xref: /freebsd/sys/netinet/tcp_subr.c (revision 7bd6fde3)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #ifdef INET6
49 #include <sys/domain.h>
50 #endif
51 #include <sys/priv.h>
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #include <netinet6/nd6.h>
79 #endif
80 #include <netinet/ip_icmp.h>
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #include <netkey/key.h>
101 #endif /*IPSEC*/
102 
103 #ifdef FAST_IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/xform.h>
106 #ifdef INET6
107 #include <netipsec/ipsec6.h>
108 #endif
109 #include <netipsec/key.h>
110 #define	IPSEC
111 #endif /*FAST_IPSEC*/
112 
113 #include <machine/in_cksum.h>
114 #include <sys/md5.h>
115 
116 #include <security/mac/mac_framework.h>
117 
118 int	tcp_mssdflt = TCP_MSS;
119 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
120     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
121 
122 #ifdef INET6
123 int	tcp_v6mssdflt = TCP6_MSS;
124 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
125 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
126 	"Default TCP Maximum Segment Size for IPv6");
127 #endif
128 
129 /*
130  * Minimum MSS we accept and use. This prevents DoS attacks where
131  * we are forced to a ridiculous low MSS like 20 and send hundreds
132  * of packets instead of one. The effect scales with the available
133  * bandwidth and quickly saturates the CPU and network interface
134  * with packet generation and sending. Set to zero to disable MINMSS
135  * checking. This setting prevents us from sending too small packets.
136  */
137 int	tcp_minmss = TCP_MINMSS;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
139     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
140 /*
141  * Number of TCP segments per second we accept from remote host
142  * before we start to calculate average segment size. If average
143  * segment size drops below the minimum TCP MSS we assume a DoS
144  * attack and reset+drop the connection. Care has to be taken not to
145  * set this value too small to not kill interactive type connections
146  * (telnet, SSH) which send many small packets.
147  */
148 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
150     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
151     "be under the MINMSS Size");
152 
153 #if 0
154 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
155 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
156     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
157 #endif
158 
159 int	tcp_do_rfc1323 = 1;
160 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
161     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
162 
163 static int	tcp_tcbhashsize = 0;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
165      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
166 
167 static int	do_tcpdrain = 1;
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
169      "Enable tcp_drain routine for extra help when low on mbufs");
170 
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
172     &tcbinfo.ipi_count, 0, "Number of active PCBs");
173 
174 static int	icmp_may_rst = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
176     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
177 
178 static int	tcp_isn_reseed_interval = 0;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
180     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
181 
182 static uma_zone_t tcptw_zone;
183 static int	maxtcptw;
184 
185 static int
186 tcptw_auto_size(void)
187 {
188 	int halfrange;
189 
190 	/*
191 	 * Max out at half the ephemeral port range so that TIME_WAIT
192 	 * sockets don't tie up too many ephemeral ports.
193 	 */
194 	if (ipport_lastauto > ipport_firstauto)
195 		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
196 	else
197 		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
198 	/* Protect against goofy port ranges smaller than 32. */
199 	return (imin(imax(halfrange, 32), maxsockets / 5));
200 }
201 
202 static int
203 sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
204 {
205 	int error, new;
206 
207 	if (maxtcptw == 0)
208 		new = tcptw_auto_size();
209 	else
210 		new = maxtcptw;
211 	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
212 	if (error == 0 && req->newptr)
213 		if (new >= 32) {
214 			maxtcptw = new;
215 			uma_zone_set_max(tcptw_zone, maxtcptw);
216 		}
217 	return (error);
218 }
219 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
220     &maxtcptw, 0, sysctl_maxtcptw, "IU",
221     "Maximum number of compressed TCP TIME_WAIT entries");
222 
223 static int	nolocaltimewait = 0;
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
225     &nolocaltimewait, 0, "Do not create compressed TCP TIME_WAIT entries"
226 			 "for local connections");
227 
228 /*
229  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
230  * 1024 exists only for debugging.  A good production default would be
231  * something like 6100.
232  */
233 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
234     "TCP inflight data limiting");
235 
236 static int	tcp_inflight_enable = 1;
237 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
238     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
239 
240 static int	tcp_inflight_debug = 0;
241 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
242     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
243 
244 static int	tcp_inflight_rttthresh;
245 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
246     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
247     "RTT threshold below which inflight will deactivate itself");
248 
249 static int	tcp_inflight_min = 6144;
250 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
251     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
252 
253 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
254 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
255     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
256 
257 static int	tcp_inflight_stab = 20;
258 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
259     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
260 
261 uma_zone_t sack_hole_zone;
262 
263 static struct inpcb *tcp_notify(struct inpcb *, int);
264 static void	tcp_isn_tick(void *);
265 
266 /*
267  * Target size of TCP PCB hash tables. Must be a power of two.
268  *
269  * Note that this can be overridden by the kernel environment
270  * variable net.inet.tcp.tcbhashsize
271  */
272 #ifndef TCBHASHSIZE
273 #define TCBHASHSIZE	512
274 #endif
275 
276 /*
277  * XXX
278  * Callouts should be moved into struct tcp directly.  They are currently
279  * separate because the tcpcb structure is exported to userland for sysctl
280  * parsing purposes, which do not know about callouts.
281  */
282 struct	tcpcb_mem {
283 	struct	tcpcb tcb;
284 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
285 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
286 };
287 
288 static uma_zone_t tcpcb_zone;
289 struct callout isn_callout;
290 static struct mtx isn_mtx;
291 
292 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
293 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
294 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
295 
296 /*
297  * TCP initialization.
298  */
299 static void
300 tcp_zone_change(void *tag)
301 {
302 
303 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
304 	uma_zone_set_max(tcpcb_zone, maxsockets);
305 	if (maxtcptw == 0)
306 		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
307 }
308 
309 static int
310 tcp_inpcb_init(void *mem, int size, int flags)
311 {
312 	struct inpcb *inp = mem;
313 
314 	INP_LOCK_INIT(inp, "inp", "tcpinp");
315 	return (0);
316 }
317 
318 void
319 tcp_init(void)
320 {
321 	int hashsize = TCBHASHSIZE;
322 
323 	tcp_delacktime = TCPTV_DELACK;
324 	tcp_keepinit = TCPTV_KEEP_INIT;
325 	tcp_keepidle = TCPTV_KEEP_IDLE;
326 	tcp_keepintvl = TCPTV_KEEPINTVL;
327 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
328 	tcp_msl = TCPTV_MSL;
329 	tcp_rexmit_min = TCPTV_MIN;
330 	tcp_rexmit_slop = TCPTV_CPU_VAR;
331 	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
332 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
333 
334 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
335 	LIST_INIT(&tcb);
336 	tcbinfo.listhead = &tcb;
337 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
338 	if (!powerof2(hashsize)) {
339 		printf("WARNING: TCB hash size not a power of 2\n");
340 		hashsize = 512; /* safe default */
341 	}
342 	tcp_tcbhashsize = hashsize;
343 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
344 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
345 					&tcbinfo.porthashmask);
346 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
347 	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
348 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
349 #ifdef INET6
350 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
351 #else /* INET6 */
352 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
353 #endif /* INET6 */
354 	if (max_protohdr < TCP_MINPROTOHDR)
355 		max_protohdr = TCP_MINPROTOHDR;
356 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
357 		panic("tcp_init");
358 #undef TCP_MINPROTOHDR
359 	/*
360 	 * These have to be type stable for the benefit of the timers.
361 	 */
362 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
363 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
364 	uma_zone_set_max(tcpcb_zone, maxsockets);
365 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
366 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
367 	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
368 	if (maxtcptw == 0)
369 		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
370 	else
371 		uma_zone_set_max(tcptw_zone, maxtcptw);
372 	tcp_timer_init();
373 	syncache_init();
374 	tcp_hc_init();
375 	tcp_reass_init();
376 	ISN_LOCK_INIT();
377 	callout_init(&isn_callout, CALLOUT_MPSAFE);
378 	tcp_isn_tick(NULL);
379 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
380 		SHUTDOWN_PRI_DEFAULT);
381 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
382 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
383 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
384 		EVENTHANDLER_PRI_ANY);
385 }
386 
387 void
388 tcp_fini(void *xtp)
389 {
390 
391 	callout_stop(&isn_callout);
392 }
393 
394 /*
395  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
396  * tcp_template used to store this data in mbufs, but we now recopy it out
397  * of the tcpcb each time to conserve mbufs.
398  */
399 void
400 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
401 {
402 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
403 
404 	INP_LOCK_ASSERT(inp);
405 
406 #ifdef INET6
407 	if ((inp->inp_vflag & INP_IPV6) != 0) {
408 		struct ip6_hdr *ip6;
409 
410 		ip6 = (struct ip6_hdr *)ip_ptr;
411 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
412 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
413 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
414 			(IPV6_VERSION & IPV6_VERSION_MASK);
415 		ip6->ip6_nxt = IPPROTO_TCP;
416 		ip6->ip6_plen = sizeof(struct tcphdr);
417 		ip6->ip6_src = inp->in6p_laddr;
418 		ip6->ip6_dst = inp->in6p_faddr;
419 	} else
420 #endif
421 	{
422 		struct ip *ip;
423 
424 		ip = (struct ip *)ip_ptr;
425 		ip->ip_v = IPVERSION;
426 		ip->ip_hl = 5;
427 		ip->ip_tos = inp->inp_ip_tos;
428 		ip->ip_len = 0;
429 		ip->ip_id = 0;
430 		ip->ip_off = 0;
431 		ip->ip_ttl = inp->inp_ip_ttl;
432 		ip->ip_sum = 0;
433 		ip->ip_p = IPPROTO_TCP;
434 		ip->ip_src = inp->inp_laddr;
435 		ip->ip_dst = inp->inp_faddr;
436 	}
437 	th->th_sport = inp->inp_lport;
438 	th->th_dport = inp->inp_fport;
439 	th->th_seq = 0;
440 	th->th_ack = 0;
441 	th->th_x2 = 0;
442 	th->th_off = 5;
443 	th->th_flags = 0;
444 	th->th_win = 0;
445 	th->th_urp = 0;
446 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
447 }
448 
449 /*
450  * Create template to be used to send tcp packets on a connection.
451  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
452  * use for this function is in keepalives, which use tcp_respond.
453  */
454 struct tcptemp *
455 tcpip_maketemplate(struct inpcb *inp)
456 {
457 	struct mbuf *m;
458 	struct tcptemp *n;
459 
460 	m = m_get(M_DONTWAIT, MT_DATA);
461 	if (m == NULL)
462 		return (0);
463 	m->m_len = sizeof(struct tcptemp);
464 	n = mtod(m, struct tcptemp *);
465 
466 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
467 	return (n);
468 }
469 
470 /*
471  * Send a single message to the TCP at address specified by
472  * the given TCP/IP header.  If m == NULL, then we make a copy
473  * of the tcpiphdr at ti and send directly to the addressed host.
474  * This is used to force keep alive messages out using the TCP
475  * template for a connection.  If flags are given then we send
476  * a message back to the TCP which originated the * segment ti,
477  * and discard the mbuf containing it and any other attached mbufs.
478  *
479  * In any case the ack and sequence number of the transmitted
480  * segment are as specified by the parameters.
481  *
482  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
483  */
484 void
485 tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
486     register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
487 {
488 	register int tlen;
489 	int win = 0;
490 	struct ip *ip;
491 	struct tcphdr *nth;
492 #ifdef INET6
493 	struct ip6_hdr *ip6;
494 	int isipv6;
495 #endif /* INET6 */
496 	int ipflags = 0;
497 	struct inpcb *inp;
498 
499 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
500 
501 #ifdef INET6
502 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
503 	ip6 = ipgen;
504 #endif /* INET6 */
505 	ip = ipgen;
506 
507 	if (tp != NULL) {
508 		inp = tp->t_inpcb;
509 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
510 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
511 		INP_LOCK_ASSERT(inp);
512 	} else
513 		inp = NULL;
514 
515 	if (tp != NULL) {
516 		if (!(flags & TH_RST)) {
517 			win = sbspace(&inp->inp_socket->so_rcv);
518 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
519 				win = (long)TCP_MAXWIN << tp->rcv_scale;
520 		}
521 	}
522 	if (m == NULL) {
523 		m = m_gethdr(M_DONTWAIT, MT_DATA);
524 		if (m == NULL)
525 			return;
526 		tlen = 0;
527 		m->m_data += max_linkhdr;
528 #ifdef INET6
529 		if (isipv6) {
530 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
531 			      sizeof(struct ip6_hdr));
532 			ip6 = mtod(m, struct ip6_hdr *);
533 			nth = (struct tcphdr *)(ip6 + 1);
534 		} else
535 #endif /* INET6 */
536 	      {
537 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
538 		ip = mtod(m, struct ip *);
539 		nth = (struct tcphdr *)(ip + 1);
540 	      }
541 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
542 		flags = TH_ACK;
543 	} else {
544 		m_freem(m->m_next);
545 		m->m_next = NULL;
546 		m->m_data = (caddr_t)ipgen;
547 		/* m_len is set later */
548 		tlen = 0;
549 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
550 #ifdef INET6
551 		if (isipv6) {
552 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
553 			nth = (struct tcphdr *)(ip6 + 1);
554 		} else
555 #endif /* INET6 */
556 	      {
557 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
558 		nth = (struct tcphdr *)(ip + 1);
559 	      }
560 		if (th != nth) {
561 			/*
562 			 * this is usually a case when an extension header
563 			 * exists between the IPv6 header and the
564 			 * TCP header.
565 			 */
566 			nth->th_sport = th->th_sport;
567 			nth->th_dport = th->th_dport;
568 		}
569 		xchg(nth->th_dport, nth->th_sport, n_short);
570 #undef xchg
571 	}
572 #ifdef INET6
573 	if (isipv6) {
574 		ip6->ip6_flow = 0;
575 		ip6->ip6_vfc = IPV6_VERSION;
576 		ip6->ip6_nxt = IPPROTO_TCP;
577 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
578 						tlen));
579 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
580 	} else
581 #endif
582 	{
583 		tlen += sizeof (struct tcpiphdr);
584 		ip->ip_len = tlen;
585 		ip->ip_ttl = ip_defttl;
586 		if (path_mtu_discovery)
587 			ip->ip_off |= IP_DF;
588 	}
589 	m->m_len = tlen;
590 	m->m_pkthdr.len = tlen;
591 	m->m_pkthdr.rcvif = NULL;
592 #ifdef MAC
593 	if (inp != NULL) {
594 		/*
595 		 * Packet is associated with a socket, so allow the
596 		 * label of the response to reflect the socket label.
597 		 */
598 		INP_LOCK_ASSERT(inp);
599 		mac_create_mbuf_from_inpcb(inp, m);
600 	} else {
601 		/*
602 		 * Packet is not associated with a socket, so possibly
603 		 * update the label in place.
604 		 */
605 		mac_reflect_mbuf_tcp(m);
606 	}
607 #endif
608 	nth->th_seq = htonl(seq);
609 	nth->th_ack = htonl(ack);
610 	nth->th_x2 = 0;
611 	nth->th_off = sizeof (struct tcphdr) >> 2;
612 	nth->th_flags = flags;
613 	if (tp != NULL)
614 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
615 	else
616 		nth->th_win = htons((u_short)win);
617 	nth->th_urp = 0;
618 #ifdef INET6
619 	if (isipv6) {
620 		nth->th_sum = 0;
621 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
622 					sizeof(struct ip6_hdr),
623 					tlen - sizeof(struct ip6_hdr));
624 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
625 		    NULL, NULL);
626 	} else
627 #endif /* INET6 */
628 	{
629 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
630 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
631 		m->m_pkthdr.csum_flags = CSUM_TCP;
632 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
633 	}
634 #ifdef TCPDEBUG
635 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
636 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
637 #endif
638 #ifdef INET6
639 	if (isipv6)
640 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
641 	else
642 #endif /* INET6 */
643 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
644 }
645 
646 /*
647  * Create a new TCP control block, making an
648  * empty reassembly queue and hooking it to the argument
649  * protocol control block.  The `inp' parameter must have
650  * come from the zone allocator set up in tcp_init().
651  */
652 struct tcpcb *
653 tcp_newtcpcb(struct inpcb *inp)
654 {
655 	struct tcpcb_mem *tm;
656 	struct tcpcb *tp;
657 #ifdef INET6
658 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
659 #endif /* INET6 */
660 
661 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
662 	if (tm == NULL)
663 		return (NULL);
664 	tp = &tm->tcb;
665 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
666 	tp->t_maxseg = tp->t_maxopd =
667 #ifdef INET6
668 		isipv6 ? tcp_v6mssdflt :
669 #endif /* INET6 */
670 		tcp_mssdflt;
671 
672 	/* Set up our timeouts. */
673 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
674 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
675 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
676 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
677 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
678 
679 	if (tcp_do_rfc1323)
680 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
681 	tp->sack_enable = tcp_do_sack;
682 	TAILQ_INIT(&tp->snd_holes);
683 	tp->t_inpcb = inp;	/* XXX */
684 	/*
685 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
686 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
687 	 * reasonable initial retransmit time.
688 	 */
689 	tp->t_srtt = TCPTV_SRTTBASE;
690 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
691 	tp->t_rttmin = tcp_rexmit_min;
692 	tp->t_rxtcur = TCPTV_RTOBASE;
693 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
694 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
695 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
696 	tp->t_rcvtime = ticks;
697 	tp->t_bw_rtttime = ticks;
698 	/*
699 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
700 	 * because the socket may be bound to an IPv6 wildcard address,
701 	 * which may match an IPv4-mapped IPv6 address.
702 	 */
703 	inp->inp_ip_ttl = ip_defttl;
704 	inp->inp_ppcb = tp;
705 	return (tp);		/* XXX */
706 }
707 
708 /*
709  * Drop a TCP connection, reporting
710  * the specified error.  If connection is synchronized,
711  * then send a RST to peer.
712  */
713 struct tcpcb *
714 tcp_drop(struct tcpcb *tp, int errno)
715 {
716 	struct socket *so = tp->t_inpcb->inp_socket;
717 
718 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
719 	INP_LOCK_ASSERT(tp->t_inpcb);
720 
721 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
722 		tp->t_state = TCPS_CLOSED;
723 		(void) tcp_output(tp);
724 		tcpstat.tcps_drops++;
725 	} else
726 		tcpstat.tcps_conndrops++;
727 	if (errno == ETIMEDOUT && tp->t_softerror)
728 		errno = tp->t_softerror;
729 	so->so_error = errno;
730 	return (tcp_close(tp));
731 }
732 
733 void
734 tcp_discardcb(struct tcpcb *tp)
735 {
736 	struct tseg_qent *q;
737 	struct inpcb *inp = tp->t_inpcb;
738 	struct socket *so = inp->inp_socket;
739 #ifdef INET6
740 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
741 #endif /* INET6 */
742 
743 	INP_LOCK_ASSERT(inp);
744 
745 	/*
746 	 * Make sure that all of our timers are stopped before we
747 	 * delete the PCB.
748 	 */
749 	callout_stop(tp->tt_rexmt);
750 	callout_stop(tp->tt_persist);
751 	callout_stop(tp->tt_keep);
752 	callout_stop(tp->tt_2msl);
753 	callout_stop(tp->tt_delack);
754 
755 	/*
756 	 * If we got enough samples through the srtt filter,
757 	 * save the rtt and rttvar in the routing entry.
758 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
759 	 * 4 samples is enough for the srtt filter to converge
760 	 * to within enough % of the correct value; fewer samples
761 	 * and we could save a bogus rtt. The danger is not high
762 	 * as tcp quickly recovers from everything.
763 	 * XXX: Works very well but needs some more statistics!
764 	 */
765 	if (tp->t_rttupdated >= 4) {
766 		struct hc_metrics_lite metrics;
767 		u_long ssthresh;
768 
769 		bzero(&metrics, sizeof(metrics));
770 		/*
771 		 * Update the ssthresh always when the conditions below
772 		 * are satisfied. This gives us better new start value
773 		 * for the congestion avoidance for new connections.
774 		 * ssthresh is only set if packet loss occured on a session.
775 		 *
776 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
777 		 * being torn down.  Ideally this code would not use 'so'.
778 		 */
779 		ssthresh = tp->snd_ssthresh;
780 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
781 			/*
782 			 * convert the limit from user data bytes to
783 			 * packets then to packet data bytes.
784 			 */
785 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
786 			if (ssthresh < 2)
787 				ssthresh = 2;
788 			ssthresh *= (u_long)(tp->t_maxseg +
789 #ifdef INET6
790 				      (isipv6 ? sizeof (struct ip6_hdr) +
791 					       sizeof (struct tcphdr) :
792 #endif
793 				       sizeof (struct tcpiphdr)
794 #ifdef INET6
795 				       )
796 #endif
797 				      );
798 		} else
799 			ssthresh = 0;
800 		metrics.rmx_ssthresh = ssthresh;
801 
802 		metrics.rmx_rtt = tp->t_srtt;
803 		metrics.rmx_rttvar = tp->t_rttvar;
804 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
805 		metrics.rmx_bandwidth = tp->snd_bandwidth;
806 		metrics.rmx_cwnd = tp->snd_cwnd;
807 		metrics.rmx_sendpipe = 0;
808 		metrics.rmx_recvpipe = 0;
809 
810 		tcp_hc_update(&inp->inp_inc, &metrics);
811 	}
812 
813 	/* free the reassembly queue, if any */
814 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
815 		LIST_REMOVE(q, tqe_q);
816 		m_freem(q->tqe_m);
817 		uma_zfree(tcp_reass_zone, q);
818 		tp->t_segqlen--;
819 		tcp_reass_qsize--;
820 	}
821 	tcp_free_sackholes(tp);
822 	inp->inp_ppcb = NULL;
823 	tp->t_inpcb = NULL;
824 	uma_zfree(tcpcb_zone, tp);
825 }
826 
827 /*
828  * Attempt to close a TCP control block, marking it as dropped, and freeing
829  * the socket if we hold the only reference.
830  */
831 struct tcpcb *
832 tcp_close(struct tcpcb *tp)
833 {
834 	struct inpcb *inp = tp->t_inpcb;
835 	struct socket *so;
836 
837 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
838 	INP_LOCK_ASSERT(inp);
839 
840 	in_pcbdrop(inp);
841 	tcpstat.tcps_closed++;
842 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
843 	so = inp->inp_socket;
844 	soisdisconnected(so);
845 	if (inp->inp_vflag & INP_SOCKREF) {
846 		KASSERT(so->so_state & SS_PROTOREF,
847 		    ("tcp_close: !SS_PROTOREF"));
848 		inp->inp_vflag &= ~INP_SOCKREF;
849 		INP_UNLOCK(inp);
850 		ACCEPT_LOCK();
851 		SOCK_LOCK(so);
852 		so->so_state &= ~SS_PROTOREF;
853 		sofree(so);
854 		return (NULL);
855 	}
856 	return (tp);
857 }
858 
859 void
860 tcp_drain(void)
861 {
862 
863 	if (do_tcpdrain) {
864 		struct inpcb *inpb;
865 		struct tcpcb *tcpb;
866 		struct tseg_qent *te;
867 
868 	/*
869 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
870 	 * if there is one...
871 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
872 	 *      reassembly queue should be flushed, but in a situation
873 	 *	where we're really low on mbufs, this is potentially
874 	 *	usefull.
875 	 */
876 		INP_INFO_RLOCK(&tcbinfo);
877 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
878 			if (inpb->inp_vflag & INP_TIMEWAIT)
879 				continue;
880 			INP_LOCK(inpb);
881 			if ((tcpb = intotcpcb(inpb)) != NULL) {
882 				while ((te = LIST_FIRST(&tcpb->t_segq))
883 			            != NULL) {
884 					LIST_REMOVE(te, tqe_q);
885 					m_freem(te->tqe_m);
886 					uma_zfree(tcp_reass_zone, te);
887 					tcpb->t_segqlen--;
888 					tcp_reass_qsize--;
889 				}
890 				tcp_clean_sackreport(tcpb);
891 			}
892 			INP_UNLOCK(inpb);
893 		}
894 		INP_INFO_RUNLOCK(&tcbinfo);
895 	}
896 }
897 
898 /*
899  * Notify a tcp user of an asynchronous error;
900  * store error as soft error, but wake up user
901  * (for now, won't do anything until can select for soft error).
902  *
903  * Do not wake up user since there currently is no mechanism for
904  * reporting soft errors (yet - a kqueue filter may be added).
905  */
906 static struct inpcb *
907 tcp_notify(struct inpcb *inp, int error)
908 {
909 	struct tcpcb *tp;
910 
911 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
912 	INP_LOCK_ASSERT(inp);
913 
914 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
915 	    (inp->inp_vflag & INP_DROPPED))
916 		return (inp);
917 
918 	tp = intotcpcb(inp);
919 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
920 
921 	/*
922 	 * Ignore some errors if we are hooked up.
923 	 * If connection hasn't completed, has retransmitted several times,
924 	 * and receives a second error, give up now.  This is better
925 	 * than waiting a long time to establish a connection that
926 	 * can never complete.
927 	 */
928 	if (tp->t_state == TCPS_ESTABLISHED &&
929 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
930 	     error == EHOSTDOWN)) {
931 		return (inp);
932 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
933 	    tp->t_softerror) {
934 		tp = tcp_drop(tp, error);
935 		if (tp != NULL)
936 			return (inp);
937 		else
938 			return (NULL);
939 	} else {
940 		tp->t_softerror = error;
941 		return (inp);
942 	}
943 #if 0
944 	wakeup( &so->so_timeo);
945 	sorwakeup(so);
946 	sowwakeup(so);
947 #endif
948 }
949 
950 static int
951 tcp_pcblist(SYSCTL_HANDLER_ARGS)
952 {
953 	int error, i, n;
954 	struct inpcb *inp, **inp_list;
955 	inp_gen_t gencnt;
956 	struct xinpgen xig;
957 
958 	/*
959 	 * The process of preparing the TCB list is too time-consuming and
960 	 * resource-intensive to repeat twice on every request.
961 	 */
962 	if (req->oldptr == NULL) {
963 		n = tcbinfo.ipi_count;
964 		req->oldidx = 2 * (sizeof xig)
965 			+ (n + n/8) * sizeof(struct xtcpcb);
966 		return (0);
967 	}
968 
969 	if (req->newptr != NULL)
970 		return (EPERM);
971 
972 	/*
973 	 * OK, now we're committed to doing something.
974 	 */
975 	INP_INFO_RLOCK(&tcbinfo);
976 	gencnt = tcbinfo.ipi_gencnt;
977 	n = tcbinfo.ipi_count;
978 	INP_INFO_RUNLOCK(&tcbinfo);
979 
980 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
981 		+ n * sizeof(struct xtcpcb));
982 	if (error != 0)
983 		return (error);
984 
985 	xig.xig_len = sizeof xig;
986 	xig.xig_count = n;
987 	xig.xig_gen = gencnt;
988 	xig.xig_sogen = so_gencnt;
989 	error = SYSCTL_OUT(req, &xig, sizeof xig);
990 	if (error)
991 		return (error);
992 
993 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
994 	if (inp_list == NULL)
995 		return (ENOMEM);
996 
997 	INP_INFO_RLOCK(&tcbinfo);
998 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
999 	     inp = LIST_NEXT(inp, inp_list)) {
1000 		INP_LOCK(inp);
1001 		if (inp->inp_gencnt <= gencnt) {
1002 			/*
1003 			 * XXX: This use of cr_cansee(), introduced with
1004 			 * TCP state changes, is not quite right, but for
1005 			 * now, better than nothing.
1006 			 */
1007 			if (inp->inp_vflag & INP_TIMEWAIT) {
1008 				if (intotw(inp) != NULL)
1009 					error = cr_cansee(req->td->td_ucred,
1010 					    intotw(inp)->tw_cred);
1011 				else
1012 					error = EINVAL;	/* Skip this inp. */
1013 			} else
1014 				error = cr_canseesocket(req->td->td_ucred,
1015 				    inp->inp_socket);
1016 			if (error == 0)
1017 				inp_list[i++] = inp;
1018 		}
1019 		INP_UNLOCK(inp);
1020 	}
1021 	INP_INFO_RUNLOCK(&tcbinfo);
1022 	n = i;
1023 
1024 	error = 0;
1025 	for (i = 0; i < n; i++) {
1026 		inp = inp_list[i];
1027 		INP_LOCK(inp);
1028 		if (inp->inp_gencnt <= gencnt) {
1029 			struct xtcpcb xt;
1030 			void *inp_ppcb;
1031 
1032 			bzero(&xt, sizeof(xt));
1033 			xt.xt_len = sizeof xt;
1034 			/* XXX should avoid extra copy */
1035 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1036 			inp_ppcb = inp->inp_ppcb;
1037 			if (inp_ppcb == NULL)
1038 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1039 			else if (inp->inp_vflag & INP_TIMEWAIT) {
1040 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1041 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1042 			} else
1043 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1044 			if (inp->inp_socket != NULL)
1045 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1046 			else {
1047 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1048 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1049 			}
1050 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1051 			INP_UNLOCK(inp);
1052 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1053 		} else
1054 			INP_UNLOCK(inp);
1055 
1056 	}
1057 	if (!error) {
1058 		/*
1059 		 * Give the user an updated idea of our state.
1060 		 * If the generation differs from what we told
1061 		 * her before, she knows that something happened
1062 		 * while we were processing this request, and it
1063 		 * might be necessary to retry.
1064 		 */
1065 		INP_INFO_RLOCK(&tcbinfo);
1066 		xig.xig_gen = tcbinfo.ipi_gencnt;
1067 		xig.xig_sogen = so_gencnt;
1068 		xig.xig_count = tcbinfo.ipi_count;
1069 		INP_INFO_RUNLOCK(&tcbinfo);
1070 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1071 	}
1072 	free(inp_list, M_TEMP);
1073 	return (error);
1074 }
1075 
1076 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1077 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1078 
1079 static int
1080 tcp_getcred(SYSCTL_HANDLER_ARGS)
1081 {
1082 	struct xucred xuc;
1083 	struct sockaddr_in addrs[2];
1084 	struct inpcb *inp;
1085 	int error;
1086 
1087 	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1088 	    SUSER_ALLOWJAIL);
1089 	if (error)
1090 		return (error);
1091 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1092 	if (error)
1093 		return (error);
1094 	INP_INFO_RLOCK(&tcbinfo);
1095 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1096 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1097 	if (inp == NULL) {
1098 		error = ENOENT;
1099 		goto outunlocked;
1100 	}
1101 	INP_LOCK(inp);
1102 	if (inp->inp_socket == NULL) {
1103 		error = ENOENT;
1104 		goto out;
1105 	}
1106 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1107 	if (error)
1108 		goto out;
1109 	cru2x(inp->inp_socket->so_cred, &xuc);
1110 out:
1111 	INP_UNLOCK(inp);
1112 outunlocked:
1113 	INP_INFO_RUNLOCK(&tcbinfo);
1114 	if (error == 0)
1115 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1116 	return (error);
1117 }
1118 
1119 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1120     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1121     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1122 
1123 #ifdef INET6
1124 static int
1125 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1126 {
1127 	struct xucred xuc;
1128 	struct sockaddr_in6 addrs[2];
1129 	struct inpcb *inp;
1130 	int error, mapped = 0;
1131 
1132 	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1133 	    SUSER_ALLOWJAIL);
1134 	if (error)
1135 		return (error);
1136 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1137 	if (error)
1138 		return (error);
1139 	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1140 	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1141 		return (error);
1142 	}
1143 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1144 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1145 			mapped = 1;
1146 		else
1147 			return (EINVAL);
1148 	}
1149 
1150 	INP_INFO_RLOCK(&tcbinfo);
1151 	if (mapped == 1)
1152 		inp = in_pcblookup_hash(&tcbinfo,
1153 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1154 			addrs[1].sin6_port,
1155 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1156 			addrs[0].sin6_port,
1157 			0, NULL);
1158 	else
1159 		inp = in6_pcblookup_hash(&tcbinfo,
1160 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1161 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1162 	if (inp == NULL) {
1163 		error = ENOENT;
1164 		goto outunlocked;
1165 	}
1166 	INP_LOCK(inp);
1167 	if (inp->inp_socket == NULL) {
1168 		error = ENOENT;
1169 		goto out;
1170 	}
1171 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1172 	if (error)
1173 		goto out;
1174 	cru2x(inp->inp_socket->so_cred, &xuc);
1175 out:
1176 	INP_UNLOCK(inp);
1177 outunlocked:
1178 	INP_INFO_RUNLOCK(&tcbinfo);
1179 	if (error == 0)
1180 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1181 	return (error);
1182 }
1183 
1184 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1185     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1186     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1187 #endif
1188 
1189 
1190 void
1191 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1192 {
1193 	struct ip *ip = vip;
1194 	struct tcphdr *th;
1195 	struct in_addr faddr;
1196 	struct inpcb *inp;
1197 	struct tcpcb *tp;
1198 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1199 	struct icmp *icp;
1200 	struct in_conninfo inc;
1201 	tcp_seq icmp_tcp_seq;
1202 	int mtu;
1203 
1204 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1205 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1206 		return;
1207 
1208 	if (cmd == PRC_MSGSIZE)
1209 		notify = tcp_mtudisc;
1210 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1211 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1212 		notify = tcp_drop_syn_sent;
1213 	/*
1214 	 * Redirects don't need to be handled up here.
1215 	 */
1216 	else if (PRC_IS_REDIRECT(cmd))
1217 		return;
1218 	/*
1219 	 * Source quench is depreciated.
1220 	 */
1221 	else if (cmd == PRC_QUENCH)
1222 		return;
1223 	/*
1224 	 * Hostdead is ugly because it goes linearly through all PCBs.
1225 	 * XXX: We never get this from ICMP, otherwise it makes an
1226 	 * excellent DoS attack on machines with many connections.
1227 	 */
1228 	else if (cmd == PRC_HOSTDEAD)
1229 		ip = NULL;
1230 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1231 		return;
1232 	if (ip != NULL) {
1233 		icp = (struct icmp *)((caddr_t)ip
1234 				      - offsetof(struct icmp, icmp_ip));
1235 		th = (struct tcphdr *)((caddr_t)ip
1236 				       + (ip->ip_hl << 2));
1237 		INP_INFO_WLOCK(&tcbinfo);
1238 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1239 		    ip->ip_src, th->th_sport, 0, NULL);
1240 		if (inp != NULL)  {
1241 			INP_LOCK(inp);
1242 			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1243 			    !(inp->inp_vflag & INP_DROPPED) &&
1244 			    !(inp->inp_socket == NULL)) {
1245 				icmp_tcp_seq = htonl(th->th_seq);
1246 				tp = intotcpcb(inp);
1247 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1248 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1249 					if (cmd == PRC_MSGSIZE) {
1250 					    /*
1251 					     * MTU discovery:
1252 					     * If we got a needfrag set the MTU
1253 					     * in the route to the suggested new
1254 					     * value (if given) and then notify.
1255 					     */
1256 					    bzero(&inc, sizeof(inc));
1257 					    inc.inc_flags = 0;	/* IPv4 */
1258 					    inc.inc_faddr = faddr;
1259 
1260 					    mtu = ntohs(icp->icmp_nextmtu);
1261 					    /*
1262 					     * If no alternative MTU was
1263 					     * proposed, try the next smaller
1264 					     * one.  ip->ip_len has already
1265 					     * been swapped in icmp_input().
1266 					     */
1267 					    if (!mtu)
1268 						mtu = ip_next_mtu(ip->ip_len,
1269 						 1);
1270 					    if (mtu < max(296, (tcp_minmss)
1271 						 + sizeof(struct tcpiphdr)))
1272 						mtu = 0;
1273 					    if (!mtu)
1274 						mtu = tcp_mssdflt
1275 						 + sizeof(struct tcpiphdr);
1276 					    /*
1277 					     * Only cache the the MTU if it
1278 					     * is smaller than the interface
1279 					     * or route MTU.  tcp_mtudisc()
1280 					     * will do right thing by itself.
1281 					     */
1282 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1283 						tcp_hc_updatemtu(&inc, mtu);
1284 					}
1285 
1286 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1287 				}
1288 			}
1289 			if (inp != NULL)
1290 				INP_UNLOCK(inp);
1291 		} else {
1292 			inc.inc_fport = th->th_dport;
1293 			inc.inc_lport = th->th_sport;
1294 			inc.inc_faddr = faddr;
1295 			inc.inc_laddr = ip->ip_src;
1296 #ifdef INET6
1297 			inc.inc_isipv6 = 0;
1298 #endif
1299 			syncache_unreach(&inc, th);
1300 		}
1301 		INP_INFO_WUNLOCK(&tcbinfo);
1302 	} else
1303 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1304 }
1305 
1306 #ifdef INET6
1307 void
1308 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1309 {
1310 	struct tcphdr th;
1311 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1312 	struct ip6_hdr *ip6;
1313 	struct mbuf *m;
1314 	struct ip6ctlparam *ip6cp = NULL;
1315 	const struct sockaddr_in6 *sa6_src = NULL;
1316 	int off;
1317 	struct tcp_portonly {
1318 		u_int16_t th_sport;
1319 		u_int16_t th_dport;
1320 	} *thp;
1321 
1322 	if (sa->sa_family != AF_INET6 ||
1323 	    sa->sa_len != sizeof(struct sockaddr_in6))
1324 		return;
1325 
1326 	if (cmd == PRC_MSGSIZE)
1327 		notify = tcp_mtudisc;
1328 	else if (!PRC_IS_REDIRECT(cmd) &&
1329 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1330 		return;
1331 	/* Source quench is depreciated. */
1332 	else if (cmd == PRC_QUENCH)
1333 		return;
1334 
1335 	/* if the parameter is from icmp6, decode it. */
1336 	if (d != NULL) {
1337 		ip6cp = (struct ip6ctlparam *)d;
1338 		m = ip6cp->ip6c_m;
1339 		ip6 = ip6cp->ip6c_ip6;
1340 		off = ip6cp->ip6c_off;
1341 		sa6_src = ip6cp->ip6c_src;
1342 	} else {
1343 		m = NULL;
1344 		ip6 = NULL;
1345 		off = 0;	/* fool gcc */
1346 		sa6_src = &sa6_any;
1347 	}
1348 
1349 	if (ip6 != NULL) {
1350 		struct in_conninfo inc;
1351 		/*
1352 		 * XXX: We assume that when IPV6 is non NULL,
1353 		 * M and OFF are valid.
1354 		 */
1355 
1356 		/* check if we can safely examine src and dst ports */
1357 		if (m->m_pkthdr.len < off + sizeof(*thp))
1358 			return;
1359 
1360 		bzero(&th, sizeof(th));
1361 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1362 
1363 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1364 		    (struct sockaddr *)ip6cp->ip6c_src,
1365 		    th.th_sport, cmd, NULL, notify);
1366 
1367 		inc.inc_fport = th.th_dport;
1368 		inc.inc_lport = th.th_sport;
1369 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1370 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1371 		inc.inc_isipv6 = 1;
1372 		INP_INFO_WLOCK(&tcbinfo);
1373 		syncache_unreach(&inc, &th);
1374 		INP_INFO_WUNLOCK(&tcbinfo);
1375 	} else
1376 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1377 			      0, cmd, NULL, notify);
1378 }
1379 #endif /* INET6 */
1380 
1381 
1382 /*
1383  * Following is where TCP initial sequence number generation occurs.
1384  *
1385  * There are two places where we must use initial sequence numbers:
1386  * 1.  In SYN-ACK packets.
1387  * 2.  In SYN packets.
1388  *
1389  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1390  * tcp_syncache.c for details.
1391  *
1392  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1393  * depends on this property.  In addition, these ISNs should be
1394  * unguessable so as to prevent connection hijacking.  To satisfy
1395  * the requirements of this situation, the algorithm outlined in
1396  * RFC 1948 is used, with only small modifications.
1397  *
1398  * Implementation details:
1399  *
1400  * Time is based off the system timer, and is corrected so that it
1401  * increases by one megabyte per second.  This allows for proper
1402  * recycling on high speed LANs while still leaving over an hour
1403  * before rollover.
1404  *
1405  * As reading the *exact* system time is too expensive to be done
1406  * whenever setting up a TCP connection, we increment the time
1407  * offset in two ways.  First, a small random positive increment
1408  * is added to isn_offset for each connection that is set up.
1409  * Second, the function tcp_isn_tick fires once per clock tick
1410  * and increments isn_offset as necessary so that sequence numbers
1411  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1412  * random positive increments serve only to ensure that the same
1413  * exact sequence number is never sent out twice (as could otherwise
1414  * happen when a port is recycled in less than the system tick
1415  * interval.)
1416  *
1417  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1418  * between seeding of isn_secret.  This is normally set to zero,
1419  * as reseeding should not be necessary.
1420  *
1421  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1422  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1423  * general, this means holding an exclusive (write) lock.
1424  */
1425 
1426 #define ISN_BYTES_PER_SECOND 1048576
1427 #define ISN_STATIC_INCREMENT 4096
1428 #define ISN_RANDOM_INCREMENT (4096 - 1)
1429 
1430 static u_char isn_secret[32];
1431 static int isn_last_reseed;
1432 static u_int32_t isn_offset, isn_offset_old;
1433 static MD5_CTX isn_ctx;
1434 
1435 tcp_seq
1436 tcp_new_isn(struct tcpcb *tp)
1437 {
1438 	u_int32_t md5_buffer[4];
1439 	tcp_seq new_isn;
1440 
1441 	INP_LOCK_ASSERT(tp->t_inpcb);
1442 
1443 	ISN_LOCK();
1444 	/* Seed if this is the first use, reseed if requested. */
1445 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1446 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1447 		< (u_int)ticks))) {
1448 		read_random(&isn_secret, sizeof(isn_secret));
1449 		isn_last_reseed = ticks;
1450 	}
1451 
1452 	/* Compute the md5 hash and return the ISN. */
1453 	MD5Init(&isn_ctx);
1454 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1455 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1456 #ifdef INET6
1457 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1458 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1459 			  sizeof(struct in6_addr));
1460 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1461 			  sizeof(struct in6_addr));
1462 	} else
1463 #endif
1464 	{
1465 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1466 			  sizeof(struct in_addr));
1467 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1468 			  sizeof(struct in_addr));
1469 	}
1470 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1471 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1472 	new_isn = (tcp_seq) md5_buffer[0];
1473 	isn_offset += ISN_STATIC_INCREMENT +
1474 		(arc4random() & ISN_RANDOM_INCREMENT);
1475 	new_isn += isn_offset;
1476 	ISN_UNLOCK();
1477 	return (new_isn);
1478 }
1479 
1480 /*
1481  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1482  * to keep time flowing at a relatively constant rate.  If the random
1483  * increments have already pushed us past the projected offset, do nothing.
1484  */
1485 static void
1486 tcp_isn_tick(void *xtp)
1487 {
1488 	u_int32_t projected_offset;
1489 
1490 	ISN_LOCK();
1491 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1492 
1493 	if (projected_offset > isn_offset)
1494 		isn_offset = projected_offset;
1495 
1496 	isn_offset_old = isn_offset;
1497 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1498 	ISN_UNLOCK();
1499 }
1500 
1501 /*
1502  * When a specific ICMP unreachable message is received and the
1503  * connection state is SYN-SENT, drop the connection.  This behavior
1504  * is controlled by the icmp_may_rst sysctl.
1505  */
1506 struct inpcb *
1507 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1508 {
1509 	struct tcpcb *tp;
1510 
1511 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1512 	INP_LOCK_ASSERT(inp);
1513 
1514 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1515 	    (inp->inp_vflag & INP_DROPPED))
1516 		return (inp);
1517 
1518 	tp = intotcpcb(inp);
1519 	if (tp->t_state != TCPS_SYN_SENT)
1520 		return (inp);
1521 
1522 	tp = tcp_drop(tp, errno);
1523 	if (tp != NULL)
1524 		return (inp);
1525 	else
1526 		return (NULL);
1527 }
1528 
1529 /*
1530  * When `need fragmentation' ICMP is received, update our idea of the MSS
1531  * based on the new value in the route.  Also nudge TCP to send something,
1532  * since we know the packet we just sent was dropped.
1533  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1534  */
1535 struct inpcb *
1536 tcp_mtudisc(struct inpcb *inp, int errno)
1537 {
1538 	struct tcpcb *tp;
1539 	struct socket *so = inp->inp_socket;
1540 	u_int maxmtu;
1541 	u_int romtu;
1542 	int mss;
1543 #ifdef INET6
1544 	int isipv6;
1545 #endif /* INET6 */
1546 
1547 	INP_LOCK_ASSERT(inp);
1548 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1549 	    (inp->inp_vflag & INP_DROPPED))
1550 		return (inp);
1551 
1552 	tp = intotcpcb(inp);
1553 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1554 
1555 #ifdef INET6
1556 	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1557 #endif
1558 	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1559 	romtu =
1560 #ifdef INET6
1561 	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1562 #endif /* INET6 */
1563 	    tcp_maxmtu(&inp->inp_inc, NULL);
1564 	if (!maxmtu)
1565 		maxmtu = romtu;
1566 	else
1567 		maxmtu = min(maxmtu, romtu);
1568 	if (!maxmtu) {
1569 		tp->t_maxopd = tp->t_maxseg =
1570 #ifdef INET6
1571 			isipv6 ? tcp_v6mssdflt :
1572 #endif /* INET6 */
1573 			tcp_mssdflt;
1574 		return (inp);
1575 	}
1576 	mss = maxmtu -
1577 #ifdef INET6
1578 		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1579 #endif /* INET6 */
1580 		 sizeof(struct tcpiphdr)
1581 #ifdef INET6
1582 		 )
1583 #endif /* INET6 */
1584 		;
1585 
1586 	/*
1587 	 * XXX - The above conditional probably violates the TCP
1588 	 * spec.  The problem is that, since we don't know the
1589 	 * other end's MSS, we are supposed to use a conservative
1590 	 * default.  But, if we do that, then MTU discovery will
1591 	 * never actually take place, because the conservative
1592 	 * default is much less than the MTUs typically seen
1593 	 * on the Internet today.  For the moment, we'll sweep
1594 	 * this under the carpet.
1595 	 *
1596 	 * The conservative default might not actually be a problem
1597 	 * if the only case this occurs is when sending an initial
1598 	 * SYN with options and data to a host we've never talked
1599 	 * to before.  Then, they will reply with an MSS value which
1600 	 * will get recorded and the new parameters should get
1601 	 * recomputed.  For Further Study.
1602 	 */
1603 	if (tp->t_maxopd <= mss)
1604 		return (inp);
1605 	tp->t_maxopd = mss;
1606 
1607 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1608 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1609 		mss -= TCPOLEN_TSTAMP_APPA;
1610 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1611 	if (mss > MCLBYTES)
1612 		mss &= ~(MCLBYTES-1);
1613 #else
1614 	if (mss > MCLBYTES)
1615 		mss = mss / MCLBYTES * MCLBYTES;
1616 #endif
1617 	if (so->so_snd.sb_hiwat < mss)
1618 		mss = so->so_snd.sb_hiwat;
1619 
1620 	tp->t_maxseg = mss;
1621 
1622 	tcpstat.tcps_mturesent++;
1623 	tp->t_rtttime = 0;
1624 	tp->snd_nxt = tp->snd_una;
1625 	tcp_free_sackholes(tp);
1626 	tp->snd_recover = tp->snd_max;
1627 	if (tp->sack_enable)
1628 		EXIT_FASTRECOVERY(tp);
1629 	tcp_output(tp);
1630 	return (inp);
1631 }
1632 
1633 /*
1634  * Look-up the routing entry to the peer of this inpcb.  If no route
1635  * is found and it cannot be allocated, then return NULL.  This routine
1636  * is called by TCP routines that access the rmx structure and by tcp_mss
1637  * to get the interface MTU.
1638  */
1639 u_long
1640 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1641 {
1642 	struct route sro;
1643 	struct sockaddr_in *dst;
1644 	struct ifnet *ifp;
1645 	u_long maxmtu = 0;
1646 
1647 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1648 
1649 	bzero(&sro, sizeof(sro));
1650 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1651 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1652 		dst->sin_family = AF_INET;
1653 		dst->sin_len = sizeof(*dst);
1654 		dst->sin_addr = inc->inc_faddr;
1655 		rtalloc_ign(&sro, RTF_CLONING);
1656 	}
1657 	if (sro.ro_rt != NULL) {
1658 		ifp = sro.ro_rt->rt_ifp;
1659 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1660 			maxmtu = ifp->if_mtu;
1661 		else
1662 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1663 
1664 		/* Report additional interface capabilities. */
1665 		if (flags != NULL) {
1666 			if (ifp->if_capenable & IFCAP_TSO4 &&
1667 			    ifp->if_hwassist & CSUM_TSO)
1668 				*flags |= CSUM_TSO;
1669 		}
1670 		RTFREE(sro.ro_rt);
1671 	}
1672 	return (maxmtu);
1673 }
1674 
1675 #ifdef INET6
1676 u_long
1677 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1678 {
1679 	struct route_in6 sro6;
1680 	struct ifnet *ifp;
1681 	u_long maxmtu = 0;
1682 
1683 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1684 
1685 	bzero(&sro6, sizeof(sro6));
1686 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1687 		sro6.ro_dst.sin6_family = AF_INET6;
1688 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1689 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1690 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1691 	}
1692 	if (sro6.ro_rt != NULL) {
1693 		ifp = sro6.ro_rt->rt_ifp;
1694 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1695 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1696 		else
1697 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1698 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1699 
1700 		/* Report additional interface capabilities. */
1701 		if (flags != NULL) {
1702 			if (ifp->if_capenable & IFCAP_TSO6 &&
1703 			    ifp->if_hwassist & CSUM_TSO)
1704 				*flags |= CSUM_TSO;
1705 		}
1706 		RTFREE(sro6.ro_rt);
1707 	}
1708 
1709 	return (maxmtu);
1710 }
1711 #endif /* INET6 */
1712 
1713 #ifdef IPSEC
1714 /* compute ESP/AH header size for TCP, including outer IP header. */
1715 size_t
1716 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1717 {
1718 	struct inpcb *inp;
1719 	struct mbuf *m;
1720 	size_t hdrsiz;
1721 	struct ip *ip;
1722 #ifdef INET6
1723 	struct ip6_hdr *ip6;
1724 #endif
1725 	struct tcphdr *th;
1726 
1727 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1728 		return (0);
1729 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1730 	if (!m)
1731 		return (0);
1732 
1733 #ifdef INET6
1734 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1735 		ip6 = mtod(m, struct ip6_hdr *);
1736 		th = (struct tcphdr *)(ip6 + 1);
1737 		m->m_pkthdr.len = m->m_len =
1738 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1739 		tcpip_fillheaders(inp, ip6, th);
1740 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1741 	} else
1742 #endif /* INET6 */
1743 	{
1744 		ip = mtod(m, struct ip *);
1745 		th = (struct tcphdr *)(ip + 1);
1746 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1747 		tcpip_fillheaders(inp, ip, th);
1748 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1749 	}
1750 
1751 	m_free(m);
1752 	return (hdrsiz);
1753 }
1754 #endif /*IPSEC*/
1755 
1756 /*
1757  * Move a TCP connection into TIME_WAIT state.
1758  *    tcbinfo is locked.
1759  *    inp is locked, and is unlocked before returning.
1760  */
1761 void
1762 tcp_twstart(struct tcpcb *tp)
1763 {
1764 	struct tcptw *tw;
1765 	struct inpcb *inp = tp->t_inpcb;
1766 	int acknow;
1767 	struct socket *so;
1768 
1769 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1770 	INP_LOCK_ASSERT(inp);
1771 
1772 	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1773 		tp = tcp_close(tp);
1774 		if (tp != NULL)
1775 			INP_UNLOCK(inp);
1776 		return;
1777 	}
1778 
1779 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1780 	if (tw == NULL) {
1781 		tw = tcp_timer_2msl_tw(1);
1782 		if (tw == NULL) {
1783 			tp = tcp_close(tp);
1784 			if (tp != NULL)
1785 				INP_UNLOCK(inp);
1786 			return;
1787 		}
1788 	}
1789 	tw->tw_inpcb = inp;
1790 
1791 	/*
1792 	 * Recover last window size sent.
1793 	 */
1794 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1795 
1796 	/*
1797 	 * Set t_recent if timestamps are used on the connection.
1798 	 */
1799 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1800 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1801 		tw->t_recent = tp->ts_recent;
1802 	else
1803 		tw->t_recent = 0;
1804 
1805 	tw->snd_nxt = tp->snd_nxt;
1806 	tw->rcv_nxt = tp->rcv_nxt;
1807 	tw->iss     = tp->iss;
1808 	tw->irs     = tp->irs;
1809 	tw->t_starttime = tp->t_starttime;
1810 	tw->tw_time = 0;
1811 
1812 /* XXX
1813  * If this code will
1814  * be used for fin-wait-2 state also, then we may need
1815  * a ts_recent from the last segment.
1816  */
1817 	acknow = tp->t_flags & TF_ACKNOW;
1818 
1819 	/*
1820 	 * First, discard tcpcb state, which includes stopping its timers and
1821 	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1822 	 * that work is now done in the caller.
1823 	 *
1824 	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1825 	 * and might not be needed here any longer.
1826 	 */
1827 	tcp_discardcb(tp);
1828 	so = inp->inp_socket;
1829 	soisdisconnected(so);
1830 	SOCK_LOCK(so);
1831 	tw->tw_cred = crhold(so->so_cred);
1832 	tw->tw_so_options = so->so_options;
1833 	SOCK_UNLOCK(so);
1834 	if (acknow)
1835 		tcp_twrespond(tw, TH_ACK);
1836 	inp->inp_ppcb = tw;
1837 	inp->inp_vflag |= INP_TIMEWAIT;
1838 	tcp_timer_2msl_reset(tw, 0);
1839 
1840 	/*
1841 	 * If the inpcb owns the sole reference to the socket, then we can
1842 	 * detach and free the socket as it is not needed in time wait.
1843 	 */
1844 	if (inp->inp_vflag & INP_SOCKREF) {
1845 		KASSERT(so->so_state & SS_PROTOREF,
1846 		    ("tcp_twstart: !SS_PROTOREF"));
1847 		inp->inp_vflag &= ~INP_SOCKREF;
1848 		INP_UNLOCK(inp);
1849 		ACCEPT_LOCK();
1850 		SOCK_LOCK(so);
1851 		so->so_state &= ~SS_PROTOREF;
1852 		sofree(so);
1853 	} else
1854 		INP_UNLOCK(inp);
1855 }
1856 
1857 #if 0
1858 /*
1859  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1860  * the actual rate is slightly higher due to the addition of
1861  * random positive increments.
1862  *
1863  * Most other new OSes use semi-randomized ISN values, so we
1864  * do not need to worry about them.
1865  */
1866 #define MS_ISN_BYTES_PER_SECOND		250000
1867 
1868 /*
1869  * Determine if the ISN we will generate has advanced beyond the last
1870  * sequence number used by the previous connection.  If so, indicate
1871  * that it is safe to recycle this tw socket by returning 1.
1872  */
1873 int
1874 tcp_twrecycleable(struct tcptw *tw)
1875 {
1876 	tcp_seq new_iss = tw->iss;
1877 	tcp_seq new_irs = tw->irs;
1878 
1879 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1880 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1881 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1882 
1883 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1884 		return (1);
1885 	else
1886 		return (0);
1887 }
1888 #endif
1889 
1890 void
1891 tcp_twclose(struct tcptw *tw, int reuse)
1892 {
1893 	struct socket *so;
1894 	struct inpcb *inp;
1895 
1896 	/*
1897 	 * At this point, we are in one of two situations:
1898 	 *
1899 	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1900 	 *     all state.
1901 	 *
1902 	 * (2) We have a socket -- if we own a reference, release it and
1903 	 *     notify the socket layer.
1904 	 */
1905 	inp = tw->tw_inpcb;
1906 	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1907 	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1908 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1909 	INP_LOCK_ASSERT(inp);
1910 
1911 	tw->tw_inpcb = NULL;
1912 	tcp_timer_2msl_stop(tw);
1913 	inp->inp_ppcb = NULL;
1914 	in_pcbdrop(inp);
1915 
1916 	so = inp->inp_socket;
1917 	if (so != NULL) {
1918 		/*
1919 		 * If there's a socket, handle two cases: first, we own a
1920 		 * strong reference, which we will now release, or we don't
1921 		 * in which case another reference exists (XXXRW: think
1922 		 * about this more), and we don't need to take action.
1923 		 */
1924 		if (inp->inp_vflag & INP_SOCKREF) {
1925 			inp->inp_vflag &= ~INP_SOCKREF;
1926 			INP_UNLOCK(inp);
1927 			ACCEPT_LOCK();
1928 			SOCK_LOCK(so);
1929 			KASSERT(so->so_state & SS_PROTOREF,
1930 			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1931 			so->so_state &= ~SS_PROTOREF;
1932 			sofree(so);
1933 		} else {
1934 			/*
1935 			 * If we don't own the only reference, the socket and
1936 			 * inpcb need to be left around to be handled by
1937 			 * tcp_usr_detach() later.
1938 			 */
1939 			INP_UNLOCK(inp);
1940 		}
1941 	} else {
1942 #ifdef INET6
1943 		if (inp->inp_vflag & INP_IPV6PROTO)
1944 			in6_pcbfree(inp);
1945 		else
1946 #endif
1947 			in_pcbfree(inp);
1948 	}
1949 	tcpstat.tcps_closed++;
1950 	crfree(tw->tw_cred);
1951 	tw->tw_cred = NULL;
1952 	if (reuse)
1953 		return;
1954 	uma_zfree(tcptw_zone, tw);
1955 }
1956 
1957 int
1958 tcp_twrespond(struct tcptw *tw, int flags)
1959 {
1960 	struct inpcb *inp = tw->tw_inpcb;
1961 	struct tcphdr *th;
1962 	struct mbuf *m;
1963 	struct ip *ip = NULL;
1964 	u_int8_t *optp;
1965 	u_int hdrlen, optlen;
1966 	int error;
1967 #ifdef INET6
1968 	struct ip6_hdr *ip6 = NULL;
1969 	int isipv6 = inp->inp_inc.inc_isipv6;
1970 #endif
1971 
1972 	INP_LOCK_ASSERT(inp);
1973 
1974 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1975 	if (m == NULL)
1976 		return (ENOBUFS);
1977 	m->m_data += max_linkhdr;
1978 
1979 #ifdef MAC
1980 	mac_create_mbuf_from_inpcb(inp, m);
1981 #endif
1982 
1983 #ifdef INET6
1984 	if (isipv6) {
1985 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1986 		ip6 = mtod(m, struct ip6_hdr *);
1987 		th = (struct tcphdr *)(ip6 + 1);
1988 		tcpip_fillheaders(inp, ip6, th);
1989 	} else
1990 #endif
1991 	{
1992 		hdrlen = sizeof(struct tcpiphdr);
1993 		ip = mtod(m, struct ip *);
1994 		th = (struct tcphdr *)(ip + 1);
1995 		tcpip_fillheaders(inp, ip, th);
1996 	}
1997 	optp = (u_int8_t *)(th + 1);
1998 
1999 	/*
2000 	 * Send a timestamp and echo-reply if both our side and our peer
2001 	 * have sent timestamps in our SYN's and this is not a RST.
2002 	 */
2003 	if (tw->t_recent && flags == TH_ACK) {
2004 		u_int32_t *lp = (u_int32_t *)optp;
2005 
2006 		/* Form timestamp option as shown in appendix A of RFC 1323. */
2007 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2008 		*lp++ = htonl(ticks);
2009 		*lp   = htonl(tw->t_recent);
2010 		optp += TCPOLEN_TSTAMP_APPA;
2011 	}
2012 
2013 	optlen = optp - (u_int8_t *)(th + 1);
2014 
2015 	m->m_len = hdrlen + optlen;
2016 	m->m_pkthdr.len = m->m_len;
2017 
2018 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
2019 
2020 	th->th_seq = htonl(tw->snd_nxt);
2021 	th->th_ack = htonl(tw->rcv_nxt);
2022 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2023 	th->th_flags = flags;
2024 	th->th_win = htons(tw->last_win);
2025 
2026 #ifdef INET6
2027 	if (isipv6) {
2028 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2029 		    sizeof(struct tcphdr) + optlen);
2030 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2031 		error = ip6_output(m, inp->in6p_outputopts, NULL,
2032 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2033 	} else
2034 #endif
2035 	{
2036 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2037 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2038 		m->m_pkthdr.csum_flags = CSUM_TCP;
2039 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2040 		ip->ip_len = m->m_pkthdr.len;
2041 		if (path_mtu_discovery)
2042 			ip->ip_off |= IP_DF;
2043 		error = ip_output(m, inp->inp_options, NULL,
2044 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2045 		    NULL, inp);
2046 	}
2047 	if (flags & TH_ACK)
2048 		tcpstat.tcps_sndacks++;
2049 	else
2050 		tcpstat.tcps_sndctrl++;
2051 	tcpstat.tcps_sndtotal++;
2052 	return (error);
2053 }
2054 
2055 /*
2056  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2057  *
2058  * This code attempts to calculate the bandwidth-delay product as a
2059  * means of determining the optimal window size to maximize bandwidth,
2060  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2061  * routers.  This code also does a fairly good job keeping RTTs in check
2062  * across slow links like modems.  We implement an algorithm which is very
2063  * similar (but not meant to be) TCP/Vegas.  The code operates on the
2064  * transmitter side of a TCP connection and so only effects the transmit
2065  * side of the connection.
2066  *
2067  * BACKGROUND:  TCP makes no provision for the management of buffer space
2068  * at the end points or at the intermediate routers and switches.  A TCP
2069  * stream, whether using NewReno or not, will eventually buffer as
2070  * many packets as it is able and the only reason this typically works is
2071  * due to the fairly small default buffers made available for a connection
2072  * (typicaly 16K or 32K).  As machines use larger windows and/or window
2073  * scaling it is now fairly easy for even a single TCP connection to blow-out
2074  * all available buffer space not only on the local interface, but on
2075  * intermediate routers and switches as well.  NewReno makes a misguided
2076  * attempt to 'solve' this problem by waiting for an actual failure to occur,
2077  * then backing off, then steadily increasing the window again until another
2078  * failure occurs, ad-infinitum.  This results in terrible oscillation that
2079  * is only made worse as network loads increase and the idea of intentionally
2080  * blowing out network buffers is, frankly, a terrible way to manage network
2081  * resources.
2082  *
2083  * It is far better to limit the transmit window prior to the failure
2084  * condition being achieved.  There are two general ways to do this:  First
2085  * you can 'scan' through different transmit window sizes and locate the
2086  * point where the RTT stops increasing, indicating that you have filled the
2087  * pipe, then scan backwards until you note that RTT stops decreasing, then
2088  * repeat ad-infinitum.  This method works in principle but has severe
2089  * implementation issues due to RTT variances, timer granularity, and
2090  * instability in the algorithm which can lead to many false positives and
2091  * create oscillations as well as interact badly with other TCP streams
2092  * implementing the same algorithm.
2093  *
2094  * The second method is to limit the window to the bandwidth delay product
2095  * of the link.  This is the method we implement.  RTT variances and our
2096  * own manipulation of the congestion window, bwnd, can potentially
2097  * destabilize the algorithm.  For this reason we have to stabilize the
2098  * elements used to calculate the window.  We do this by using the minimum
2099  * observed RTT, the long term average of the observed bandwidth, and
2100  * by adding two segments worth of slop.  It isn't perfect but it is able
2101  * to react to changing conditions and gives us a very stable basis on
2102  * which to extend the algorithm.
2103  */
2104 void
2105 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2106 {
2107 	u_long bw;
2108 	u_long bwnd;
2109 	int save_ticks;
2110 
2111 	INP_LOCK_ASSERT(tp->t_inpcb);
2112 
2113 	/*
2114 	 * If inflight_enable is disabled in the middle of a tcp connection,
2115 	 * make sure snd_bwnd is effectively disabled.
2116 	 */
2117 	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2118 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2119 		tp->snd_bandwidth = 0;
2120 		return;
2121 	}
2122 
2123 	/*
2124 	 * Figure out the bandwidth.  Due to the tick granularity this
2125 	 * is a very rough number and it MUST be averaged over a fairly
2126 	 * long period of time.  XXX we need to take into account a link
2127 	 * that is not using all available bandwidth, but for now our
2128 	 * slop will ramp us up if this case occurs and the bandwidth later
2129 	 * increases.
2130 	 *
2131 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2132 	 * effectively reset t_bw_rtttime for this case.
2133 	 */
2134 	save_ticks = ticks;
2135 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2136 		return;
2137 
2138 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2139 	    (save_ticks - tp->t_bw_rtttime);
2140 	tp->t_bw_rtttime = save_ticks;
2141 	tp->t_bw_rtseq = ack_seq;
2142 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2143 		return;
2144 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2145 
2146 	tp->snd_bandwidth = bw;
2147 
2148 	/*
2149 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2150 	 * segments.  The additional slop puts us squarely in the sweet
2151 	 * spot and also handles the bandwidth run-up case and stabilization.
2152 	 * Without the slop we could be locking ourselves into a lower
2153 	 * bandwidth.
2154 	 *
2155 	 * Situations Handled:
2156 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2157 	 *	    high speed LANs, allowing larger TCP buffers to be
2158 	 *	    specified, and also does a good job preventing
2159 	 *	    over-queueing of packets over choke points like modems
2160 	 *	    (at least for the transmit side).
2161 	 *
2162 	 *	(2) Is able to handle changing network loads (bandwidth
2163 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2164 	 *	    increases).
2165 	 *
2166 	 *	(3) Theoretically should stabilize in the face of multiple
2167 	 *	    connections implementing the same algorithm (this may need
2168 	 *	    a little work).
2169 	 *
2170 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2171 	 *	    be adjusted with a sysctl but typically only needs to be
2172 	 *	    on very slow connections.  A value no smaller then 5
2173 	 *	    should be used, but only reduce this default if you have
2174 	 *	    no other choice.
2175 	 */
2176 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2177 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2178 #undef USERTT
2179 
2180 	if (tcp_inflight_debug > 0) {
2181 		static int ltime;
2182 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2183 			ltime = ticks;
2184 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2185 			    tp,
2186 			    bw,
2187 			    tp->t_rttbest,
2188 			    tp->t_srtt,
2189 			    bwnd
2190 			);
2191 		}
2192 	}
2193 	if ((long)bwnd < tcp_inflight_min)
2194 		bwnd = tcp_inflight_min;
2195 	if (bwnd > tcp_inflight_max)
2196 		bwnd = tcp_inflight_max;
2197 	if ((long)bwnd < tp->t_maxseg * 2)
2198 		bwnd = tp->t_maxseg * 2;
2199 	tp->snd_bwnd = bwnd;
2200 }
2201 
2202 #ifdef TCP_SIGNATURE
2203 /*
2204  * Callback function invoked by m_apply() to digest TCP segment data
2205  * contained within an mbuf chain.
2206  */
2207 static int
2208 tcp_signature_apply(void *fstate, void *data, u_int len)
2209 {
2210 
2211 	MD5Update(fstate, (u_char *)data, len);
2212 	return (0);
2213 }
2214 
2215 /*
2216  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2217  *
2218  * Parameters:
2219  * m		pointer to head of mbuf chain
2220  * off0		offset to TCP header within the mbuf chain
2221  * len		length of TCP segment data, excluding options
2222  * optlen	length of TCP segment options
2223  * buf		pointer to storage for computed MD5 digest
2224  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2225  *
2226  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2227  * When called from tcp_input(), we can be sure that th_sum has been
2228  * zeroed out and verified already.
2229  *
2230  * This function is for IPv4 use only. Calling this function with an
2231  * IPv6 packet in the mbuf chain will yield undefined results.
2232  *
2233  * Return 0 if successful, otherwise return -1.
2234  *
2235  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2236  * search with the destination IP address, and a 'magic SPI' to be
2237  * determined by the application. This is hardcoded elsewhere to 1179
2238  * right now. Another branch of this code exists which uses the SPD to
2239  * specify per-application flows but it is unstable.
2240  */
2241 int
2242 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2243     u_char *buf, u_int direction)
2244 {
2245 	union sockaddr_union dst;
2246 	struct ippseudo ippseudo;
2247 	MD5_CTX ctx;
2248 	int doff;
2249 	struct ip *ip;
2250 	struct ipovly *ipovly;
2251 	struct secasvar *sav;
2252 	struct tcphdr *th;
2253 	u_short savecsum;
2254 
2255 	KASSERT(m != NULL, ("NULL mbuf chain"));
2256 	KASSERT(buf != NULL, ("NULL signature pointer"));
2257 
2258 	/* Extract the destination from the IP header in the mbuf. */
2259 	ip = mtod(m, struct ip *);
2260 	bzero(&dst, sizeof(union sockaddr_union));
2261 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2262 	dst.sa.sa_family = AF_INET;
2263 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2264 	    ip->ip_src : ip->ip_dst;
2265 
2266 	/* Look up an SADB entry which matches the address of the peer. */
2267 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2268 	if (sav == NULL) {
2269 		printf("%s: SADB lookup failed for %s\n", __func__,
2270 		    inet_ntoa(dst.sin.sin_addr));
2271 		return (EINVAL);
2272 	}
2273 
2274 	MD5Init(&ctx);
2275 	ipovly = (struct ipovly *)ip;
2276 	th = (struct tcphdr *)((u_char *)ip + off0);
2277 	doff = off0 + sizeof(struct tcphdr) + optlen;
2278 
2279 	/*
2280 	 * Step 1: Update MD5 hash with IP pseudo-header.
2281 	 *
2282 	 * XXX The ippseudo header MUST be digested in network byte order,
2283 	 * or else we'll fail the regression test. Assume all fields we've
2284 	 * been doing arithmetic on have been in host byte order.
2285 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2286 	 * tcp_output(), the underlying ip_len member has not yet been set.
2287 	 */
2288 	ippseudo.ippseudo_src = ipovly->ih_src;
2289 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2290 	ippseudo.ippseudo_pad = 0;
2291 	ippseudo.ippseudo_p = IPPROTO_TCP;
2292 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2293 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2294 
2295 	/*
2296 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2297 	 * The TCP checksum must be set to zero.
2298 	 */
2299 	savecsum = th->th_sum;
2300 	th->th_sum = 0;
2301 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2302 	th->th_sum = savecsum;
2303 
2304 	/*
2305 	 * Step 3: Update MD5 hash with TCP segment data.
2306 	 *         Use m_apply() to avoid an early m_pullup().
2307 	 */
2308 	if (len > 0)
2309 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2310 
2311 	/*
2312 	 * Step 4: Update MD5 hash with shared secret.
2313 	 */
2314 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2315 	MD5Final(buf, &ctx);
2316 
2317 	key_sa_recordxfer(sav, m);
2318 	KEY_FREESAV(&sav);
2319 	return (0);
2320 }
2321 #endif /* TCP_SIGNATURE */
2322 
2323 static int
2324 sysctl_drop(SYSCTL_HANDLER_ARGS)
2325 {
2326 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2327 	struct sockaddr_storage addrs[2];
2328 	struct inpcb *inp;
2329 	struct tcpcb *tp;
2330 	struct tcptw *tw;
2331 	struct sockaddr_in *fin, *lin;
2332 #ifdef INET6
2333 	struct sockaddr_in6 *fin6, *lin6;
2334 	struct in6_addr f6, l6;
2335 #endif
2336 	int error;
2337 
2338 	inp = NULL;
2339 	fin = lin = NULL;
2340 #ifdef INET6
2341 	fin6 = lin6 = NULL;
2342 #endif
2343 	error = 0;
2344 
2345 	if (req->oldptr != NULL || req->oldlen != 0)
2346 		return (EINVAL);
2347 	if (req->newptr == NULL)
2348 		return (EPERM);
2349 	if (req->newlen < sizeof(addrs))
2350 		return (ENOMEM);
2351 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2352 	if (error)
2353 		return (error);
2354 
2355 	switch (addrs[0].ss_family) {
2356 #ifdef INET6
2357 	case AF_INET6:
2358 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2359 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2360 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2361 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2362 			return (EINVAL);
2363 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2364 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2365 				return (EINVAL);
2366 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2367 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2368 			fin = (struct sockaddr_in *)&addrs[0];
2369 			lin = (struct sockaddr_in *)&addrs[1];
2370 			break;
2371 		}
2372 		error = sa6_embedscope(fin6, ip6_use_defzone);
2373 		if (error)
2374 			return (error);
2375 		error = sa6_embedscope(lin6, ip6_use_defzone);
2376 		if (error)
2377 			return (error);
2378 		break;
2379 #endif
2380 	case AF_INET:
2381 		fin = (struct sockaddr_in *)&addrs[0];
2382 		lin = (struct sockaddr_in *)&addrs[1];
2383 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2384 		    lin->sin_len != sizeof(struct sockaddr_in))
2385 			return (EINVAL);
2386 		break;
2387 	default:
2388 		return (EINVAL);
2389 	}
2390 	INP_INFO_WLOCK(&tcbinfo);
2391 	switch (addrs[0].ss_family) {
2392 #ifdef INET6
2393 	case AF_INET6:
2394 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2395 		    &l6, lin6->sin6_port, 0, NULL);
2396 		break;
2397 #endif
2398 	case AF_INET:
2399 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2400 		    lin->sin_addr, lin->sin_port, 0, NULL);
2401 		break;
2402 	}
2403 	if (inp != NULL) {
2404 		INP_LOCK(inp);
2405 		if (inp->inp_vflag & INP_TIMEWAIT) {
2406 			/*
2407 			 * XXXRW: There currently exists a state where an
2408 			 * inpcb is present, but its timewait state has been
2409 			 * discarded.  For now, don't allow dropping of this
2410 			 * type of inpcb.
2411 			 */
2412 			tw = intotw(inp);
2413 			if (tw != NULL)
2414 				tcp_twclose(tw, 0);
2415 		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2416 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2417 			tp = intotcpcb(inp);
2418 			tcp_drop(tp, ECONNABORTED);
2419 		}
2420 		INP_UNLOCK(inp);
2421 	} else
2422 		error = ESRCH;
2423 	INP_INFO_WUNLOCK(&tcbinfo);
2424 	return (error);
2425 }
2426 
2427 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2428     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2429     0, sysctl_drop, "", "Drop TCP connection");
2430