohs(icp->icmp_nextmtu);
1563 					/*
1564 					 * If no alternative MTU was
1565 					 * proposed, try the next smaller
1566 					 * one.
1567 					 */
1568 					if (!mtu)
1569 						mtu = ip_next_mtu(
1570 						    ntohs(ip->ip_len), 1);
1571 					if (mtu < V_tcp_minmss +
1572 					    sizeof(struct tcpiphdr))
1573 						mtu = V_tcp_minmss +
1574 						    sizeof(struct tcpiphdr);
1575 					/*
1576 					 * Only process the offered MTU if it
1577 					 * is smaller than the current one.
1578 					 */
1579 					if (mtu < tp->t_maxopd +
1580 					    sizeof(struct tcpiphdr)) {
1581 						bzero(&inc, sizeof(inc));
1582 						inc.inc_faddr = faddr;
1583 						inc.inc_fibnum =
1584 						    inp->inp_inc.inc_fibnum;
1585 						tcp_hc_updatemtu(&inc, mtu);
1586 						tcp_mtudisc(inp, mtu);
1587 					}
1588 				} else
1589 					inp = (*notify)(inp,
1590 					    inetctlerrmap[cmd]);
1591 			}
1592 		}
1593 		if (inp != NULL)
1594 			INP_WUNLOCK(inp);
1595 	} else {
1596 		bzero(&inc, sizeof(inc));
1597 		inc.inc_fport = th->th_dport;
1598 		inc.inc_lport = th->th_sport;
1599 		inc.inc_faddr = faddr;
1600 		inc.inc_laddr = ip->ip_src;
1601 		syncache_unreach(&inc, th);
1602 	}
1603 	INP_INFO_RUNLOCK(&V_tcbinfo);
1604 }
1605 #endif /* INET */
1606 
1607 #ifdef INET6
1608 void
1609 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1610 {
1611 	struct tcphdr th;
1612 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1613 	struct ip6_hdr *ip6;
1614 	struct mbuf *m;
1615 	struct ip6ctlparam *ip6cp = NULL;
1616 	const struct sockaddr_in6 *sa6_src = NULL;
1617 	int off;
1618 	struct tcp_portonly {
1619 		u_int16_t th_sport;
1620 		u_int16_t th_dport;
1621 	} *thp;
1622 
1623 	if (sa->sa_family != AF_INET6 ||
1624 	    sa->sa_len != sizeof(struct sockaddr_in6))
1625 		return;
1626 
1627 	if (cmd == PRC_MSGSIZE)
1628 		notify = tcp_mtudisc_notify;
1629 	else if (!PRC_IS_REDIRECT(cmd) &&
1630 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1631 		return;
1632 
1633 	/* if the parameter is from icmp6, decode it. */
1634 	if (d != NULL) {
1635 		ip6cp = (struct ip6ctlparam *)d;
1636 		m = ip6cp->ip6c_m;
1637 		ip6 = ip6cp->ip6c_ip6;
1638 		off = ip6cp->ip6c_off;
1639 		sa6_src = ip6cp->ip6c_src;
1640 	} else {
1641 		m = NULL;
1642 		ip6 = NULL;
1643 		off = 0;	/* fool gcc */
1644 		sa6_src = &sa6_any;
1645 	}
1646 
1647 	if (ip6 != NULL) {
1648 		struct in_conninfo inc;
1649 		/*
1650 		 * XXX: We assume that when IPV6 is non NULL,
1651 		 * M and OFF are valid.
1652 		 */
1653 
1654 		/* check if we can safely examine src and dst ports */
1655 		if (m->m_pkthdr.len < off + sizeof(*thp))
1656 			return;
1657 
1658 		bzero(&th, sizeof(th));
1659 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1660 
1661 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1662 		    (struct sockaddr *)ip6cp->ip6c_src,
1663 		    th.th_sport, cmd, NULL, notify);
1664 
1665 		bzero(&inc, sizeof(inc));
1666 		inc.inc_fport = th.th_dport;
1667 		inc.inc_lport = th.th_sport;
1668 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1669 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1670 		inc.inc_flags |= INC_ISIPV6;
1671 		INP_INFO_RLOCK(&V_tcbinfo);
1672 		syncache_unreach(&inc, &th);
1673 		INP_INFO_RUNLOCK(&V_tcbinfo);
1674 	} else
1675 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1676 			      0, cmd, NULL, notify);
1677 }
1678 #endif /* INET6 */
1679 
1680 
1681 /*
1682  * Following is where TCP initial sequence number generation occurs.
1683  *
1684  * There are two places where we must use initial sequence numbers:
1685  * 1.  In SYN-ACK packets.
1686  * 2.  In SYN packets.
1687  *
1688  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1689  * tcp_syncache.c for details.
1690  *
1691  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1692  * depends on this property.  In addition, these ISNs should be
1693  * unguessable so as to prevent connection hijacking.  To satisfy
1694  * the requirements of this situation, the algorithm outlined in
1695  * RFC 1948 is used, with only small modifications.
1696  *
1697  * Implementation details:
1698  *
1699  * Time is based off the system timer, and is corrected so that it
1700  * increases by one megabyte per second.  This allows for proper
1701  * recycling on high speed LANs while still leaving over an hour
1702  * before rollover.
1703  *
1704  * As reading the *exact* system time is too expensive to be done
1705  * whenever setting up a TCP connection, we increment the time
1706  * offset in two ways.  First, a small random positive increment
1707  * is added to isn_offset for each connection that is set up.
1708  * Second, the function tcp_isn_tick fires once per clock tick
1709  * and increments isn_offset as necessary so that sequence numbers
1710  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1711  * random positive increments serve only to ensure that the same
1712  * exact sequence number is never sent out twice (as could otherwise
1713  * happen when a port is recycled in less than the system tick
1714  * interval.)
1715  *
1716  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1717  * between seeding of isn_secret.  This is normally set to zero,
1718  * as reseeding should not be necessary.
1719  *
1720  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1721  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1722  * general, this means holding an exclusive (write) lock.
1723  */
1724 
1725 #define ISN_BYTES_PER_SECOND 1048576
1726 #define ISN_STATIC_INCREMENT 4096
1727 #define ISN_RANDOM_INCREMENT (4096 - 1)
1728 
1729 static VNET_DEFINE(u_char, isn_secret[32]);
1730 static VNET_DEFINE(int, isn_last);
1731 static VNET_DEFINE(int, isn_last_reseed);
1732 static VNET_DEFINE(u_int32_t, isn_offset);
1733 static VNET_DEFINE(u_int32_t, isn_offset_old);
1734 
1735 #define	V_isn_secret			VNET(isn_secret)
1736 #define	V_isn_last			VNET(isn_last)
1737 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1738 #define	V_isn_offset			VNET(isn_offset)
1739 #define	V_isn_offset_old		VNET(isn_offset_old)
1740 
1741 tcp_seq
1742 tcp_new_isn(struct tcpcb *tp)
1743 {
1744 	MD5_CTX isn_ctx;
1745 	u_int32_t md5_buffer[4];
1746 	tcp_seq new_isn;
1747 	u_int32_t projected_offset;
1748 
1749 	INP_WLOCK_ASSERT(tp->t_inpcb);
1750 
1751 	ISN_LOCK();
1752 	/* Seed if this is the first use, reseed if requested. */
1753 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1754 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1755 		< (u_int)ticks))) {
1756 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1757 		V_isn_last_reseed = ticks;
1758 	}
1759 
1760 	/* Compute the md5 hash and return the ISN. */
1761 	MD5Init(&isn_ctx);
1762 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1763 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1764 #ifdef INET6
1765 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1766 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1767 			  sizeof(struct in6_addr));
1768 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1769 			  sizeof(struct in6_addr));
1770 	} else
1771 #endif
1772 	{
1773 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1774 			  sizeof(struct in_addr));
1775 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1776 			  sizeof(struct in_addr));
1777 	}
1778 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1779 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1780 	new_isn = (tcp_seq) md5_buffer[0];
1781 	V_isn_offset += ISN_STATIC_INCREMENT +
1782 		(arc4random() & ISN_RANDOM_INCREMENT);
1783 	if (ticks != V_isn_last) {
1784 		projected_offset = V_isn_offset_old +
1785 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1786 		if (SEQ_GT(projected_offset, V_isn_offset))
1787 			V_isn_offset = projected_offset;
1788 		V_isn_offset_old = V_isn_offset;
1789 		V_isn_last = ticks;
1790 	}
1791 	new_isn += V_isn_offset;
1792 	ISN_UNLOCK();
1793 	return (new_isn);
1794 }
1795 
1796 /*
1797  * When a specific ICMP unreachable message is received and the
1798  * connection state is SYN-SENT, drop the connection.  This behavior
1799  * is controlled by the icmp_may_rst sysctl.
1800  */
1801 struct inpcb *
1802 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1803 {
1804 	struct tcpcb *tp;
1805 
1806 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1807 	INP_WLOCK_ASSERT(inp);
1808 
1809 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1810 	    (inp->inp_flags & INP_DROPPED))
1811 		return (inp);
1812 
1813 	tp = intotcpcb(inp);
1814 	if (tp->t_state != TCPS_SYN_SENT)
1815 		return (inp);
1816 
1817 	tp = tcp_drop(tp, errno);
1818 	if (tp != NULL)
1819 		return (inp);
1820 	else
1821 		return (NULL);
1822 }
1823 
1824 /*
1825  * When `need fragmentation' ICMP is received, update our idea of the MSS
1826  * based on the new value. Also nudge TCP to send something, since we
1827  * know the packet we just sent was dropped.
1828  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1829  */
1830 static struct inpcb *
1831 tcp_mtudisc_notify(struct inpcb *inp, int error)
1832 {
1833 
1834 	tcp_mtudisc(inp, -1);
1835 	return (inp);
1836 }
1837 
1838 static void
1839 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1840 {
1841 	struct tcpcb *tp;
1842 	struct socket *so;
1843 
1844 	INP_WLOCK_ASSERT(inp);
1845 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1846 	    (inp->inp_flags & INP_DROPPED))
1847 		return;
1848 
1849 	tp = intotcpcb(inp);
1850 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1851 
1852 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1853 
1854 	so = inp->inp_socket;
1855 	SOCKBUF_LOCK(&so->so_snd);
1856 	/* If the mss is larger than the socket buffer, decrease the mss. */
1857 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1858 		tp->t_maxseg = so->so_snd.sb_hiwat;
1859 	SOCKBUF_UNLOCK(&so->so_snd);
1860 
1861 	TCPSTAT_INC(tcps_mturesent);
1862 	tp->t_rtttime = 0;
1863 	tp->snd_nxt = tp->snd_una;
1864 	tcp_free_sackholes(tp);
1865 	tp->snd_recover = tp->snd_max;
1866 	if (tp->t_flags & TF_SACK_PERMIT)
1867 		EXIT_FASTRECOVERY(tp->t_flags);
1868 	tcp_output(tp);
1869 }
1870 
1871 #ifdef INET
1872 /*
1873  * Look-up the routing entry to the peer of this inpcb.  If no route
1874  * is found and it cannot be allocated, then return 0.  This routine
1875  * is called by TCP routines that access the rmx structure and by
1876  * tcp_mss_update to get the peer/interface MTU.
1877  */
1878 u_long
1879 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1880 {
1881 	struct route sro;
1882 	struct sockaddr_in *dst;
1883 	struct ifnet *ifp;
1884 	u_long maxmtu = 0;
1885 
1886 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1887 
1888 	bzero(&sro, sizeof(sro));
1889 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1890 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1891 		dst->sin_family = AF_INET;
1892 		dst->sin_len = sizeof(*dst);
1893 		dst->sin_addr = inc->inc_faddr;
1894 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1895 	}
1896 	if (sro.ro_rt != NULL) {
1897 		ifp = sro.ro_rt->rt_ifp;
1898 		if (sro.ro_rt->rt_mtu == 0)
1899 			maxmtu = ifp->if_mtu;
1900 		else
1901 			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
1902 
1903 		/* Report additional interface capabilities. */
1904 		if (cap != NULL) {
1905 			if (ifp->if_capenable & IFCAP_TSO4 &&
1906 			    ifp->if_hwassist & CSUM_TSO) {
1907 				cap->ifcap |= CSUM_TSO;
1908 				cap->tsomax = ifp->if_hw_tsomax;
1909 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
1910 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
1911 			}
1912 		}
1913 		RTFREE(sro.ro_rt);
1914 	}
1915 	return (maxmtu);
1916 }
1917 #endif /* INET */
1918 
1919 #ifdef INET6
1920 u_long
1921 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
1922 {
1923 	struct route_in6 sro6;
1924 	struct ifnet *ifp;
1925 	u_long maxmtu = 0;
1926 
1927 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1928 
1929 	bzero(&sro6, sizeof(sro6));
1930 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1931 		sro6.ro_dst.sin6_family = AF_INET6;
1932 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1933 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1934 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1935 	}
1936 	if (sro6.ro_rt != NULL) {
1937 		ifp = sro6.ro_rt->rt_ifp;
1938 		if (sro6.ro_rt->rt_mtu == 0)
1939 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1940 		else
1941 			maxmtu = min(sro6.ro_rt->rt_mtu,
1942 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1943 
1944 		/* Report additional interface capabilities. */
1945 		if (cap != NULL) {
1946 			if (ifp->if_capenable & IFCAP_TSO6 &&
1947 			    ifp->if_hwassist & CSUM_TSO) {
1948 				cap->ifcap |= CSUM_TSO;
1949 				cap->tsomax = ifp->if_hw_tsomax;
1950 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
1951 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
1952 			}
1953 		}
1954 		RTFREE(sro6.ro_rt);
1955 	}
1956 
1957 	return (maxmtu);
1958 }
1959 #endif /* INET6 */
1960 
1961 #ifdef IPSEC
1962 /* compute ESP/AH header size for TCP, including outer IP header. */
1963 size_t
1964 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1965 {
1966 	struct inpcb *inp;
1967 	struct mbuf *m;
1968 	size_t hdrsiz;
1969 	struct ip *ip;
1970 #ifdef INET6
1971 	struct ip6_hdr *ip6;
1972 #endif
1973 	struct tcphdr *th;
1974 
1975 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1976 		return (0);
1977 	m = m_gethdr(M_NOWAIT, MT_DATA);
1978 	if (!m)
1979 		return (0);
1980 
1981 #ifdef INET6
1982 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1983 		ip6 = mtod(m, struct ip6_hdr *);
1984 		th = (struct tcphdr *)(ip6 + 1);
1985 		m->m_pkthdr.len = m->m_len =
1986 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1987 		tcpip_fillheaders(inp, ip6, th);
1988 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1989 	} else
1990 #endif /* INET6 */
1991 	{
1992 		ip = mtod(m, struct ip *);
1993 		th = (struct tcphdr *)(ip + 1);
1994 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1995 		tcpip_fillheaders(inp, ip, th);
1996 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1997 	}
1998 
1999 	m_free(m);
2000 	return (hdrsiz);
2001 }
2002 #endif /* IPSEC */
2003 
2004 #ifdef TCP_SIGNATURE
2005 /*
2006  * Callback function invoked by m_apply() to digest TCP segment data
2007  * contained within an mbuf chain.
2008  */
2009 static int
2010 tcp_signature_apply(void *fstate, void *data, u_int len)
2011 {
2012 
2013 	MD5Update(fstate, (u_char *)data, len);
2014 	return (0);
2015 }
2016 
2017 /*
2018  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2019  * search with the destination IP address, and a 'magic SPI' to be
2020  * determined by the application. This is hardcoded elsewhere to 1179
2021 */
2022 struct secasvar *
2023 tcp_get_sav(struct mbuf *m, u_int direction)
2024 {
2025 	union sockaddr_union dst;
2026 	struct secasvar *sav;
2027 	struct ip *ip;
2028 #ifdef INET6
2029 	struct ip6_hdr *ip6;
2030 	char ip6buf[INET6_ADDRSTRLEN];
2031 #endif
2032 
2033 	/* Extract the destination from the IP header in the mbuf. */
2034 	bzero(&dst, sizeof(union sockaddr_union));
2035 	ip = mtod(m, struct ip *);
2036 #ifdef INET6
2037 	ip6 = NULL;	/* Make the compiler happy. */
2038 #endif
2039 	switch (ip->ip_v) {
2040 #ifdef INET
2041 	case IPVERSION:
2042 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2043 		dst.sa.sa_family = AF_INET;
2044 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2045 		    ip->ip_src : ip->ip_dst;
2046 		break;
2047 #endif
2048 #ifdef INET6
2049 	case (IPV6_VERSION >> 4):
2050 		ip6 = mtod(m, struct ip6_hdr *);
2051 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2052 		dst.sa.sa_family = AF_INET6;
2053 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2054 		    ip6->ip6_src : ip6->ip6_dst;
2055 		break;
2056 #endif
2057 	default:
2058 		return (NULL);
2059 		/* NOTREACHED */
2060 		break;
2061 	}
2062 
2063 	/* Look up an SADB entry which matches the address of the peer. */
2064 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2065 	if (sav == NULL) {
2066 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2067 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2068 #ifdef INET6
2069 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2070 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2071 #endif
2072 			"(unsupported)"));
2073 	}
2074 
2075 	return (sav);
2076 }
2077 
2078 /*
2079  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2080  *
2081  * Parameters:
2082  * m		pointer to head of mbuf chain
2083  * len		length of TCP segment data, excluding options
2084  * optlen	length of TCP segment options
2085  * buf		pointer to storage for computed MD5 digest
2086  * sav		pointer to security assosiation
2087  *
2088  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2089  * When called from tcp_input(), we can be sure that th_sum has been
2090  * zeroed out and verified already.
2091  *
2092  * Releases reference to SADB key before return.
2093  *
2094  * Return 0 if successful, otherwise return -1.
2095  *
2096  */
2097 int
2098 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2099     u_char *buf, struct secasvar *sav)
2100 {
2101 #ifdef INET
2102 	struct ippseudo ippseudo;
2103 #endif
2104 	MD5_CTX ctx;
2105 	int doff;
2106 	struct ip *ip;
2107 #ifdef INET
2108 	struct ipovly *ipovly;
2109 #endif
2110 	struct tcphdr *th;
2111 #ifdef INET6
2112 	struct ip6_hdr *ip6;
2113 	struct in6_addr in6;
2114 	uint32_t plen;
2115 	uint16_t nhdr;
2116 #endif
2117 	u_short savecsum;
2118 
2119 	KASSERT(m != NULL, ("NULL mbuf chain"));
2120 	KASSERT(buf != NULL, ("NULL signature pointer"));
2121 
2122 	/* Extract the destination from the IP header in the mbuf. */
2123 	ip = mtod(m, struct ip *);
2124 #ifdef INET6
2125 	ip6 = NULL;	/* Make the compiler happy. */
2126 #endif
2127 
2128 	MD5Init(&ctx);
2129 	/*
2130 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2131 	 *
2132 	 * XXX The ippseudo header MUST be digested in network byte order,
2133 	 * or else we'll fail the regression test. Assume all fields we've
2134 	 * been doing arithmetic on have been in host byte order.
2135 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2136 	 * tcp_output(), the underlying ip_len member has not yet been set.
2137 	 */
2138 	switch (ip->ip_v) {
2139 #ifdef INET
2140 	case IPVERSION:
2141 		ipovly = (struct ipovly *)ip;
2142 		ippseudo.ippseudo_src = ipovly->ih_src;
2143 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2144 		ippseudo.ippseudo_pad = 0;
2145 		ippseudo.ippseudo_p = IPPROTO_TCP;
2146 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2147 		    optlen);
2148 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2149 
2150 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2151 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2152 		break;
2153 #endif
2154 #ifdef INET6
2155 	/*
2156 	 * RFC 2385, 2.0  Proposal
2157 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2158 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2159 	 * extended next header value (to form 32 bits), and 32-bit segment
2160 	 * length.
2161 	 * Note: Upper-Layer Packet Length comes before Next Header.
2162 	 */
2163 	case (IPV6_VERSION >> 4):
2164 		in6 = ip6->ip6_src;
2165 		in6_clearscope(&in6);
2166 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2167 		in6 = ip6->ip6_dst;
2168 		in6_clearscope(&in6);
2169 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2170 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2171 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2172 		nhdr = 0;
2173 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2174 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2175 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2176 		nhdr = IPPROTO_TCP;
2177 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2178 
2179 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2180 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2181 		break;
2182 #endif
2183 	default:
2184 		KEY_FREESAV(&sav);
2185 		return (-1);
2186 		/* NOTREACHED */
2187 		break;
2188 	}
2189 
2190 
2191 	/*
2192 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2193 	 * The TCP checksum must be set to zero.
2194 	 */
2195 	savecsum = th->th_sum;
2196 	th->th_sum = 0;
2197 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2198 	th->th_sum = savecsum;
2199 
2200 	/*
2201 	 * Step 3: Update MD5 hash with TCP segment data.
2202 	 *         Use m_apply() to avoid an early m_pullup().
2203 	 */
2204 	if (len > 0)
2205 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2206 
2207 	/*
2208 	 * Step 4: Update MD5 hash with shared secret.
2209 	 */
2210 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2211 	MD5Final(buf, &ctx);
2212 
2213 	key_sa_recordxfer(sav, m);
2214 	KEY_FREESAV(&sav);
2215 	return (0);
2216 }
2217 
2218 /*
2219  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2220  *
2221  * Return 0 if successful, otherwise return -1.
2222  */
2223 int
2224 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2225     u_char *buf, u_int direction)
2226 {
2227 	struct secasvar *sav;
2228 
2229 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2230 		return (-1);
2231 
2232 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2233 }
2234 
2235 /*
2236  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2237  *
2238  * Parameters:
2239  * m		pointer to head of mbuf chain
2240  * len		length of TCP segment data, excluding options
2241  * optlen	length of TCP segment options
2242  * buf		pointer to storage for computed MD5 digest
2243  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2244  *
2245  * Return 1 if successful, otherwise return 0.
2246  */
2247 int
2248 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2249     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2250 {
2251 	char tmpdigest[TCP_SIGLEN];
2252 
2253 	if (tcp_sig_checksigs == 0)
2254 		return (1);
2255 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2256 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2257 
2258 			/*
2259 			 * If this socket is not expecting signature but
2260 			 * the segment contains signature just fail.
2261 			 */
2262 			TCPSTAT_INC(tcps_sig_err_sigopt);
2263 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2264 			return (0);
2265 		}
2266 
2267 		/* Signature is not expected, and not present in segment. */
2268 		return (1);
2269 	}
2270 
2271 	/*
2272 	 * If this socket is expecting signature but the segment does not
2273 	 * contain any just fail.
2274 	 */
2275 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2276 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2277 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2278 		return (0);
2279 	}
2280 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2281 	    IPSEC_DIR_INBOUND) == -1) {
2282 		TCPSTAT_INC(tcps_sig_err_buildsig);
2283 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2284 		return (0);
2285 	}
2286 
2287 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2288 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2289 		return (0);
2290 	}
2291 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2292 	return (1);
2293 }
2294 #endif /* TCP_SIGNATURE */
2295 
2296 static int
2297 sysctl_drop(SYSCTL_HANDLER_ARGS)
2298 {
2299 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2300 	struct sockaddr_storage addrs[2];
2301 	struct inpcb *inp;
2302 	struct tcpcb *tp;
2303 	struct tcptw *tw;
2304 	struct sockaddr_in *fin, *lin;
2305 #ifdef INET6
2306 	struct sockaddr_in6 *fin6, *lin6;
2307 #endif
2308 	int error;
2309 
2310 	inp = NULL;
2311 	fin = lin = NULL;
2312 #ifdef INET6
2313 	fin6 = lin6 = NULL;
2314 #endif
2315 	error = 0;
2316 
2317 	if (req->oldptr != NULL || req->oldlen != 0)
2318 		return (EINVAL);
2319 	if (req->newptr == NULL)
2320 		return (EPERM);
2321 	if (req->newlen < sizeof(addrs))
2322 		return (ENOMEM);
2323 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2324 	if (error)
2325 		return (error);
2326 
2327 	switch (addrs[0].ss_family) {
2328 #ifdef INET6
2329 	case AF_INET6:
2330 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2331 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2332 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2333 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2334 			return (EINVAL);
2335 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2336 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2337 				return (EINVAL);
2338 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2339 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2340 			fin = (struct sockaddr_in *)&addrs[0];
2341 			lin = (struct sockaddr_in *)&addrs[1];
2342 			break;
2343 		}
2344 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2345 		if (error)
2346 			return (error);
2347 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2348 		if (error)
2349 			return (error);
2350 		break;
2351 #endif
2352 #ifdef INET
2353 	case AF_INET:
2354 		fin = (struct sockaddr_in *)&addrs[0];
2355 		lin = (struct sockaddr_in *)&addrs[1];
2356 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2357 		    lin->sin_len != sizeof(struct sockaddr_in))
2358 			return (EINVAL);
2359 		break;
2360 #endif
2361 	default:
2362 		return (EINVAL);
2363 	}
2364 	INP_INFO_RLOCK(&V_tcbinfo);
2365 	switch (addrs[0].ss_family) {
2366 #ifdef INET6
2367 	case AF_INET6:
2368 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2369 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2370 		    INPLOOKUP_WLOCKPCB, NULL);
2371 		break;
2372 #endif
2373 #ifdef INET
2374 	case AF_INET:
2375 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2376 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2377 		break;
2378 #endif
2379 	}
2380 	if (inp != NULL) {
2381 		if (inp->inp_flags & INP_TIMEWAIT) {
2382 			/*
2383 			 * XXXRW: There currently exists a state where an
2384 			 * inpcb is present, but its timewait state has been
2385 			 * discarded.  For now, don't allow dropping of this
2386 			 * type of inpcb.
2387 			 */
2388 			tw = intotw(inp);
2389 			if (tw != NULL)
2390 				tcp_twclose(tw, 0);
2391 			else
2392 				INP_WUNLOCK(inp);
2393 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2394 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2395 			tp = intotcpcb(inp);
2396 			tp = tcp_drop(tp, ECONNABORTED);
2397 			if (tp != NULL)
2398 				INP_WUNLOCK(inp);
2399 		} else
2400 			INP_WUNLOCK(inp);
2401 	} else
2402 		error = ESRCH;
2403 	INP_INFO_RUNLOCK(&V_tcbinfo);
2404 	return (error);
2405 }
2406 
2407 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2408     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2409     0, sysctl_drop, "", "Drop TCP connection");
2410 
2411 /*
2412  * Generate a standardized TCP log line for use throughout the
2413  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2414  * allow use in the interrupt context.
2415  *
2416  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2417  * NB: The function may return NULL if memory allocation failed.
2418  *
2419  * Due to header inclusion and ordering limitations the struct ip
2420  * and ip6_hdr pointers have to be passed as void pointers.
2421  */
2422 char *
2423 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2424     const void *ip6hdr)
2425 {
2426 
2427 	/* Is logging enabled? */
2428 	if (tcp_log_in_vain == 0)
2429 		return (NULL);
2430 
2431 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2432 }
2433 
2434 char *
2435 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2436     const void *ip6hdr)
2437 {
2438 
2439 	/* Is logging enabled? */
2440 	if (tcp_log_debug == 0)
2441 		return (NULL);
2442 
2443 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2444 }
2445 
2446 static char *
2447 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2448     const void *ip6hdr)
2449 {
2450 	char *s, *sp;
2451 	size_t size;
2452 	struct ip *ip;
2453 #ifdef INET6
2454 	const struct ip6_hdr *ip6;
2455 
2456 	ip6 = (const struct ip6_hdr *)ip6hdr;
2457 #endif /* INET6 */
2458 	ip = (struct ip *)ip4hdr;
2459 
2460 	/*
2461 	 * The log line looks like this:
2462 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2463 	 */
2464 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2465 	    sizeof(PRINT_TH_FLAGS) + 1 +
2466 #ifdef INET6
2467 	    2 * INET6_ADDRSTRLEN;
2468 #else
2469 	    2 * INET_ADDRSTRLEN;
2470 #endif /* INET6 */
2471 
2472 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2473 	if (s == NULL)
2474 		return (NULL);
2475 
2476 	strcat(s, "TCP: [");
2477 	sp = s + strlen(s);
2478 
2479 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2480 		inet_ntoa_r(inc->inc_faddr, sp);
2481 		sp = s + strlen(s);
2482 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2483 		sp = s + strlen(s);
2484 		inet_ntoa_r(inc->inc_laddr, sp);
2485 		sp = s + strlen(s);
2486 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2487 #ifdef INET6
2488 	} else if (inc) {
2489 		ip6_sprintf(sp, &inc->inc6_faddr);
2490 		sp = s + strlen(s);
2491 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2492 		sp = s + strlen(s);
2493 		ip6_sprintf(sp, &inc->inc6_laddr);
2494 		sp = s + strlen(s);
2495 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2496 	} else if (ip6 && th) {
2497 		ip6_sprintf(sp, &ip6->ip6_src);
2498 		sp = s + strlen(s);
2499 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2500 		sp = s + strlen(s);
2501 		ip6_sprintf(sp, &ip6->ip6_dst);
2502 		sp = s + strlen(s);
2503 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2504 #endif /* INET6 */
2505 #ifdef INET
2506 	} else if (ip && th) {
2507 		inet_ntoa_r(ip->ip_src, sp);
2508 		sp = s + strlen(s);
2509 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2510 		sp = s + strlen(s);
2511 		inet_ntoa_r(ip->ip_dst, sp);
2512 		sp = s + strlen(s);
2513 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2514 #endif /* INET */
2515 	} else {
2516 		free(s, M_TCPLOG);
2517 		return (NULL);
2518 	}
2519 	sp = s + strlen(s);
2520 	if (th)
2521 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2522 	if (*(s + size - 1) != '\0')
2523 		panic("%s: string too long", __func__);
2524 	return (s);
2525 }
2526 
2527 /*
2528  * A subroutine which makes it easy to track TCP state changes with DTrace.
2529  * This function shouldn't be called for t_state initializations that don't
2530  * correspond to actual TCP state transitions.
2531  */
2532 void
2533 tcp_state_change(struct tcpcb *tp, int newstate)
2534 {
2535 #if defined(KDTRACE_HOOKS)
2536 	int pstate = tp->t_state;
2537 #endif
2538 
2539 	tp->t_state = newstate;
2540 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2541 }
2542