xref: /freebsd/sys/netinet/tcp_subr.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/protosw.h>
59 #include <sys/random.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/if.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/cc.h>
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 #include <netinet/in_pcb.h>
75 #ifdef INET6
76 #include <netinet6/in6_pcb.h>
77 #endif
78 #include <netinet/in_var.h>
79 #include <netinet/ip_var.h>
80 #ifdef INET6
81 #include <netinet6/ip6_var.h>
82 #include <netinet6/scope6_var.h>
83 #include <netinet6/nd6.h>
84 #endif
85 #include <netinet/ip_icmp.h>
86 #include <netinet/tcp_fsm.h>
87 #include <netinet/tcp_seq.h>
88 #include <netinet/tcp_timer.h>
89 #include <netinet/tcp_var.h>
90 #include <netinet/tcp_syncache.h>
91 #include <netinet/tcp_offload.h>
92 #ifdef INET6
93 #include <netinet6/tcp6_var.h>
94 #endif
95 #include <netinet/tcpip.h>
96 #ifdef TCPDEBUG
97 #include <netinet/tcp_debug.h>
98 #endif
99 #include <netinet6/ip6protosw.h>
100 
101 #ifdef IPSEC
102 #include <netipsec/ipsec.h>
103 #include <netipsec/xform.h>
104 #ifdef INET6
105 #include <netipsec/ipsec6.h>
106 #endif
107 #include <netipsec/key.h>
108 #include <sys/syslog.h>
109 #endif /*IPSEC*/
110 
111 #include <machine/in_cksum.h>
112 #include <sys/md5.h>
113 
114 #include <security/mac/mac_framework.h>
115 
116 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
117 #ifdef INET6
118 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
119 #endif
120 
121 static int
122 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
123 {
124 	int error, new;
125 
126 	new = V_tcp_mssdflt;
127 	error = sysctl_handle_int(oidp, &new, 0, req);
128 	if (error == 0 && req->newptr) {
129 		if (new < TCP_MINMSS)
130 			error = EINVAL;
131 		else
132 			V_tcp_mssdflt = new;
133 	}
134 	return (error);
135 }
136 
137 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
138     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
139     &sysctl_net_inet_tcp_mss_check, "I",
140     "Default TCP Maximum Segment Size");
141 
142 #ifdef INET6
143 static int
144 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
145 {
146 	int error, new;
147 
148 	new = V_tcp_v6mssdflt;
149 	error = sysctl_handle_int(oidp, &new, 0, req);
150 	if (error == 0 && req->newptr) {
151 		if (new < TCP_MINMSS)
152 			error = EINVAL;
153 		else
154 			V_tcp_v6mssdflt = new;
155 	}
156 	return (error);
157 }
158 
159 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
160     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
161     &sysctl_net_inet_tcp_mss_v6_check, "I",
162    "Default TCP Maximum Segment Size for IPv6");
163 #endif
164 
165 /*
166  * Minimum MSS we accept and use. This prevents DoS attacks where
167  * we are forced to a ridiculous low MSS like 20 and send hundreds
168  * of packets instead of one. The effect scales with the available
169  * bandwidth and quickly saturates the CPU and network interface
170  * with packet generation and sending. Set to zero to disable MINMSS
171  * checking. This setting prevents us from sending too small packets.
172  */
173 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
174 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
175      &VNET_NAME(tcp_minmss), 0,
176     "Minmum TCP Maximum Segment Size");
177 
178 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
179 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
180     &VNET_NAME(tcp_do_rfc1323), 0,
181     "Enable rfc1323 (high performance TCP) extensions");
182 
183 static int	tcp_log_debug = 0;
184 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
185     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
186 
187 static int	tcp_tcbhashsize = 0;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
189     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
190 
191 static int	do_tcpdrain = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
193     "Enable tcp_drain routine for extra help when low on mbufs");
194 
195 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
196     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
197 
198 static VNET_DEFINE(int, icmp_may_rst) = 1;
199 #define	V_icmp_may_rst			VNET(icmp_may_rst)
200 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
201     &VNET_NAME(icmp_may_rst), 0,
202     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
203 
204 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
205 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
206 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
207     &VNET_NAME(tcp_isn_reseed_interval), 0,
208     "Seconds between reseeding of ISN secret");
209 
210 #ifdef TCP_SORECEIVE_STREAM
211 static int	tcp_soreceive_stream = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
213     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
214 #endif
215 
216 VNET_DEFINE(uma_zone_t, sack_hole_zone);
217 #define	V_sack_hole_zone		VNET(sack_hole_zone)
218 
219 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
220 
221 static struct inpcb *tcp_notify(struct inpcb *, int);
222 static void	tcp_isn_tick(void *);
223 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
224 		    void *ip4hdr, const void *ip6hdr);
225 
226 /*
227  * Target size of TCP PCB hash tables. Must be a power of two.
228  *
229  * Note that this can be overridden by the kernel environment
230  * variable net.inet.tcp.tcbhashsize
231  */
232 #ifndef TCBHASHSIZE
233 #define TCBHASHSIZE	512
234 #endif
235 
236 /*
237  * XXX
238  * Callouts should be moved into struct tcp directly.  They are currently
239  * separate because the tcpcb structure is exported to userland for sysctl
240  * parsing purposes, which do not know about callouts.
241  */
242 struct tcpcb_mem {
243 	struct	tcpcb		tcb;
244 	struct	tcp_timer	tt;
245 	struct	cc_var		ccv;
246 	struct	osd		osd;
247 };
248 
249 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
250 #define	V_tcpcb_zone			VNET(tcpcb_zone)
251 
252 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
253 struct callout isn_callout;
254 static struct mtx isn_mtx;
255 
256 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
257 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
258 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
259 
260 /*
261  * TCP initialization.
262  */
263 static void
264 tcp_zone_change(void *tag)
265 {
266 
267 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
268 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
269 	tcp_tw_zone_change();
270 }
271 
272 static int
273 tcp_inpcb_init(void *mem, int size, int flags)
274 {
275 	struct inpcb *inp = mem;
276 
277 	INP_LOCK_INIT(inp, "inp", "tcpinp");
278 	return (0);
279 }
280 
281 void
282 tcp_init(void)
283 {
284 	int hashsize;
285 
286 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
287 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
288 		printf("%s: WARNING: unable to register helper hook\n", __func__);
289 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
290 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
291 		printf("%s: WARNING: unable to register helper hook\n", __func__);
292 
293 	hashsize = TCBHASHSIZE;
294 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
295 	if (!powerof2(hashsize)) {
296 		printf("WARNING: TCB hash size not a power of 2\n");
297 		hashsize = 512; /* safe default */
298 	}
299 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
300 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE);
301 
302 	/*
303 	 * These have to be type stable for the benefit of the timers.
304 	 */
305 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
306 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
308 
309 	tcp_tw_init();
310 	syncache_init();
311 	tcp_hc_init();
312 	tcp_reass_init();
313 
314 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
315 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
316 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
317 
318 	/* Skip initialization of globals for non-default instances. */
319 	if (!IS_DEFAULT_VNET(curvnet))
320 		return;
321 
322 	/* XXX virtualize those bellow? */
323 	tcp_delacktime = TCPTV_DELACK;
324 	tcp_keepinit = TCPTV_KEEP_INIT;
325 	tcp_keepidle = TCPTV_KEEP_IDLE;
326 	tcp_keepintvl = TCPTV_KEEPINTVL;
327 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
328 	tcp_msl = TCPTV_MSL;
329 	tcp_rexmit_min = TCPTV_MIN;
330 	if (tcp_rexmit_min < 1)
331 		tcp_rexmit_min = 1;
332 	tcp_rexmit_slop = TCPTV_CPU_VAR;
333 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
334 	tcp_tcbhashsize = hashsize;
335 
336 #ifdef TCP_SORECEIVE_STREAM
337 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
338 	if (tcp_soreceive_stream) {
339 		tcp_usrreqs.pru_soreceive = soreceive_stream;
340 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
341 	}
342 #endif
343 
344 #ifdef INET6
345 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
346 #else /* INET6 */
347 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
348 #endif /* INET6 */
349 	if (max_protohdr < TCP_MINPROTOHDR)
350 		max_protohdr = TCP_MINPROTOHDR;
351 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
352 		panic("tcp_init");
353 #undef TCP_MINPROTOHDR
354 
355 	ISN_LOCK_INIT();
356 	callout_init(&isn_callout, CALLOUT_MPSAFE);
357 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
358 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
359 		SHUTDOWN_PRI_DEFAULT);
360 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
361 		EVENTHANDLER_PRI_ANY);
362 }
363 
364 #ifdef VIMAGE
365 void
366 tcp_destroy(void)
367 {
368 
369 	tcp_reass_destroy();
370 	tcp_hc_destroy();
371 	syncache_destroy();
372 	tcp_tw_destroy();
373 	in_pcbinfo_destroy(&V_tcbinfo);
374 	uma_zdestroy(V_sack_hole_zone);
375 	uma_zdestroy(V_tcpcb_zone);
376 }
377 #endif
378 
379 void
380 tcp_fini(void *xtp)
381 {
382 
383 	callout_stop(&isn_callout);
384 }
385 
386 /*
387  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
388  * tcp_template used to store this data in mbufs, but we now recopy it out
389  * of the tcpcb each time to conserve mbufs.
390  */
391 void
392 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
393 {
394 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
395 
396 	INP_WLOCK_ASSERT(inp);
397 
398 #ifdef INET6
399 	if ((inp->inp_vflag & INP_IPV6) != 0) {
400 		struct ip6_hdr *ip6;
401 
402 		ip6 = (struct ip6_hdr *)ip_ptr;
403 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
404 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
405 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
406 			(IPV6_VERSION & IPV6_VERSION_MASK);
407 		ip6->ip6_nxt = IPPROTO_TCP;
408 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
409 		ip6->ip6_src = inp->in6p_laddr;
410 		ip6->ip6_dst = inp->in6p_faddr;
411 	} else
412 #endif
413 	{
414 		struct ip *ip;
415 
416 		ip = (struct ip *)ip_ptr;
417 		ip->ip_v = IPVERSION;
418 		ip->ip_hl = 5;
419 		ip->ip_tos = inp->inp_ip_tos;
420 		ip->ip_len = 0;
421 		ip->ip_id = 0;
422 		ip->ip_off = 0;
423 		ip->ip_ttl = inp->inp_ip_ttl;
424 		ip->ip_sum = 0;
425 		ip->ip_p = IPPROTO_TCP;
426 		ip->ip_src = inp->inp_laddr;
427 		ip->ip_dst = inp->inp_faddr;
428 	}
429 	th->th_sport = inp->inp_lport;
430 	th->th_dport = inp->inp_fport;
431 	th->th_seq = 0;
432 	th->th_ack = 0;
433 	th->th_x2 = 0;
434 	th->th_off = 5;
435 	th->th_flags = 0;
436 	th->th_win = 0;
437 	th->th_urp = 0;
438 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
439 }
440 
441 /*
442  * Create template to be used to send tcp packets on a connection.
443  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
444  * use for this function is in keepalives, which use tcp_respond.
445  */
446 struct tcptemp *
447 tcpip_maketemplate(struct inpcb *inp)
448 {
449 	struct tcptemp *t;
450 
451 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
452 	if (t == NULL)
453 		return (NULL);
454 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
455 	return (t);
456 }
457 
458 /*
459  * Send a single message to the TCP at address specified by
460  * the given TCP/IP header.  If m == NULL, then we make a copy
461  * of the tcpiphdr at ti and send directly to the addressed host.
462  * This is used to force keep alive messages out using the TCP
463  * template for a connection.  If flags are given then we send
464  * a message back to the TCP which originated the * segment ti,
465  * and discard the mbuf containing it and any other attached mbufs.
466  *
467  * In any case the ack and sequence number of the transmitted
468  * segment are as specified by the parameters.
469  *
470  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
471  */
472 void
473 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
474     tcp_seq ack, tcp_seq seq, int flags)
475 {
476 	int tlen;
477 	int win = 0;
478 	struct ip *ip;
479 	struct tcphdr *nth;
480 #ifdef INET6
481 	struct ip6_hdr *ip6;
482 	int isipv6;
483 #endif /* INET6 */
484 	int ipflags = 0;
485 	struct inpcb *inp;
486 
487 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
488 
489 #ifdef INET6
490 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
491 	ip6 = ipgen;
492 #endif /* INET6 */
493 	ip = ipgen;
494 
495 	if (tp != NULL) {
496 		inp = tp->t_inpcb;
497 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
498 		INP_WLOCK_ASSERT(inp);
499 	} else
500 		inp = NULL;
501 
502 	if (tp != NULL) {
503 		if (!(flags & TH_RST)) {
504 			win = sbspace(&inp->inp_socket->so_rcv);
505 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
506 				win = (long)TCP_MAXWIN << tp->rcv_scale;
507 		}
508 	}
509 	if (m == NULL) {
510 		m = m_gethdr(M_DONTWAIT, MT_DATA);
511 		if (m == NULL)
512 			return;
513 		tlen = 0;
514 		m->m_data += max_linkhdr;
515 #ifdef INET6
516 		if (isipv6) {
517 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
518 			      sizeof(struct ip6_hdr));
519 			ip6 = mtod(m, struct ip6_hdr *);
520 			nth = (struct tcphdr *)(ip6 + 1);
521 		} else
522 #endif /* INET6 */
523 	      {
524 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
525 		ip = mtod(m, struct ip *);
526 		nth = (struct tcphdr *)(ip + 1);
527 	      }
528 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
529 		flags = TH_ACK;
530 	} else {
531 		/*
532 		 *  reuse the mbuf.
533 		 * XXX MRT We inherrit the FIB, which is lucky.
534 		 */
535 		m_freem(m->m_next);
536 		m->m_next = NULL;
537 		m->m_data = (caddr_t)ipgen;
538 		/* m_len is set later */
539 		tlen = 0;
540 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
541 #ifdef INET6
542 		if (isipv6) {
543 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
544 			nth = (struct tcphdr *)(ip6 + 1);
545 		} else
546 #endif /* INET6 */
547 	      {
548 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
549 		nth = (struct tcphdr *)(ip + 1);
550 	      }
551 		if (th != nth) {
552 			/*
553 			 * this is usually a case when an extension header
554 			 * exists between the IPv6 header and the
555 			 * TCP header.
556 			 */
557 			nth->th_sport = th->th_sport;
558 			nth->th_dport = th->th_dport;
559 		}
560 		xchg(nth->th_dport, nth->th_sport, uint16_t);
561 #undef xchg
562 	}
563 #ifdef INET6
564 	if (isipv6) {
565 		ip6->ip6_flow = 0;
566 		ip6->ip6_vfc = IPV6_VERSION;
567 		ip6->ip6_nxt = IPPROTO_TCP;
568 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
569 						tlen));
570 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
571 	} else
572 #endif
573 	{
574 		tlen += sizeof (struct tcpiphdr);
575 		ip->ip_len = tlen;
576 		ip->ip_ttl = V_ip_defttl;
577 		if (V_path_mtu_discovery)
578 			ip->ip_off |= IP_DF;
579 	}
580 	m->m_len = tlen;
581 	m->m_pkthdr.len = tlen;
582 	m->m_pkthdr.rcvif = NULL;
583 #ifdef MAC
584 	if (inp != NULL) {
585 		/*
586 		 * Packet is associated with a socket, so allow the
587 		 * label of the response to reflect the socket label.
588 		 */
589 		INP_WLOCK_ASSERT(inp);
590 		mac_inpcb_create_mbuf(inp, m);
591 	} else {
592 		/*
593 		 * Packet is not associated with a socket, so possibly
594 		 * update the label in place.
595 		 */
596 		mac_netinet_tcp_reply(m);
597 	}
598 #endif
599 	nth->th_seq = htonl(seq);
600 	nth->th_ack = htonl(ack);
601 	nth->th_x2 = 0;
602 	nth->th_off = sizeof (struct tcphdr) >> 2;
603 	nth->th_flags = flags;
604 	if (tp != NULL)
605 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
606 	else
607 		nth->th_win = htons((u_short)win);
608 	nth->th_urp = 0;
609 #ifdef INET6
610 	if (isipv6) {
611 		nth->th_sum = 0;
612 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
613 					sizeof(struct ip6_hdr),
614 					tlen - sizeof(struct ip6_hdr));
615 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
616 		    NULL, NULL);
617 	} else
618 #endif /* INET6 */
619 	{
620 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
621 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
622 		m->m_pkthdr.csum_flags = CSUM_TCP;
623 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
624 	}
625 #ifdef TCPDEBUG
626 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
627 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
628 #endif
629 #ifdef INET6
630 	if (isipv6)
631 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
632 	else
633 #endif /* INET6 */
634 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
635 }
636 
637 /*
638  * Create a new TCP control block, making an
639  * empty reassembly queue and hooking it to the argument
640  * protocol control block.  The `inp' parameter must have
641  * come from the zone allocator set up in tcp_init().
642  */
643 struct tcpcb *
644 tcp_newtcpcb(struct inpcb *inp)
645 {
646 	struct tcpcb_mem *tm;
647 	struct tcpcb *tp;
648 #ifdef INET6
649 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
650 #endif /* INET6 */
651 
652 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
653 	if (tm == NULL)
654 		return (NULL);
655 	tp = &tm->tcb;
656 
657 	/* Initialise cc_var struct for this tcpcb. */
658 	tp->ccv = &tm->ccv;
659 	tp->ccv->type = IPPROTO_TCP;
660 	tp->ccv->ccvc.tcp = tp;
661 
662 	/*
663 	 * Use the current system default CC algorithm.
664 	 */
665 	CC_LIST_RLOCK();
666 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
667 	CC_ALGO(tp) = CC_DEFAULT();
668 	CC_LIST_RUNLOCK();
669 
670 	if (CC_ALGO(tp)->cb_init != NULL)
671 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
672 			uma_zfree(V_tcpcb_zone, tm);
673 			return (NULL);
674 		}
675 
676 	tp->osd = &tm->osd;
677 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
678 		uma_zfree(V_tcpcb_zone, tm);
679 		return (NULL);
680 	}
681 
682 #ifdef VIMAGE
683 	tp->t_vnet = inp->inp_vnet;
684 #endif
685 	tp->t_timers = &tm->tt;
686 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
687 	tp->t_maxseg = tp->t_maxopd =
688 #ifdef INET6
689 		isipv6 ? V_tcp_v6mssdflt :
690 #endif /* INET6 */
691 		V_tcp_mssdflt;
692 
693 	/* Set up our timeouts. */
694 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
695 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
696 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
697 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
698 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
699 
700 	if (V_tcp_do_rfc1323)
701 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
702 	if (V_tcp_do_sack)
703 		tp->t_flags |= TF_SACK_PERMIT;
704 	TAILQ_INIT(&tp->snd_holes);
705 	tp->t_inpcb = inp;	/* XXX */
706 	/*
707 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
708 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
709 	 * reasonable initial retransmit time.
710 	 */
711 	tp->t_srtt = TCPTV_SRTTBASE;
712 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
713 	tp->t_rttmin = tcp_rexmit_min;
714 	tp->t_rxtcur = TCPTV_RTOBASE;
715 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
716 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
717 	tp->t_rcvtime = ticks;
718 	/*
719 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
720 	 * because the socket may be bound to an IPv6 wildcard address,
721 	 * which may match an IPv4-mapped IPv6 address.
722 	 */
723 	inp->inp_ip_ttl = V_ip_defttl;
724 	inp->inp_ppcb = tp;
725 	return (tp);		/* XXX */
726 }
727 
728 /*
729  * Switch the congestion control algorithm back to NewReno for any active
730  * control blocks using an algorithm which is about to go away.
731  * This ensures the CC framework can allow the unload to proceed without leaving
732  * any dangling pointers which would trigger a panic.
733  * Returning non-zero would inform the CC framework that something went wrong
734  * and it would be unsafe to allow the unload to proceed. However, there is no
735  * way for this to occur with this implementation so we always return zero.
736  */
737 int
738 tcp_ccalgounload(struct cc_algo *unload_algo)
739 {
740 	struct cc_algo *tmpalgo;
741 	struct inpcb *inp;
742 	struct tcpcb *tp;
743 	VNET_ITERATOR_DECL(vnet_iter);
744 
745 	/*
746 	 * Check all active control blocks across all network stacks and change
747 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
748 	 * requires cleanup code to be run, call it.
749 	 */
750 	VNET_LIST_RLOCK();
751 	VNET_FOREACH(vnet_iter) {
752 		CURVNET_SET(vnet_iter);
753 		INP_INFO_RLOCK(&V_tcbinfo);
754 		/*
755 		 * New connections already part way through being initialised
756 		 * with the CC algo we're removing will not race with this code
757 		 * because the INP_INFO_WLOCK is held during initialisation. We
758 		 * therefore don't enter the loop below until the connection
759 		 * list has stabilised.
760 		 */
761 		LIST_FOREACH(inp, &V_tcb, inp_list) {
762 			INP_WLOCK(inp);
763 			/* Important to skip tcptw structs. */
764 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
765 			    (tp = intotcpcb(inp)) != NULL) {
766 				/*
767 				 * By holding INP_WLOCK here, we are assured
768 				 * that the connection is not currently
769 				 * executing inside the CC module's functions
770 				 * i.e. it is safe to make the switch back to
771 				 * NewReno.
772 				 */
773 				if (CC_ALGO(tp) == unload_algo) {
774 					tmpalgo = CC_ALGO(tp);
775 					/* NewReno does not require any init. */
776 					CC_ALGO(tp) = &newreno_cc_algo;
777 					if (tmpalgo->cb_destroy != NULL)
778 						tmpalgo->cb_destroy(tp->ccv);
779 				}
780 			}
781 			INP_WUNLOCK(inp);
782 		}
783 		INP_INFO_RUNLOCK(&V_tcbinfo);
784 		CURVNET_RESTORE();
785 	}
786 	VNET_LIST_RUNLOCK();
787 
788 	return (0);
789 }
790 
791 /*
792  * Drop a TCP connection, reporting
793  * the specified error.  If connection is synchronized,
794  * then send a RST to peer.
795  */
796 struct tcpcb *
797 tcp_drop(struct tcpcb *tp, int errno)
798 {
799 	struct socket *so = tp->t_inpcb->inp_socket;
800 
801 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
802 	INP_WLOCK_ASSERT(tp->t_inpcb);
803 
804 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
805 		tp->t_state = TCPS_CLOSED;
806 		(void) tcp_output_reset(tp);
807 		TCPSTAT_INC(tcps_drops);
808 	} else
809 		TCPSTAT_INC(tcps_conndrops);
810 	if (errno == ETIMEDOUT && tp->t_softerror)
811 		errno = tp->t_softerror;
812 	so->so_error = errno;
813 	return (tcp_close(tp));
814 }
815 
816 void
817 tcp_discardcb(struct tcpcb *tp)
818 {
819 	struct inpcb *inp = tp->t_inpcb;
820 	struct socket *so = inp->inp_socket;
821 #ifdef INET6
822 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
823 #endif /* INET6 */
824 
825 	INP_WLOCK_ASSERT(inp);
826 
827 	/*
828 	 * Make sure that all of our timers are stopped before we delete the
829 	 * PCB.
830 	 *
831 	 * XXXRW: Really, we would like to use callout_drain() here in order
832 	 * to avoid races experienced in tcp_timer.c where a timer is already
833 	 * executing at this point.  However, we can't, both because we're
834 	 * running in a context where we can't sleep, and also because we
835 	 * hold locks required by the timers.  What we instead need to do is
836 	 * test to see if callout_drain() is required, and if so, defer some
837 	 * portion of the remainder of tcp_discardcb() to an asynchronous
838 	 * context that can callout_drain() and then continue.  Some care
839 	 * will be required to ensure that no further processing takes place
840 	 * on the tcpcb, even though it hasn't been freed (a flag?).
841 	 */
842 	callout_stop(&tp->t_timers->tt_rexmt);
843 	callout_stop(&tp->t_timers->tt_persist);
844 	callout_stop(&tp->t_timers->tt_keep);
845 	callout_stop(&tp->t_timers->tt_2msl);
846 	callout_stop(&tp->t_timers->tt_delack);
847 
848 	/*
849 	 * If we got enough samples through the srtt filter,
850 	 * save the rtt and rttvar in the routing entry.
851 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
852 	 * 4 samples is enough for the srtt filter to converge
853 	 * to within enough % of the correct value; fewer samples
854 	 * and we could save a bogus rtt. The danger is not high
855 	 * as tcp quickly recovers from everything.
856 	 * XXX: Works very well but needs some more statistics!
857 	 */
858 	if (tp->t_rttupdated >= 4) {
859 		struct hc_metrics_lite metrics;
860 		u_long ssthresh;
861 
862 		bzero(&metrics, sizeof(metrics));
863 		/*
864 		 * Update the ssthresh always when the conditions below
865 		 * are satisfied. This gives us better new start value
866 		 * for the congestion avoidance for new connections.
867 		 * ssthresh is only set if packet loss occured on a session.
868 		 *
869 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
870 		 * being torn down.  Ideally this code would not use 'so'.
871 		 */
872 		ssthresh = tp->snd_ssthresh;
873 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
874 			/*
875 			 * convert the limit from user data bytes to
876 			 * packets then to packet data bytes.
877 			 */
878 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
879 			if (ssthresh < 2)
880 				ssthresh = 2;
881 			ssthresh *= (u_long)(tp->t_maxseg +
882 #ifdef INET6
883 				      (isipv6 ? sizeof (struct ip6_hdr) +
884 					       sizeof (struct tcphdr) :
885 #endif
886 				       sizeof (struct tcpiphdr)
887 #ifdef INET6
888 				       )
889 #endif
890 				      );
891 		} else
892 			ssthresh = 0;
893 		metrics.rmx_ssthresh = ssthresh;
894 
895 		metrics.rmx_rtt = tp->t_srtt;
896 		metrics.rmx_rttvar = tp->t_rttvar;
897 		metrics.rmx_cwnd = tp->snd_cwnd;
898 		metrics.rmx_sendpipe = 0;
899 		metrics.rmx_recvpipe = 0;
900 
901 		tcp_hc_update(&inp->inp_inc, &metrics);
902 	}
903 
904 	/* free the reassembly queue, if any */
905 	tcp_reass_flush(tp);
906 	/* Disconnect offload device, if any. */
907 	tcp_offload_detach(tp);
908 
909 	tcp_free_sackholes(tp);
910 
911 	/* Allow the CC algorithm to clean up after itself. */
912 	if (CC_ALGO(tp)->cb_destroy != NULL)
913 		CC_ALGO(tp)->cb_destroy(tp->ccv);
914 
915 	khelp_destroy_osd(tp->osd);
916 
917 	CC_ALGO(tp) = NULL;
918 	inp->inp_ppcb = NULL;
919 	tp->t_inpcb = NULL;
920 	uma_zfree(V_tcpcb_zone, tp);
921 }
922 
923 /*
924  * Attempt to close a TCP control block, marking it as dropped, and freeing
925  * the socket if we hold the only reference.
926  */
927 struct tcpcb *
928 tcp_close(struct tcpcb *tp)
929 {
930 	struct inpcb *inp = tp->t_inpcb;
931 	struct socket *so;
932 
933 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
934 	INP_WLOCK_ASSERT(inp);
935 
936 	/* Notify any offload devices of listener close */
937 	if (tp->t_state == TCPS_LISTEN)
938 		tcp_offload_listen_close(tp);
939 	in_pcbdrop(inp);
940 	TCPSTAT_INC(tcps_closed);
941 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
942 	so = inp->inp_socket;
943 	soisdisconnected(so);
944 	if (inp->inp_flags & INP_SOCKREF) {
945 		KASSERT(so->so_state & SS_PROTOREF,
946 		    ("tcp_close: !SS_PROTOREF"));
947 		inp->inp_flags &= ~INP_SOCKREF;
948 		INP_WUNLOCK(inp);
949 		ACCEPT_LOCK();
950 		SOCK_LOCK(so);
951 		so->so_state &= ~SS_PROTOREF;
952 		sofree(so);
953 		return (NULL);
954 	}
955 	return (tp);
956 }
957 
958 void
959 tcp_drain(void)
960 {
961 	VNET_ITERATOR_DECL(vnet_iter);
962 
963 	if (!do_tcpdrain)
964 		return;
965 
966 	VNET_LIST_RLOCK_NOSLEEP();
967 	VNET_FOREACH(vnet_iter) {
968 		CURVNET_SET(vnet_iter);
969 		struct inpcb *inpb;
970 		struct tcpcb *tcpb;
971 
972 	/*
973 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
974 	 * if there is one...
975 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
976 	 *      reassembly queue should be flushed, but in a situation
977 	 *	where we're really low on mbufs, this is potentially
978 	 *	usefull.
979 	 */
980 		INP_INFO_RLOCK(&V_tcbinfo);
981 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
982 			if (inpb->inp_flags & INP_TIMEWAIT)
983 				continue;
984 			INP_WLOCK(inpb);
985 			if ((tcpb = intotcpcb(inpb)) != NULL) {
986 				tcp_reass_flush(tcpb);
987 				tcp_clean_sackreport(tcpb);
988 			}
989 			INP_WUNLOCK(inpb);
990 		}
991 		INP_INFO_RUNLOCK(&V_tcbinfo);
992 		CURVNET_RESTORE();
993 	}
994 	VNET_LIST_RUNLOCK_NOSLEEP();
995 }
996 
997 /*
998  * Notify a tcp user of an asynchronous error;
999  * store error as soft error, but wake up user
1000  * (for now, won't do anything until can select for soft error).
1001  *
1002  * Do not wake up user since there currently is no mechanism for
1003  * reporting soft errors (yet - a kqueue filter may be added).
1004  */
1005 static struct inpcb *
1006 tcp_notify(struct inpcb *inp, int error)
1007 {
1008 	struct tcpcb *tp;
1009 
1010 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1011 	INP_WLOCK_ASSERT(inp);
1012 
1013 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1014 	    (inp->inp_flags & INP_DROPPED))
1015 		return (inp);
1016 
1017 	tp = intotcpcb(inp);
1018 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1019 
1020 	/*
1021 	 * Ignore some errors if we are hooked up.
1022 	 * If connection hasn't completed, has retransmitted several times,
1023 	 * and receives a second error, give up now.  This is better
1024 	 * than waiting a long time to establish a connection that
1025 	 * can never complete.
1026 	 */
1027 	if (tp->t_state == TCPS_ESTABLISHED &&
1028 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1029 	     error == EHOSTDOWN)) {
1030 		return (inp);
1031 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1032 	    tp->t_softerror) {
1033 		tp = tcp_drop(tp, error);
1034 		if (tp != NULL)
1035 			return (inp);
1036 		else
1037 			return (NULL);
1038 	} else {
1039 		tp->t_softerror = error;
1040 		return (inp);
1041 	}
1042 #if 0
1043 	wakeup( &so->so_timeo);
1044 	sorwakeup(so);
1045 	sowwakeup(so);
1046 #endif
1047 }
1048 
1049 static int
1050 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1051 {
1052 	int error, i, m, n, pcb_count;
1053 	struct inpcb *inp, **inp_list;
1054 	inp_gen_t gencnt;
1055 	struct xinpgen xig;
1056 
1057 	/*
1058 	 * The process of preparing the TCB list is too time-consuming and
1059 	 * resource-intensive to repeat twice on every request.
1060 	 */
1061 	if (req->oldptr == NULL) {
1062 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1063 		n += imax(n / 8, 10);
1064 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1065 		return (0);
1066 	}
1067 
1068 	if (req->newptr != NULL)
1069 		return (EPERM);
1070 
1071 	/*
1072 	 * OK, now we're committed to doing something.
1073 	 */
1074 	INP_INFO_RLOCK(&V_tcbinfo);
1075 	gencnt = V_tcbinfo.ipi_gencnt;
1076 	n = V_tcbinfo.ipi_count;
1077 	INP_INFO_RUNLOCK(&V_tcbinfo);
1078 
1079 	m = syncache_pcbcount();
1080 
1081 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1082 		+ (n + m) * sizeof(struct xtcpcb));
1083 	if (error != 0)
1084 		return (error);
1085 
1086 	xig.xig_len = sizeof xig;
1087 	xig.xig_count = n + m;
1088 	xig.xig_gen = gencnt;
1089 	xig.xig_sogen = so_gencnt;
1090 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1091 	if (error)
1092 		return (error);
1093 
1094 	error = syncache_pcblist(req, m, &pcb_count);
1095 	if (error)
1096 		return (error);
1097 
1098 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1099 	if (inp_list == NULL)
1100 		return (ENOMEM);
1101 
1102 	INP_INFO_RLOCK(&V_tcbinfo);
1103 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1104 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1105 		INP_WLOCK(inp);
1106 		if (inp->inp_gencnt <= gencnt) {
1107 			/*
1108 			 * XXX: This use of cr_cansee(), introduced with
1109 			 * TCP state changes, is not quite right, but for
1110 			 * now, better than nothing.
1111 			 */
1112 			if (inp->inp_flags & INP_TIMEWAIT) {
1113 				if (intotw(inp) != NULL)
1114 					error = cr_cansee(req->td->td_ucred,
1115 					    intotw(inp)->tw_cred);
1116 				else
1117 					error = EINVAL;	/* Skip this inp. */
1118 			} else
1119 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1120 			if (error == 0) {
1121 				in_pcbref(inp);
1122 				inp_list[i++] = inp;
1123 			}
1124 		}
1125 		INP_WUNLOCK(inp);
1126 	}
1127 	INP_INFO_RUNLOCK(&V_tcbinfo);
1128 	n = i;
1129 
1130 	error = 0;
1131 	for (i = 0; i < n; i++) {
1132 		inp = inp_list[i];
1133 		INP_RLOCK(inp);
1134 		if (inp->inp_gencnt <= gencnt) {
1135 			struct xtcpcb xt;
1136 			void *inp_ppcb;
1137 
1138 			bzero(&xt, sizeof(xt));
1139 			xt.xt_len = sizeof xt;
1140 			/* XXX should avoid extra copy */
1141 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1142 			inp_ppcb = inp->inp_ppcb;
1143 			if (inp_ppcb == NULL)
1144 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1145 			else if (inp->inp_flags & INP_TIMEWAIT) {
1146 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1147 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1148 			} else {
1149 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1150 				if (xt.xt_tp.t_timers)
1151 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1152 			}
1153 			if (inp->inp_socket != NULL)
1154 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1155 			else {
1156 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1157 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1158 			}
1159 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1160 			INP_RUNLOCK(inp);
1161 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1162 		} else
1163 			INP_RUNLOCK(inp);
1164 	}
1165 	INP_INFO_WLOCK(&V_tcbinfo);
1166 	for (i = 0; i < n; i++) {
1167 		inp = inp_list[i];
1168 		INP_WLOCK(inp);
1169 		if (!in_pcbrele(inp))
1170 			INP_WUNLOCK(inp);
1171 	}
1172 	INP_INFO_WUNLOCK(&V_tcbinfo);
1173 
1174 	if (!error) {
1175 		/*
1176 		 * Give the user an updated idea of our state.
1177 		 * If the generation differs from what we told
1178 		 * her before, she knows that something happened
1179 		 * while we were processing this request, and it
1180 		 * might be necessary to retry.
1181 		 */
1182 		INP_INFO_RLOCK(&V_tcbinfo);
1183 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1184 		xig.xig_sogen = so_gencnt;
1185 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1186 		INP_INFO_RUNLOCK(&V_tcbinfo);
1187 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1188 	}
1189 	free(inp_list, M_TEMP);
1190 	return (error);
1191 }
1192 
1193 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1194     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1195     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1196 
1197 static int
1198 tcp_getcred(SYSCTL_HANDLER_ARGS)
1199 {
1200 	struct xucred xuc;
1201 	struct sockaddr_in addrs[2];
1202 	struct inpcb *inp;
1203 	int error;
1204 
1205 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1206 	if (error)
1207 		return (error);
1208 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1209 	if (error)
1210 		return (error);
1211 	INP_INFO_RLOCK(&V_tcbinfo);
1212 	inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
1213 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1214 	if (inp != NULL) {
1215 		INP_RLOCK(inp);
1216 		INP_INFO_RUNLOCK(&V_tcbinfo);
1217 		if (inp->inp_socket == NULL)
1218 			error = ENOENT;
1219 		if (error == 0)
1220 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1221 		if (error == 0)
1222 			cru2x(inp->inp_cred, &xuc);
1223 		INP_RUNLOCK(inp);
1224 	} else {
1225 		INP_INFO_RUNLOCK(&V_tcbinfo);
1226 		error = ENOENT;
1227 	}
1228 	if (error == 0)
1229 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1230 	return (error);
1231 }
1232 
1233 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1234     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1235     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1236 
1237 #ifdef INET6
1238 static int
1239 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1240 {
1241 	struct xucred xuc;
1242 	struct sockaddr_in6 addrs[2];
1243 	struct inpcb *inp;
1244 	int error, mapped = 0;
1245 
1246 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1247 	if (error)
1248 		return (error);
1249 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1250 	if (error)
1251 		return (error);
1252 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1253 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1254 		return (error);
1255 	}
1256 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1257 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1258 			mapped = 1;
1259 		else
1260 			return (EINVAL);
1261 	}
1262 
1263 	INP_INFO_RLOCK(&V_tcbinfo);
1264 	if (mapped == 1)
1265 		inp = in_pcblookup_hash(&V_tcbinfo,
1266 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1267 			addrs[1].sin6_port,
1268 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1269 			addrs[0].sin6_port,
1270 			0, NULL);
1271 	else
1272 		inp = in6_pcblookup_hash(&V_tcbinfo,
1273 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1274 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1275 	if (inp != NULL) {
1276 		INP_RLOCK(inp);
1277 		INP_INFO_RUNLOCK(&V_tcbinfo);
1278 		if (inp->inp_socket == NULL)
1279 			error = ENOENT;
1280 		if (error == 0)
1281 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1282 		if (error == 0)
1283 			cru2x(inp->inp_cred, &xuc);
1284 		INP_RUNLOCK(inp);
1285 	} else {
1286 		INP_INFO_RUNLOCK(&V_tcbinfo);
1287 		error = ENOENT;
1288 	}
1289 	if (error == 0)
1290 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1291 	return (error);
1292 }
1293 
1294 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1295     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1296     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1297 #endif
1298 
1299 
1300 void
1301 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1302 {
1303 	struct ip *ip = vip;
1304 	struct tcphdr *th;
1305 	struct in_addr faddr;
1306 	struct inpcb *inp;
1307 	struct tcpcb *tp;
1308 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1309 	struct icmp *icp;
1310 	struct in_conninfo inc;
1311 	tcp_seq icmp_tcp_seq;
1312 	int mtu;
1313 
1314 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1315 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1316 		return;
1317 
1318 	if (cmd == PRC_MSGSIZE)
1319 		notify = tcp_mtudisc;
1320 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1321 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1322 		notify = tcp_drop_syn_sent;
1323 	/*
1324 	 * Redirects don't need to be handled up here.
1325 	 */
1326 	else if (PRC_IS_REDIRECT(cmd))
1327 		return;
1328 	/*
1329 	 * Source quench is depreciated.
1330 	 */
1331 	else if (cmd == PRC_QUENCH)
1332 		return;
1333 	/*
1334 	 * Hostdead is ugly because it goes linearly through all PCBs.
1335 	 * XXX: We never get this from ICMP, otherwise it makes an
1336 	 * excellent DoS attack on machines with many connections.
1337 	 */
1338 	else if (cmd == PRC_HOSTDEAD)
1339 		ip = NULL;
1340 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1341 		return;
1342 	if (ip != NULL) {
1343 		icp = (struct icmp *)((caddr_t)ip
1344 				      - offsetof(struct icmp, icmp_ip));
1345 		th = (struct tcphdr *)((caddr_t)ip
1346 				       + (ip->ip_hl << 2));
1347 		INP_INFO_WLOCK(&V_tcbinfo);
1348 		inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
1349 		    ip->ip_src, th->th_sport, 0, NULL);
1350 		if (inp != NULL)  {
1351 			INP_WLOCK(inp);
1352 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1353 			    !(inp->inp_flags & INP_DROPPED) &&
1354 			    !(inp->inp_socket == NULL)) {
1355 				icmp_tcp_seq = htonl(th->th_seq);
1356 				tp = intotcpcb(inp);
1357 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1358 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1359 					if (cmd == PRC_MSGSIZE) {
1360 					    /*
1361 					     * MTU discovery:
1362 					     * If we got a needfrag set the MTU
1363 					     * in the route to the suggested new
1364 					     * value (if given) and then notify.
1365 					     */
1366 					    bzero(&inc, sizeof(inc));
1367 					    inc.inc_faddr = faddr;
1368 					    inc.inc_fibnum =
1369 						inp->inp_inc.inc_fibnum;
1370 
1371 					    mtu = ntohs(icp->icmp_nextmtu);
1372 					    /*
1373 					     * If no alternative MTU was
1374 					     * proposed, try the next smaller
1375 					     * one.  ip->ip_len has already
1376 					     * been swapped in icmp_input().
1377 					     */
1378 					    if (!mtu)
1379 						mtu = ip_next_mtu(ip->ip_len,
1380 						 1);
1381 					    if (mtu < V_tcp_minmss
1382 						 + sizeof(struct tcpiphdr))
1383 						mtu = V_tcp_minmss
1384 						 + sizeof(struct tcpiphdr);
1385 					    /*
1386 					     * Only cache the MTU if it
1387 					     * is smaller than the interface
1388 					     * or route MTU.  tcp_mtudisc()
1389 					     * will do right thing by itself.
1390 					     */
1391 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1392 						tcp_hc_updatemtu(&inc, mtu);
1393 					}
1394 
1395 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1396 				}
1397 			}
1398 			if (inp != NULL)
1399 				INP_WUNLOCK(inp);
1400 		} else {
1401 			bzero(&inc, sizeof(inc));
1402 			inc.inc_fport = th->th_dport;
1403 			inc.inc_lport = th->th_sport;
1404 			inc.inc_faddr = faddr;
1405 			inc.inc_laddr = ip->ip_src;
1406 			syncache_unreach(&inc, th);
1407 		}
1408 		INP_INFO_WUNLOCK(&V_tcbinfo);
1409 	} else
1410 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1411 }
1412 
1413 #ifdef INET6
1414 void
1415 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1416 {
1417 	struct tcphdr th;
1418 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1419 	struct ip6_hdr *ip6;
1420 	struct mbuf *m;
1421 	struct ip6ctlparam *ip6cp = NULL;
1422 	const struct sockaddr_in6 *sa6_src = NULL;
1423 	int off;
1424 	struct tcp_portonly {
1425 		u_int16_t th_sport;
1426 		u_int16_t th_dport;
1427 	} *thp;
1428 
1429 	if (sa->sa_family != AF_INET6 ||
1430 	    sa->sa_len != sizeof(struct sockaddr_in6))
1431 		return;
1432 
1433 	if (cmd == PRC_MSGSIZE)
1434 		notify = tcp_mtudisc;
1435 	else if (!PRC_IS_REDIRECT(cmd) &&
1436 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1437 		return;
1438 	/* Source quench is depreciated. */
1439 	else if (cmd == PRC_QUENCH)
1440 		return;
1441 
1442 	/* if the parameter is from icmp6, decode it. */
1443 	if (d != NULL) {
1444 		ip6cp = (struct ip6ctlparam *)d;
1445 		m = ip6cp->ip6c_m;
1446 		ip6 = ip6cp->ip6c_ip6;
1447 		off = ip6cp->ip6c_off;
1448 		sa6_src = ip6cp->ip6c_src;
1449 	} else {
1450 		m = NULL;
1451 		ip6 = NULL;
1452 		off = 0;	/* fool gcc */
1453 		sa6_src = &sa6_any;
1454 	}
1455 
1456 	if (ip6 != NULL) {
1457 		struct in_conninfo inc;
1458 		/*
1459 		 * XXX: We assume that when IPV6 is non NULL,
1460 		 * M and OFF are valid.
1461 		 */
1462 
1463 		/* check if we can safely examine src and dst ports */
1464 		if (m->m_pkthdr.len < off + sizeof(*thp))
1465 			return;
1466 
1467 		bzero(&th, sizeof(th));
1468 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1469 
1470 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1471 		    (struct sockaddr *)ip6cp->ip6c_src,
1472 		    th.th_sport, cmd, NULL, notify);
1473 
1474 		bzero(&inc, sizeof(inc));
1475 		inc.inc_fport = th.th_dport;
1476 		inc.inc_lport = th.th_sport;
1477 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1478 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1479 		inc.inc_flags |= INC_ISIPV6;
1480 		INP_INFO_WLOCK(&V_tcbinfo);
1481 		syncache_unreach(&inc, &th);
1482 		INP_INFO_WUNLOCK(&V_tcbinfo);
1483 	} else
1484 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1485 			      0, cmd, NULL, notify);
1486 }
1487 #endif /* INET6 */
1488 
1489 
1490 /*
1491  * Following is where TCP initial sequence number generation occurs.
1492  *
1493  * There are two places where we must use initial sequence numbers:
1494  * 1.  In SYN-ACK packets.
1495  * 2.  In SYN packets.
1496  *
1497  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1498  * tcp_syncache.c for details.
1499  *
1500  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1501  * depends on this property.  In addition, these ISNs should be
1502  * unguessable so as to prevent connection hijacking.  To satisfy
1503  * the requirements of this situation, the algorithm outlined in
1504  * RFC 1948 is used, with only small modifications.
1505  *
1506  * Implementation details:
1507  *
1508  * Time is based off the system timer, and is corrected so that it
1509  * increases by one megabyte per second.  This allows for proper
1510  * recycling on high speed LANs while still leaving over an hour
1511  * before rollover.
1512  *
1513  * As reading the *exact* system time is too expensive to be done
1514  * whenever setting up a TCP connection, we increment the time
1515  * offset in two ways.  First, a small random positive increment
1516  * is added to isn_offset for each connection that is set up.
1517  * Second, the function tcp_isn_tick fires once per clock tick
1518  * and increments isn_offset as necessary so that sequence numbers
1519  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1520  * random positive increments serve only to ensure that the same
1521  * exact sequence number is never sent out twice (as could otherwise
1522  * happen when a port is recycled in less than the system tick
1523  * interval.)
1524  *
1525  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1526  * between seeding of isn_secret.  This is normally set to zero,
1527  * as reseeding should not be necessary.
1528  *
1529  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1530  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1531  * general, this means holding an exclusive (write) lock.
1532  */
1533 
1534 #define ISN_BYTES_PER_SECOND 1048576
1535 #define ISN_STATIC_INCREMENT 4096
1536 #define ISN_RANDOM_INCREMENT (4096 - 1)
1537 
1538 static VNET_DEFINE(u_char, isn_secret[32]);
1539 static VNET_DEFINE(int, isn_last_reseed);
1540 static VNET_DEFINE(u_int32_t, isn_offset);
1541 static VNET_DEFINE(u_int32_t, isn_offset_old);
1542 
1543 #define	V_isn_secret			VNET(isn_secret)
1544 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1545 #define	V_isn_offset			VNET(isn_offset)
1546 #define	V_isn_offset_old		VNET(isn_offset_old)
1547 
1548 tcp_seq
1549 tcp_new_isn(struct tcpcb *tp)
1550 {
1551 	MD5_CTX isn_ctx;
1552 	u_int32_t md5_buffer[4];
1553 	tcp_seq new_isn;
1554 
1555 	INP_WLOCK_ASSERT(tp->t_inpcb);
1556 
1557 	ISN_LOCK();
1558 	/* Seed if this is the first use, reseed if requested. */
1559 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1560 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1561 		< (u_int)ticks))) {
1562 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1563 		V_isn_last_reseed = ticks;
1564 	}
1565 
1566 	/* Compute the md5 hash and return the ISN. */
1567 	MD5Init(&isn_ctx);
1568 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1569 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1570 #ifdef INET6
1571 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1572 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1573 			  sizeof(struct in6_addr));
1574 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1575 			  sizeof(struct in6_addr));
1576 	} else
1577 #endif
1578 	{
1579 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1580 			  sizeof(struct in_addr));
1581 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1582 			  sizeof(struct in_addr));
1583 	}
1584 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1585 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1586 	new_isn = (tcp_seq) md5_buffer[0];
1587 	V_isn_offset += ISN_STATIC_INCREMENT +
1588 		(arc4random() & ISN_RANDOM_INCREMENT);
1589 	new_isn += V_isn_offset;
1590 	ISN_UNLOCK();
1591 	return (new_isn);
1592 }
1593 
1594 /*
1595  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
1596  * to keep time flowing at a relatively constant rate.  If the random
1597  * increments have already pushed us past the projected offset, do nothing.
1598  */
1599 static void
1600 tcp_isn_tick(void *xtp)
1601 {
1602 	VNET_ITERATOR_DECL(vnet_iter);
1603 	u_int32_t projected_offset;
1604 
1605 	VNET_LIST_RLOCK_NOSLEEP();
1606 	ISN_LOCK();
1607 	VNET_FOREACH(vnet_iter) {
1608 		CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
1609 		projected_offset =
1610 		    V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1611 
1612 		if (SEQ_GT(projected_offset, V_isn_offset))
1613 			V_isn_offset = projected_offset;
1614 
1615 		V_isn_offset_old = V_isn_offset;
1616 		CURVNET_RESTORE();
1617 	}
1618 	ISN_UNLOCK();
1619 	VNET_LIST_RUNLOCK_NOSLEEP();
1620 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1621 }
1622 
1623 /*
1624  * When a specific ICMP unreachable message is received and the
1625  * connection state is SYN-SENT, drop the connection.  This behavior
1626  * is controlled by the icmp_may_rst sysctl.
1627  */
1628 struct inpcb *
1629 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1630 {
1631 	struct tcpcb *tp;
1632 
1633 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1634 	INP_WLOCK_ASSERT(inp);
1635 
1636 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1637 	    (inp->inp_flags & INP_DROPPED))
1638 		return (inp);
1639 
1640 	tp = intotcpcb(inp);
1641 	if (tp->t_state != TCPS_SYN_SENT)
1642 		return (inp);
1643 
1644 	tp = tcp_drop(tp, errno);
1645 	if (tp != NULL)
1646 		return (inp);
1647 	else
1648 		return (NULL);
1649 }
1650 
1651 /*
1652  * When `need fragmentation' ICMP is received, update our idea of the MSS
1653  * based on the new value in the route.  Also nudge TCP to send something,
1654  * since we know the packet we just sent was dropped.
1655  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1656  */
1657 struct inpcb *
1658 tcp_mtudisc(struct inpcb *inp, int errno)
1659 {
1660 	struct tcpcb *tp;
1661 	struct socket *so;
1662 
1663 	INP_WLOCK_ASSERT(inp);
1664 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1665 	    (inp->inp_flags & INP_DROPPED))
1666 		return (inp);
1667 
1668 	tp = intotcpcb(inp);
1669 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1670 
1671 	tcp_mss_update(tp, -1, NULL, NULL);
1672 
1673 	so = inp->inp_socket;
1674 	SOCKBUF_LOCK(&so->so_snd);
1675 	/* If the mss is larger than the socket buffer, decrease the mss. */
1676 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1677 		tp->t_maxseg = so->so_snd.sb_hiwat;
1678 	SOCKBUF_UNLOCK(&so->so_snd);
1679 
1680 	TCPSTAT_INC(tcps_mturesent);
1681 	tp->t_rtttime = 0;
1682 	tp->snd_nxt = tp->snd_una;
1683 	tcp_free_sackholes(tp);
1684 	tp->snd_recover = tp->snd_max;
1685 	if (tp->t_flags & TF_SACK_PERMIT)
1686 		EXIT_FASTRECOVERY(tp->t_flags);
1687 	tcp_output_send(tp);
1688 	return (inp);
1689 }
1690 
1691 /*
1692  * Look-up the routing entry to the peer of this inpcb.  If no route
1693  * is found and it cannot be allocated, then return 0.  This routine
1694  * is called by TCP routines that access the rmx structure and by
1695  * tcp_mss_update to get the peer/interface MTU.
1696  */
1697 u_long
1698 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1699 {
1700 	struct route sro;
1701 	struct sockaddr_in *dst;
1702 	struct ifnet *ifp;
1703 	u_long maxmtu = 0;
1704 
1705 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1706 
1707 	bzero(&sro, sizeof(sro));
1708 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1709 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1710 		dst->sin_family = AF_INET;
1711 		dst->sin_len = sizeof(*dst);
1712 		dst->sin_addr = inc->inc_faddr;
1713 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1714 	}
1715 	if (sro.ro_rt != NULL) {
1716 		ifp = sro.ro_rt->rt_ifp;
1717 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1718 			maxmtu = ifp->if_mtu;
1719 		else
1720 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1721 
1722 		/* Report additional interface capabilities. */
1723 		if (flags != NULL) {
1724 			if (ifp->if_capenable & IFCAP_TSO4 &&
1725 			    ifp->if_hwassist & CSUM_TSO)
1726 				*flags |= CSUM_TSO;
1727 		}
1728 		RTFREE(sro.ro_rt);
1729 	}
1730 	return (maxmtu);
1731 }
1732 
1733 #ifdef INET6
1734 u_long
1735 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1736 {
1737 	struct route_in6 sro6;
1738 	struct ifnet *ifp;
1739 	u_long maxmtu = 0;
1740 
1741 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1742 
1743 	bzero(&sro6, sizeof(sro6));
1744 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1745 		sro6.ro_dst.sin6_family = AF_INET6;
1746 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1747 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1748 		rtalloc_ign((struct route *)&sro6, 0);
1749 	}
1750 	if (sro6.ro_rt != NULL) {
1751 		ifp = sro6.ro_rt->rt_ifp;
1752 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1753 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1754 		else
1755 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1756 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1757 
1758 		/* Report additional interface capabilities. */
1759 		if (flags != NULL) {
1760 			if (ifp->if_capenable & IFCAP_TSO6 &&
1761 			    ifp->if_hwassist & CSUM_TSO)
1762 				*flags |= CSUM_TSO;
1763 		}
1764 		RTFREE(sro6.ro_rt);
1765 	}
1766 
1767 	return (maxmtu);
1768 }
1769 #endif /* INET6 */
1770 
1771 #ifdef IPSEC
1772 /* compute ESP/AH header size for TCP, including outer IP header. */
1773 size_t
1774 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1775 {
1776 	struct inpcb *inp;
1777 	struct mbuf *m;
1778 	size_t hdrsiz;
1779 	struct ip *ip;
1780 #ifdef INET6
1781 	struct ip6_hdr *ip6;
1782 #endif
1783 	struct tcphdr *th;
1784 
1785 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1786 		return (0);
1787 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1788 	if (!m)
1789 		return (0);
1790 
1791 #ifdef INET6
1792 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1793 		ip6 = mtod(m, struct ip6_hdr *);
1794 		th = (struct tcphdr *)(ip6 + 1);
1795 		m->m_pkthdr.len = m->m_len =
1796 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1797 		tcpip_fillheaders(inp, ip6, th);
1798 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1799 	} else
1800 #endif /* INET6 */
1801 	{
1802 		ip = mtod(m, struct ip *);
1803 		th = (struct tcphdr *)(ip + 1);
1804 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1805 		tcpip_fillheaders(inp, ip, th);
1806 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1807 	}
1808 
1809 	m_free(m);
1810 	return (hdrsiz);
1811 }
1812 #endif /* IPSEC */
1813 
1814 #ifdef TCP_SIGNATURE
1815 /*
1816  * Callback function invoked by m_apply() to digest TCP segment data
1817  * contained within an mbuf chain.
1818  */
1819 static int
1820 tcp_signature_apply(void *fstate, void *data, u_int len)
1821 {
1822 
1823 	MD5Update(fstate, (u_char *)data, len);
1824 	return (0);
1825 }
1826 
1827 /*
1828  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1829  *
1830  * Parameters:
1831  * m		pointer to head of mbuf chain
1832  * _unused
1833  * len		length of TCP segment data, excluding options
1834  * optlen	length of TCP segment options
1835  * buf		pointer to storage for computed MD5 digest
1836  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1837  *
1838  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1839  * When called from tcp_input(), we can be sure that th_sum has been
1840  * zeroed out and verified already.
1841  *
1842  * Return 0 if successful, otherwise return -1.
1843  *
1844  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1845  * search with the destination IP address, and a 'magic SPI' to be
1846  * determined by the application. This is hardcoded elsewhere to 1179
1847  * right now. Another branch of this code exists which uses the SPD to
1848  * specify per-application flows but it is unstable.
1849  */
1850 int
1851 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1852     u_char *buf, u_int direction)
1853 {
1854 	union sockaddr_union dst;
1855 	struct ippseudo ippseudo;
1856 	MD5_CTX ctx;
1857 	int doff;
1858 	struct ip *ip;
1859 	struct ipovly *ipovly;
1860 	struct secasvar *sav;
1861 	struct tcphdr *th;
1862 #ifdef INET6
1863 	struct ip6_hdr *ip6;
1864 	struct in6_addr in6;
1865 	char ip6buf[INET6_ADDRSTRLEN];
1866 	uint32_t plen;
1867 	uint16_t nhdr;
1868 #endif
1869 	u_short savecsum;
1870 
1871 	KASSERT(m != NULL, ("NULL mbuf chain"));
1872 	KASSERT(buf != NULL, ("NULL signature pointer"));
1873 
1874 	/* Extract the destination from the IP header in the mbuf. */
1875 	bzero(&dst, sizeof(union sockaddr_union));
1876 	ip = mtod(m, struct ip *);
1877 #ifdef INET6
1878 	ip6 = NULL;	/* Make the compiler happy. */
1879 #endif
1880 	switch (ip->ip_v) {
1881 	case IPVERSION:
1882 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1883 		dst.sa.sa_family = AF_INET;
1884 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1885 		    ip->ip_src : ip->ip_dst;
1886 		break;
1887 #ifdef INET6
1888 	case (IPV6_VERSION >> 4):
1889 		ip6 = mtod(m, struct ip6_hdr *);
1890 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1891 		dst.sa.sa_family = AF_INET6;
1892 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1893 		    ip6->ip6_src : ip6->ip6_dst;
1894 		break;
1895 #endif
1896 	default:
1897 		return (EINVAL);
1898 		/* NOTREACHED */
1899 		break;
1900 	}
1901 
1902 	/* Look up an SADB entry which matches the address of the peer. */
1903 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1904 	if (sav == NULL) {
1905 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1906 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1907 #ifdef INET6
1908 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1909 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1910 #endif
1911 			"(unsupported)"));
1912 		return (EINVAL);
1913 	}
1914 
1915 	MD5Init(&ctx);
1916 	/*
1917 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1918 	 *
1919 	 * XXX The ippseudo header MUST be digested in network byte order,
1920 	 * or else we'll fail the regression test. Assume all fields we've
1921 	 * been doing arithmetic on have been in host byte order.
1922 	 * XXX One cannot depend on ipovly->ih_len here. When called from
1923 	 * tcp_output(), the underlying ip_len member has not yet been set.
1924 	 */
1925 	switch (ip->ip_v) {
1926 	case IPVERSION:
1927 		ipovly = (struct ipovly *)ip;
1928 		ippseudo.ippseudo_src = ipovly->ih_src;
1929 		ippseudo.ippseudo_dst = ipovly->ih_dst;
1930 		ippseudo.ippseudo_pad = 0;
1931 		ippseudo.ippseudo_p = IPPROTO_TCP;
1932 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1933 		    optlen);
1934 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1935 
1936 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1937 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1938 		break;
1939 #ifdef INET6
1940 	/*
1941 	 * RFC 2385, 2.0  Proposal
1942 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1943 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1944 	 * extended next header value (to form 32 bits), and 32-bit segment
1945 	 * length.
1946 	 * Note: Upper-Layer Packet Length comes before Next Header.
1947 	 */
1948 	case (IPV6_VERSION >> 4):
1949 		in6 = ip6->ip6_src;
1950 		in6_clearscope(&in6);
1951 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1952 		in6 = ip6->ip6_dst;
1953 		in6_clearscope(&in6);
1954 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1955 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1956 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
1957 		nhdr = 0;
1958 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1959 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1960 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1961 		nhdr = IPPROTO_TCP;
1962 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1963 
1964 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
1965 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
1966 		break;
1967 #endif
1968 	default:
1969 		return (EINVAL);
1970 		/* NOTREACHED */
1971 		break;
1972 	}
1973 
1974 
1975 	/*
1976 	 * Step 2: Update MD5 hash with TCP header, excluding options.
1977 	 * The TCP checksum must be set to zero.
1978 	 */
1979 	savecsum = th->th_sum;
1980 	th->th_sum = 0;
1981 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
1982 	th->th_sum = savecsum;
1983 
1984 	/*
1985 	 * Step 3: Update MD5 hash with TCP segment data.
1986 	 *         Use m_apply() to avoid an early m_pullup().
1987 	 */
1988 	if (len > 0)
1989 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
1990 
1991 	/*
1992 	 * Step 4: Update MD5 hash with shared secret.
1993 	 */
1994 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
1995 	MD5Final(buf, &ctx);
1996 
1997 	key_sa_recordxfer(sav, m);
1998 	KEY_FREESAV(&sav);
1999 	return (0);
2000 }
2001 #endif /* TCP_SIGNATURE */
2002 
2003 static int
2004 sysctl_drop(SYSCTL_HANDLER_ARGS)
2005 {
2006 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2007 	struct sockaddr_storage addrs[2];
2008 	struct inpcb *inp;
2009 	struct tcpcb *tp;
2010 	struct tcptw *tw;
2011 	struct sockaddr_in *fin, *lin;
2012 #ifdef INET6
2013 	struct sockaddr_in6 *fin6, *lin6;
2014 #endif
2015 	int error;
2016 
2017 	inp = NULL;
2018 	fin = lin = NULL;
2019 #ifdef INET6
2020 	fin6 = lin6 = NULL;
2021 #endif
2022 	error = 0;
2023 
2024 	if (req->oldptr != NULL || req->oldlen != 0)
2025 		return (EINVAL);
2026 	if (req->newptr == NULL)
2027 		return (EPERM);
2028 	if (req->newlen < sizeof(addrs))
2029 		return (ENOMEM);
2030 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2031 	if (error)
2032 		return (error);
2033 
2034 	switch (addrs[0].ss_family) {
2035 #ifdef INET6
2036 	case AF_INET6:
2037 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2038 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2039 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2040 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2041 			return (EINVAL);
2042 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2043 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2044 				return (EINVAL);
2045 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2046 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2047 			fin = (struct sockaddr_in *)&addrs[0];
2048 			lin = (struct sockaddr_in *)&addrs[1];
2049 			break;
2050 		}
2051 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2052 		if (error)
2053 			return (error);
2054 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2055 		if (error)
2056 			return (error);
2057 		break;
2058 #endif
2059 	case AF_INET:
2060 		fin = (struct sockaddr_in *)&addrs[0];
2061 		lin = (struct sockaddr_in *)&addrs[1];
2062 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2063 		    lin->sin_len != sizeof(struct sockaddr_in))
2064 			return (EINVAL);
2065 		break;
2066 	default:
2067 		return (EINVAL);
2068 	}
2069 	INP_INFO_WLOCK(&V_tcbinfo);
2070 	switch (addrs[0].ss_family) {
2071 #ifdef INET6
2072 	case AF_INET6:
2073 		inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr,
2074 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0,
2075 		    NULL);
2076 		break;
2077 #endif
2078 	case AF_INET:
2079 		inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
2080 		    fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
2081 		break;
2082 	}
2083 	if (inp != NULL) {
2084 		INP_WLOCK(inp);
2085 		if (inp->inp_flags & INP_TIMEWAIT) {
2086 			/*
2087 			 * XXXRW: There currently exists a state where an
2088 			 * inpcb is present, but its timewait state has been
2089 			 * discarded.  For now, don't allow dropping of this
2090 			 * type of inpcb.
2091 			 */
2092 			tw = intotw(inp);
2093 			if (tw != NULL)
2094 				tcp_twclose(tw, 0);
2095 			else
2096 				INP_WUNLOCK(inp);
2097 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2098 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2099 			tp = intotcpcb(inp);
2100 			tp = tcp_drop(tp, ECONNABORTED);
2101 			if (tp != NULL)
2102 				INP_WUNLOCK(inp);
2103 		} else
2104 			INP_WUNLOCK(inp);
2105 	} else
2106 		error = ESRCH;
2107 	INP_INFO_WUNLOCK(&V_tcbinfo);
2108 	return (error);
2109 }
2110 
2111 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2112     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2113     0, sysctl_drop, "", "Drop TCP connection");
2114 
2115 /*
2116  * Generate a standardized TCP log line for use throughout the
2117  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2118  * allow use in the interrupt context.
2119  *
2120  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2121  * NB: The function may return NULL if memory allocation failed.
2122  *
2123  * Due to header inclusion and ordering limitations the struct ip
2124  * and ip6_hdr pointers have to be passed as void pointers.
2125  */
2126 char *
2127 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2128     const void *ip6hdr)
2129 {
2130 
2131 	/* Is logging enabled? */
2132 	if (tcp_log_in_vain == 0)
2133 		return (NULL);
2134 
2135 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2136 }
2137 
2138 char *
2139 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2140     const void *ip6hdr)
2141 {
2142 
2143 	/* Is logging enabled? */
2144 	if (tcp_log_debug == 0)
2145 		return (NULL);
2146 
2147 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2148 }
2149 
2150 static char *
2151 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2152     const void *ip6hdr)
2153 {
2154 	char *s, *sp;
2155 	size_t size;
2156 	struct ip *ip;
2157 #ifdef INET6
2158 	const struct ip6_hdr *ip6;
2159 
2160 	ip6 = (const struct ip6_hdr *)ip6hdr;
2161 #endif /* INET6 */
2162 	ip = (struct ip *)ip4hdr;
2163 
2164 	/*
2165 	 * The log line looks like this:
2166 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2167 	 */
2168 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2169 	    sizeof(PRINT_TH_FLAGS) + 1 +
2170 #ifdef INET6
2171 	    2 * INET6_ADDRSTRLEN;
2172 #else
2173 	    2 * INET_ADDRSTRLEN;
2174 #endif /* INET6 */
2175 
2176 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2177 	if (s == NULL)
2178 		return (NULL);
2179 
2180 	strcat(s, "TCP: [");
2181 	sp = s + strlen(s);
2182 
2183 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2184 		inet_ntoa_r(inc->inc_faddr, sp);
2185 		sp = s + strlen(s);
2186 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2187 		sp = s + strlen(s);
2188 		inet_ntoa_r(inc->inc_laddr, sp);
2189 		sp = s + strlen(s);
2190 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2191 #ifdef INET6
2192 	} else if (inc) {
2193 		ip6_sprintf(sp, &inc->inc6_faddr);
2194 		sp = s + strlen(s);
2195 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2196 		sp = s + strlen(s);
2197 		ip6_sprintf(sp, &inc->inc6_laddr);
2198 		sp = s + strlen(s);
2199 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2200 	} else if (ip6 && th) {
2201 		ip6_sprintf(sp, &ip6->ip6_src);
2202 		sp = s + strlen(s);
2203 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2204 		sp = s + strlen(s);
2205 		ip6_sprintf(sp, &ip6->ip6_dst);
2206 		sp = s + strlen(s);
2207 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2208 #endif /* INET6 */
2209 	} else if (ip && th) {
2210 		inet_ntoa_r(ip->ip_src, sp);
2211 		sp = s + strlen(s);
2212 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2213 		sp = s + strlen(s);
2214 		inet_ntoa_r(ip->ip_dst, sp);
2215 		sp = s + strlen(s);
2216 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2217 	} else {
2218 		free(s, M_TCPLOG);
2219 		return (NULL);
2220 	}
2221 	sp = s + strlen(s);
2222 	if (th)
2223 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2224 	if (*(s + size - 1) != '\0')
2225 		panic("%s: string too long", __func__);
2226 	return (s);
2227 }
2228