xref: /freebsd/sys/netinet/tcp_subr.c (revision 42249ef2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_kern_tls.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/eventhandler.h>
47 #ifdef TCP_HHOOK
48 #include <sys/hhook.h>
49 #endif
50 #include <sys/kernel.h>
51 #ifdef TCP_HHOOK
52 #include <sys/khelp.h>
53 #endif
54 #ifdef KERN_TLS
55 #include <sys/ktls.h>
56 #endif
57 #include <sys/sysctl.h>
58 #include <sys/jail.h>
59 #include <sys/malloc.h>
60 #include <sys/refcount.h>
61 #include <sys/mbuf.h>
62 #ifdef INET6
63 #include <sys/domain.h>
64 #endif
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/sdt.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/protosw.h>
71 #include <sys/random.h>
72 
73 #include <vm/uma.h>
74 
75 #include <net/route.h>
76 #include <net/if.h>
77 #include <net/if_var.h>
78 #include <net/vnet.h>
79 
80 #include <netinet/in.h>
81 #include <netinet/in_fib.h>
82 #include <netinet/in_kdtrace.h>
83 #include <netinet/in_pcb.h>
84 #include <netinet/in_systm.h>
85 #include <netinet/in_var.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h>
88 #include <netinet/ip_var.h>
89 #ifdef INET6
90 #include <netinet/icmp6.h>
91 #include <netinet/ip6.h>
92 #include <netinet6/in6_fib.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/ip6_var.h>
95 #include <netinet6/scope6_var.h>
96 #include <netinet6/nd6.h>
97 #endif
98 
99 #include <netinet/tcp.h>
100 #include <netinet/tcp_fsm.h>
101 #include <netinet/tcp_seq.h>
102 #include <netinet/tcp_timer.h>
103 #include <netinet/tcp_var.h>
104 #include <netinet/tcp_log_buf.h>
105 #include <netinet/tcp_syncache.h>
106 #include <netinet/tcp_hpts.h>
107 #include <netinet/cc/cc.h>
108 #ifdef INET6
109 #include <netinet6/tcp6_var.h>
110 #endif
111 #include <netinet/tcpip.h>
112 #include <netinet/tcp_fastopen.h>
113 #ifdef TCPPCAP
114 #include <netinet/tcp_pcap.h>
115 #endif
116 #ifdef TCPDEBUG
117 #include <netinet/tcp_debug.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/ip6protosw.h>
121 #endif
122 #ifdef TCP_OFFLOAD
123 #include <netinet/tcp_offload.h>
124 #endif
125 
126 #include <netipsec/ipsec_support.h>
127 
128 #include <machine/in_cksum.h>
129 #include <sys/md5.h>
130 
131 #include <security/mac/mac_framework.h>
132 
133 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
134 #ifdef INET6
135 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
136 #endif
137 
138 struct rwlock tcp_function_lock;
139 
140 static int
141 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
142 {
143 	int error, new;
144 
145 	new = V_tcp_mssdflt;
146 	error = sysctl_handle_int(oidp, &new, 0, req);
147 	if (error == 0 && req->newptr) {
148 		if (new < TCP_MINMSS)
149 			error = EINVAL;
150 		else
151 			V_tcp_mssdflt = new;
152 	}
153 	return (error);
154 }
155 
156 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
157     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
158     &sysctl_net_inet_tcp_mss_check, "I",
159     "Default TCP Maximum Segment Size");
160 
161 #ifdef INET6
162 static int
163 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
164 {
165 	int error, new;
166 
167 	new = V_tcp_v6mssdflt;
168 	error = sysctl_handle_int(oidp, &new, 0, req);
169 	if (error == 0 && req->newptr) {
170 		if (new < TCP_MINMSS)
171 			error = EINVAL;
172 		else
173 			V_tcp_v6mssdflt = new;
174 	}
175 	return (error);
176 }
177 
178 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
179     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
180     &sysctl_net_inet_tcp_mss_v6_check, "I",
181    "Default TCP Maximum Segment Size for IPv6");
182 #endif /* INET6 */
183 
184 /*
185  * Minimum MSS we accept and use. This prevents DoS attacks where
186  * we are forced to a ridiculous low MSS like 20 and send hundreds
187  * of packets instead of one. The effect scales with the available
188  * bandwidth and quickly saturates the CPU and network interface
189  * with packet generation and sending. Set to zero to disable MINMSS
190  * checking. This setting prevents us from sending too small packets.
191  */
192 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
194      &VNET_NAME(tcp_minmss), 0,
195     "Minimum TCP Maximum Segment Size");
196 
197 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
198 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
199     &VNET_NAME(tcp_do_rfc1323), 0,
200     "Enable rfc1323 (high performance TCP) extensions");
201 
202 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW,
204     &VNET_NAME(tcp_ts_offset_per_conn), 0,
205     "Initialize TCP timestamps per connection instead of per host pair");
206 
207 static int	tcp_log_debug = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
209     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
210 
211 static int	tcp_tcbhashsize;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
213     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
214 
215 static int	do_tcpdrain = 1;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
217     "Enable tcp_drain routine for extra help when low on mbufs");
218 
219 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
220     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
221 
222 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1;
223 #define	V_icmp_may_rst			VNET(icmp_may_rst)
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
225     &VNET_NAME(icmp_may_rst), 0,
226     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
227 
228 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0;
229 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
231     &VNET_NAME(tcp_isn_reseed_interval), 0,
232     "Seconds between reseeding of ISN secret");
233 
234 static int	tcp_soreceive_stream;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
236     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
237 
238 VNET_DEFINE(uma_zone_t, sack_hole_zone);
239 #define	V_sack_hole_zone		VNET(sack_hole_zone)
240 
241 #ifdef TCP_HHOOK
242 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
243 #endif
244 
245 #define TS_OFFSET_SECRET_LENGTH 32
246 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]);
247 #define	V_ts_offset_secret	VNET(ts_offset_secret)
248 
249 static int	tcp_default_fb_init(struct tcpcb *tp);
250 static void	tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged);
251 static int	tcp_default_handoff_ok(struct tcpcb *tp);
252 static struct inpcb *tcp_notify(struct inpcb *, int);
253 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
254 static void tcp_mtudisc(struct inpcb *, int);
255 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
256 		    void *ip4hdr, const void *ip6hdr);
257 
258 
259 static struct tcp_function_block tcp_def_funcblk = {
260 	.tfb_tcp_block_name = "freebsd",
261 	.tfb_tcp_output = tcp_output,
262 	.tfb_tcp_do_segment = tcp_do_segment,
263 	.tfb_tcp_ctloutput = tcp_default_ctloutput,
264 	.tfb_tcp_handoff_ok = tcp_default_handoff_ok,
265 	.tfb_tcp_fb_init = tcp_default_fb_init,
266 	.tfb_tcp_fb_fini = tcp_default_fb_fini,
267 };
268 
269 static int tcp_fb_cnt = 0;
270 struct tcp_funchead t_functions;
271 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
272 
273 static struct tcp_function_block *
274 find_tcp_functions_locked(struct tcp_function_set *fs)
275 {
276 	struct tcp_function *f;
277 	struct tcp_function_block *blk=NULL;
278 
279 	TAILQ_FOREACH(f, &t_functions, tf_next) {
280 		if (strcmp(f->tf_name, fs->function_set_name) == 0) {
281 			blk = f->tf_fb;
282 			break;
283 		}
284 	}
285 	return(blk);
286 }
287 
288 static struct tcp_function_block *
289 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
290 {
291 	struct tcp_function_block *rblk=NULL;
292 	struct tcp_function *f;
293 
294 	TAILQ_FOREACH(f, &t_functions, tf_next) {
295 		if (f->tf_fb == blk) {
296 			rblk = blk;
297 			if (s) {
298 				*s = f;
299 			}
300 			break;
301 		}
302 	}
303 	return (rblk);
304 }
305 
306 struct tcp_function_block *
307 find_and_ref_tcp_functions(struct tcp_function_set *fs)
308 {
309 	struct tcp_function_block *blk;
310 
311 	rw_rlock(&tcp_function_lock);
312 	blk = find_tcp_functions_locked(fs);
313 	if (blk)
314 		refcount_acquire(&blk->tfb_refcnt);
315 	rw_runlock(&tcp_function_lock);
316 	return(blk);
317 }
318 
319 struct tcp_function_block *
320 find_and_ref_tcp_fb(struct tcp_function_block *blk)
321 {
322 	struct tcp_function_block *rblk;
323 
324 	rw_rlock(&tcp_function_lock);
325 	rblk = find_tcp_fb_locked(blk, NULL);
326 	if (rblk)
327 		refcount_acquire(&rblk->tfb_refcnt);
328 	rw_runlock(&tcp_function_lock);
329 	return(rblk);
330 }
331 
332 static struct tcp_function_block *
333 find_and_ref_tcp_default_fb(void)
334 {
335 	struct tcp_function_block *rblk;
336 
337 	rw_rlock(&tcp_function_lock);
338 	rblk = tcp_func_set_ptr;
339 	refcount_acquire(&rblk->tfb_refcnt);
340 	rw_runlock(&tcp_function_lock);
341 	return (rblk);
342 }
343 
344 void
345 tcp_switch_back_to_default(struct tcpcb *tp)
346 {
347 	struct tcp_function_block *tfb;
348 
349 	KASSERT(tp->t_fb != &tcp_def_funcblk,
350 	    ("%s: called by the built-in default stack", __func__));
351 
352 	/*
353 	 * Release the old stack. This function will either find a new one
354 	 * or panic.
355 	 */
356 	if (tp->t_fb->tfb_tcp_fb_fini != NULL)
357 		(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
358 	refcount_release(&tp->t_fb->tfb_refcnt);
359 
360 	/*
361 	 * Now, we'll find a new function block to use.
362 	 * Start by trying the current user-selected
363 	 * default, unless this stack is the user-selected
364 	 * default.
365 	 */
366 	tfb = find_and_ref_tcp_default_fb();
367 	if (tfb == tp->t_fb) {
368 		refcount_release(&tfb->tfb_refcnt);
369 		tfb = NULL;
370 	}
371 	/* Does the stack accept this connection? */
372 	if (tfb != NULL && tfb->tfb_tcp_handoff_ok != NULL &&
373 	    (*tfb->tfb_tcp_handoff_ok)(tp)) {
374 		refcount_release(&tfb->tfb_refcnt);
375 		tfb = NULL;
376 	}
377 	/* Try to use that stack. */
378 	if (tfb != NULL) {
379 		/* Initialize the new stack. If it succeeds, we are done. */
380 		tp->t_fb = tfb;
381 		if (tp->t_fb->tfb_tcp_fb_init == NULL ||
382 		    (*tp->t_fb->tfb_tcp_fb_init)(tp) == 0)
383 			return;
384 
385 		/*
386 		 * Initialization failed. Release the reference count on
387 		 * the stack.
388 		 */
389 		refcount_release(&tfb->tfb_refcnt);
390 	}
391 
392 	/*
393 	 * If that wasn't feasible, use the built-in default
394 	 * stack which is not allowed to reject anyone.
395 	 */
396 	tfb = find_and_ref_tcp_fb(&tcp_def_funcblk);
397 	if (tfb == NULL) {
398 		/* there always should be a default */
399 		panic("Can't refer to tcp_def_funcblk");
400 	}
401 	if (tfb->tfb_tcp_handoff_ok != NULL) {
402 		if ((*tfb->tfb_tcp_handoff_ok) (tp)) {
403 			/* The default stack cannot say no */
404 			panic("Default stack rejects a new session?");
405 		}
406 	}
407 	tp->t_fb = tfb;
408 	if (tp->t_fb->tfb_tcp_fb_init != NULL &&
409 	    (*tp->t_fb->tfb_tcp_fb_init)(tp)) {
410 		/* The default stack cannot fail */
411 		panic("Default stack initialization failed");
412 	}
413 }
414 
415 static int
416 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
417 {
418 	int error=ENOENT;
419 	struct tcp_function_set fs;
420 	struct tcp_function_block *blk;
421 
422 	memset(&fs, 0, sizeof(fs));
423 	rw_rlock(&tcp_function_lock);
424 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
425 	if (blk) {
426 		/* Found him */
427 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
428 		fs.pcbcnt = blk->tfb_refcnt;
429 	}
430 	rw_runlock(&tcp_function_lock);
431 	error = sysctl_handle_string(oidp, fs.function_set_name,
432 				     sizeof(fs.function_set_name), req);
433 
434 	/* Check for error or no change */
435 	if (error != 0 || req->newptr == NULL)
436 		return(error);
437 
438 	rw_wlock(&tcp_function_lock);
439 	blk = find_tcp_functions_locked(&fs);
440 	if ((blk == NULL) ||
441 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
442 		error = ENOENT;
443 		goto done;
444 	}
445 	tcp_func_set_ptr = blk;
446 done:
447 	rw_wunlock(&tcp_function_lock);
448 	return (error);
449 }
450 
451 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
452 	    CTLTYPE_STRING | CTLFLAG_RW,
453 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
454 	    "Set/get the default TCP functions");
455 
456 static int
457 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
458 {
459 	int error, cnt, linesz;
460 	struct tcp_function *f;
461 	char *buffer, *cp;
462 	size_t bufsz, outsz;
463 	bool alias;
464 
465 	cnt = 0;
466 	rw_rlock(&tcp_function_lock);
467 	TAILQ_FOREACH(f, &t_functions, tf_next) {
468 		cnt++;
469 	}
470 	rw_runlock(&tcp_function_lock);
471 
472 	bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1;
473 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
474 
475 	error = 0;
476 	cp = buffer;
477 
478 	linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D',
479 	    "Alias", "PCB count");
480 	cp += linesz;
481 	bufsz -= linesz;
482 	outsz = linesz;
483 
484 	rw_rlock(&tcp_function_lock);
485 	TAILQ_FOREACH(f, &t_functions, tf_next) {
486 		alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name);
487 		linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n",
488 		    f->tf_fb->tfb_tcp_block_name,
489 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
490 		    alias ? f->tf_name : "-",
491 		    f->tf_fb->tfb_refcnt);
492 		if (linesz >= bufsz) {
493 			error = EOVERFLOW;
494 			break;
495 		}
496 		cp += linesz;
497 		bufsz -= linesz;
498 		outsz += linesz;
499 	}
500 	rw_runlock(&tcp_function_lock);
501 	if (error == 0)
502 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
503 	free(buffer, M_TEMP);
504 	return (error);
505 }
506 
507 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
508 	    CTLTYPE_STRING|CTLFLAG_RD,
509 	    NULL, 0, sysctl_net_inet_list_available, "A",
510 	    "list available TCP Function sets");
511 
512 /*
513  * Exports one (struct tcp_function_info) for each alias/name.
514  */
515 static int
516 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)
517 {
518 	int cnt, error;
519 	struct tcp_function *f;
520 	struct tcp_function_info tfi;
521 
522 	/*
523 	 * We don't allow writes.
524 	 */
525 	if (req->newptr != NULL)
526 		return (EINVAL);
527 
528 	/*
529 	 * Wire the old buffer so we can directly copy the functions to
530 	 * user space without dropping the lock.
531 	 */
532 	if (req->oldptr != NULL) {
533 		error = sysctl_wire_old_buffer(req, 0);
534 		if (error)
535 			return (error);
536 	}
537 
538 	/*
539 	 * Walk the list and copy out matching entries. If INVARIANTS
540 	 * is compiled in, also walk the list to verify the length of
541 	 * the list matches what we have recorded.
542 	 */
543 	rw_rlock(&tcp_function_lock);
544 
545 	cnt = 0;
546 #ifndef INVARIANTS
547 	if (req->oldptr == NULL) {
548 		cnt = tcp_fb_cnt;
549 		goto skip_loop;
550 	}
551 #endif
552 	TAILQ_FOREACH(f, &t_functions, tf_next) {
553 #ifdef INVARIANTS
554 		cnt++;
555 #endif
556 		if (req->oldptr != NULL) {
557 			bzero(&tfi, sizeof(tfi));
558 			tfi.tfi_refcnt = f->tf_fb->tfb_refcnt;
559 			tfi.tfi_id = f->tf_fb->tfb_id;
560 			(void)strlcpy(tfi.tfi_alias, f->tf_name,
561 			    sizeof(tfi.tfi_alias));
562 			(void)strlcpy(tfi.tfi_name,
563 			    f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name));
564 			error = SYSCTL_OUT(req, &tfi, sizeof(tfi));
565 			/*
566 			 * Don't stop on error, as that is the
567 			 * mechanism we use to accumulate length
568 			 * information if the buffer was too short.
569 			 */
570 		}
571 	}
572 	KASSERT(cnt == tcp_fb_cnt,
573 	    ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt));
574 #ifndef INVARIANTS
575 skip_loop:
576 #endif
577 	rw_runlock(&tcp_function_lock);
578 	if (req->oldptr == NULL)
579 		error = SYSCTL_OUT(req, NULL,
580 		    (cnt + 1) * sizeof(struct tcp_function_info));
581 
582 	return (error);
583 }
584 
585 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info,
586 	    CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE,
587 	    NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info",
588 	    "List TCP function block name-to-ID mappings");
589 
590 /*
591  * tfb_tcp_handoff_ok() function for the default stack.
592  * Note that we'll basically try to take all comers.
593  */
594 static int
595 tcp_default_handoff_ok(struct tcpcb *tp)
596 {
597 
598 	return (0);
599 }
600 
601 /*
602  * tfb_tcp_fb_init() function for the default stack.
603  *
604  * This handles making sure we have appropriate timers set if you are
605  * transitioning a socket that has some amount of setup done.
606  *
607  * The init() fuction from the default can *never* return non-zero i.e.
608  * it is required to always succeed since it is the stack of last resort!
609  */
610 static int
611 tcp_default_fb_init(struct tcpcb *tp)
612 {
613 
614 	struct socket *so;
615 
616 	INP_WLOCK_ASSERT(tp->t_inpcb);
617 
618 	KASSERT(tp->t_state >= 0 && tp->t_state < TCPS_TIME_WAIT,
619 	    ("%s: connection %p in unexpected state %d", __func__, tp,
620 	    tp->t_state));
621 
622 	/*
623 	 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't
624 	 * know what to do for unexpected states (which includes TIME_WAIT).
625 	 */
626 	if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT)
627 		return (0);
628 
629 	/*
630 	 * Make sure some kind of transmission timer is set if there is
631 	 * outstanding data.
632 	 */
633 	so = tp->t_inpcb->inp_socket;
634 	if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) ||
635 	    tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) ||
636 	    tcp_timer_active(tp, TT_PERSIST))) {
637 		/*
638 		 * If the session has established and it looks like it should
639 		 * be in the persist state, set the persist timer. Otherwise,
640 		 * set the retransmit timer.
641 		 */
642 		if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 &&
643 		    (int32_t)(tp->snd_nxt - tp->snd_una) <
644 		    (int32_t)sbavail(&so->so_snd))
645 			tcp_setpersist(tp);
646 		else
647 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
648 	}
649 
650 	/* All non-embryonic sessions get a keepalive timer. */
651 	if (!tcp_timer_active(tp, TT_KEEP))
652 		tcp_timer_activate(tp, TT_KEEP,
653 		    TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) :
654 		    TP_KEEPINIT(tp));
655 
656 	return (0);
657 }
658 
659 /*
660  * tfb_tcp_fb_fini() function for the default stack.
661  *
662  * This changes state as necessary (or prudent) to prepare for another stack
663  * to assume responsibility for the connection.
664  */
665 static void
666 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged)
667 {
668 
669 	INP_WLOCK_ASSERT(tp->t_inpcb);
670 	return;
671 }
672 
673 /*
674  * Target size of TCP PCB hash tables. Must be a power of two.
675  *
676  * Note that this can be overridden by the kernel environment
677  * variable net.inet.tcp.tcbhashsize
678  */
679 #ifndef TCBHASHSIZE
680 #define TCBHASHSIZE	0
681 #endif
682 
683 /*
684  * XXX
685  * Callouts should be moved into struct tcp directly.  They are currently
686  * separate because the tcpcb structure is exported to userland for sysctl
687  * parsing purposes, which do not know about callouts.
688  */
689 struct tcpcb_mem {
690 	struct	tcpcb		tcb;
691 	struct	tcp_timer	tt;
692 	struct	cc_var		ccv;
693 #ifdef TCP_HHOOK
694 	struct	osd		osd;
695 #endif
696 };
697 
698 VNET_DEFINE_STATIC(uma_zone_t, tcpcb_zone);
699 #define	V_tcpcb_zone			VNET(tcpcb_zone)
700 
701 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
702 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
703 
704 static struct mtx isn_mtx;
705 
706 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
707 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
708 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
709 
710 /*
711  * TCP initialization.
712  */
713 static void
714 tcp_zone_change(void *tag)
715 {
716 
717 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
718 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
719 	tcp_tw_zone_change();
720 }
721 
722 static int
723 tcp_inpcb_init(void *mem, int size, int flags)
724 {
725 	struct inpcb *inp = mem;
726 
727 	INP_LOCK_INIT(inp, "inp", "tcpinp");
728 	return (0);
729 }
730 
731 /*
732  * Take a value and get the next power of 2 that doesn't overflow.
733  * Used to size the tcp_inpcb hash buckets.
734  */
735 static int
736 maketcp_hashsize(int size)
737 {
738 	int hashsize;
739 
740 	/*
741 	 * auto tune.
742 	 * get the next power of 2 higher than maxsockets.
743 	 */
744 	hashsize = 1 << fls(size);
745 	/* catch overflow, and just go one power of 2 smaller */
746 	if (hashsize < size) {
747 		hashsize = 1 << (fls(size) - 1);
748 	}
749 	return (hashsize);
750 }
751 
752 static volatile int next_tcp_stack_id = 1;
753 
754 /*
755  * Register a TCP function block with the name provided in the names
756  * array.  (Note that this function does NOT automatically register
757  * blk->tfb_tcp_block_name as a stack name.  Therefore, you should
758  * explicitly include blk->tfb_tcp_block_name in the list of names if
759  * you wish to register the stack with that name.)
760  *
761  * Either all name registrations will succeed or all will fail.  If
762  * a name registration fails, the function will update the num_names
763  * argument to point to the array index of the name that encountered
764  * the failure.
765  *
766  * Returns 0 on success, or an error code on failure.
767  */
768 int
769 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait,
770     const char *names[], int *num_names)
771 {
772 	struct tcp_function *n;
773 	struct tcp_function_set fs;
774 	int error, i;
775 
776 	KASSERT(names != NULL && *num_names > 0,
777 	    ("%s: Called with 0-length name list", __func__));
778 	KASSERT(names != NULL, ("%s: Called with NULL name list", __func__));
779 	KASSERT(rw_initialized(&tcp_function_lock),
780 	    ("%s: called too early", __func__));
781 
782 	if ((blk->tfb_tcp_output == NULL) ||
783 	    (blk->tfb_tcp_do_segment == NULL) ||
784 	    (blk->tfb_tcp_ctloutput == NULL) ||
785 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
786 		/*
787 		 * These functions are required and you
788 		 * need a name.
789 		 */
790 		*num_names = 0;
791 		return (EINVAL);
792 	}
793 	if (blk->tfb_tcp_timer_stop_all ||
794 	    blk->tfb_tcp_timer_activate ||
795 	    blk->tfb_tcp_timer_active ||
796 	    blk->tfb_tcp_timer_stop) {
797 		/*
798 		 * If you define one timer function you
799 		 * must have them all.
800 		 */
801 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
802 		    (blk->tfb_tcp_timer_activate == NULL) ||
803 		    (blk->tfb_tcp_timer_active == NULL) ||
804 		    (blk->tfb_tcp_timer_stop == NULL)) {
805 			*num_names = 0;
806 			return (EINVAL);
807 		}
808 	}
809 
810 	if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) {
811 		*num_names = 0;
812 		return (EINVAL);
813 	}
814 
815 	refcount_init(&blk->tfb_refcnt, 0);
816 	blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1);
817 	for (i = 0; i < *num_names; i++) {
818 		n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
819 		if (n == NULL) {
820 			error = ENOMEM;
821 			goto cleanup;
822 		}
823 		n->tf_fb = blk;
824 
825 		(void)strlcpy(fs.function_set_name, names[i],
826 		    sizeof(fs.function_set_name));
827 		rw_wlock(&tcp_function_lock);
828 		if (find_tcp_functions_locked(&fs) != NULL) {
829 			/* Duplicate name space not allowed */
830 			rw_wunlock(&tcp_function_lock);
831 			free(n, M_TCPFUNCTIONS);
832 			error = EALREADY;
833 			goto cleanup;
834 		}
835 		(void)strlcpy(n->tf_name, names[i], sizeof(n->tf_name));
836 		TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
837 		tcp_fb_cnt++;
838 		rw_wunlock(&tcp_function_lock);
839 	}
840 	return(0);
841 
842 cleanup:
843 	/*
844 	 * Deregister the names we just added. Because registration failed
845 	 * for names[i], we don't need to deregister that name.
846 	 */
847 	*num_names = i;
848 	rw_wlock(&tcp_function_lock);
849 	while (--i >= 0) {
850 		TAILQ_FOREACH(n, &t_functions, tf_next) {
851 			if (!strncmp(n->tf_name, names[i],
852 			    TCP_FUNCTION_NAME_LEN_MAX)) {
853 				TAILQ_REMOVE(&t_functions, n, tf_next);
854 				tcp_fb_cnt--;
855 				n->tf_fb = NULL;
856 				free(n, M_TCPFUNCTIONS);
857 				break;
858 			}
859 		}
860 	}
861 	rw_wunlock(&tcp_function_lock);
862 	return (error);
863 }
864 
865 /*
866  * Register a TCP function block using the name provided in the name
867  * argument.
868  *
869  * Returns 0 on success, or an error code on failure.
870  */
871 int
872 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name,
873     int wait)
874 {
875 	const char *name_list[1];
876 	int num_names, rv;
877 
878 	num_names = 1;
879 	if (name != NULL)
880 		name_list[0] = name;
881 	else
882 		name_list[0] = blk->tfb_tcp_block_name;
883 	rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names);
884 	return (rv);
885 }
886 
887 /*
888  * Register a TCP function block using the name defined in
889  * blk->tfb_tcp_block_name.
890  *
891  * Returns 0 on success, or an error code on failure.
892  */
893 int
894 register_tcp_functions(struct tcp_function_block *blk, int wait)
895 {
896 
897 	return (register_tcp_functions_as_name(blk, NULL, wait));
898 }
899 
900 /*
901  * Deregister all names associated with a function block. This
902  * functionally removes the function block from use within the system.
903  *
904  * When called with a true quiesce argument, mark the function block
905  * as being removed so no more stacks will use it and determine
906  * whether the removal would succeed.
907  *
908  * When called with a false quiesce argument, actually attempt the
909  * removal.
910  *
911  * When called with a force argument, attempt to switch all TCBs to
912  * use the default stack instead of returning EBUSY.
913  *
914  * Returns 0 on success (or if the removal would succeed, or an error
915  * code on failure.
916  */
917 int
918 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce,
919     bool force)
920 {
921 	struct tcp_function *f;
922 
923 	if (blk == &tcp_def_funcblk) {
924 		/* You can't un-register the default */
925 		return (EPERM);
926 	}
927 	rw_wlock(&tcp_function_lock);
928 	if (blk == tcp_func_set_ptr) {
929 		/* You can't free the current default */
930 		rw_wunlock(&tcp_function_lock);
931 		return (EBUSY);
932 	}
933 	/* Mark the block so no more stacks can use it. */
934 	blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
935 	/*
936 	 * If TCBs are still attached to the stack, attempt to switch them
937 	 * to the default stack.
938 	 */
939 	if (force && blk->tfb_refcnt) {
940 		struct inpcb *inp;
941 		struct tcpcb *tp;
942 		VNET_ITERATOR_DECL(vnet_iter);
943 
944 		rw_wunlock(&tcp_function_lock);
945 
946 		VNET_LIST_RLOCK();
947 		VNET_FOREACH(vnet_iter) {
948 			CURVNET_SET(vnet_iter);
949 			INP_INFO_WLOCK(&V_tcbinfo);
950 			CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
951 				INP_WLOCK(inp);
952 				if (inp->inp_flags & INP_TIMEWAIT) {
953 					INP_WUNLOCK(inp);
954 					continue;
955 				}
956 				tp = intotcpcb(inp);
957 				if (tp == NULL || tp->t_fb != blk) {
958 					INP_WUNLOCK(inp);
959 					continue;
960 				}
961 				tcp_switch_back_to_default(tp);
962 				INP_WUNLOCK(inp);
963 			}
964 			INP_INFO_WUNLOCK(&V_tcbinfo);
965 			CURVNET_RESTORE();
966 		}
967 		VNET_LIST_RUNLOCK();
968 
969 		rw_wlock(&tcp_function_lock);
970 	}
971 	if (blk->tfb_refcnt) {
972 		/* TCBs still attached. */
973 		rw_wunlock(&tcp_function_lock);
974 		return (EBUSY);
975 	}
976 	if (quiesce) {
977 		/* Skip removal. */
978 		rw_wunlock(&tcp_function_lock);
979 		return (0);
980 	}
981 	/* Remove any function names that map to this function block. */
982 	while (find_tcp_fb_locked(blk, &f) != NULL) {
983 		TAILQ_REMOVE(&t_functions, f, tf_next);
984 		tcp_fb_cnt--;
985 		f->tf_fb = NULL;
986 		free(f, M_TCPFUNCTIONS);
987 	}
988 	rw_wunlock(&tcp_function_lock);
989 	return (0);
990 }
991 
992 void
993 tcp_init(void)
994 {
995 	const char *tcbhash_tuneable;
996 	int hashsize;
997 
998 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
999 
1000 #ifdef TCP_HHOOK
1001 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
1002 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1003 		printf("%s: WARNING: unable to register helper hook\n", __func__);
1004 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
1005 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1006 		printf("%s: WARNING: unable to register helper hook\n", __func__);
1007 #endif
1008 	hashsize = TCBHASHSIZE;
1009 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
1010 	if (hashsize == 0) {
1011 		/*
1012 		 * Auto tune the hash size based on maxsockets.
1013 		 * A perfect hash would have a 1:1 mapping
1014 		 * (hashsize = maxsockets) however it's been
1015 		 * suggested that O(2) average is better.
1016 		 */
1017 		hashsize = maketcp_hashsize(maxsockets / 4);
1018 		/*
1019 		 * Our historical default is 512,
1020 		 * do not autotune lower than this.
1021 		 */
1022 		if (hashsize < 512)
1023 			hashsize = 512;
1024 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
1025 			printf("%s: %s auto tuned to %d\n", __func__,
1026 			    tcbhash_tuneable, hashsize);
1027 	}
1028 	/*
1029 	 * We require a hashsize to be a power of two.
1030 	 * Previously if it was not a power of two we would just reset it
1031 	 * back to 512, which could be a nasty surprise if you did not notice
1032 	 * the error message.
1033 	 * Instead what we do is clip it to the closest power of two lower
1034 	 * than the specified hash value.
1035 	 */
1036 	if (!powerof2(hashsize)) {
1037 		int oldhashsize = hashsize;
1038 
1039 		hashsize = maketcp_hashsize(hashsize);
1040 		/* prevent absurdly low value */
1041 		if (hashsize < 16)
1042 			hashsize = 16;
1043 		printf("%s: WARNING: TCB hash size not a power of 2, "
1044 		    "clipped from %d to %d.\n", __func__, oldhashsize,
1045 		    hashsize);
1046 	}
1047 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
1048 	    "tcp_inpcb", tcp_inpcb_init, IPI_HASHFIELDS_4TUPLE);
1049 
1050 	/*
1051 	 * These have to be type stable for the benefit of the timers.
1052 	 */
1053 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
1054 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1055 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
1056 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
1057 
1058 	tcp_tw_init();
1059 	syncache_init();
1060 	tcp_hc_init();
1061 
1062 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
1063 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
1064 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1065 
1066 	tcp_fastopen_init();
1067 
1068 	/* Skip initialization of globals for non-default instances. */
1069 	if (!IS_DEFAULT_VNET(curvnet))
1070 		return;
1071 
1072 	tcp_reass_global_init();
1073 
1074 	/* XXX virtualize those bellow? */
1075 	tcp_delacktime = TCPTV_DELACK;
1076 	tcp_keepinit = TCPTV_KEEP_INIT;
1077 	tcp_keepidle = TCPTV_KEEP_IDLE;
1078 	tcp_keepintvl = TCPTV_KEEPINTVL;
1079 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
1080 	tcp_msl = TCPTV_MSL;
1081 	tcp_rexmit_initial = TCPTV_RTOBASE;
1082 	if (tcp_rexmit_initial < 1)
1083 		tcp_rexmit_initial = 1;
1084 	tcp_rexmit_min = TCPTV_MIN;
1085 	if (tcp_rexmit_min < 1)
1086 		tcp_rexmit_min = 1;
1087 	tcp_persmin = TCPTV_PERSMIN;
1088 	tcp_persmax = TCPTV_PERSMAX;
1089 	tcp_rexmit_slop = TCPTV_CPU_VAR;
1090 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
1091 	tcp_tcbhashsize = hashsize;
1092 
1093 	/* Setup the tcp function block list */
1094 	TAILQ_INIT(&t_functions);
1095 	rw_init(&tcp_function_lock, "tcp_func_lock");
1096 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
1097 #ifdef TCP_BLACKBOX
1098 	/* Initialize the TCP logging data. */
1099 	tcp_log_init();
1100 #endif
1101 	arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0);
1102 
1103 	if (tcp_soreceive_stream) {
1104 #ifdef INET
1105 		tcp_usrreqs.pru_soreceive = soreceive_stream;
1106 #endif
1107 #ifdef INET6
1108 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
1109 #endif /* INET6 */
1110 	}
1111 
1112 #ifdef INET6
1113 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
1114 #else /* INET6 */
1115 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
1116 #endif /* INET6 */
1117 	if (max_protohdr < TCP_MINPROTOHDR)
1118 		max_protohdr = TCP_MINPROTOHDR;
1119 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
1120 		panic("tcp_init");
1121 #undef TCP_MINPROTOHDR
1122 
1123 	ISN_LOCK_INIT();
1124 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
1125 		SHUTDOWN_PRI_DEFAULT);
1126 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
1127 		EVENTHANDLER_PRI_ANY);
1128 
1129 	tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK);
1130 	tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK);
1131 	tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK);
1132 	tcp_inp_lro_single_push = counter_u64_alloc(M_WAITOK);
1133 	tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK);
1134 	tcp_inp_lro_sack_wake = counter_u64_alloc(M_WAITOK);
1135 #ifdef TCPPCAP
1136 	tcp_pcap_init();
1137 #endif
1138 }
1139 
1140 #ifdef VIMAGE
1141 static void
1142 tcp_destroy(void *unused __unused)
1143 {
1144 	int n;
1145 #ifdef TCP_HHOOK
1146 	int error;
1147 #endif
1148 
1149 	/*
1150 	 * All our processes are gone, all our sockets should be cleaned
1151 	 * up, which means, we should be past the tcp_discardcb() calls.
1152 	 * Sleep to let all tcpcb timers really disappear and cleanup.
1153 	 */
1154 	for (;;) {
1155 		INP_LIST_RLOCK(&V_tcbinfo);
1156 		n = V_tcbinfo.ipi_count;
1157 		INP_LIST_RUNLOCK(&V_tcbinfo);
1158 		if (n == 0)
1159 			break;
1160 		pause("tcpdes", hz / 10);
1161 	}
1162 	tcp_hc_destroy();
1163 	syncache_destroy();
1164 	tcp_tw_destroy();
1165 	in_pcbinfo_destroy(&V_tcbinfo);
1166 	/* tcp_discardcb() clears the sack_holes up. */
1167 	uma_zdestroy(V_sack_hole_zone);
1168 	uma_zdestroy(V_tcpcb_zone);
1169 
1170 	/*
1171 	 * Cannot free the zone until all tcpcbs are released as we attach
1172 	 * the allocations to them.
1173 	 */
1174 	tcp_fastopen_destroy();
1175 
1176 #ifdef TCP_HHOOK
1177 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
1178 	if (error != 0) {
1179 		printf("%s: WARNING: unable to deregister helper hook "
1180 		    "type=%d, id=%d: error %d returned\n", __func__,
1181 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
1182 	}
1183 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
1184 	if (error != 0) {
1185 		printf("%s: WARNING: unable to deregister helper hook "
1186 		    "type=%d, id=%d: error %d returned\n", __func__,
1187 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
1188 	}
1189 #endif
1190 }
1191 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL);
1192 #endif
1193 
1194 void
1195 tcp_fini(void *xtp)
1196 {
1197 
1198 }
1199 
1200 /*
1201  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
1202  * tcp_template used to store this data in mbufs, but we now recopy it out
1203  * of the tcpcb each time to conserve mbufs.
1204  */
1205 void
1206 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
1207 {
1208 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
1209 
1210 	INP_WLOCK_ASSERT(inp);
1211 
1212 #ifdef INET6
1213 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1214 		struct ip6_hdr *ip6;
1215 
1216 		ip6 = (struct ip6_hdr *)ip_ptr;
1217 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
1218 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
1219 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
1220 			(IPV6_VERSION & IPV6_VERSION_MASK);
1221 		ip6->ip6_nxt = IPPROTO_TCP;
1222 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
1223 		ip6->ip6_src = inp->in6p_laddr;
1224 		ip6->ip6_dst = inp->in6p_faddr;
1225 	}
1226 #endif /* INET6 */
1227 #if defined(INET6) && defined(INET)
1228 	else
1229 #endif
1230 #ifdef INET
1231 	{
1232 		struct ip *ip;
1233 
1234 		ip = (struct ip *)ip_ptr;
1235 		ip->ip_v = IPVERSION;
1236 		ip->ip_hl = 5;
1237 		ip->ip_tos = inp->inp_ip_tos;
1238 		ip->ip_len = 0;
1239 		ip->ip_id = 0;
1240 		ip->ip_off = 0;
1241 		ip->ip_ttl = inp->inp_ip_ttl;
1242 		ip->ip_sum = 0;
1243 		ip->ip_p = IPPROTO_TCP;
1244 		ip->ip_src = inp->inp_laddr;
1245 		ip->ip_dst = inp->inp_faddr;
1246 	}
1247 #endif /* INET */
1248 	th->th_sport = inp->inp_lport;
1249 	th->th_dport = inp->inp_fport;
1250 	th->th_seq = 0;
1251 	th->th_ack = 0;
1252 	th->th_x2 = 0;
1253 	th->th_off = 5;
1254 	th->th_flags = 0;
1255 	th->th_win = 0;
1256 	th->th_urp = 0;
1257 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
1258 }
1259 
1260 /*
1261  * Create template to be used to send tcp packets on a connection.
1262  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
1263  * use for this function is in keepalives, which use tcp_respond.
1264  */
1265 struct tcptemp *
1266 tcpip_maketemplate(struct inpcb *inp)
1267 {
1268 	struct tcptemp *t;
1269 
1270 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
1271 	if (t == NULL)
1272 		return (NULL);
1273 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
1274 	return (t);
1275 }
1276 
1277 /*
1278  * Send a single message to the TCP at address specified by
1279  * the given TCP/IP header.  If m == NULL, then we make a copy
1280  * of the tcpiphdr at th and send directly to the addressed host.
1281  * This is used to force keep alive messages out using the TCP
1282  * template for a connection.  If flags are given then we send
1283  * a message back to the TCP which originated the segment th,
1284  * and discard the mbuf containing it and any other attached mbufs.
1285  *
1286  * In any case the ack and sequence number of the transmitted
1287  * segment are as specified by the parameters.
1288  *
1289  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
1290  */
1291 void
1292 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
1293     tcp_seq ack, tcp_seq seq, int flags)
1294 {
1295 	struct tcpopt to;
1296 	struct inpcb *inp;
1297 	struct ip *ip;
1298 	struct mbuf *optm;
1299 	struct tcphdr *nth;
1300 	u_char *optp;
1301 #ifdef INET6
1302 	struct ip6_hdr *ip6;
1303 	int isipv6;
1304 #endif /* INET6 */
1305 	int optlen, tlen, win;
1306 	bool incl_opts;
1307 
1308 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
1309 
1310 #ifdef INET6
1311 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
1312 	ip6 = ipgen;
1313 #endif /* INET6 */
1314 	ip = ipgen;
1315 
1316 	if (tp != NULL) {
1317 		inp = tp->t_inpcb;
1318 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
1319 		INP_WLOCK_ASSERT(inp);
1320 	} else
1321 		inp = NULL;
1322 
1323 	incl_opts = false;
1324 	win = 0;
1325 	if (tp != NULL) {
1326 		if (!(flags & TH_RST)) {
1327 			win = sbspace(&inp->inp_socket->so_rcv);
1328 			if (win > TCP_MAXWIN << tp->rcv_scale)
1329 				win = TCP_MAXWIN << tp->rcv_scale;
1330 		}
1331 		if ((tp->t_flags & TF_NOOPT) == 0)
1332 			incl_opts = true;
1333 	}
1334 	if (m == NULL) {
1335 		m = m_gethdr(M_NOWAIT, MT_DATA);
1336 		if (m == NULL)
1337 			return;
1338 		m->m_data += max_linkhdr;
1339 #ifdef INET6
1340 		if (isipv6) {
1341 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
1342 			      sizeof(struct ip6_hdr));
1343 			ip6 = mtod(m, struct ip6_hdr *);
1344 			nth = (struct tcphdr *)(ip6 + 1);
1345 		} else
1346 #endif /* INET6 */
1347 		{
1348 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1349 			ip = mtod(m, struct ip *);
1350 			nth = (struct tcphdr *)(ip + 1);
1351 		}
1352 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1353 		flags = TH_ACK;
1354 	} else if (!M_WRITABLE(m)) {
1355 		struct mbuf *n;
1356 
1357 		/* Can't reuse 'm', allocate a new mbuf. */
1358 		n = m_gethdr(M_NOWAIT, MT_DATA);
1359 		if (n == NULL) {
1360 			m_freem(m);
1361 			return;
1362 		}
1363 
1364 		if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
1365 			m_freem(m);
1366 			m_freem(n);
1367 			return;
1368 		}
1369 
1370 		n->m_data += max_linkhdr;
1371 		/* m_len is set later */
1372 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
1373 #ifdef INET6
1374 		if (isipv6) {
1375 			bcopy((caddr_t)ip6, mtod(n, caddr_t),
1376 			      sizeof(struct ip6_hdr));
1377 			ip6 = mtod(n, struct ip6_hdr *);
1378 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1379 			nth = (struct tcphdr *)(ip6 + 1);
1380 		} else
1381 #endif /* INET6 */
1382 		{
1383 			bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
1384 			ip = mtod(n, struct ip *);
1385 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1386 			nth = (struct tcphdr *)(ip + 1);
1387 		}
1388 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1389 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1390 		th = nth;
1391 		m_freem(m);
1392 		m = n;
1393 	} else {
1394 		/*
1395 		 *  reuse the mbuf.
1396 		 * XXX MRT We inherit the FIB, which is lucky.
1397 		 */
1398 		m_freem(m->m_next);
1399 		m->m_next = NULL;
1400 		m->m_data = (caddr_t)ipgen;
1401 		/* m_len is set later */
1402 #ifdef INET6
1403 		if (isipv6) {
1404 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1405 			nth = (struct tcphdr *)(ip6 + 1);
1406 		} else
1407 #endif /* INET6 */
1408 		{
1409 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1410 			nth = (struct tcphdr *)(ip + 1);
1411 		}
1412 		if (th != nth) {
1413 			/*
1414 			 * this is usually a case when an extension header
1415 			 * exists between the IPv6 header and the
1416 			 * TCP header.
1417 			 */
1418 			nth->th_sport = th->th_sport;
1419 			nth->th_dport = th->th_dport;
1420 		}
1421 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1422 #undef xchg
1423 	}
1424 	tlen = 0;
1425 #ifdef INET6
1426 	if (isipv6)
1427 		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
1428 #endif
1429 #if defined(INET) && defined(INET6)
1430 	else
1431 #endif
1432 #ifdef INET
1433 		tlen = sizeof (struct tcpiphdr);
1434 #endif
1435 #ifdef INVARIANTS
1436 	m->m_len = 0;
1437 	KASSERT(M_TRAILINGSPACE(m) >= tlen,
1438 	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
1439 	    m, tlen, (long)M_TRAILINGSPACE(m)));
1440 #endif
1441 	m->m_len = tlen;
1442 	to.to_flags = 0;
1443 	if (incl_opts) {
1444 		/* Make sure we have room. */
1445 		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
1446 			m->m_next = m_get(M_NOWAIT, MT_DATA);
1447 			if (m->m_next) {
1448 				optp = mtod(m->m_next, u_char *);
1449 				optm = m->m_next;
1450 			} else
1451 				incl_opts = false;
1452 		} else {
1453 			optp = (u_char *) (nth + 1);
1454 			optm = m;
1455 		}
1456 	}
1457 	if (incl_opts) {
1458 		/* Timestamps. */
1459 		if (tp->t_flags & TF_RCVD_TSTMP) {
1460 			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
1461 			to.to_tsecr = tp->ts_recent;
1462 			to.to_flags |= TOF_TS;
1463 		}
1464 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1465 		/* TCP-MD5 (RFC2385). */
1466 		if (tp->t_flags & TF_SIGNATURE)
1467 			to.to_flags |= TOF_SIGNATURE;
1468 #endif
1469 		/* Add the options. */
1470 		tlen += optlen = tcp_addoptions(&to, optp);
1471 
1472 		/* Update m_len in the correct mbuf. */
1473 		optm->m_len += optlen;
1474 	} else
1475 		optlen = 0;
1476 #ifdef INET6
1477 	if (isipv6) {
1478 		ip6->ip6_flow = 0;
1479 		ip6->ip6_vfc = IPV6_VERSION;
1480 		ip6->ip6_nxt = IPPROTO_TCP;
1481 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
1482 	}
1483 #endif
1484 #if defined(INET) && defined(INET6)
1485 	else
1486 #endif
1487 #ifdef INET
1488 	{
1489 		ip->ip_len = htons(tlen);
1490 		ip->ip_ttl = V_ip_defttl;
1491 		if (V_path_mtu_discovery)
1492 			ip->ip_off |= htons(IP_DF);
1493 	}
1494 #endif
1495 	m->m_pkthdr.len = tlen;
1496 	m->m_pkthdr.rcvif = NULL;
1497 #ifdef MAC
1498 	if (inp != NULL) {
1499 		/*
1500 		 * Packet is associated with a socket, so allow the
1501 		 * label of the response to reflect the socket label.
1502 		 */
1503 		INP_WLOCK_ASSERT(inp);
1504 		mac_inpcb_create_mbuf(inp, m);
1505 	} else {
1506 		/*
1507 		 * Packet is not associated with a socket, so possibly
1508 		 * update the label in place.
1509 		 */
1510 		mac_netinet_tcp_reply(m);
1511 	}
1512 #endif
1513 	nth->th_seq = htonl(seq);
1514 	nth->th_ack = htonl(ack);
1515 	nth->th_x2 = 0;
1516 	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
1517 	nth->th_flags = flags;
1518 	if (tp != NULL)
1519 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
1520 	else
1521 		nth->th_win = htons((u_short)win);
1522 	nth->th_urp = 0;
1523 
1524 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1525 	if (to.to_flags & TOF_SIGNATURE) {
1526 		if (!TCPMD5_ENABLED() ||
1527 		    TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) {
1528 			m_freem(m);
1529 			return;
1530 		}
1531 	}
1532 #endif
1533 
1534 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1535 #ifdef INET6
1536 	if (isipv6) {
1537 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1538 		nth->th_sum = in6_cksum_pseudo(ip6,
1539 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
1540 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
1541 		    NULL, NULL);
1542 	}
1543 #endif /* INET6 */
1544 #if defined(INET6) && defined(INET)
1545 	else
1546 #endif
1547 #ifdef INET
1548 	{
1549 		m->m_pkthdr.csum_flags = CSUM_TCP;
1550 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1551 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1552 	}
1553 #endif /* INET */
1554 #ifdef TCPDEBUG
1555 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1556 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1557 #endif
1558 	TCP_PROBE3(debug__output, tp, th, m);
1559 	if (flags & TH_RST)
1560 		TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth);
1561 
1562 #ifdef INET6
1563 	if (isipv6) {
1564 		TCP_PROBE5(send, NULL, tp, ip6, tp, nth);
1565 		(void)ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1566 	}
1567 #endif /* INET6 */
1568 #if defined(INET) && defined(INET6)
1569 	else
1570 #endif
1571 #ifdef INET
1572 	{
1573 		TCP_PROBE5(send, NULL, tp, ip, tp, nth);
1574 		(void)ip_output(m, NULL, NULL, 0, NULL, inp);
1575 	}
1576 #endif
1577 }
1578 
1579 /*
1580  * Create a new TCP control block, making an
1581  * empty reassembly queue and hooking it to the argument
1582  * protocol control block.  The `inp' parameter must have
1583  * come from the zone allocator set up in tcp_init().
1584  */
1585 struct tcpcb *
1586 tcp_newtcpcb(struct inpcb *inp)
1587 {
1588 	struct tcpcb_mem *tm;
1589 	struct tcpcb *tp;
1590 #ifdef INET6
1591 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1592 #endif /* INET6 */
1593 
1594 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1595 	if (tm == NULL)
1596 		return (NULL);
1597 	tp = &tm->tcb;
1598 
1599 	/* Initialise cc_var struct for this tcpcb. */
1600 	tp->ccv = &tm->ccv;
1601 	tp->ccv->type = IPPROTO_TCP;
1602 	tp->ccv->ccvc.tcp = tp;
1603 	rw_rlock(&tcp_function_lock);
1604 	tp->t_fb = tcp_func_set_ptr;
1605 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1606 	rw_runlock(&tcp_function_lock);
1607 	/*
1608 	 * Use the current system default CC algorithm.
1609 	 */
1610 	CC_LIST_RLOCK();
1611 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1612 	CC_ALGO(tp) = CC_DEFAULT();
1613 	CC_LIST_RUNLOCK();
1614 
1615 	if (CC_ALGO(tp)->cb_init != NULL)
1616 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1617 			if (tp->t_fb->tfb_tcp_fb_fini)
1618 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1619 			refcount_release(&tp->t_fb->tfb_refcnt);
1620 			uma_zfree(V_tcpcb_zone, tm);
1621 			return (NULL);
1622 		}
1623 
1624 #ifdef TCP_HHOOK
1625 	tp->osd = &tm->osd;
1626 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1627 		if (tp->t_fb->tfb_tcp_fb_fini)
1628 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1629 		refcount_release(&tp->t_fb->tfb_refcnt);
1630 		uma_zfree(V_tcpcb_zone, tm);
1631 		return (NULL);
1632 	}
1633 #endif
1634 
1635 #ifdef VIMAGE
1636 	tp->t_vnet = inp->inp_vnet;
1637 #endif
1638 	tp->t_timers = &tm->tt;
1639 	TAILQ_INIT(&tp->t_segq);
1640 	tp->t_maxseg =
1641 #ifdef INET6
1642 		isipv6 ? V_tcp_v6mssdflt :
1643 #endif /* INET6 */
1644 		V_tcp_mssdflt;
1645 
1646 	/* Set up our timeouts. */
1647 	callout_init(&tp->t_timers->tt_rexmt, 1);
1648 	callout_init(&tp->t_timers->tt_persist, 1);
1649 	callout_init(&tp->t_timers->tt_keep, 1);
1650 	callout_init(&tp->t_timers->tt_2msl, 1);
1651 	callout_init(&tp->t_timers->tt_delack, 1);
1652 
1653 	if (V_tcp_do_rfc1323)
1654 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1655 	if (V_tcp_do_sack)
1656 		tp->t_flags |= TF_SACK_PERMIT;
1657 	TAILQ_INIT(&tp->snd_holes);
1658 	/*
1659 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1660 	 * is called.
1661 	 */
1662 	in_pcbref(inp);	/* Reference for tcpcb */
1663 	tp->t_inpcb = inp;
1664 
1665 	/*
1666 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1667 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1668 	 * reasonable initial retransmit time.
1669 	 */
1670 	tp->t_srtt = TCPTV_SRTTBASE;
1671 	tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1672 	tp->t_rttmin = tcp_rexmit_min;
1673 	tp->t_rxtcur = tcp_rexmit_initial;
1674 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1675 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1676 	tp->t_rcvtime = ticks;
1677 	/*
1678 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1679 	 * because the socket may be bound to an IPv6 wildcard address,
1680 	 * which may match an IPv4-mapped IPv6 address.
1681 	 */
1682 	inp->inp_ip_ttl = V_ip_defttl;
1683 	inp->inp_ppcb = tp;
1684 #ifdef TCPPCAP
1685 	/*
1686 	 * Init the TCP PCAP queues.
1687 	 */
1688 	tcp_pcap_tcpcb_init(tp);
1689 #endif
1690 #ifdef TCP_BLACKBOX
1691 	/* Initialize the per-TCPCB log data. */
1692 	tcp_log_tcpcbinit(tp);
1693 #endif
1694 	if (tp->t_fb->tfb_tcp_fb_init) {
1695 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1696 	}
1697 	return (tp);		/* XXX */
1698 }
1699 
1700 /*
1701  * Switch the congestion control algorithm back to NewReno for any active
1702  * control blocks using an algorithm which is about to go away.
1703  * This ensures the CC framework can allow the unload to proceed without leaving
1704  * any dangling pointers which would trigger a panic.
1705  * Returning non-zero would inform the CC framework that something went wrong
1706  * and it would be unsafe to allow the unload to proceed. However, there is no
1707  * way for this to occur with this implementation so we always return zero.
1708  */
1709 int
1710 tcp_ccalgounload(struct cc_algo *unload_algo)
1711 {
1712 	struct cc_algo *tmpalgo;
1713 	struct inpcb *inp;
1714 	struct tcpcb *tp;
1715 	VNET_ITERATOR_DECL(vnet_iter);
1716 
1717 	/*
1718 	 * Check all active control blocks across all network stacks and change
1719 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1720 	 * requires cleanup code to be run, call it.
1721 	 */
1722 	VNET_LIST_RLOCK();
1723 	VNET_FOREACH(vnet_iter) {
1724 		CURVNET_SET(vnet_iter);
1725 		INP_INFO_WLOCK(&V_tcbinfo);
1726 		/*
1727 		 * New connections already part way through being initialised
1728 		 * with the CC algo we're removing will not race with this code
1729 		 * because the INP_INFO_WLOCK is held during initialisation. We
1730 		 * therefore don't enter the loop below until the connection
1731 		 * list has stabilised.
1732 		 */
1733 		CK_LIST_FOREACH(inp, &V_tcb, inp_list) {
1734 			INP_WLOCK(inp);
1735 			/* Important to skip tcptw structs. */
1736 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1737 			    (tp = intotcpcb(inp)) != NULL) {
1738 				/*
1739 				 * By holding INP_WLOCK here, we are assured
1740 				 * that the connection is not currently
1741 				 * executing inside the CC module's functions
1742 				 * i.e. it is safe to make the switch back to
1743 				 * NewReno.
1744 				 */
1745 				if (CC_ALGO(tp) == unload_algo) {
1746 					tmpalgo = CC_ALGO(tp);
1747 					if (tmpalgo->cb_destroy != NULL)
1748 						tmpalgo->cb_destroy(tp->ccv);
1749 					CC_DATA(tp) = NULL;
1750 					/*
1751 					 * NewReno may allocate memory on
1752 					 * demand for certain stateful
1753 					 * configuration as needed, but is
1754 					 * coded to never fail on memory
1755 					 * allocation failure so it is a safe
1756 					 * fallback.
1757 					 */
1758 					CC_ALGO(tp) = &newreno_cc_algo;
1759 				}
1760 			}
1761 			INP_WUNLOCK(inp);
1762 		}
1763 		INP_INFO_WUNLOCK(&V_tcbinfo);
1764 		CURVNET_RESTORE();
1765 	}
1766 	VNET_LIST_RUNLOCK();
1767 
1768 	return (0);
1769 }
1770 
1771 /*
1772  * Drop a TCP connection, reporting
1773  * the specified error.  If connection is synchronized,
1774  * then send a RST to peer.
1775  */
1776 struct tcpcb *
1777 tcp_drop(struct tcpcb *tp, int errno)
1778 {
1779 	struct socket *so = tp->t_inpcb->inp_socket;
1780 
1781 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1782 	INP_WLOCK_ASSERT(tp->t_inpcb);
1783 
1784 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1785 		tcp_state_change(tp, TCPS_CLOSED);
1786 		(void) tp->t_fb->tfb_tcp_output(tp);
1787 		TCPSTAT_INC(tcps_drops);
1788 	} else
1789 		TCPSTAT_INC(tcps_conndrops);
1790 	if (errno == ETIMEDOUT && tp->t_softerror)
1791 		errno = tp->t_softerror;
1792 	so->so_error = errno;
1793 	return (tcp_close(tp));
1794 }
1795 
1796 void
1797 tcp_discardcb(struct tcpcb *tp)
1798 {
1799 	struct inpcb *inp = tp->t_inpcb;
1800 	struct socket *so = inp->inp_socket;
1801 #ifdef INET6
1802 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1803 #endif /* INET6 */
1804 	int released __unused;
1805 
1806 	INP_WLOCK_ASSERT(inp);
1807 
1808 	/*
1809 	 * Make sure that all of our timers are stopped before we delete the
1810 	 * PCB.
1811 	 *
1812 	 * If stopping a timer fails, we schedule a discard function in same
1813 	 * callout, and the last discard function called will take care of
1814 	 * deleting the tcpcb.
1815 	 */
1816 	tp->t_timers->tt_draincnt = 0;
1817 	tcp_timer_stop(tp, TT_REXMT);
1818 	tcp_timer_stop(tp, TT_PERSIST);
1819 	tcp_timer_stop(tp, TT_KEEP);
1820 	tcp_timer_stop(tp, TT_2MSL);
1821 	tcp_timer_stop(tp, TT_DELACK);
1822 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1823 		/*
1824 		 * Call the stop-all function of the methods,
1825 		 * this function should call the tcp_timer_stop()
1826 		 * method with each of the function specific timeouts.
1827 		 * That stop will be called via the tfb_tcp_timer_stop()
1828 		 * which should use the async drain function of the
1829 		 * callout system (see tcp_var.h).
1830 		 */
1831 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1832 	}
1833 
1834 	/*
1835 	 * If we got enough samples through the srtt filter,
1836 	 * save the rtt and rttvar in the routing entry.
1837 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1838 	 * 4 samples is enough for the srtt filter to converge
1839 	 * to within enough % of the correct value; fewer samples
1840 	 * and we could save a bogus rtt. The danger is not high
1841 	 * as tcp quickly recovers from everything.
1842 	 * XXX: Works very well but needs some more statistics!
1843 	 */
1844 	if (tp->t_rttupdated >= 4) {
1845 		struct hc_metrics_lite metrics;
1846 		uint32_t ssthresh;
1847 
1848 		bzero(&metrics, sizeof(metrics));
1849 		/*
1850 		 * Update the ssthresh always when the conditions below
1851 		 * are satisfied. This gives us better new start value
1852 		 * for the congestion avoidance for new connections.
1853 		 * ssthresh is only set if packet loss occurred on a session.
1854 		 *
1855 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1856 		 * being torn down.  Ideally this code would not use 'so'.
1857 		 */
1858 		ssthresh = tp->snd_ssthresh;
1859 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1860 			/*
1861 			 * convert the limit from user data bytes to
1862 			 * packets then to packet data bytes.
1863 			 */
1864 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1865 			if (ssthresh < 2)
1866 				ssthresh = 2;
1867 			ssthresh *= (tp->t_maxseg +
1868 #ifdef INET6
1869 			    (isipv6 ? sizeof (struct ip6_hdr) +
1870 				sizeof (struct tcphdr) :
1871 #endif
1872 				sizeof (struct tcpiphdr)
1873 #ifdef INET6
1874 			    )
1875 #endif
1876 			    );
1877 		} else
1878 			ssthresh = 0;
1879 		metrics.rmx_ssthresh = ssthresh;
1880 
1881 		metrics.rmx_rtt = tp->t_srtt;
1882 		metrics.rmx_rttvar = tp->t_rttvar;
1883 		metrics.rmx_cwnd = tp->snd_cwnd;
1884 		metrics.rmx_sendpipe = 0;
1885 		metrics.rmx_recvpipe = 0;
1886 
1887 		tcp_hc_update(&inp->inp_inc, &metrics);
1888 	}
1889 
1890 	/* free the reassembly queue, if any */
1891 	tcp_reass_flush(tp);
1892 
1893 #ifdef TCP_OFFLOAD
1894 	/* Disconnect offload device, if any. */
1895 	if (tp->t_flags & TF_TOE)
1896 		tcp_offload_detach(tp);
1897 #endif
1898 
1899 	tcp_free_sackholes(tp);
1900 
1901 #ifdef TCPPCAP
1902 	/* Free the TCP PCAP queues. */
1903 	tcp_pcap_drain(&(tp->t_inpkts));
1904 	tcp_pcap_drain(&(tp->t_outpkts));
1905 #endif
1906 
1907 	/* Allow the CC algorithm to clean up after itself. */
1908 	if (CC_ALGO(tp)->cb_destroy != NULL)
1909 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1910 	CC_DATA(tp) = NULL;
1911 
1912 #ifdef TCP_HHOOK
1913 	khelp_destroy_osd(tp->osd);
1914 #endif
1915 
1916 	CC_ALGO(tp) = NULL;
1917 	inp->inp_ppcb = NULL;
1918 	if (tp->t_timers->tt_draincnt == 0) {
1919 		/* We own the last reference on tcpcb, let's free it. */
1920 #ifdef TCP_BLACKBOX
1921 		tcp_log_tcpcbfini(tp);
1922 #endif
1923 		TCPSTATES_DEC(tp->t_state);
1924 		if (tp->t_fb->tfb_tcp_fb_fini)
1925 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1926 		refcount_release(&tp->t_fb->tfb_refcnt);
1927 		tp->t_inpcb = NULL;
1928 		uma_zfree(V_tcpcb_zone, tp);
1929 		released = in_pcbrele_wlocked(inp);
1930 		KASSERT(!released, ("%s: inp %p should not have been released "
1931 			"here", __func__, inp));
1932 	}
1933 }
1934 
1935 void
1936 tcp_timer_discard(void *ptp)
1937 {
1938 	struct inpcb *inp;
1939 	struct tcpcb *tp;
1940 	struct epoch_tracker et;
1941 
1942 	tp = (struct tcpcb *)ptp;
1943 	CURVNET_SET(tp->t_vnet);
1944 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
1945 	inp = tp->t_inpcb;
1946 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1947 		__func__, tp));
1948 	INP_WLOCK(inp);
1949 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1950 		("%s: tcpcb has to be stopped here", __func__));
1951 	tp->t_timers->tt_draincnt--;
1952 	if (tp->t_timers->tt_draincnt == 0) {
1953 		/* We own the last reference on this tcpcb, let's free it. */
1954 #ifdef TCP_BLACKBOX
1955 		tcp_log_tcpcbfini(tp);
1956 #endif
1957 		TCPSTATES_DEC(tp->t_state);
1958 		if (tp->t_fb->tfb_tcp_fb_fini)
1959 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1960 		refcount_release(&tp->t_fb->tfb_refcnt);
1961 		tp->t_inpcb = NULL;
1962 		uma_zfree(V_tcpcb_zone, tp);
1963 		if (in_pcbrele_wlocked(inp)) {
1964 			INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1965 			CURVNET_RESTORE();
1966 			return;
1967 		}
1968 	}
1969 	INP_WUNLOCK(inp);
1970 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1971 	CURVNET_RESTORE();
1972 }
1973 
1974 /*
1975  * Attempt to close a TCP control block, marking it as dropped, and freeing
1976  * the socket if we hold the only reference.
1977  */
1978 struct tcpcb *
1979 tcp_close(struct tcpcb *tp)
1980 {
1981 	struct inpcb *inp = tp->t_inpcb;
1982 	struct socket *so;
1983 
1984 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1985 	INP_WLOCK_ASSERT(inp);
1986 
1987 #ifdef TCP_OFFLOAD
1988 	if (tp->t_state == TCPS_LISTEN)
1989 		tcp_offload_listen_stop(tp);
1990 #endif
1991 	/*
1992 	 * This releases the TFO pending counter resource for TFO listen
1993 	 * sockets as well as passively-created TFO sockets that transition
1994 	 * from SYN_RECEIVED to CLOSED.
1995 	 */
1996 	if (tp->t_tfo_pending) {
1997 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1998 		tp->t_tfo_pending = NULL;
1999 	}
2000 	in_pcbdrop(inp);
2001 	TCPSTAT_INC(tcps_closed);
2002 	if (tp->t_state != TCPS_CLOSED)
2003 		tcp_state_change(tp, TCPS_CLOSED);
2004 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
2005 	so = inp->inp_socket;
2006 	soisdisconnected(so);
2007 	if (inp->inp_flags & INP_SOCKREF) {
2008 		KASSERT(so->so_state & SS_PROTOREF,
2009 		    ("tcp_close: !SS_PROTOREF"));
2010 		inp->inp_flags &= ~INP_SOCKREF;
2011 		INP_WUNLOCK(inp);
2012 		SOCK_LOCK(so);
2013 		so->so_state &= ~SS_PROTOREF;
2014 		sofree(so);
2015 		return (NULL);
2016 	}
2017 	return (tp);
2018 }
2019 
2020 void
2021 tcp_drain(void)
2022 {
2023 	VNET_ITERATOR_DECL(vnet_iter);
2024 
2025 	if (!do_tcpdrain)
2026 		return;
2027 
2028 	VNET_LIST_RLOCK_NOSLEEP();
2029 	VNET_FOREACH(vnet_iter) {
2030 		CURVNET_SET(vnet_iter);
2031 		struct inpcb *inpb;
2032 		struct tcpcb *tcpb;
2033 
2034 	/*
2035 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
2036 	 * if there is one...
2037 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
2038 	 *      reassembly queue should be flushed, but in a situation
2039 	 *	where we're really low on mbufs, this is potentially
2040 	 *	useful.
2041 	 */
2042 		INP_INFO_WLOCK(&V_tcbinfo);
2043 		CK_LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
2044 			INP_WLOCK(inpb);
2045 			if (inpb->inp_flags & INP_TIMEWAIT) {
2046 				INP_WUNLOCK(inpb);
2047 				continue;
2048 			}
2049 			if ((tcpb = intotcpcb(inpb)) != NULL) {
2050 				tcp_reass_flush(tcpb);
2051 				tcp_clean_sackreport(tcpb);
2052 #ifdef TCP_BLACKBOX
2053 				tcp_log_drain(tcpb);
2054 #endif
2055 #ifdef TCPPCAP
2056 				if (tcp_pcap_aggressive_free) {
2057 					/* Free the TCP PCAP queues. */
2058 					tcp_pcap_drain(&(tcpb->t_inpkts));
2059 					tcp_pcap_drain(&(tcpb->t_outpkts));
2060 				}
2061 #endif
2062 			}
2063 			INP_WUNLOCK(inpb);
2064 		}
2065 		INP_INFO_WUNLOCK(&V_tcbinfo);
2066 		CURVNET_RESTORE();
2067 	}
2068 	VNET_LIST_RUNLOCK_NOSLEEP();
2069 }
2070 
2071 /*
2072  * Notify a tcp user of an asynchronous error;
2073  * store error as soft error, but wake up user
2074  * (for now, won't do anything until can select for soft error).
2075  *
2076  * Do not wake up user since there currently is no mechanism for
2077  * reporting soft errors (yet - a kqueue filter may be added).
2078  */
2079 static struct inpcb *
2080 tcp_notify(struct inpcb *inp, int error)
2081 {
2082 	struct tcpcb *tp;
2083 
2084 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2085 	INP_WLOCK_ASSERT(inp);
2086 
2087 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2088 	    (inp->inp_flags & INP_DROPPED))
2089 		return (inp);
2090 
2091 	tp = intotcpcb(inp);
2092 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
2093 
2094 	/*
2095 	 * Ignore some errors if we are hooked up.
2096 	 * If connection hasn't completed, has retransmitted several times,
2097 	 * and receives a second error, give up now.  This is better
2098 	 * than waiting a long time to establish a connection that
2099 	 * can never complete.
2100 	 */
2101 	if (tp->t_state == TCPS_ESTABLISHED &&
2102 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
2103 	     error == EHOSTDOWN)) {
2104 		if (inp->inp_route.ro_rt) {
2105 			RTFREE(inp->inp_route.ro_rt);
2106 			inp->inp_route.ro_rt = (struct rtentry *)NULL;
2107 		}
2108 		return (inp);
2109 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
2110 	    tp->t_softerror) {
2111 		tp = tcp_drop(tp, error);
2112 		if (tp != NULL)
2113 			return (inp);
2114 		else
2115 			return (NULL);
2116 	} else {
2117 		tp->t_softerror = error;
2118 		return (inp);
2119 	}
2120 #if 0
2121 	wakeup( &so->so_timeo);
2122 	sorwakeup(so);
2123 	sowwakeup(so);
2124 #endif
2125 }
2126 
2127 static int
2128 tcp_pcblist(SYSCTL_HANDLER_ARGS)
2129 {
2130 	int error, i, m, n, pcb_count;
2131 	struct inpcb *inp, **inp_list;
2132 	inp_gen_t gencnt;
2133 	struct xinpgen xig;
2134 	struct epoch_tracker et;
2135 
2136 	/*
2137 	 * The process of preparing the TCB list is too time-consuming and
2138 	 * resource-intensive to repeat twice on every request.
2139 	 */
2140 	if (req->oldptr == NULL) {
2141 		n = V_tcbinfo.ipi_count +
2142 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2143 		n += imax(n / 8, 10);
2144 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
2145 		return (0);
2146 	}
2147 
2148 	if (req->newptr != NULL)
2149 		return (EPERM);
2150 
2151 	/*
2152 	 * OK, now we're committed to doing something.
2153 	 */
2154 	INP_LIST_RLOCK(&V_tcbinfo);
2155 	gencnt = V_tcbinfo.ipi_gencnt;
2156 	n = V_tcbinfo.ipi_count;
2157 	INP_LIST_RUNLOCK(&V_tcbinfo);
2158 
2159 	m = counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2160 
2161 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
2162 		+ (n + m) * sizeof(struct xtcpcb));
2163 	if (error != 0)
2164 		return (error);
2165 
2166 	bzero(&xig, sizeof(xig));
2167 	xig.xig_len = sizeof xig;
2168 	xig.xig_count = n + m;
2169 	xig.xig_gen = gencnt;
2170 	xig.xig_sogen = so_gencnt;
2171 	error = SYSCTL_OUT(req, &xig, sizeof xig);
2172 	if (error)
2173 		return (error);
2174 
2175 	error = syncache_pcblist(req, m, &pcb_count);
2176 	if (error)
2177 		return (error);
2178 
2179 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
2180 
2181 	INP_INFO_WLOCK(&V_tcbinfo);
2182 	for (inp = CK_LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
2183 	    inp != NULL && i < n; inp = CK_LIST_NEXT(inp, inp_list)) {
2184 		INP_WLOCK(inp);
2185 		if (inp->inp_gencnt <= gencnt) {
2186 			/*
2187 			 * XXX: This use of cr_cansee(), introduced with
2188 			 * TCP state changes, is not quite right, but for
2189 			 * now, better than nothing.
2190 			 */
2191 			if (inp->inp_flags & INP_TIMEWAIT) {
2192 				if (intotw(inp) != NULL)
2193 					error = cr_cansee(req->td->td_ucred,
2194 					    intotw(inp)->tw_cred);
2195 				else
2196 					error = EINVAL;	/* Skip this inp. */
2197 			} else
2198 				error = cr_canseeinpcb(req->td->td_ucred, inp);
2199 			if (error == 0) {
2200 				in_pcbref(inp);
2201 				inp_list[i++] = inp;
2202 			}
2203 		}
2204 		INP_WUNLOCK(inp);
2205 	}
2206 	INP_INFO_WUNLOCK(&V_tcbinfo);
2207 	n = i;
2208 
2209 	error = 0;
2210 	for (i = 0; i < n; i++) {
2211 		inp = inp_list[i];
2212 		INP_RLOCK(inp);
2213 		if (inp->inp_gencnt <= gencnt) {
2214 			struct xtcpcb xt;
2215 
2216 			tcp_inptoxtp(inp, &xt);
2217 			INP_RUNLOCK(inp);
2218 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2219 		} else
2220 			INP_RUNLOCK(inp);
2221 	}
2222 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
2223 	for (i = 0; i < n; i++) {
2224 		inp = inp_list[i];
2225 		INP_RLOCK(inp);
2226 		if (!in_pcbrele_rlocked(inp))
2227 			INP_RUNLOCK(inp);
2228 	}
2229 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
2230 
2231 	if (!error) {
2232 		/*
2233 		 * Give the user an updated idea of our state.
2234 		 * If the generation differs from what we told
2235 		 * her before, she knows that something happened
2236 		 * while we were processing this request, and it
2237 		 * might be necessary to retry.
2238 		 */
2239 		INP_LIST_RLOCK(&V_tcbinfo);
2240 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
2241 		xig.xig_sogen = so_gencnt;
2242 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
2243 		INP_LIST_RUNLOCK(&V_tcbinfo);
2244 		error = SYSCTL_OUT(req, &xig, sizeof xig);
2245 	}
2246 	free(inp_list, M_TEMP);
2247 	return (error);
2248 }
2249 
2250 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
2251     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2252     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
2253 
2254 #ifdef INET
2255 static int
2256 tcp_getcred(SYSCTL_HANDLER_ARGS)
2257 {
2258 	struct xucred xuc;
2259 	struct sockaddr_in addrs[2];
2260 	struct inpcb *inp;
2261 	int error;
2262 
2263 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
2264 	if (error)
2265 		return (error);
2266 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
2267 	if (error)
2268 		return (error);
2269 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
2270 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
2271 	if (inp != NULL) {
2272 		if (inp->inp_socket == NULL)
2273 			error = ENOENT;
2274 		if (error == 0)
2275 			error = cr_canseeinpcb(req->td->td_ucred, inp);
2276 		if (error == 0)
2277 			cru2x(inp->inp_cred, &xuc);
2278 		INP_RUNLOCK(inp);
2279 	} else
2280 		error = ENOENT;
2281 	if (error == 0)
2282 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
2283 	return (error);
2284 }
2285 
2286 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
2287     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
2288     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
2289 #endif /* INET */
2290 
2291 #ifdef INET6
2292 static int
2293 tcp6_getcred(SYSCTL_HANDLER_ARGS)
2294 {
2295 	struct xucred xuc;
2296 	struct sockaddr_in6 addrs[2];
2297 	struct inpcb *inp;
2298 	int error;
2299 #ifdef INET
2300 	int mapped = 0;
2301 #endif
2302 
2303 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
2304 	if (error)
2305 		return (error);
2306 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
2307 	if (error)
2308 		return (error);
2309 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
2310 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
2311 		return (error);
2312 	}
2313 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
2314 #ifdef INET
2315 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
2316 			mapped = 1;
2317 		else
2318 #endif
2319 			return (EINVAL);
2320 	}
2321 
2322 #ifdef INET
2323 	if (mapped == 1)
2324 		inp = in_pcblookup(&V_tcbinfo,
2325 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
2326 			addrs[1].sin6_port,
2327 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
2328 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
2329 	else
2330 #endif
2331 		inp = in6_pcblookup(&V_tcbinfo,
2332 			&addrs[1].sin6_addr, addrs[1].sin6_port,
2333 			&addrs[0].sin6_addr, addrs[0].sin6_port,
2334 			INPLOOKUP_RLOCKPCB, NULL);
2335 	if (inp != NULL) {
2336 		if (inp->inp_socket == NULL)
2337 			error = ENOENT;
2338 		if (error == 0)
2339 			error = cr_canseeinpcb(req->td->td_ucred, inp);
2340 		if (error == 0)
2341 			cru2x(inp->inp_cred, &xuc);
2342 		INP_RUNLOCK(inp);
2343 	} else
2344 		error = ENOENT;
2345 	if (error == 0)
2346 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
2347 	return (error);
2348 }
2349 
2350 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
2351     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
2352     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
2353 #endif /* INET6 */
2354 
2355 
2356 #ifdef INET
2357 void
2358 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
2359 {
2360 	struct ip *ip = vip;
2361 	struct tcphdr *th;
2362 	struct in_addr faddr;
2363 	struct inpcb *inp;
2364 	struct tcpcb *tp;
2365 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
2366 	struct icmp *icp;
2367 	struct in_conninfo inc;
2368 	struct epoch_tracker et;
2369 	tcp_seq icmp_tcp_seq;
2370 	int mtu;
2371 
2372 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
2373 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
2374 		return;
2375 
2376 	if (cmd == PRC_MSGSIZE)
2377 		notify = tcp_mtudisc_notify;
2378 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
2379 		cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL ||
2380 		cmd == PRC_TIMXCEED_INTRANS) && ip)
2381 		notify = tcp_drop_syn_sent;
2382 
2383 	/*
2384 	 * Hostdead is ugly because it goes linearly through all PCBs.
2385 	 * XXX: We never get this from ICMP, otherwise it makes an
2386 	 * excellent DoS attack on machines with many connections.
2387 	 */
2388 	else if (cmd == PRC_HOSTDEAD)
2389 		ip = NULL;
2390 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
2391 		return;
2392 
2393 	if (ip == NULL) {
2394 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
2395 		return;
2396 	}
2397 
2398 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
2399 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
2400 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
2401 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
2402 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
2403 	if (inp != NULL && PRC_IS_REDIRECT(cmd)) {
2404 		/* signal EHOSTDOWN, as it flushes the cached route */
2405 		inp = (*notify)(inp, EHOSTDOWN);
2406 		goto out;
2407 	}
2408 	icmp_tcp_seq = th->th_seq;
2409 	if (inp != NULL)  {
2410 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
2411 		    !(inp->inp_flags & INP_DROPPED) &&
2412 		    !(inp->inp_socket == NULL)) {
2413 			tp = intotcpcb(inp);
2414 			if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
2415 			    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
2416 				if (cmd == PRC_MSGSIZE) {
2417 					/*
2418 					 * MTU discovery:
2419 					 * If we got a needfrag set the MTU
2420 					 * in the route to the suggested new
2421 					 * value (if given) and then notify.
2422 					 */
2423 					mtu = ntohs(icp->icmp_nextmtu);
2424 					/*
2425 					 * If no alternative MTU was
2426 					 * proposed, try the next smaller
2427 					 * one.
2428 					 */
2429 					if (!mtu)
2430 						mtu = ip_next_mtu(
2431 						    ntohs(ip->ip_len), 1);
2432 					if (mtu < V_tcp_minmss +
2433 					    sizeof(struct tcpiphdr))
2434 						mtu = V_tcp_minmss +
2435 						    sizeof(struct tcpiphdr);
2436 					/*
2437 					 * Only process the offered MTU if it
2438 					 * is smaller than the current one.
2439 					 */
2440 					if (mtu < tp->t_maxseg +
2441 					    sizeof(struct tcpiphdr)) {
2442 						bzero(&inc, sizeof(inc));
2443 						inc.inc_faddr = faddr;
2444 						inc.inc_fibnum =
2445 						    inp->inp_inc.inc_fibnum;
2446 						tcp_hc_updatemtu(&inc, mtu);
2447 						tcp_mtudisc(inp, mtu);
2448 					}
2449 				} else
2450 					inp = (*notify)(inp,
2451 					    inetctlerrmap[cmd]);
2452 			}
2453 		}
2454 	} else {
2455 		bzero(&inc, sizeof(inc));
2456 		inc.inc_fport = th->th_dport;
2457 		inc.inc_lport = th->th_sport;
2458 		inc.inc_faddr = faddr;
2459 		inc.inc_laddr = ip->ip_src;
2460 		syncache_unreach(&inc, icmp_tcp_seq);
2461 	}
2462 out:
2463 	if (inp != NULL)
2464 		INP_WUNLOCK(inp);
2465 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
2466 }
2467 #endif /* INET */
2468 
2469 #ifdef INET6
2470 void
2471 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
2472 {
2473 	struct in6_addr *dst;
2474 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
2475 	struct ip6_hdr *ip6;
2476 	struct mbuf *m;
2477 	struct inpcb *inp;
2478 	struct tcpcb *tp;
2479 	struct icmp6_hdr *icmp6;
2480 	struct ip6ctlparam *ip6cp = NULL;
2481 	const struct sockaddr_in6 *sa6_src = NULL;
2482 	struct in_conninfo inc;
2483 	struct epoch_tracker et;
2484 	struct tcp_ports {
2485 		uint16_t th_sport;
2486 		uint16_t th_dport;
2487 	} t_ports;
2488 	tcp_seq icmp_tcp_seq;
2489 	unsigned int mtu;
2490 	unsigned int off;
2491 
2492 	if (sa->sa_family != AF_INET6 ||
2493 	    sa->sa_len != sizeof(struct sockaddr_in6))
2494 		return;
2495 
2496 	/* if the parameter is from icmp6, decode it. */
2497 	if (d != NULL) {
2498 		ip6cp = (struct ip6ctlparam *)d;
2499 		icmp6 = ip6cp->ip6c_icmp6;
2500 		m = ip6cp->ip6c_m;
2501 		ip6 = ip6cp->ip6c_ip6;
2502 		off = ip6cp->ip6c_off;
2503 		sa6_src = ip6cp->ip6c_src;
2504 		dst = ip6cp->ip6c_finaldst;
2505 	} else {
2506 		m = NULL;
2507 		ip6 = NULL;
2508 		off = 0;	/* fool gcc */
2509 		sa6_src = &sa6_any;
2510 		dst = NULL;
2511 	}
2512 
2513 	if (cmd == PRC_MSGSIZE)
2514 		notify = tcp_mtudisc_notify;
2515 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
2516 		cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL ||
2517 		cmd == PRC_TIMXCEED_INTRANS) && ip6 != NULL)
2518 		notify = tcp_drop_syn_sent;
2519 
2520 	/*
2521 	 * Hostdead is ugly because it goes linearly through all PCBs.
2522 	 * XXX: We never get this from ICMP, otherwise it makes an
2523 	 * excellent DoS attack on machines with many connections.
2524 	 */
2525 	else if (cmd == PRC_HOSTDEAD)
2526 		ip6 = NULL;
2527 	else if ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)
2528 		return;
2529 
2530 	if (ip6 == NULL) {
2531 		in6_pcbnotify(&V_tcbinfo, sa, 0,
2532 			      (const struct sockaddr *)sa6_src,
2533 			      0, cmd, NULL, notify);
2534 		return;
2535 	}
2536 
2537 	/* Check if we can safely get the ports from the tcp hdr */
2538 	if (m == NULL ||
2539 	    (m->m_pkthdr.len <
2540 		(int32_t) (off + sizeof(struct tcp_ports)))) {
2541 		return;
2542 	}
2543 	bzero(&t_ports, sizeof(struct tcp_ports));
2544 	m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports);
2545 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
2546 	inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport,
2547 	    &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL);
2548 	if (inp != NULL && PRC_IS_REDIRECT(cmd)) {
2549 		/* signal EHOSTDOWN, as it flushes the cached route */
2550 		inp = (*notify)(inp, EHOSTDOWN);
2551 		goto out;
2552 	}
2553 	off += sizeof(struct tcp_ports);
2554 	if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) {
2555 		goto out;
2556 	}
2557 	m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq);
2558 	if (inp != NULL)  {
2559 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
2560 		    !(inp->inp_flags & INP_DROPPED) &&
2561 		    !(inp->inp_socket == NULL)) {
2562 			tp = intotcpcb(inp);
2563 			if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
2564 			    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
2565 				if (cmd == PRC_MSGSIZE) {
2566 					/*
2567 					 * MTU discovery:
2568 					 * If we got a needfrag set the MTU
2569 					 * in the route to the suggested new
2570 					 * value (if given) and then notify.
2571 					 */
2572 					mtu = ntohl(icmp6->icmp6_mtu);
2573 					/*
2574 					 * If no alternative MTU was
2575 					 * proposed, or the proposed
2576 					 * MTU was too small, set to
2577 					 * the min.
2578 					 */
2579 					if (mtu < IPV6_MMTU)
2580 						mtu = IPV6_MMTU - 8;
2581 					bzero(&inc, sizeof(inc));
2582 					inc.inc_fibnum = M_GETFIB(m);
2583 					inc.inc_flags |= INC_ISIPV6;
2584 					inc.inc6_faddr = *dst;
2585 					if (in6_setscope(&inc.inc6_faddr,
2586 						m->m_pkthdr.rcvif, NULL))
2587 						goto out;
2588 					/*
2589 					 * Only process the offered MTU if it
2590 					 * is smaller than the current one.
2591 					 */
2592 					if (mtu < tp->t_maxseg +
2593 					    sizeof (struct tcphdr) +
2594 					    sizeof (struct ip6_hdr)) {
2595 						tcp_hc_updatemtu(&inc, mtu);
2596 						tcp_mtudisc(inp, mtu);
2597 						ICMP6STAT_INC(icp6s_pmtuchg);
2598 					}
2599 				} else
2600 					inp = (*notify)(inp,
2601 					    inet6ctlerrmap[cmd]);
2602 			}
2603 		}
2604 	} else {
2605 		bzero(&inc, sizeof(inc));
2606 		inc.inc_fibnum = M_GETFIB(m);
2607 		inc.inc_flags |= INC_ISIPV6;
2608 		inc.inc_fport = t_ports.th_dport;
2609 		inc.inc_lport = t_ports.th_sport;
2610 		inc.inc6_faddr = *dst;
2611 		inc.inc6_laddr = ip6->ip6_src;
2612 		syncache_unreach(&inc, icmp_tcp_seq);
2613 	}
2614 out:
2615 	if (inp != NULL)
2616 		INP_WUNLOCK(inp);
2617 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
2618 }
2619 #endif /* INET6 */
2620 
2621 static uint32_t
2622 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len)
2623 {
2624 	MD5_CTX ctx;
2625 	uint32_t hash[4];
2626 
2627 	MD5Init(&ctx);
2628 	MD5Update(&ctx, &inc->inc_fport, sizeof(uint16_t));
2629 	MD5Update(&ctx, &inc->inc_lport, sizeof(uint16_t));
2630 	switch (inc->inc_flags & INC_ISIPV6) {
2631 #ifdef INET
2632 	case 0:
2633 		MD5Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr));
2634 		MD5Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr));
2635 		break;
2636 #endif
2637 #ifdef INET6
2638 	case INC_ISIPV6:
2639 		MD5Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr));
2640 		MD5Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr));
2641 		break;
2642 #endif
2643 	}
2644 	MD5Update(&ctx, key, len);
2645 	MD5Final((unsigned char *)hash, &ctx);
2646 
2647 	return (hash[0]);
2648 }
2649 
2650 uint32_t
2651 tcp_new_ts_offset(struct in_conninfo *inc)
2652 {
2653 	struct in_conninfo inc_store, *local_inc;
2654 
2655 	if (!V_tcp_ts_offset_per_conn) {
2656 		memcpy(&inc_store, inc, sizeof(struct in_conninfo));
2657 		inc_store.inc_lport = 0;
2658 		inc_store.inc_fport = 0;
2659 		local_inc = &inc_store;
2660 	} else {
2661 		local_inc = inc;
2662 	}
2663 	return (tcp_keyed_hash(local_inc, V_ts_offset_secret,
2664 	    sizeof(V_ts_offset_secret)));
2665 }
2666 
2667 /*
2668  * Following is where TCP initial sequence number generation occurs.
2669  *
2670  * There are two places where we must use initial sequence numbers:
2671  * 1.  In SYN-ACK packets.
2672  * 2.  In SYN packets.
2673  *
2674  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2675  * tcp_syncache.c for details.
2676  *
2677  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2678  * depends on this property.  In addition, these ISNs should be
2679  * unguessable so as to prevent connection hijacking.  To satisfy
2680  * the requirements of this situation, the algorithm outlined in
2681  * RFC 1948 is used, with only small modifications.
2682  *
2683  * Implementation details:
2684  *
2685  * Time is based off the system timer, and is corrected so that it
2686  * increases by one megabyte per second.  This allows for proper
2687  * recycling on high speed LANs while still leaving over an hour
2688  * before rollover.
2689  *
2690  * As reading the *exact* system time is too expensive to be done
2691  * whenever setting up a TCP connection, we increment the time
2692  * offset in two ways.  First, a small random positive increment
2693  * is added to isn_offset for each connection that is set up.
2694  * Second, the function tcp_isn_tick fires once per clock tick
2695  * and increments isn_offset as necessary so that sequence numbers
2696  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2697  * random positive increments serve only to ensure that the same
2698  * exact sequence number is never sent out twice (as could otherwise
2699  * happen when a port is recycled in less than the system tick
2700  * interval.)
2701  *
2702  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2703  * between seeding of isn_secret.  This is normally set to zero,
2704  * as reseeding should not be necessary.
2705  *
2706  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2707  * isn_offset_old, and isn_ctx is performed using the ISN lock.  In
2708  * general, this means holding an exclusive (write) lock.
2709  */
2710 
2711 #define ISN_BYTES_PER_SECOND 1048576
2712 #define ISN_STATIC_INCREMENT 4096
2713 #define ISN_RANDOM_INCREMENT (4096 - 1)
2714 #define ISN_SECRET_LENGTH    32
2715 
2716 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]);
2717 VNET_DEFINE_STATIC(int, isn_last);
2718 VNET_DEFINE_STATIC(int, isn_last_reseed);
2719 VNET_DEFINE_STATIC(u_int32_t, isn_offset);
2720 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old);
2721 
2722 #define	V_isn_secret			VNET(isn_secret)
2723 #define	V_isn_last			VNET(isn_last)
2724 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2725 #define	V_isn_offset			VNET(isn_offset)
2726 #define	V_isn_offset_old		VNET(isn_offset_old)
2727 
2728 tcp_seq
2729 tcp_new_isn(struct in_conninfo *inc)
2730 {
2731 	tcp_seq new_isn;
2732 	u_int32_t projected_offset;
2733 
2734 	ISN_LOCK();
2735 	/* Seed if this is the first use, reseed if requested. */
2736 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2737 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2738 		< (u_int)ticks))) {
2739 		arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0);
2740 		V_isn_last_reseed = ticks;
2741 	}
2742 
2743 	/* Compute the md5 hash and return the ISN. */
2744 	new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret,
2745 	    sizeof(V_isn_secret));
2746 	V_isn_offset += ISN_STATIC_INCREMENT +
2747 		(arc4random() & ISN_RANDOM_INCREMENT);
2748 	if (ticks != V_isn_last) {
2749 		projected_offset = V_isn_offset_old +
2750 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2751 		if (SEQ_GT(projected_offset, V_isn_offset))
2752 			V_isn_offset = projected_offset;
2753 		V_isn_offset_old = V_isn_offset;
2754 		V_isn_last = ticks;
2755 	}
2756 	new_isn += V_isn_offset;
2757 	ISN_UNLOCK();
2758 	return (new_isn);
2759 }
2760 
2761 /*
2762  * When a specific ICMP unreachable message is received and the
2763  * connection state is SYN-SENT, drop the connection.  This behavior
2764  * is controlled by the icmp_may_rst sysctl.
2765  */
2766 struct inpcb *
2767 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2768 {
2769 	struct tcpcb *tp;
2770 
2771 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2772 	INP_WLOCK_ASSERT(inp);
2773 
2774 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2775 	    (inp->inp_flags & INP_DROPPED))
2776 		return (inp);
2777 
2778 	tp = intotcpcb(inp);
2779 	if (tp->t_state != TCPS_SYN_SENT)
2780 		return (inp);
2781 
2782 	if (IS_FASTOPEN(tp->t_flags))
2783 		tcp_fastopen_disable_path(tp);
2784 
2785 	tp = tcp_drop(tp, errno);
2786 	if (tp != NULL)
2787 		return (inp);
2788 	else
2789 		return (NULL);
2790 }
2791 
2792 /*
2793  * When `need fragmentation' ICMP is received, update our idea of the MSS
2794  * based on the new value. Also nudge TCP to send something, since we
2795  * know the packet we just sent was dropped.
2796  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2797  */
2798 static struct inpcb *
2799 tcp_mtudisc_notify(struct inpcb *inp, int error)
2800 {
2801 
2802 	tcp_mtudisc(inp, -1);
2803 	return (inp);
2804 }
2805 
2806 static void
2807 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2808 {
2809 	struct tcpcb *tp;
2810 	struct socket *so;
2811 
2812 	INP_WLOCK_ASSERT(inp);
2813 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2814 	    (inp->inp_flags & INP_DROPPED))
2815 		return;
2816 
2817 	tp = intotcpcb(inp);
2818 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2819 
2820 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2821 
2822 	so = inp->inp_socket;
2823 	SOCKBUF_LOCK(&so->so_snd);
2824 	/* If the mss is larger than the socket buffer, decrease the mss. */
2825 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2826 		tp->t_maxseg = so->so_snd.sb_hiwat;
2827 	SOCKBUF_UNLOCK(&so->so_snd);
2828 
2829 	TCPSTAT_INC(tcps_mturesent);
2830 	tp->t_rtttime = 0;
2831 	tp->snd_nxt = tp->snd_una;
2832 	tcp_free_sackholes(tp);
2833 	tp->snd_recover = tp->snd_max;
2834 	if (tp->t_flags & TF_SACK_PERMIT)
2835 		EXIT_FASTRECOVERY(tp->t_flags);
2836 	tp->t_fb->tfb_tcp_output(tp);
2837 }
2838 
2839 #ifdef INET
2840 /*
2841  * Look-up the routing entry to the peer of this inpcb.  If no route
2842  * is found and it cannot be allocated, then return 0.  This routine
2843  * is called by TCP routines that access the rmx structure and by
2844  * tcp_mss_update to get the peer/interface MTU.
2845  */
2846 uint32_t
2847 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2848 {
2849 	struct nhop4_extended nh4;
2850 	struct ifnet *ifp;
2851 	uint32_t maxmtu = 0;
2852 
2853 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2854 
2855 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2856 
2857 		if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr,
2858 		    NHR_REF, 0, &nh4) != 0)
2859 			return (0);
2860 
2861 		ifp = nh4.nh_ifp;
2862 		maxmtu = nh4.nh_mtu;
2863 
2864 		/* Report additional interface capabilities. */
2865 		if (cap != NULL) {
2866 			if (ifp->if_capenable & IFCAP_TSO4 &&
2867 			    ifp->if_hwassist & CSUM_TSO) {
2868 				cap->ifcap |= CSUM_TSO;
2869 				cap->tsomax = ifp->if_hw_tsomax;
2870 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2871 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2872 			}
2873 		}
2874 		fib4_free_nh_ext(inc->inc_fibnum, &nh4);
2875 	}
2876 	return (maxmtu);
2877 }
2878 #endif /* INET */
2879 
2880 #ifdef INET6
2881 uint32_t
2882 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2883 {
2884 	struct nhop6_extended nh6;
2885 	struct in6_addr dst6;
2886 	uint32_t scopeid;
2887 	struct ifnet *ifp;
2888 	uint32_t maxmtu = 0;
2889 
2890 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2891 
2892 	if (inc->inc_flags & INC_IPV6MINMTU)
2893 		return (IPV6_MMTU);
2894 
2895 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2896 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
2897 		if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0,
2898 		    0, &nh6) != 0)
2899 			return (0);
2900 
2901 		ifp = nh6.nh_ifp;
2902 		maxmtu = nh6.nh_mtu;
2903 
2904 		/* Report additional interface capabilities. */
2905 		if (cap != NULL) {
2906 			if (ifp->if_capenable & IFCAP_TSO6 &&
2907 			    ifp->if_hwassist & CSUM_TSO) {
2908 				cap->ifcap |= CSUM_TSO;
2909 				cap->tsomax = ifp->if_hw_tsomax;
2910 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2911 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2912 			}
2913 		}
2914 		fib6_free_nh_ext(inc->inc_fibnum, &nh6);
2915 	}
2916 
2917 	return (maxmtu);
2918 }
2919 #endif /* INET6 */
2920 
2921 /*
2922  * Calculate effective SMSS per RFC5681 definition for a given TCP
2923  * connection at its current state, taking into account SACK and etc.
2924  */
2925 u_int
2926 tcp_maxseg(const struct tcpcb *tp)
2927 {
2928 	u_int optlen;
2929 
2930 	if (tp->t_flags & TF_NOOPT)
2931 		return (tp->t_maxseg);
2932 
2933 	/*
2934 	 * Here we have a simplified code from tcp_addoptions(),
2935 	 * without a proper loop, and having most of paddings hardcoded.
2936 	 * We might make mistakes with padding here in some edge cases,
2937 	 * but this is harmless, since result of tcp_maxseg() is used
2938 	 * only in cwnd and ssthresh estimations.
2939 	 */
2940 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2941 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2942 		if (tp->t_flags & TF_RCVD_TSTMP)
2943 			optlen = TCPOLEN_TSTAMP_APPA;
2944 		else
2945 			optlen = 0;
2946 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
2947 		if (tp->t_flags & TF_SIGNATURE)
2948 			optlen += PAD(TCPOLEN_SIGNATURE);
2949 #endif
2950 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2951 			optlen += TCPOLEN_SACKHDR;
2952 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2953 			optlen = PAD(optlen);
2954 		}
2955 	} else {
2956 		if (tp->t_flags & TF_REQ_TSTMP)
2957 			optlen = TCPOLEN_TSTAMP_APPA;
2958 		else
2959 			optlen = PAD(TCPOLEN_MAXSEG);
2960 		if (tp->t_flags & TF_REQ_SCALE)
2961 			optlen += PAD(TCPOLEN_WINDOW);
2962 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
2963 		if (tp->t_flags & TF_SIGNATURE)
2964 			optlen += PAD(TCPOLEN_SIGNATURE);
2965 #endif
2966 		if (tp->t_flags & TF_SACK_PERMIT)
2967 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2968 	}
2969 #undef PAD
2970 	optlen = min(optlen, TCP_MAXOLEN);
2971 	return (tp->t_maxseg - optlen);
2972 }
2973 
2974 static int
2975 sysctl_drop(SYSCTL_HANDLER_ARGS)
2976 {
2977 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2978 	struct sockaddr_storage addrs[2];
2979 	struct inpcb *inp;
2980 	struct tcpcb *tp;
2981 	struct tcptw *tw;
2982 	struct sockaddr_in *fin, *lin;
2983 	struct epoch_tracker et;
2984 #ifdef INET6
2985 	struct sockaddr_in6 *fin6, *lin6;
2986 #endif
2987 	int error;
2988 
2989 	inp = NULL;
2990 	fin = lin = NULL;
2991 #ifdef INET6
2992 	fin6 = lin6 = NULL;
2993 #endif
2994 	error = 0;
2995 
2996 	if (req->oldptr != NULL || req->oldlen != 0)
2997 		return (EINVAL);
2998 	if (req->newptr == NULL)
2999 		return (EPERM);
3000 	if (req->newlen < sizeof(addrs))
3001 		return (ENOMEM);
3002 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3003 	if (error)
3004 		return (error);
3005 
3006 	switch (addrs[0].ss_family) {
3007 #ifdef INET6
3008 	case AF_INET6:
3009 		fin6 = (struct sockaddr_in6 *)&addrs[0];
3010 		lin6 = (struct sockaddr_in6 *)&addrs[1];
3011 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3012 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
3013 			return (EINVAL);
3014 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
3015 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
3016 				return (EINVAL);
3017 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
3018 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
3019 			fin = (struct sockaddr_in *)&addrs[0];
3020 			lin = (struct sockaddr_in *)&addrs[1];
3021 			break;
3022 		}
3023 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
3024 		if (error)
3025 			return (error);
3026 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
3027 		if (error)
3028 			return (error);
3029 		break;
3030 #endif
3031 #ifdef INET
3032 	case AF_INET:
3033 		fin = (struct sockaddr_in *)&addrs[0];
3034 		lin = (struct sockaddr_in *)&addrs[1];
3035 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
3036 		    lin->sin_len != sizeof(struct sockaddr_in))
3037 			return (EINVAL);
3038 		break;
3039 #endif
3040 	default:
3041 		return (EINVAL);
3042 	}
3043 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
3044 	switch (addrs[0].ss_family) {
3045 #ifdef INET6
3046 	case AF_INET6:
3047 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
3048 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
3049 		    INPLOOKUP_WLOCKPCB, NULL);
3050 		break;
3051 #endif
3052 #ifdef INET
3053 	case AF_INET:
3054 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
3055 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
3056 		break;
3057 #endif
3058 	}
3059 	if (inp != NULL) {
3060 		if (inp->inp_flags & INP_TIMEWAIT) {
3061 			/*
3062 			 * XXXRW: There currently exists a state where an
3063 			 * inpcb is present, but its timewait state has been
3064 			 * discarded.  For now, don't allow dropping of this
3065 			 * type of inpcb.
3066 			 */
3067 			tw = intotw(inp);
3068 			if (tw != NULL)
3069 				tcp_twclose(tw, 0);
3070 			else
3071 				INP_WUNLOCK(inp);
3072 		} else if (!(inp->inp_flags & INP_DROPPED) &&
3073 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
3074 			tp = intotcpcb(inp);
3075 			tp = tcp_drop(tp, ECONNABORTED);
3076 			if (tp != NULL)
3077 				INP_WUNLOCK(inp);
3078 		} else
3079 			INP_WUNLOCK(inp);
3080 	} else
3081 		error = ESRCH;
3082 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
3083 	return (error);
3084 }
3085 
3086 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
3087     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
3088     0, sysctl_drop, "", "Drop TCP connection");
3089 
3090 #ifdef KERN_TLS
3091 static int
3092 sysctl_switch_tls(SYSCTL_HANDLER_ARGS)
3093 {
3094 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
3095 	struct sockaddr_storage addrs[2];
3096 	struct inpcb *inp;
3097 	struct sockaddr_in *fin, *lin;
3098 	struct epoch_tracker et;
3099 #ifdef INET6
3100 	struct sockaddr_in6 *fin6, *lin6;
3101 #endif
3102 	int error;
3103 
3104 	inp = NULL;
3105 	fin = lin = NULL;
3106 #ifdef INET6
3107 	fin6 = lin6 = NULL;
3108 #endif
3109 	error = 0;
3110 
3111 	if (req->oldptr != NULL || req->oldlen != 0)
3112 		return (EINVAL);
3113 	if (req->newptr == NULL)
3114 		return (EPERM);
3115 	if (req->newlen < sizeof(addrs))
3116 		return (ENOMEM);
3117 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3118 	if (error)
3119 		return (error);
3120 
3121 	switch (addrs[0].ss_family) {
3122 #ifdef INET6
3123 	case AF_INET6:
3124 		fin6 = (struct sockaddr_in6 *)&addrs[0];
3125 		lin6 = (struct sockaddr_in6 *)&addrs[1];
3126 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3127 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
3128 			return (EINVAL);
3129 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
3130 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
3131 				return (EINVAL);
3132 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
3133 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
3134 			fin = (struct sockaddr_in *)&addrs[0];
3135 			lin = (struct sockaddr_in *)&addrs[1];
3136 			break;
3137 		}
3138 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
3139 		if (error)
3140 			return (error);
3141 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
3142 		if (error)
3143 			return (error);
3144 		break;
3145 #endif
3146 #ifdef INET
3147 	case AF_INET:
3148 		fin = (struct sockaddr_in *)&addrs[0];
3149 		lin = (struct sockaddr_in *)&addrs[1];
3150 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
3151 		    lin->sin_len != sizeof(struct sockaddr_in))
3152 			return (EINVAL);
3153 		break;
3154 #endif
3155 	default:
3156 		return (EINVAL);
3157 	}
3158 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
3159 	switch (addrs[0].ss_family) {
3160 #ifdef INET6
3161 	case AF_INET6:
3162 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
3163 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
3164 		    INPLOOKUP_WLOCKPCB, NULL);
3165 		break;
3166 #endif
3167 #ifdef INET
3168 	case AF_INET:
3169 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
3170 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
3171 		break;
3172 #endif
3173 	}
3174 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
3175 	if (inp != NULL) {
3176 		if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0 ||
3177 		    inp->inp_socket == NULL) {
3178 			error = ECONNRESET;
3179 			INP_WUNLOCK(inp);
3180 		} else {
3181 			struct socket *so;
3182 
3183 			so = inp->inp_socket;
3184 			soref(so);
3185 			error = ktls_set_tx_mode(so,
3186 			    arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET);
3187 			INP_WUNLOCK(inp);
3188 			SOCK_LOCK(so);
3189 			sorele(so);
3190 		}
3191 	} else
3192 		error = ESRCH;
3193 	return (error);
3194 }
3195 
3196 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls,
3197     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
3198     0, sysctl_switch_tls, "", "Switch TCP connection to SW TLS");
3199 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls,
3200     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
3201     1, sysctl_switch_tls, "", "Switch TCP connection to ifnet TLS");
3202 #endif
3203 
3204 /*
3205  * Generate a standardized TCP log line for use throughout the
3206  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
3207  * allow use in the interrupt context.
3208  *
3209  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
3210  * NB: The function may return NULL if memory allocation failed.
3211  *
3212  * Due to header inclusion and ordering limitations the struct ip
3213  * and ip6_hdr pointers have to be passed as void pointers.
3214  */
3215 char *
3216 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
3217     const void *ip6hdr)
3218 {
3219 
3220 	/* Is logging enabled? */
3221 	if (tcp_log_in_vain == 0)
3222 		return (NULL);
3223 
3224 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
3225 }
3226 
3227 char *
3228 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
3229     const void *ip6hdr)
3230 {
3231 
3232 	/* Is logging enabled? */
3233 	if (tcp_log_debug == 0)
3234 		return (NULL);
3235 
3236 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
3237 }
3238 
3239 static char *
3240 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
3241     const void *ip6hdr)
3242 {
3243 	char *s, *sp;
3244 	size_t size;
3245 	struct ip *ip;
3246 #ifdef INET6
3247 	const struct ip6_hdr *ip6;
3248 
3249 	ip6 = (const struct ip6_hdr *)ip6hdr;
3250 #endif /* INET6 */
3251 	ip = (struct ip *)ip4hdr;
3252 
3253 	/*
3254 	 * The log line looks like this:
3255 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
3256 	 */
3257 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
3258 	    sizeof(PRINT_TH_FLAGS) + 1 +
3259 #ifdef INET6
3260 	    2 * INET6_ADDRSTRLEN;
3261 #else
3262 	    2 * INET_ADDRSTRLEN;
3263 #endif /* INET6 */
3264 
3265 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
3266 	if (s == NULL)
3267 		return (NULL);
3268 
3269 	strcat(s, "TCP: [");
3270 	sp = s + strlen(s);
3271 
3272 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
3273 		inet_ntoa_r(inc->inc_faddr, sp);
3274 		sp = s + strlen(s);
3275 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
3276 		sp = s + strlen(s);
3277 		inet_ntoa_r(inc->inc_laddr, sp);
3278 		sp = s + strlen(s);
3279 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
3280 #ifdef INET6
3281 	} else if (inc) {
3282 		ip6_sprintf(sp, &inc->inc6_faddr);
3283 		sp = s + strlen(s);
3284 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
3285 		sp = s + strlen(s);
3286 		ip6_sprintf(sp, &inc->inc6_laddr);
3287 		sp = s + strlen(s);
3288 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
3289 	} else if (ip6 && th) {
3290 		ip6_sprintf(sp, &ip6->ip6_src);
3291 		sp = s + strlen(s);
3292 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
3293 		sp = s + strlen(s);
3294 		ip6_sprintf(sp, &ip6->ip6_dst);
3295 		sp = s + strlen(s);
3296 		sprintf(sp, "]:%i", ntohs(th->th_dport));
3297 #endif /* INET6 */
3298 #ifdef INET
3299 	} else if (ip && th) {
3300 		inet_ntoa_r(ip->ip_src, sp);
3301 		sp = s + strlen(s);
3302 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
3303 		sp = s + strlen(s);
3304 		inet_ntoa_r(ip->ip_dst, sp);
3305 		sp = s + strlen(s);
3306 		sprintf(sp, "]:%i", ntohs(th->th_dport));
3307 #endif /* INET */
3308 	} else {
3309 		free(s, M_TCPLOG);
3310 		return (NULL);
3311 	}
3312 	sp = s + strlen(s);
3313 	if (th)
3314 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
3315 	if (*(s + size - 1) != '\0')
3316 		panic("%s: string too long", __func__);
3317 	return (s);
3318 }
3319 
3320 /*
3321  * A subroutine which makes it easy to track TCP state changes with DTrace.
3322  * This function shouldn't be called for t_state initializations that don't
3323  * correspond to actual TCP state transitions.
3324  */
3325 void
3326 tcp_state_change(struct tcpcb *tp, int newstate)
3327 {
3328 #if defined(KDTRACE_HOOKS)
3329 	int pstate = tp->t_state;
3330 #endif
3331 
3332 	TCPSTATES_DEC(tp->t_state);
3333 	TCPSTATES_INC(newstate);
3334 	tp->t_state = newstate;
3335 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
3336 }
3337 
3338 /*
3339  * Create an external-format (``xtcpcb'') structure using the information in
3340  * the kernel-format tcpcb structure pointed to by tp.  This is done to
3341  * reduce the spew of irrelevant information over this interface, to isolate
3342  * user code from changes in the kernel structure, and potentially to provide
3343  * information-hiding if we decide that some of this information should be
3344  * hidden from users.
3345  */
3346 void
3347 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt)
3348 {
3349 	struct tcpcb *tp = intotcpcb(inp);
3350 	sbintime_t now;
3351 
3352 	bzero(xt, sizeof(*xt));
3353 	if (inp->inp_flags & INP_TIMEWAIT) {
3354 		xt->t_state = TCPS_TIME_WAIT;
3355 	} else {
3356 		xt->t_state = tp->t_state;
3357 		xt->t_logstate = tp->t_logstate;
3358 		xt->t_flags = tp->t_flags;
3359 		xt->t_sndzerowin = tp->t_sndzerowin;
3360 		xt->t_sndrexmitpack = tp->t_sndrexmitpack;
3361 		xt->t_rcvoopack = tp->t_rcvoopack;
3362 
3363 		now = getsbinuptime();
3364 #define	COPYTIMER(ttt)	do {						\
3365 		if (callout_active(&tp->t_timers->ttt))			\
3366 			xt->ttt = (tp->t_timers->ttt.c_time - now) /	\
3367 			    SBT_1MS;					\
3368 		else							\
3369 			xt->ttt = 0;					\
3370 } while (0)
3371 		COPYTIMER(tt_delack);
3372 		COPYTIMER(tt_rexmt);
3373 		COPYTIMER(tt_persist);
3374 		COPYTIMER(tt_keep);
3375 		COPYTIMER(tt_2msl);
3376 #undef COPYTIMER
3377 		xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz;
3378 
3379 		bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack,
3380 		    TCP_FUNCTION_NAME_LEN_MAX);
3381 #ifdef TCP_BLACKBOX
3382 		(void)tcp_log_get_id(tp, xt->xt_logid);
3383 #endif
3384 	}
3385 
3386 	xt->xt_len = sizeof(struct xtcpcb);
3387 	in_pcbtoxinpcb(inp, &xt->xt_inp);
3388 	if (inp->inp_socket == NULL)
3389 		xt->xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
3390 }
3391