xref: /freebsd/sys/netinet/tcp_subr.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_kern_tls.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/arb.h>
46 #include <sys/callout.h>
47 #include <sys/eventhandler.h>
48 #ifdef TCP_HHOOK
49 #include <sys/hhook.h>
50 #endif
51 #include <sys/kernel.h>
52 #ifdef TCP_HHOOK
53 #include <sys/khelp.h>
54 #endif
55 #ifdef KERN_TLS
56 #include <sys/ktls.h>
57 #endif
58 #include <sys/qmath.h>
59 #include <sys/stats.h>
60 #include <sys/sysctl.h>
61 #include <sys/jail.h>
62 #include <sys/malloc.h>
63 #include <sys/refcount.h>
64 #include <sys/mbuf.h>
65 #ifdef INET6
66 #include <sys/domain.h>
67 #endif
68 #include <sys/priv.h>
69 #include <sys/proc.h>
70 #include <sys/sdt.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/protosw.h>
74 #include <sys/random.h>
75 
76 #include <vm/uma.h>
77 
78 #include <net/route.h>
79 #include <net/route/nhop.h>
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/vnet.h>
83 
84 #include <netinet/in.h>
85 #include <netinet/in_fib.h>
86 #include <netinet/in_kdtrace.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h>
92 #include <netinet/ip_var.h>
93 #ifdef INET6
94 #include <netinet/icmp6.h>
95 #include <netinet/ip6.h>
96 #include <netinet6/in6_fib.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet6/scope6_var.h>
100 #include <netinet6/nd6.h>
101 #endif
102 
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_seq.h>
106 #include <netinet/tcp_timer.h>
107 #include <netinet/tcp_var.h>
108 #include <netinet/tcp_log_buf.h>
109 #include <netinet/tcp_syncache.h>
110 #include <netinet/tcp_hpts.h>
111 #include <netinet/cc/cc.h>
112 #ifdef INET6
113 #include <netinet6/tcp6_var.h>
114 #endif
115 #include <netinet/tcpip.h>
116 #include <netinet/tcp_fastopen.h>
117 #ifdef TCPPCAP
118 #include <netinet/tcp_pcap.h>
119 #endif
120 #ifdef TCPDEBUG
121 #include <netinet/tcp_debug.h>
122 #endif
123 #ifdef INET6
124 #include <netinet6/ip6protosw.h>
125 #endif
126 #ifdef TCP_OFFLOAD
127 #include <netinet/tcp_offload.h>
128 #endif
129 
130 #include <netipsec/ipsec_support.h>
131 
132 #include <machine/in_cksum.h>
133 #include <crypto/siphash/siphash.h>
134 
135 #include <security/mac/mac_framework.h>
136 
137 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
138 #ifdef INET6
139 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
140 #endif
141 
142 #ifdef NETFLIX_EXP_DETECTION
143 /*  Sack attack detection thresholds and such */
144 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack_attack,
145     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
146     "Sack Attack detection thresholds");
147 int32_t tcp_force_detection = 0;
148 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, force_detection,
149     CTLFLAG_RW,
150     &tcp_force_detection, 0,
151     "Do we force detection even if the INP has it off?");
152 int32_t tcp_sack_to_ack_thresh = 700;	/* 70 % */
153 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sack_to_ack_thresh,
154     CTLFLAG_RW,
155     &tcp_sack_to_ack_thresh, 700,
156     "Percentage of sacks to acks we must see above (10.1 percent is 101)?");
157 int32_t tcp_sack_to_move_thresh = 600;	/* 60 % */
158 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, move_thresh,
159     CTLFLAG_RW,
160     &tcp_sack_to_move_thresh, 600,
161     "Percentage of sack moves we must see above (10.1 percent is 101)");
162 int32_t tcp_restoral_thresh = 650;	/* 65 % (sack:2:ack -5%) */
163 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, restore_thresh,
164     CTLFLAG_RW,
165     &tcp_restoral_thresh, 550,
166     "Percentage of sack to ack percentage we must see below to restore(10.1 percent is 101)");
167 int32_t tcp_sad_decay_val = 800;
168 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, decay_per,
169     CTLFLAG_RW,
170     &tcp_sad_decay_val, 800,
171     "The decay percentage (10.1 percent equals 101 )");
172 int32_t tcp_map_minimum = 500;
173 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, nummaps,
174     CTLFLAG_RW,
175     &tcp_map_minimum, 500,
176     "Number of Map enteries before we start detection");
177 int32_t tcp_attack_on_turns_on_logging = 0;
178 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, attacks_logged,
179     CTLFLAG_RW,
180     &tcp_attack_on_turns_on_logging, 0,
181    "When we have a positive hit on attack, do we turn on logging?");
182 int32_t tcp_sad_pacing_interval = 2000;
183 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sad_pacing_int,
184     CTLFLAG_RW,
185     &tcp_sad_pacing_interval, 2000,
186     "What is the minimum pacing interval for a classified attacker?");
187 
188 int32_t tcp_sad_low_pps = 100;
189 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sad_low_pps,
190     CTLFLAG_RW,
191     &tcp_sad_low_pps, 100,
192     "What is the input pps that below which we do not decay?");
193 #endif
194 
195 struct rwlock tcp_function_lock;
196 
197 static int
198 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
199 {
200 	int error, new;
201 
202 	new = V_tcp_mssdflt;
203 	error = sysctl_handle_int(oidp, &new, 0, req);
204 	if (error == 0 && req->newptr) {
205 		if (new < TCP_MINMSS)
206 			error = EINVAL;
207 		else
208 			V_tcp_mssdflt = new;
209 	}
210 	return (error);
211 }
212 
213 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
214     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
215     &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I",
216     "Default TCP Maximum Segment Size");
217 
218 #ifdef INET6
219 static int
220 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
221 {
222 	int error, new;
223 
224 	new = V_tcp_v6mssdflt;
225 	error = sysctl_handle_int(oidp, &new, 0, req);
226 	if (error == 0 && req->newptr) {
227 		if (new < TCP_MINMSS)
228 			error = EINVAL;
229 		else
230 			V_tcp_v6mssdflt = new;
231 	}
232 	return (error);
233 }
234 
235 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
236     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
237     &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I",
238    "Default TCP Maximum Segment Size for IPv6");
239 #endif /* INET6 */
240 
241 /*
242  * Minimum MSS we accept and use. This prevents DoS attacks where
243  * we are forced to a ridiculous low MSS like 20 and send hundreds
244  * of packets instead of one. The effect scales with the available
245  * bandwidth and quickly saturates the CPU and network interface
246  * with packet generation and sending. Set to zero to disable MINMSS
247  * checking. This setting prevents us from sending too small packets.
248  */
249 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
251      &VNET_NAME(tcp_minmss), 0,
252     "Minimum TCP Maximum Segment Size");
253 
254 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
255 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
256     &VNET_NAME(tcp_do_rfc1323), 0,
257     "Enable rfc1323 (high performance TCP) extensions");
258 
259 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1;
260 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW,
261     &VNET_NAME(tcp_ts_offset_per_conn), 0,
262     "Initialize TCP timestamps per connection instead of per host pair");
263 
264 static int	tcp_log_debug = 0;
265 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
266     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
267 
268 static int	tcp_tcbhashsize;
269 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
270     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
271 
272 static int	do_tcpdrain = 1;
273 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
274     "Enable tcp_drain routine for extra help when low on mbufs");
275 
276 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
277     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
278 
279 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1;
280 #define	V_icmp_may_rst			VNET(icmp_may_rst)
281 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
282     &VNET_NAME(icmp_may_rst), 0,
283     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
284 
285 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0;
286 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
287 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
288     &VNET_NAME(tcp_isn_reseed_interval), 0,
289     "Seconds between reseeding of ISN secret");
290 
291 static int	tcp_soreceive_stream;
292 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
293     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
294 
295 VNET_DEFINE(uma_zone_t, sack_hole_zone);
296 #define	V_sack_hole_zone		VNET(sack_hole_zone)
297 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0;	/* unlimited */
298 static int
299 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS)
300 {
301 	int error;
302 	uint32_t new;
303 
304 	new = V_tcp_map_entries_limit;
305 	error = sysctl_handle_int(oidp, &new, 0, req);
306 	if (error == 0 && req->newptr) {
307 		/* only allow "0" and value > minimum */
308 		if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT)
309 			error = EINVAL;
310 		else
311 			V_tcp_map_entries_limit = new;
312 	}
313 	return (error);
314 }
315 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit,
316     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
317     &VNET_NAME(tcp_map_entries_limit), 0,
318     &sysctl_net_inet_tcp_map_limit_check, "IU",
319     "Total sendmap entries limit");
320 
321 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0;	/* unlimited */
322 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW,
323      &VNET_NAME(tcp_map_split_limit), 0,
324     "Total sendmap split entries limit");
325 
326 #ifdef TCP_HHOOK
327 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
328 #endif
329 
330 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH
331 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]);
332 #define	V_ts_offset_secret	VNET(ts_offset_secret)
333 
334 static int	tcp_default_fb_init(struct tcpcb *tp);
335 static void	tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged);
336 static int	tcp_default_handoff_ok(struct tcpcb *tp);
337 static struct inpcb *tcp_notify(struct inpcb *, int);
338 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
339 static void tcp_mtudisc(struct inpcb *, int);
340 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
341 		    void *ip4hdr, const void *ip6hdr);
342 
343 
344 static struct tcp_function_block tcp_def_funcblk = {
345 	.tfb_tcp_block_name = "freebsd",
346 	.tfb_tcp_output = tcp_output,
347 	.tfb_tcp_do_segment = tcp_do_segment,
348 	.tfb_tcp_ctloutput = tcp_default_ctloutput,
349 	.tfb_tcp_handoff_ok = tcp_default_handoff_ok,
350 	.tfb_tcp_fb_init = tcp_default_fb_init,
351 	.tfb_tcp_fb_fini = tcp_default_fb_fini,
352 };
353 
354 static int tcp_fb_cnt = 0;
355 struct tcp_funchead t_functions;
356 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
357 
358 static struct tcp_function_block *
359 find_tcp_functions_locked(struct tcp_function_set *fs)
360 {
361 	struct tcp_function *f;
362 	struct tcp_function_block *blk=NULL;
363 
364 	TAILQ_FOREACH(f, &t_functions, tf_next) {
365 		if (strcmp(f->tf_name, fs->function_set_name) == 0) {
366 			blk = f->tf_fb;
367 			break;
368 		}
369 	}
370 	return(blk);
371 }
372 
373 static struct tcp_function_block *
374 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
375 {
376 	struct tcp_function_block *rblk=NULL;
377 	struct tcp_function *f;
378 
379 	TAILQ_FOREACH(f, &t_functions, tf_next) {
380 		if (f->tf_fb == blk) {
381 			rblk = blk;
382 			if (s) {
383 				*s = f;
384 			}
385 			break;
386 		}
387 	}
388 	return (rblk);
389 }
390 
391 struct tcp_function_block *
392 find_and_ref_tcp_functions(struct tcp_function_set *fs)
393 {
394 	struct tcp_function_block *blk;
395 
396 	rw_rlock(&tcp_function_lock);
397 	blk = find_tcp_functions_locked(fs);
398 	if (blk)
399 		refcount_acquire(&blk->tfb_refcnt);
400 	rw_runlock(&tcp_function_lock);
401 	return(blk);
402 }
403 
404 struct tcp_function_block *
405 find_and_ref_tcp_fb(struct tcp_function_block *blk)
406 {
407 	struct tcp_function_block *rblk;
408 
409 	rw_rlock(&tcp_function_lock);
410 	rblk = find_tcp_fb_locked(blk, NULL);
411 	if (rblk)
412 		refcount_acquire(&rblk->tfb_refcnt);
413 	rw_runlock(&tcp_function_lock);
414 	return(rblk);
415 }
416 
417 static struct tcp_function_block *
418 find_and_ref_tcp_default_fb(void)
419 {
420 	struct tcp_function_block *rblk;
421 
422 	rw_rlock(&tcp_function_lock);
423 	rblk = tcp_func_set_ptr;
424 	refcount_acquire(&rblk->tfb_refcnt);
425 	rw_runlock(&tcp_function_lock);
426 	return (rblk);
427 }
428 
429 void
430 tcp_switch_back_to_default(struct tcpcb *tp)
431 {
432 	struct tcp_function_block *tfb;
433 
434 	KASSERT(tp->t_fb != &tcp_def_funcblk,
435 	    ("%s: called by the built-in default stack", __func__));
436 
437 	/*
438 	 * Release the old stack. This function will either find a new one
439 	 * or panic.
440 	 */
441 	if (tp->t_fb->tfb_tcp_fb_fini != NULL)
442 		(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
443 	refcount_release(&tp->t_fb->tfb_refcnt);
444 
445 	/*
446 	 * Now, we'll find a new function block to use.
447 	 * Start by trying the current user-selected
448 	 * default, unless this stack is the user-selected
449 	 * default.
450 	 */
451 	tfb = find_and_ref_tcp_default_fb();
452 	if (tfb == tp->t_fb) {
453 		refcount_release(&tfb->tfb_refcnt);
454 		tfb = NULL;
455 	}
456 	/* Does the stack accept this connection? */
457 	if (tfb != NULL && tfb->tfb_tcp_handoff_ok != NULL &&
458 	    (*tfb->tfb_tcp_handoff_ok)(tp)) {
459 		refcount_release(&tfb->tfb_refcnt);
460 		tfb = NULL;
461 	}
462 	/* Try to use that stack. */
463 	if (tfb != NULL) {
464 		/* Initialize the new stack. If it succeeds, we are done. */
465 		tp->t_fb = tfb;
466 		if (tp->t_fb->tfb_tcp_fb_init == NULL ||
467 		    (*tp->t_fb->tfb_tcp_fb_init)(tp) == 0)
468 			return;
469 
470 		/*
471 		 * Initialization failed. Release the reference count on
472 		 * the stack.
473 		 */
474 		refcount_release(&tfb->tfb_refcnt);
475 	}
476 
477 	/*
478 	 * If that wasn't feasible, use the built-in default
479 	 * stack which is not allowed to reject anyone.
480 	 */
481 	tfb = find_and_ref_tcp_fb(&tcp_def_funcblk);
482 	if (tfb == NULL) {
483 		/* there always should be a default */
484 		panic("Can't refer to tcp_def_funcblk");
485 	}
486 	if (tfb->tfb_tcp_handoff_ok != NULL) {
487 		if ((*tfb->tfb_tcp_handoff_ok) (tp)) {
488 			/* The default stack cannot say no */
489 			panic("Default stack rejects a new session?");
490 		}
491 	}
492 	tp->t_fb = tfb;
493 	if (tp->t_fb->tfb_tcp_fb_init != NULL &&
494 	    (*tp->t_fb->tfb_tcp_fb_init)(tp)) {
495 		/* The default stack cannot fail */
496 		panic("Default stack initialization failed");
497 	}
498 }
499 
500 static int
501 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
502 {
503 	int error=ENOENT;
504 	struct tcp_function_set fs;
505 	struct tcp_function_block *blk;
506 
507 	memset(&fs, 0, sizeof(fs));
508 	rw_rlock(&tcp_function_lock);
509 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
510 	if (blk) {
511 		/* Found him */
512 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
513 		fs.pcbcnt = blk->tfb_refcnt;
514 	}
515 	rw_runlock(&tcp_function_lock);
516 	error = sysctl_handle_string(oidp, fs.function_set_name,
517 				     sizeof(fs.function_set_name), req);
518 
519 	/* Check for error or no change */
520 	if (error != 0 || req->newptr == NULL)
521 		return(error);
522 
523 	rw_wlock(&tcp_function_lock);
524 	blk = find_tcp_functions_locked(&fs);
525 	if ((blk == NULL) ||
526 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
527 		error = ENOENT;
528 		goto done;
529 	}
530 	tcp_func_set_ptr = blk;
531 done:
532 	rw_wunlock(&tcp_function_lock);
533 	return (error);
534 }
535 
536 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
537     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
538     NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
539     "Set/get the default TCP functions");
540 
541 static int
542 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
543 {
544 	int error, cnt, linesz;
545 	struct tcp_function *f;
546 	char *buffer, *cp;
547 	size_t bufsz, outsz;
548 	bool alias;
549 
550 	cnt = 0;
551 	rw_rlock(&tcp_function_lock);
552 	TAILQ_FOREACH(f, &t_functions, tf_next) {
553 		cnt++;
554 	}
555 	rw_runlock(&tcp_function_lock);
556 
557 	bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1;
558 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
559 
560 	error = 0;
561 	cp = buffer;
562 
563 	linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D',
564 	    "Alias", "PCB count");
565 	cp += linesz;
566 	bufsz -= linesz;
567 	outsz = linesz;
568 
569 	rw_rlock(&tcp_function_lock);
570 	TAILQ_FOREACH(f, &t_functions, tf_next) {
571 		alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name);
572 		linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n",
573 		    f->tf_fb->tfb_tcp_block_name,
574 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
575 		    alias ? f->tf_name : "-",
576 		    f->tf_fb->tfb_refcnt);
577 		if (linesz >= bufsz) {
578 			error = EOVERFLOW;
579 			break;
580 		}
581 		cp += linesz;
582 		bufsz -= linesz;
583 		outsz += linesz;
584 	}
585 	rw_runlock(&tcp_function_lock);
586 	if (error == 0)
587 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
588 	free(buffer, M_TEMP);
589 	return (error);
590 }
591 
592 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
593     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
594     NULL, 0, sysctl_net_inet_list_available, "A",
595     "list available TCP Function sets");
596 
597 /*
598  * Exports one (struct tcp_function_info) for each alias/name.
599  */
600 static int
601 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)
602 {
603 	int cnt, error;
604 	struct tcp_function *f;
605 	struct tcp_function_info tfi;
606 
607 	/*
608 	 * We don't allow writes.
609 	 */
610 	if (req->newptr != NULL)
611 		return (EINVAL);
612 
613 	/*
614 	 * Wire the old buffer so we can directly copy the functions to
615 	 * user space without dropping the lock.
616 	 */
617 	if (req->oldptr != NULL) {
618 		error = sysctl_wire_old_buffer(req, 0);
619 		if (error)
620 			return (error);
621 	}
622 
623 	/*
624 	 * Walk the list and copy out matching entries. If INVARIANTS
625 	 * is compiled in, also walk the list to verify the length of
626 	 * the list matches what we have recorded.
627 	 */
628 	rw_rlock(&tcp_function_lock);
629 
630 	cnt = 0;
631 #ifndef INVARIANTS
632 	if (req->oldptr == NULL) {
633 		cnt = tcp_fb_cnt;
634 		goto skip_loop;
635 	}
636 #endif
637 	TAILQ_FOREACH(f, &t_functions, tf_next) {
638 #ifdef INVARIANTS
639 		cnt++;
640 #endif
641 		if (req->oldptr != NULL) {
642 			bzero(&tfi, sizeof(tfi));
643 			tfi.tfi_refcnt = f->tf_fb->tfb_refcnt;
644 			tfi.tfi_id = f->tf_fb->tfb_id;
645 			(void)strlcpy(tfi.tfi_alias, f->tf_name,
646 			    sizeof(tfi.tfi_alias));
647 			(void)strlcpy(tfi.tfi_name,
648 			    f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name));
649 			error = SYSCTL_OUT(req, &tfi, sizeof(tfi));
650 			/*
651 			 * Don't stop on error, as that is the
652 			 * mechanism we use to accumulate length
653 			 * information if the buffer was too short.
654 			 */
655 		}
656 	}
657 	KASSERT(cnt == tcp_fb_cnt,
658 	    ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt));
659 #ifndef INVARIANTS
660 skip_loop:
661 #endif
662 	rw_runlock(&tcp_function_lock);
663 	if (req->oldptr == NULL)
664 		error = SYSCTL_OUT(req, NULL,
665 		    (cnt + 1) * sizeof(struct tcp_function_info));
666 
667 	return (error);
668 }
669 
670 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info,
671 	    CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE,
672 	    NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info",
673 	    "List TCP function block name-to-ID mappings");
674 
675 /*
676  * tfb_tcp_handoff_ok() function for the default stack.
677  * Note that we'll basically try to take all comers.
678  */
679 static int
680 tcp_default_handoff_ok(struct tcpcb *tp)
681 {
682 
683 	return (0);
684 }
685 
686 /*
687  * tfb_tcp_fb_init() function for the default stack.
688  *
689  * This handles making sure we have appropriate timers set if you are
690  * transitioning a socket that has some amount of setup done.
691  *
692  * The init() fuction from the default can *never* return non-zero i.e.
693  * it is required to always succeed since it is the stack of last resort!
694  */
695 static int
696 tcp_default_fb_init(struct tcpcb *tp)
697 {
698 
699 	struct socket *so;
700 
701 	INP_WLOCK_ASSERT(tp->t_inpcb);
702 
703 	KASSERT(tp->t_state >= 0 && tp->t_state < TCPS_TIME_WAIT,
704 	    ("%s: connection %p in unexpected state %d", __func__, tp,
705 	    tp->t_state));
706 
707 	/*
708 	 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't
709 	 * know what to do for unexpected states (which includes TIME_WAIT).
710 	 */
711 	if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT)
712 		return (0);
713 
714 	/*
715 	 * Make sure some kind of transmission timer is set if there is
716 	 * outstanding data.
717 	 */
718 	so = tp->t_inpcb->inp_socket;
719 	if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) ||
720 	    tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) ||
721 	    tcp_timer_active(tp, TT_PERSIST))) {
722 		/*
723 		 * If the session has established and it looks like it should
724 		 * be in the persist state, set the persist timer. Otherwise,
725 		 * set the retransmit timer.
726 		 */
727 		if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 &&
728 		    (int32_t)(tp->snd_nxt - tp->snd_una) <
729 		    (int32_t)sbavail(&so->so_snd))
730 			tcp_setpersist(tp);
731 		else
732 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
733 	}
734 
735 	/* All non-embryonic sessions get a keepalive timer. */
736 	if (!tcp_timer_active(tp, TT_KEEP))
737 		tcp_timer_activate(tp, TT_KEEP,
738 		    TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) :
739 		    TP_KEEPINIT(tp));
740 
741 	return (0);
742 }
743 
744 /*
745  * tfb_tcp_fb_fini() function for the default stack.
746  *
747  * This changes state as necessary (or prudent) to prepare for another stack
748  * to assume responsibility for the connection.
749  */
750 static void
751 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged)
752 {
753 
754 	INP_WLOCK_ASSERT(tp->t_inpcb);
755 	return;
756 }
757 
758 /*
759  * Target size of TCP PCB hash tables. Must be a power of two.
760  *
761  * Note that this can be overridden by the kernel environment
762  * variable net.inet.tcp.tcbhashsize
763  */
764 #ifndef TCBHASHSIZE
765 #define TCBHASHSIZE	0
766 #endif
767 
768 /*
769  * XXX
770  * Callouts should be moved into struct tcp directly.  They are currently
771  * separate because the tcpcb structure is exported to userland for sysctl
772  * parsing purposes, which do not know about callouts.
773  */
774 struct tcpcb_mem {
775 	struct	tcpcb		tcb;
776 	struct	tcp_timer	tt;
777 	struct	cc_var		ccv;
778 #ifdef TCP_HHOOK
779 	struct	osd		osd;
780 #endif
781 };
782 
783 VNET_DEFINE_STATIC(uma_zone_t, tcpcb_zone);
784 #define	V_tcpcb_zone			VNET(tcpcb_zone)
785 
786 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
787 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
788 
789 static struct mtx isn_mtx;
790 
791 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
792 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
793 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
794 
795 /*
796  * TCP initialization.
797  */
798 static void
799 tcp_zone_change(void *tag)
800 {
801 
802 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
803 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
804 	tcp_tw_zone_change();
805 }
806 
807 static int
808 tcp_inpcb_init(void *mem, int size, int flags)
809 {
810 	struct inpcb *inp = mem;
811 
812 	INP_LOCK_INIT(inp, "inp", "tcpinp");
813 	return (0);
814 }
815 
816 /*
817  * Take a value and get the next power of 2 that doesn't overflow.
818  * Used to size the tcp_inpcb hash buckets.
819  */
820 static int
821 maketcp_hashsize(int size)
822 {
823 	int hashsize;
824 
825 	/*
826 	 * auto tune.
827 	 * get the next power of 2 higher than maxsockets.
828 	 */
829 	hashsize = 1 << fls(size);
830 	/* catch overflow, and just go one power of 2 smaller */
831 	if (hashsize < size) {
832 		hashsize = 1 << (fls(size) - 1);
833 	}
834 	return (hashsize);
835 }
836 
837 static volatile int next_tcp_stack_id = 1;
838 
839 /*
840  * Register a TCP function block with the name provided in the names
841  * array.  (Note that this function does NOT automatically register
842  * blk->tfb_tcp_block_name as a stack name.  Therefore, you should
843  * explicitly include blk->tfb_tcp_block_name in the list of names if
844  * you wish to register the stack with that name.)
845  *
846  * Either all name registrations will succeed or all will fail.  If
847  * a name registration fails, the function will update the num_names
848  * argument to point to the array index of the name that encountered
849  * the failure.
850  *
851  * Returns 0 on success, or an error code on failure.
852  */
853 int
854 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait,
855     const char *names[], int *num_names)
856 {
857 	struct tcp_function *n;
858 	struct tcp_function_set fs;
859 	int error, i;
860 
861 	KASSERT(names != NULL && *num_names > 0,
862 	    ("%s: Called with 0-length name list", __func__));
863 	KASSERT(names != NULL, ("%s: Called with NULL name list", __func__));
864 	KASSERT(rw_initialized(&tcp_function_lock),
865 	    ("%s: called too early", __func__));
866 
867 	if ((blk->tfb_tcp_output == NULL) ||
868 	    (blk->tfb_tcp_do_segment == NULL) ||
869 	    (blk->tfb_tcp_ctloutput == NULL) ||
870 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
871 		/*
872 		 * These functions are required and you
873 		 * need a name.
874 		 */
875 		*num_names = 0;
876 		return (EINVAL);
877 	}
878 	if (blk->tfb_tcp_timer_stop_all ||
879 	    blk->tfb_tcp_timer_activate ||
880 	    blk->tfb_tcp_timer_active ||
881 	    blk->tfb_tcp_timer_stop) {
882 		/*
883 		 * If you define one timer function you
884 		 * must have them all.
885 		 */
886 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
887 		    (blk->tfb_tcp_timer_activate == NULL) ||
888 		    (blk->tfb_tcp_timer_active == NULL) ||
889 		    (blk->tfb_tcp_timer_stop == NULL)) {
890 			*num_names = 0;
891 			return (EINVAL);
892 		}
893 	}
894 
895 	if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) {
896 		*num_names = 0;
897 		return (EINVAL);
898 	}
899 
900 	refcount_init(&blk->tfb_refcnt, 0);
901 	blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1);
902 	for (i = 0; i < *num_names; i++) {
903 		n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
904 		if (n == NULL) {
905 			error = ENOMEM;
906 			goto cleanup;
907 		}
908 		n->tf_fb = blk;
909 
910 		(void)strlcpy(fs.function_set_name, names[i],
911 		    sizeof(fs.function_set_name));
912 		rw_wlock(&tcp_function_lock);
913 		if (find_tcp_functions_locked(&fs) != NULL) {
914 			/* Duplicate name space not allowed */
915 			rw_wunlock(&tcp_function_lock);
916 			free(n, M_TCPFUNCTIONS);
917 			error = EALREADY;
918 			goto cleanup;
919 		}
920 		(void)strlcpy(n->tf_name, names[i], sizeof(n->tf_name));
921 		TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
922 		tcp_fb_cnt++;
923 		rw_wunlock(&tcp_function_lock);
924 	}
925 	return(0);
926 
927 cleanup:
928 	/*
929 	 * Deregister the names we just added. Because registration failed
930 	 * for names[i], we don't need to deregister that name.
931 	 */
932 	*num_names = i;
933 	rw_wlock(&tcp_function_lock);
934 	while (--i >= 0) {
935 		TAILQ_FOREACH(n, &t_functions, tf_next) {
936 			if (!strncmp(n->tf_name, names[i],
937 			    TCP_FUNCTION_NAME_LEN_MAX)) {
938 				TAILQ_REMOVE(&t_functions, n, tf_next);
939 				tcp_fb_cnt--;
940 				n->tf_fb = NULL;
941 				free(n, M_TCPFUNCTIONS);
942 				break;
943 			}
944 		}
945 	}
946 	rw_wunlock(&tcp_function_lock);
947 	return (error);
948 }
949 
950 /*
951  * Register a TCP function block using the name provided in the name
952  * argument.
953  *
954  * Returns 0 on success, or an error code on failure.
955  */
956 int
957 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name,
958     int wait)
959 {
960 	const char *name_list[1];
961 	int num_names, rv;
962 
963 	num_names = 1;
964 	if (name != NULL)
965 		name_list[0] = name;
966 	else
967 		name_list[0] = blk->tfb_tcp_block_name;
968 	rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names);
969 	return (rv);
970 }
971 
972 /*
973  * Register a TCP function block using the name defined in
974  * blk->tfb_tcp_block_name.
975  *
976  * Returns 0 on success, or an error code on failure.
977  */
978 int
979 register_tcp_functions(struct tcp_function_block *blk, int wait)
980 {
981 
982 	return (register_tcp_functions_as_name(blk, NULL, wait));
983 }
984 
985 /*
986  * Deregister all names associated with a function block. This
987  * functionally removes the function block from use within the system.
988  *
989  * When called with a true quiesce argument, mark the function block
990  * as being removed so no more stacks will use it and determine
991  * whether the removal would succeed.
992  *
993  * When called with a false quiesce argument, actually attempt the
994  * removal.
995  *
996  * When called with a force argument, attempt to switch all TCBs to
997  * use the default stack instead of returning EBUSY.
998  *
999  * Returns 0 on success (or if the removal would succeed, or an error
1000  * code on failure.
1001  */
1002 int
1003 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce,
1004     bool force)
1005 {
1006 	struct tcp_function *f;
1007 
1008 	if (blk == &tcp_def_funcblk) {
1009 		/* You can't un-register the default */
1010 		return (EPERM);
1011 	}
1012 	rw_wlock(&tcp_function_lock);
1013 	if (blk == tcp_func_set_ptr) {
1014 		/* You can't free the current default */
1015 		rw_wunlock(&tcp_function_lock);
1016 		return (EBUSY);
1017 	}
1018 	/* Mark the block so no more stacks can use it. */
1019 	blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
1020 	/*
1021 	 * If TCBs are still attached to the stack, attempt to switch them
1022 	 * to the default stack.
1023 	 */
1024 	if (force && blk->tfb_refcnt) {
1025 		struct inpcb *inp;
1026 		struct tcpcb *tp;
1027 		VNET_ITERATOR_DECL(vnet_iter);
1028 
1029 		rw_wunlock(&tcp_function_lock);
1030 
1031 		VNET_LIST_RLOCK();
1032 		VNET_FOREACH(vnet_iter) {
1033 			CURVNET_SET(vnet_iter);
1034 			INP_INFO_WLOCK(&V_tcbinfo);
1035 			CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
1036 				INP_WLOCK(inp);
1037 				if (inp->inp_flags & INP_TIMEWAIT) {
1038 					INP_WUNLOCK(inp);
1039 					continue;
1040 				}
1041 				tp = intotcpcb(inp);
1042 				if (tp == NULL || tp->t_fb != blk) {
1043 					INP_WUNLOCK(inp);
1044 					continue;
1045 				}
1046 				tcp_switch_back_to_default(tp);
1047 				INP_WUNLOCK(inp);
1048 			}
1049 			INP_INFO_WUNLOCK(&V_tcbinfo);
1050 			CURVNET_RESTORE();
1051 		}
1052 		VNET_LIST_RUNLOCK();
1053 
1054 		rw_wlock(&tcp_function_lock);
1055 	}
1056 	if (blk->tfb_refcnt) {
1057 		/* TCBs still attached. */
1058 		rw_wunlock(&tcp_function_lock);
1059 		return (EBUSY);
1060 	}
1061 	if (quiesce) {
1062 		/* Skip removal. */
1063 		rw_wunlock(&tcp_function_lock);
1064 		return (0);
1065 	}
1066 	/* Remove any function names that map to this function block. */
1067 	while (find_tcp_fb_locked(blk, &f) != NULL) {
1068 		TAILQ_REMOVE(&t_functions, f, tf_next);
1069 		tcp_fb_cnt--;
1070 		f->tf_fb = NULL;
1071 		free(f, M_TCPFUNCTIONS);
1072 	}
1073 	rw_wunlock(&tcp_function_lock);
1074 	return (0);
1075 }
1076 
1077 void
1078 tcp_init(void)
1079 {
1080 	const char *tcbhash_tuneable;
1081 	int hashsize;
1082 
1083 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
1084 
1085 #ifdef TCP_HHOOK
1086 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
1087 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1088 		printf("%s: WARNING: unable to register helper hook\n", __func__);
1089 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
1090 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1091 		printf("%s: WARNING: unable to register helper hook\n", __func__);
1092 #endif
1093 #ifdef STATS
1094 	if (tcp_stats_init())
1095 		printf("%s: WARNING: unable to initialise TCP stats\n",
1096 		    __func__);
1097 #endif
1098 	hashsize = TCBHASHSIZE;
1099 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
1100 	if (hashsize == 0) {
1101 		/*
1102 		 * Auto tune the hash size based on maxsockets.
1103 		 * A perfect hash would have a 1:1 mapping
1104 		 * (hashsize = maxsockets) however it's been
1105 		 * suggested that O(2) average is better.
1106 		 */
1107 		hashsize = maketcp_hashsize(maxsockets / 4);
1108 		/*
1109 		 * Our historical default is 512,
1110 		 * do not autotune lower than this.
1111 		 */
1112 		if (hashsize < 512)
1113 			hashsize = 512;
1114 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
1115 			printf("%s: %s auto tuned to %d\n", __func__,
1116 			    tcbhash_tuneable, hashsize);
1117 	}
1118 	/*
1119 	 * We require a hashsize to be a power of two.
1120 	 * Previously if it was not a power of two we would just reset it
1121 	 * back to 512, which could be a nasty surprise if you did not notice
1122 	 * the error message.
1123 	 * Instead what we do is clip it to the closest power of two lower
1124 	 * than the specified hash value.
1125 	 */
1126 	if (!powerof2(hashsize)) {
1127 		int oldhashsize = hashsize;
1128 
1129 		hashsize = maketcp_hashsize(hashsize);
1130 		/* prevent absurdly low value */
1131 		if (hashsize < 16)
1132 			hashsize = 16;
1133 		printf("%s: WARNING: TCB hash size not a power of 2, "
1134 		    "clipped from %d to %d.\n", __func__, oldhashsize,
1135 		    hashsize);
1136 	}
1137 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
1138 	    "tcp_inpcb", tcp_inpcb_init, IPI_HASHFIELDS_4TUPLE);
1139 
1140 	/*
1141 	 * These have to be type stable for the benefit of the timers.
1142 	 */
1143 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
1144 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1145 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
1146 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
1147 
1148 	tcp_tw_init();
1149 	syncache_init();
1150 	tcp_hc_init();
1151 
1152 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
1153 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
1154 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1155 
1156 	tcp_fastopen_init();
1157 
1158 	/* Skip initialization of globals for non-default instances. */
1159 	if (!IS_DEFAULT_VNET(curvnet))
1160 		return;
1161 
1162 	tcp_reass_global_init();
1163 
1164 	/* XXX virtualize those bellow? */
1165 	tcp_delacktime = TCPTV_DELACK;
1166 	tcp_keepinit = TCPTV_KEEP_INIT;
1167 	tcp_keepidle = TCPTV_KEEP_IDLE;
1168 	tcp_keepintvl = TCPTV_KEEPINTVL;
1169 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
1170 	tcp_msl = TCPTV_MSL;
1171 	tcp_rexmit_initial = TCPTV_RTOBASE;
1172 	if (tcp_rexmit_initial < 1)
1173 		tcp_rexmit_initial = 1;
1174 	tcp_rexmit_min = TCPTV_MIN;
1175 	if (tcp_rexmit_min < 1)
1176 		tcp_rexmit_min = 1;
1177 	tcp_persmin = TCPTV_PERSMIN;
1178 	tcp_persmax = TCPTV_PERSMAX;
1179 	tcp_rexmit_slop = TCPTV_CPU_VAR;
1180 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
1181 	tcp_tcbhashsize = hashsize;
1182 
1183 	/* Setup the tcp function block list */
1184 	TAILQ_INIT(&t_functions);
1185 	rw_init(&tcp_function_lock, "tcp_func_lock");
1186 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
1187 #ifdef TCP_BLACKBOX
1188 	/* Initialize the TCP logging data. */
1189 	tcp_log_init();
1190 #endif
1191 	arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0);
1192 
1193 	if (tcp_soreceive_stream) {
1194 #ifdef INET
1195 		tcp_usrreqs.pru_soreceive = soreceive_stream;
1196 #endif
1197 #ifdef INET6
1198 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
1199 #endif /* INET6 */
1200 	}
1201 
1202 #ifdef INET6
1203 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
1204 #else /* INET6 */
1205 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
1206 #endif /* INET6 */
1207 	if (max_protohdr < TCP_MINPROTOHDR)
1208 		max_protohdr = TCP_MINPROTOHDR;
1209 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
1210 		panic("tcp_init");
1211 #undef TCP_MINPROTOHDR
1212 
1213 	ISN_LOCK_INIT();
1214 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
1215 		SHUTDOWN_PRI_DEFAULT);
1216 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
1217 		EVENTHANDLER_PRI_ANY);
1218 
1219 	tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK);
1220 	tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK);
1221 	tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK);
1222 	tcp_inp_lro_single_push = counter_u64_alloc(M_WAITOK);
1223 	tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK);
1224 	tcp_inp_lro_sack_wake = counter_u64_alloc(M_WAITOK);
1225 #ifdef TCPPCAP
1226 	tcp_pcap_init();
1227 #endif
1228 }
1229 
1230 #ifdef VIMAGE
1231 static void
1232 tcp_destroy(void *unused __unused)
1233 {
1234 	int n;
1235 #ifdef TCP_HHOOK
1236 	int error;
1237 #endif
1238 
1239 	/*
1240 	 * All our processes are gone, all our sockets should be cleaned
1241 	 * up, which means, we should be past the tcp_discardcb() calls.
1242 	 * Sleep to let all tcpcb timers really disappear and cleanup.
1243 	 */
1244 	for (;;) {
1245 		INP_LIST_RLOCK(&V_tcbinfo);
1246 		n = V_tcbinfo.ipi_count;
1247 		INP_LIST_RUNLOCK(&V_tcbinfo);
1248 		if (n == 0)
1249 			break;
1250 		pause("tcpdes", hz / 10);
1251 	}
1252 	tcp_hc_destroy();
1253 	syncache_destroy();
1254 	tcp_tw_destroy();
1255 	in_pcbinfo_destroy(&V_tcbinfo);
1256 	/* tcp_discardcb() clears the sack_holes up. */
1257 	uma_zdestroy(V_sack_hole_zone);
1258 	uma_zdestroy(V_tcpcb_zone);
1259 
1260 	/*
1261 	 * Cannot free the zone until all tcpcbs are released as we attach
1262 	 * the allocations to them.
1263 	 */
1264 	tcp_fastopen_destroy();
1265 
1266 #ifdef TCP_HHOOK
1267 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
1268 	if (error != 0) {
1269 		printf("%s: WARNING: unable to deregister helper hook "
1270 		    "type=%d, id=%d: error %d returned\n", __func__,
1271 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
1272 	}
1273 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
1274 	if (error != 0) {
1275 		printf("%s: WARNING: unable to deregister helper hook "
1276 		    "type=%d, id=%d: error %d returned\n", __func__,
1277 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
1278 	}
1279 #endif
1280 }
1281 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL);
1282 #endif
1283 
1284 void
1285 tcp_fini(void *xtp)
1286 {
1287 
1288 }
1289 
1290 /*
1291  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
1292  * tcp_template used to store this data in mbufs, but we now recopy it out
1293  * of the tcpcb each time to conserve mbufs.
1294  */
1295 void
1296 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
1297 {
1298 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
1299 
1300 	INP_WLOCK_ASSERT(inp);
1301 
1302 #ifdef INET6
1303 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1304 		struct ip6_hdr *ip6;
1305 
1306 		ip6 = (struct ip6_hdr *)ip_ptr;
1307 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
1308 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
1309 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
1310 			(IPV6_VERSION & IPV6_VERSION_MASK);
1311 		ip6->ip6_nxt = IPPROTO_TCP;
1312 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
1313 		ip6->ip6_src = inp->in6p_laddr;
1314 		ip6->ip6_dst = inp->in6p_faddr;
1315 	}
1316 #endif /* INET6 */
1317 #if defined(INET6) && defined(INET)
1318 	else
1319 #endif
1320 #ifdef INET
1321 	{
1322 		struct ip *ip;
1323 
1324 		ip = (struct ip *)ip_ptr;
1325 		ip->ip_v = IPVERSION;
1326 		ip->ip_hl = 5;
1327 		ip->ip_tos = inp->inp_ip_tos;
1328 		ip->ip_len = 0;
1329 		ip->ip_id = 0;
1330 		ip->ip_off = 0;
1331 		ip->ip_ttl = inp->inp_ip_ttl;
1332 		ip->ip_sum = 0;
1333 		ip->ip_p = IPPROTO_TCP;
1334 		ip->ip_src = inp->inp_laddr;
1335 		ip->ip_dst = inp->inp_faddr;
1336 	}
1337 #endif /* INET */
1338 	th->th_sport = inp->inp_lport;
1339 	th->th_dport = inp->inp_fport;
1340 	th->th_seq = 0;
1341 	th->th_ack = 0;
1342 	th->th_x2 = 0;
1343 	th->th_off = 5;
1344 	th->th_flags = 0;
1345 	th->th_win = 0;
1346 	th->th_urp = 0;
1347 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
1348 }
1349 
1350 /*
1351  * Create template to be used to send tcp packets on a connection.
1352  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
1353  * use for this function is in keepalives, which use tcp_respond.
1354  */
1355 struct tcptemp *
1356 tcpip_maketemplate(struct inpcb *inp)
1357 {
1358 	struct tcptemp *t;
1359 
1360 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
1361 	if (t == NULL)
1362 		return (NULL);
1363 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
1364 	return (t);
1365 }
1366 
1367 /*
1368  * Send a single message to the TCP at address specified by
1369  * the given TCP/IP header.  If m == NULL, then we make a copy
1370  * of the tcpiphdr at th and send directly to the addressed host.
1371  * This is used to force keep alive messages out using the TCP
1372  * template for a connection.  If flags are given then we send
1373  * a message back to the TCP which originated the segment th,
1374  * and discard the mbuf containing it and any other attached mbufs.
1375  *
1376  * In any case the ack and sequence number of the transmitted
1377  * segment are as specified by the parameters.
1378  *
1379  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
1380  */
1381 void
1382 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
1383     tcp_seq ack, tcp_seq seq, int flags)
1384 {
1385 	struct tcpopt to;
1386 	struct inpcb *inp;
1387 	struct ip *ip;
1388 	struct mbuf *optm;
1389 	struct tcphdr *nth;
1390 	u_char *optp;
1391 #ifdef INET6
1392 	struct ip6_hdr *ip6;
1393 	int isipv6;
1394 #endif /* INET6 */
1395 	int optlen, tlen, win;
1396 	bool incl_opts;
1397 
1398 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
1399 	NET_EPOCH_ASSERT();
1400 
1401 #ifdef INET6
1402 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
1403 	ip6 = ipgen;
1404 #endif /* INET6 */
1405 	ip = ipgen;
1406 
1407 	if (tp != NULL) {
1408 		inp = tp->t_inpcb;
1409 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
1410 		INP_WLOCK_ASSERT(inp);
1411 	} else
1412 		inp = NULL;
1413 
1414 	incl_opts = false;
1415 	win = 0;
1416 	if (tp != NULL) {
1417 		if (!(flags & TH_RST)) {
1418 			win = sbspace(&inp->inp_socket->so_rcv);
1419 			if (win > TCP_MAXWIN << tp->rcv_scale)
1420 				win = TCP_MAXWIN << tp->rcv_scale;
1421 		}
1422 		if ((tp->t_flags & TF_NOOPT) == 0)
1423 			incl_opts = true;
1424 	}
1425 	if (m == NULL) {
1426 		m = m_gethdr(M_NOWAIT, MT_DATA);
1427 		if (m == NULL)
1428 			return;
1429 		m->m_data += max_linkhdr;
1430 #ifdef INET6
1431 		if (isipv6) {
1432 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
1433 			      sizeof(struct ip6_hdr));
1434 			ip6 = mtod(m, struct ip6_hdr *);
1435 			nth = (struct tcphdr *)(ip6 + 1);
1436 		} else
1437 #endif /* INET6 */
1438 		{
1439 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1440 			ip = mtod(m, struct ip *);
1441 			nth = (struct tcphdr *)(ip + 1);
1442 		}
1443 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1444 		flags = TH_ACK;
1445 	} else if (!M_WRITABLE(m)) {
1446 		struct mbuf *n;
1447 
1448 		/* Can't reuse 'm', allocate a new mbuf. */
1449 		n = m_gethdr(M_NOWAIT, MT_DATA);
1450 		if (n == NULL) {
1451 			m_freem(m);
1452 			return;
1453 		}
1454 
1455 		if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
1456 			m_freem(m);
1457 			m_freem(n);
1458 			return;
1459 		}
1460 
1461 		n->m_data += max_linkhdr;
1462 		/* m_len is set later */
1463 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
1464 #ifdef INET6
1465 		if (isipv6) {
1466 			bcopy((caddr_t)ip6, mtod(n, caddr_t),
1467 			      sizeof(struct ip6_hdr));
1468 			ip6 = mtod(n, struct ip6_hdr *);
1469 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1470 			nth = (struct tcphdr *)(ip6 + 1);
1471 		} else
1472 #endif /* INET6 */
1473 		{
1474 			bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
1475 			ip = mtod(n, struct ip *);
1476 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1477 			nth = (struct tcphdr *)(ip + 1);
1478 		}
1479 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1480 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1481 		th = nth;
1482 		m_freem(m);
1483 		m = n;
1484 	} else {
1485 		/*
1486 		 *  reuse the mbuf.
1487 		 * XXX MRT We inherit the FIB, which is lucky.
1488 		 */
1489 		m_freem(m->m_next);
1490 		m->m_next = NULL;
1491 		m->m_data = (caddr_t)ipgen;
1492 		/* m_len is set later */
1493 #ifdef INET6
1494 		if (isipv6) {
1495 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1496 			nth = (struct tcphdr *)(ip6 + 1);
1497 		} else
1498 #endif /* INET6 */
1499 		{
1500 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1501 			nth = (struct tcphdr *)(ip + 1);
1502 		}
1503 		if (th != nth) {
1504 			/*
1505 			 * this is usually a case when an extension header
1506 			 * exists between the IPv6 header and the
1507 			 * TCP header.
1508 			 */
1509 			nth->th_sport = th->th_sport;
1510 			nth->th_dport = th->th_dport;
1511 		}
1512 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1513 #undef xchg
1514 	}
1515 	tlen = 0;
1516 #ifdef INET6
1517 	if (isipv6)
1518 		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
1519 #endif
1520 #if defined(INET) && defined(INET6)
1521 	else
1522 #endif
1523 #ifdef INET
1524 		tlen = sizeof (struct tcpiphdr);
1525 #endif
1526 #ifdef INVARIANTS
1527 	m->m_len = 0;
1528 	KASSERT(M_TRAILINGSPACE(m) >= tlen,
1529 	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
1530 	    m, tlen, (long)M_TRAILINGSPACE(m)));
1531 #endif
1532 	m->m_len = tlen;
1533 	to.to_flags = 0;
1534 	if (incl_opts) {
1535 		/* Make sure we have room. */
1536 		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
1537 			m->m_next = m_get(M_NOWAIT, MT_DATA);
1538 			if (m->m_next) {
1539 				optp = mtod(m->m_next, u_char *);
1540 				optm = m->m_next;
1541 			} else
1542 				incl_opts = false;
1543 		} else {
1544 			optp = (u_char *) (nth + 1);
1545 			optm = m;
1546 		}
1547 	}
1548 	if (incl_opts) {
1549 		/* Timestamps. */
1550 		if (tp->t_flags & TF_RCVD_TSTMP) {
1551 			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
1552 			to.to_tsecr = tp->ts_recent;
1553 			to.to_flags |= TOF_TS;
1554 		}
1555 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1556 		/* TCP-MD5 (RFC2385). */
1557 		if (tp->t_flags & TF_SIGNATURE)
1558 			to.to_flags |= TOF_SIGNATURE;
1559 #endif
1560 		/* Add the options. */
1561 		tlen += optlen = tcp_addoptions(&to, optp);
1562 
1563 		/* Update m_len in the correct mbuf. */
1564 		optm->m_len += optlen;
1565 	} else
1566 		optlen = 0;
1567 #ifdef INET6
1568 	if (isipv6) {
1569 		ip6->ip6_flow = 0;
1570 		ip6->ip6_vfc = IPV6_VERSION;
1571 		ip6->ip6_nxt = IPPROTO_TCP;
1572 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
1573 	}
1574 #endif
1575 #if defined(INET) && defined(INET6)
1576 	else
1577 #endif
1578 #ifdef INET
1579 	{
1580 		ip->ip_len = htons(tlen);
1581 		ip->ip_ttl = V_ip_defttl;
1582 		if (V_path_mtu_discovery)
1583 			ip->ip_off |= htons(IP_DF);
1584 	}
1585 #endif
1586 	m->m_pkthdr.len = tlen;
1587 	m->m_pkthdr.rcvif = NULL;
1588 #ifdef MAC
1589 	if (inp != NULL) {
1590 		/*
1591 		 * Packet is associated with a socket, so allow the
1592 		 * label of the response to reflect the socket label.
1593 		 */
1594 		INP_WLOCK_ASSERT(inp);
1595 		mac_inpcb_create_mbuf(inp, m);
1596 	} else {
1597 		/*
1598 		 * Packet is not associated with a socket, so possibly
1599 		 * update the label in place.
1600 		 */
1601 		mac_netinet_tcp_reply(m);
1602 	}
1603 #endif
1604 	nth->th_seq = htonl(seq);
1605 	nth->th_ack = htonl(ack);
1606 	nth->th_x2 = 0;
1607 	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
1608 	nth->th_flags = flags;
1609 	if (tp != NULL)
1610 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
1611 	else
1612 		nth->th_win = htons((u_short)win);
1613 	nth->th_urp = 0;
1614 
1615 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1616 	if (to.to_flags & TOF_SIGNATURE) {
1617 		if (!TCPMD5_ENABLED() ||
1618 		    TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) {
1619 			m_freem(m);
1620 			return;
1621 		}
1622 	}
1623 #endif
1624 
1625 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1626 #ifdef INET6
1627 	if (isipv6) {
1628 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1629 		nth->th_sum = in6_cksum_pseudo(ip6,
1630 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
1631 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
1632 		    NULL, NULL);
1633 	}
1634 #endif /* INET6 */
1635 #if defined(INET6) && defined(INET)
1636 	else
1637 #endif
1638 #ifdef INET
1639 	{
1640 		m->m_pkthdr.csum_flags = CSUM_TCP;
1641 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1642 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1643 	}
1644 #endif /* INET */
1645 #ifdef TCPDEBUG
1646 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1647 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1648 #endif
1649 	TCP_PROBE3(debug__output, tp, th, m);
1650 	if (flags & TH_RST)
1651 		TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth);
1652 
1653 #ifdef INET6
1654 	if (isipv6) {
1655 		TCP_PROBE5(send, NULL, tp, ip6, tp, nth);
1656 		(void)ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1657 	}
1658 #endif /* INET6 */
1659 #if defined(INET) && defined(INET6)
1660 	else
1661 #endif
1662 #ifdef INET
1663 	{
1664 		TCP_PROBE5(send, NULL, tp, ip, tp, nth);
1665 		(void)ip_output(m, NULL, NULL, 0, NULL, inp);
1666 	}
1667 #endif
1668 }
1669 
1670 /*
1671  * Create a new TCP control block, making an
1672  * empty reassembly queue and hooking it to the argument
1673  * protocol control block.  The `inp' parameter must have
1674  * come from the zone allocator set up in tcp_init().
1675  */
1676 struct tcpcb *
1677 tcp_newtcpcb(struct inpcb *inp)
1678 {
1679 	struct tcpcb_mem *tm;
1680 	struct tcpcb *tp;
1681 #ifdef INET6
1682 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1683 #endif /* INET6 */
1684 
1685 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1686 	if (tm == NULL)
1687 		return (NULL);
1688 	tp = &tm->tcb;
1689 
1690 	/* Initialise cc_var struct for this tcpcb. */
1691 	tp->ccv = &tm->ccv;
1692 	tp->ccv->type = IPPROTO_TCP;
1693 	tp->ccv->ccvc.tcp = tp;
1694 	rw_rlock(&tcp_function_lock);
1695 	tp->t_fb = tcp_func_set_ptr;
1696 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1697 	rw_runlock(&tcp_function_lock);
1698 	/*
1699 	 * Use the current system default CC algorithm.
1700 	 */
1701 	CC_LIST_RLOCK();
1702 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1703 	CC_ALGO(tp) = CC_DEFAULT();
1704 	CC_LIST_RUNLOCK();
1705 	/*
1706 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1707 	 * is called.
1708 	 */
1709 	in_pcbref(inp);	/* Reference for tcpcb */
1710 	tp->t_inpcb = inp;
1711 
1712 	if (CC_ALGO(tp)->cb_init != NULL)
1713 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1714 			if (tp->t_fb->tfb_tcp_fb_fini)
1715 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1716 			refcount_release(&tp->t_fb->tfb_refcnt);
1717 			uma_zfree(V_tcpcb_zone, tm);
1718 			return (NULL);
1719 		}
1720 
1721 #ifdef TCP_HHOOK
1722 	tp->osd = &tm->osd;
1723 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1724 		if (tp->t_fb->tfb_tcp_fb_fini)
1725 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1726 		refcount_release(&tp->t_fb->tfb_refcnt);
1727 		uma_zfree(V_tcpcb_zone, tm);
1728 		return (NULL);
1729 	}
1730 #endif
1731 
1732 #ifdef VIMAGE
1733 	tp->t_vnet = inp->inp_vnet;
1734 #endif
1735 	tp->t_timers = &tm->tt;
1736 	TAILQ_INIT(&tp->t_segq);
1737 	tp->t_maxseg =
1738 #ifdef INET6
1739 		isipv6 ? V_tcp_v6mssdflt :
1740 #endif /* INET6 */
1741 		V_tcp_mssdflt;
1742 
1743 	/* Set up our timeouts. */
1744 	callout_init(&tp->t_timers->tt_rexmt, 1);
1745 	callout_init(&tp->t_timers->tt_persist, 1);
1746 	callout_init(&tp->t_timers->tt_keep, 1);
1747 	callout_init(&tp->t_timers->tt_2msl, 1);
1748 	callout_init(&tp->t_timers->tt_delack, 1);
1749 
1750 	if (V_tcp_do_rfc1323)
1751 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1752 	if (V_tcp_do_sack)
1753 		tp->t_flags |= TF_SACK_PERMIT;
1754 	TAILQ_INIT(&tp->snd_holes);
1755 
1756 	/*
1757 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1758 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1759 	 * reasonable initial retransmit time.
1760 	 */
1761 	tp->t_srtt = TCPTV_SRTTBASE;
1762 	tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1763 	tp->t_rttmin = tcp_rexmit_min;
1764 	tp->t_rxtcur = tcp_rexmit_initial;
1765 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1766 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1767 	tp->t_rcvtime = ticks;
1768 	/*
1769 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1770 	 * because the socket may be bound to an IPv6 wildcard address,
1771 	 * which may match an IPv4-mapped IPv6 address.
1772 	 */
1773 	inp->inp_ip_ttl = V_ip_defttl;
1774 	inp->inp_ppcb = tp;
1775 #ifdef TCPPCAP
1776 	/*
1777 	 * Init the TCP PCAP queues.
1778 	 */
1779 	tcp_pcap_tcpcb_init(tp);
1780 #endif
1781 #ifdef TCP_BLACKBOX
1782 	/* Initialize the per-TCPCB log data. */
1783 	tcp_log_tcpcbinit(tp);
1784 #endif
1785 	if (tp->t_fb->tfb_tcp_fb_init) {
1786 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1787 	}
1788 #ifdef STATS
1789 	if (V_tcp_perconn_stats_enable == 1)
1790 		tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0);
1791 #endif
1792 	return (tp);		/* XXX */
1793 }
1794 
1795 /*
1796  * Switch the congestion control algorithm back to NewReno for any active
1797  * control blocks using an algorithm which is about to go away.
1798  * This ensures the CC framework can allow the unload to proceed without leaving
1799  * any dangling pointers which would trigger a panic.
1800  * Returning non-zero would inform the CC framework that something went wrong
1801  * and it would be unsafe to allow the unload to proceed. However, there is no
1802  * way for this to occur with this implementation so we always return zero.
1803  */
1804 int
1805 tcp_ccalgounload(struct cc_algo *unload_algo)
1806 {
1807 	struct cc_algo *tmpalgo;
1808 	struct inpcb *inp;
1809 	struct tcpcb *tp;
1810 	VNET_ITERATOR_DECL(vnet_iter);
1811 
1812 	/*
1813 	 * Check all active control blocks across all network stacks and change
1814 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1815 	 * requires cleanup code to be run, call it.
1816 	 */
1817 	VNET_LIST_RLOCK();
1818 	VNET_FOREACH(vnet_iter) {
1819 		CURVNET_SET(vnet_iter);
1820 		INP_INFO_WLOCK(&V_tcbinfo);
1821 		/*
1822 		 * New connections already part way through being initialised
1823 		 * with the CC algo we're removing will not race with this code
1824 		 * because the INP_INFO_WLOCK is held during initialisation. We
1825 		 * therefore don't enter the loop below until the connection
1826 		 * list has stabilised.
1827 		 */
1828 		CK_LIST_FOREACH(inp, &V_tcb, inp_list) {
1829 			INP_WLOCK(inp);
1830 			/* Important to skip tcptw structs. */
1831 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1832 			    (tp = intotcpcb(inp)) != NULL) {
1833 				/*
1834 				 * By holding INP_WLOCK here, we are assured
1835 				 * that the connection is not currently
1836 				 * executing inside the CC module's functions
1837 				 * i.e. it is safe to make the switch back to
1838 				 * NewReno.
1839 				 */
1840 				if (CC_ALGO(tp) == unload_algo) {
1841 					tmpalgo = CC_ALGO(tp);
1842 					if (tmpalgo->cb_destroy != NULL)
1843 						tmpalgo->cb_destroy(tp->ccv);
1844 					CC_DATA(tp) = NULL;
1845 					/*
1846 					 * NewReno may allocate memory on
1847 					 * demand for certain stateful
1848 					 * configuration as needed, but is
1849 					 * coded to never fail on memory
1850 					 * allocation failure so it is a safe
1851 					 * fallback.
1852 					 */
1853 					CC_ALGO(tp) = &newreno_cc_algo;
1854 				}
1855 			}
1856 			INP_WUNLOCK(inp);
1857 		}
1858 		INP_INFO_WUNLOCK(&V_tcbinfo);
1859 		CURVNET_RESTORE();
1860 	}
1861 	VNET_LIST_RUNLOCK();
1862 
1863 	return (0);
1864 }
1865 
1866 /*
1867  * Drop a TCP connection, reporting
1868  * the specified error.  If connection is synchronized,
1869  * then send a RST to peer.
1870  */
1871 struct tcpcb *
1872 tcp_drop(struct tcpcb *tp, int errno)
1873 {
1874 	struct socket *so = tp->t_inpcb->inp_socket;
1875 
1876 	NET_EPOCH_ASSERT();
1877 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1878 	INP_WLOCK_ASSERT(tp->t_inpcb);
1879 
1880 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1881 		tcp_state_change(tp, TCPS_CLOSED);
1882 		(void) tp->t_fb->tfb_tcp_output(tp);
1883 		TCPSTAT_INC(tcps_drops);
1884 	} else
1885 		TCPSTAT_INC(tcps_conndrops);
1886 	if (errno == ETIMEDOUT && tp->t_softerror)
1887 		errno = tp->t_softerror;
1888 	so->so_error = errno;
1889 	return (tcp_close(tp));
1890 }
1891 
1892 void
1893 tcp_discardcb(struct tcpcb *tp)
1894 {
1895 	struct inpcb *inp = tp->t_inpcb;
1896 	struct socket *so = inp->inp_socket;
1897 #ifdef INET6
1898 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1899 #endif /* INET6 */
1900 	int released __unused;
1901 
1902 	INP_WLOCK_ASSERT(inp);
1903 
1904 	/*
1905 	 * Make sure that all of our timers are stopped before we delete the
1906 	 * PCB.
1907 	 *
1908 	 * If stopping a timer fails, we schedule a discard function in same
1909 	 * callout, and the last discard function called will take care of
1910 	 * deleting the tcpcb.
1911 	 */
1912 	tp->t_timers->tt_draincnt = 0;
1913 	tcp_timer_stop(tp, TT_REXMT);
1914 	tcp_timer_stop(tp, TT_PERSIST);
1915 	tcp_timer_stop(tp, TT_KEEP);
1916 	tcp_timer_stop(tp, TT_2MSL);
1917 	tcp_timer_stop(tp, TT_DELACK);
1918 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1919 		/*
1920 		 * Call the stop-all function of the methods,
1921 		 * this function should call the tcp_timer_stop()
1922 		 * method with each of the function specific timeouts.
1923 		 * That stop will be called via the tfb_tcp_timer_stop()
1924 		 * which should use the async drain function of the
1925 		 * callout system (see tcp_var.h).
1926 		 */
1927 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1928 	}
1929 
1930 	/*
1931 	 * If we got enough samples through the srtt filter,
1932 	 * save the rtt and rttvar in the routing entry.
1933 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1934 	 * 4 samples is enough for the srtt filter to converge
1935 	 * to within enough % of the correct value; fewer samples
1936 	 * and we could save a bogus rtt. The danger is not high
1937 	 * as tcp quickly recovers from everything.
1938 	 * XXX: Works very well but needs some more statistics!
1939 	 */
1940 	if (tp->t_rttupdated >= 4) {
1941 		struct hc_metrics_lite metrics;
1942 		uint32_t ssthresh;
1943 
1944 		bzero(&metrics, sizeof(metrics));
1945 		/*
1946 		 * Update the ssthresh always when the conditions below
1947 		 * are satisfied. This gives us better new start value
1948 		 * for the congestion avoidance for new connections.
1949 		 * ssthresh is only set if packet loss occurred on a session.
1950 		 *
1951 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1952 		 * being torn down.  Ideally this code would not use 'so'.
1953 		 */
1954 		ssthresh = tp->snd_ssthresh;
1955 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1956 			/*
1957 			 * convert the limit from user data bytes to
1958 			 * packets then to packet data bytes.
1959 			 */
1960 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1961 			if (ssthresh < 2)
1962 				ssthresh = 2;
1963 			ssthresh *= (tp->t_maxseg +
1964 #ifdef INET6
1965 			    (isipv6 ? sizeof (struct ip6_hdr) +
1966 				sizeof (struct tcphdr) :
1967 #endif
1968 				sizeof (struct tcpiphdr)
1969 #ifdef INET6
1970 			    )
1971 #endif
1972 			    );
1973 		} else
1974 			ssthresh = 0;
1975 		metrics.rmx_ssthresh = ssthresh;
1976 
1977 		metrics.rmx_rtt = tp->t_srtt;
1978 		metrics.rmx_rttvar = tp->t_rttvar;
1979 		metrics.rmx_cwnd = tp->snd_cwnd;
1980 		metrics.rmx_sendpipe = 0;
1981 		metrics.rmx_recvpipe = 0;
1982 
1983 		tcp_hc_update(&inp->inp_inc, &metrics);
1984 	}
1985 
1986 	/* free the reassembly queue, if any */
1987 	tcp_reass_flush(tp);
1988 
1989 #ifdef TCP_OFFLOAD
1990 	/* Disconnect offload device, if any. */
1991 	if (tp->t_flags & TF_TOE)
1992 		tcp_offload_detach(tp);
1993 #endif
1994 
1995 	tcp_free_sackholes(tp);
1996 
1997 #ifdef TCPPCAP
1998 	/* Free the TCP PCAP queues. */
1999 	tcp_pcap_drain(&(tp->t_inpkts));
2000 	tcp_pcap_drain(&(tp->t_outpkts));
2001 #endif
2002 
2003 	/* Allow the CC algorithm to clean up after itself. */
2004 	if (CC_ALGO(tp)->cb_destroy != NULL)
2005 		CC_ALGO(tp)->cb_destroy(tp->ccv);
2006 	CC_DATA(tp) = NULL;
2007 
2008 #ifdef TCP_HHOOK
2009 	khelp_destroy_osd(tp->osd);
2010 #endif
2011 #ifdef STATS
2012 	stats_blob_destroy(tp->t_stats);
2013 #endif
2014 
2015 	CC_ALGO(tp) = NULL;
2016 	inp->inp_ppcb = NULL;
2017 	if (tp->t_timers->tt_draincnt == 0) {
2018 		/* We own the last reference on tcpcb, let's free it. */
2019 #ifdef TCP_BLACKBOX
2020 		tcp_log_tcpcbfini(tp);
2021 #endif
2022 		TCPSTATES_DEC(tp->t_state);
2023 		if (tp->t_fb->tfb_tcp_fb_fini)
2024 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2025 		refcount_release(&tp->t_fb->tfb_refcnt);
2026 		tp->t_inpcb = NULL;
2027 		uma_zfree(V_tcpcb_zone, tp);
2028 		released = in_pcbrele_wlocked(inp);
2029 		KASSERT(!released, ("%s: inp %p should not have been released "
2030 			"here", __func__, inp));
2031 	}
2032 }
2033 
2034 void
2035 tcp_timer_discard(void *ptp)
2036 {
2037 	struct inpcb *inp;
2038 	struct tcpcb *tp;
2039 	struct epoch_tracker et;
2040 
2041 	tp = (struct tcpcb *)ptp;
2042 	CURVNET_SET(tp->t_vnet);
2043 	NET_EPOCH_ENTER(et);
2044 	inp = tp->t_inpcb;
2045 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
2046 		__func__, tp));
2047 	INP_WLOCK(inp);
2048 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
2049 		("%s: tcpcb has to be stopped here", __func__));
2050 	tp->t_timers->tt_draincnt--;
2051 	if (tp->t_timers->tt_draincnt == 0) {
2052 		/* We own the last reference on this tcpcb, let's free it. */
2053 #ifdef TCP_BLACKBOX
2054 		tcp_log_tcpcbfini(tp);
2055 #endif
2056 		TCPSTATES_DEC(tp->t_state);
2057 		if (tp->t_fb->tfb_tcp_fb_fini)
2058 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2059 		refcount_release(&tp->t_fb->tfb_refcnt);
2060 		tp->t_inpcb = NULL;
2061 		uma_zfree(V_tcpcb_zone, tp);
2062 		if (in_pcbrele_wlocked(inp)) {
2063 			NET_EPOCH_EXIT(et);
2064 			CURVNET_RESTORE();
2065 			return;
2066 		}
2067 	}
2068 	INP_WUNLOCK(inp);
2069 	NET_EPOCH_EXIT(et);
2070 	CURVNET_RESTORE();
2071 }
2072 
2073 /*
2074  * Attempt to close a TCP control block, marking it as dropped, and freeing
2075  * the socket if we hold the only reference.
2076  */
2077 struct tcpcb *
2078 tcp_close(struct tcpcb *tp)
2079 {
2080 	struct inpcb *inp = tp->t_inpcb;
2081 	struct socket *so;
2082 
2083 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2084 	INP_WLOCK_ASSERT(inp);
2085 
2086 #ifdef TCP_OFFLOAD
2087 	if (tp->t_state == TCPS_LISTEN)
2088 		tcp_offload_listen_stop(tp);
2089 #endif
2090 	/*
2091 	 * This releases the TFO pending counter resource for TFO listen
2092 	 * sockets as well as passively-created TFO sockets that transition
2093 	 * from SYN_RECEIVED to CLOSED.
2094 	 */
2095 	if (tp->t_tfo_pending) {
2096 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2097 		tp->t_tfo_pending = NULL;
2098 	}
2099 	in_pcbdrop(inp);
2100 	TCPSTAT_INC(tcps_closed);
2101 	if (tp->t_state != TCPS_CLOSED)
2102 		tcp_state_change(tp, TCPS_CLOSED);
2103 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
2104 	so = inp->inp_socket;
2105 	soisdisconnected(so);
2106 	if (inp->inp_flags & INP_SOCKREF) {
2107 		KASSERT(so->so_state & SS_PROTOREF,
2108 		    ("tcp_close: !SS_PROTOREF"));
2109 		inp->inp_flags &= ~INP_SOCKREF;
2110 		INP_WUNLOCK(inp);
2111 		SOCK_LOCK(so);
2112 		so->so_state &= ~SS_PROTOREF;
2113 		sofree(so);
2114 		return (NULL);
2115 	}
2116 	return (tp);
2117 }
2118 
2119 void
2120 tcp_drain(void)
2121 {
2122 	VNET_ITERATOR_DECL(vnet_iter);
2123 
2124 	if (!do_tcpdrain)
2125 		return;
2126 
2127 	VNET_LIST_RLOCK_NOSLEEP();
2128 	VNET_FOREACH(vnet_iter) {
2129 		CURVNET_SET(vnet_iter);
2130 		struct inpcb *inpb;
2131 		struct tcpcb *tcpb;
2132 
2133 	/*
2134 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
2135 	 * if there is one...
2136 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
2137 	 *      reassembly queue should be flushed, but in a situation
2138 	 *	where we're really low on mbufs, this is potentially
2139 	 *	useful.
2140 	 */
2141 		INP_INFO_WLOCK(&V_tcbinfo);
2142 		CK_LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
2143 			INP_WLOCK(inpb);
2144 			if (inpb->inp_flags & INP_TIMEWAIT) {
2145 				INP_WUNLOCK(inpb);
2146 				continue;
2147 			}
2148 			if ((tcpb = intotcpcb(inpb)) != NULL) {
2149 				tcp_reass_flush(tcpb);
2150 				tcp_clean_sackreport(tcpb);
2151 #ifdef TCP_BLACKBOX
2152 				tcp_log_drain(tcpb);
2153 #endif
2154 #ifdef TCPPCAP
2155 				if (tcp_pcap_aggressive_free) {
2156 					/* Free the TCP PCAP queues. */
2157 					tcp_pcap_drain(&(tcpb->t_inpkts));
2158 					tcp_pcap_drain(&(tcpb->t_outpkts));
2159 				}
2160 #endif
2161 			}
2162 			INP_WUNLOCK(inpb);
2163 		}
2164 		INP_INFO_WUNLOCK(&V_tcbinfo);
2165 		CURVNET_RESTORE();
2166 	}
2167 	VNET_LIST_RUNLOCK_NOSLEEP();
2168 }
2169 
2170 /*
2171  * Notify a tcp user of an asynchronous error;
2172  * store error as soft error, but wake up user
2173  * (for now, won't do anything until can select for soft error).
2174  *
2175  * Do not wake up user since there currently is no mechanism for
2176  * reporting soft errors (yet - a kqueue filter may be added).
2177  */
2178 static struct inpcb *
2179 tcp_notify(struct inpcb *inp, int error)
2180 {
2181 	struct tcpcb *tp;
2182 
2183 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2184 	INP_WLOCK_ASSERT(inp);
2185 
2186 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2187 	    (inp->inp_flags & INP_DROPPED))
2188 		return (inp);
2189 
2190 	tp = intotcpcb(inp);
2191 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
2192 
2193 	/*
2194 	 * Ignore some errors if we are hooked up.
2195 	 * If connection hasn't completed, has retransmitted several times,
2196 	 * and receives a second error, give up now.  This is better
2197 	 * than waiting a long time to establish a connection that
2198 	 * can never complete.
2199 	 */
2200 	if (tp->t_state == TCPS_ESTABLISHED &&
2201 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
2202 	     error == EHOSTDOWN)) {
2203 		if (inp->inp_route.ro_nh) {
2204 			NH_FREE(inp->inp_route.ro_nh);
2205 			inp->inp_route.ro_nh = (struct nhop_object *)NULL;
2206 		}
2207 		return (inp);
2208 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
2209 	    tp->t_softerror) {
2210 		tp = tcp_drop(tp, error);
2211 		if (tp != NULL)
2212 			return (inp);
2213 		else
2214 			return (NULL);
2215 	} else {
2216 		tp->t_softerror = error;
2217 		return (inp);
2218 	}
2219 #if 0
2220 	wakeup( &so->so_timeo);
2221 	sorwakeup(so);
2222 	sowwakeup(so);
2223 #endif
2224 }
2225 
2226 static int
2227 tcp_pcblist(SYSCTL_HANDLER_ARGS)
2228 {
2229 	struct epoch_tracker et;
2230 	struct inpcb *inp;
2231 	struct xinpgen xig;
2232 	int error;
2233 
2234 	if (req->newptr != NULL)
2235 		return (EPERM);
2236 
2237 	if (req->oldptr == NULL) {
2238 		int n;
2239 
2240 		n = V_tcbinfo.ipi_count +
2241 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2242 		n += imax(n / 8, 10);
2243 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
2244 		return (0);
2245 	}
2246 
2247 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
2248 		return (error);
2249 
2250 	bzero(&xig, sizeof(xig));
2251 	xig.xig_len = sizeof xig;
2252 	xig.xig_count = V_tcbinfo.ipi_count +
2253 	    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2254 	xig.xig_gen = V_tcbinfo.ipi_gencnt;
2255 	xig.xig_sogen = so_gencnt;
2256 	error = SYSCTL_OUT(req, &xig, sizeof xig);
2257 	if (error)
2258 		return (error);
2259 
2260 	error = syncache_pcblist(req);
2261 	if (error)
2262 		return (error);
2263 
2264 	NET_EPOCH_ENTER(et);
2265 	for (inp = CK_LIST_FIRST(V_tcbinfo.ipi_listhead);
2266 	    inp != NULL;
2267 	    inp = CK_LIST_NEXT(inp, inp_list)) {
2268 		INP_RLOCK(inp);
2269 		if (inp->inp_gencnt <= xig.xig_gen) {
2270 			int crerr;
2271 
2272 			/*
2273 			 * XXX: This use of cr_cansee(), introduced with
2274 			 * TCP state changes, is not quite right, but for
2275 			 * now, better than nothing.
2276 			 */
2277 			if (inp->inp_flags & INP_TIMEWAIT) {
2278 				if (intotw(inp) != NULL)
2279 					crerr = cr_cansee(req->td->td_ucred,
2280 					    intotw(inp)->tw_cred);
2281 				else
2282 					crerr = EINVAL;	/* Skip this inp. */
2283 			} else
2284 				crerr = cr_canseeinpcb(req->td->td_ucred, inp);
2285 			if (crerr == 0) {
2286 				struct xtcpcb xt;
2287 
2288 				tcp_inptoxtp(inp, &xt);
2289 				INP_RUNLOCK(inp);
2290 				error = SYSCTL_OUT(req, &xt, sizeof xt);
2291 				if (error)
2292 					break;
2293 				else
2294 					continue;
2295 			}
2296 		}
2297 		INP_RUNLOCK(inp);
2298 	}
2299 	NET_EPOCH_EXIT(et);
2300 
2301 	if (!error) {
2302 		/*
2303 		 * Give the user an updated idea of our state.
2304 		 * If the generation differs from what we told
2305 		 * her before, she knows that something happened
2306 		 * while we were processing this request, and it
2307 		 * might be necessary to retry.
2308 		 */
2309 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
2310 		xig.xig_sogen = so_gencnt;
2311 		xig.xig_count = V_tcbinfo.ipi_count +
2312 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2313 		error = SYSCTL_OUT(req, &xig, sizeof xig);
2314 	}
2315 
2316 	return (error);
2317 }
2318 
2319 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
2320     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2321     NULL, 0, tcp_pcblist, "S,xtcpcb",
2322     "List of active TCP connections");
2323 
2324 #ifdef INET
2325 static int
2326 tcp_getcred(SYSCTL_HANDLER_ARGS)
2327 {
2328 	struct xucred xuc;
2329 	struct sockaddr_in addrs[2];
2330 	struct epoch_tracker et;
2331 	struct inpcb *inp;
2332 	int error;
2333 
2334 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
2335 	if (error)
2336 		return (error);
2337 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
2338 	if (error)
2339 		return (error);
2340 	NET_EPOCH_ENTER(et);
2341 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
2342 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
2343 	NET_EPOCH_EXIT(et);
2344 	if (inp != NULL) {
2345 		if (inp->inp_socket == NULL)
2346 			error = ENOENT;
2347 		if (error == 0)
2348 			error = cr_canseeinpcb(req->td->td_ucred, inp);
2349 		if (error == 0)
2350 			cru2x(inp->inp_cred, &xuc);
2351 		INP_RUNLOCK(inp);
2352 	} else
2353 		error = ENOENT;
2354 	if (error == 0)
2355 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
2356 	return (error);
2357 }
2358 
2359 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
2360     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
2361     0, 0, tcp_getcred, "S,xucred",
2362     "Get the xucred of a TCP connection");
2363 #endif /* INET */
2364 
2365 #ifdef INET6
2366 static int
2367 tcp6_getcred(SYSCTL_HANDLER_ARGS)
2368 {
2369 	struct epoch_tracker et;
2370 	struct xucred xuc;
2371 	struct sockaddr_in6 addrs[2];
2372 	struct inpcb *inp;
2373 	int error;
2374 #ifdef INET
2375 	int mapped = 0;
2376 #endif
2377 
2378 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
2379 	if (error)
2380 		return (error);
2381 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
2382 	if (error)
2383 		return (error);
2384 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
2385 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
2386 		return (error);
2387 	}
2388 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
2389 #ifdef INET
2390 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
2391 			mapped = 1;
2392 		else
2393 #endif
2394 			return (EINVAL);
2395 	}
2396 
2397 	NET_EPOCH_ENTER(et);
2398 #ifdef INET
2399 	if (mapped == 1)
2400 		inp = in_pcblookup(&V_tcbinfo,
2401 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
2402 			addrs[1].sin6_port,
2403 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
2404 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
2405 	else
2406 #endif
2407 		inp = in6_pcblookup(&V_tcbinfo,
2408 			&addrs[1].sin6_addr, addrs[1].sin6_port,
2409 			&addrs[0].sin6_addr, addrs[0].sin6_port,
2410 			INPLOOKUP_RLOCKPCB, NULL);
2411 	NET_EPOCH_EXIT(et);
2412 	if (inp != NULL) {
2413 		if (inp->inp_socket == NULL)
2414 			error = ENOENT;
2415 		if (error == 0)
2416 			error = cr_canseeinpcb(req->td->td_ucred, inp);
2417 		if (error == 0)
2418 			cru2x(inp->inp_cred, &xuc);
2419 		INP_RUNLOCK(inp);
2420 	} else
2421 		error = ENOENT;
2422 	if (error == 0)
2423 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
2424 	return (error);
2425 }
2426 
2427 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
2428     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
2429     0, 0, tcp6_getcred, "S,xucred",
2430     "Get the xucred of a TCP6 connection");
2431 #endif /* INET6 */
2432 
2433 
2434 #ifdef INET
2435 void
2436 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
2437 {
2438 	struct ip *ip = vip;
2439 	struct tcphdr *th;
2440 	struct in_addr faddr;
2441 	struct inpcb *inp;
2442 	struct tcpcb *tp;
2443 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
2444 	struct icmp *icp;
2445 	struct in_conninfo inc;
2446 	tcp_seq icmp_tcp_seq;
2447 	int mtu;
2448 
2449 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
2450 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
2451 		return;
2452 
2453 	if (cmd == PRC_MSGSIZE)
2454 		notify = tcp_mtudisc_notify;
2455 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
2456 		cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL ||
2457 		cmd == PRC_TIMXCEED_INTRANS) && ip)
2458 		notify = tcp_drop_syn_sent;
2459 
2460 	/*
2461 	 * Hostdead is ugly because it goes linearly through all PCBs.
2462 	 * XXX: We never get this from ICMP, otherwise it makes an
2463 	 * excellent DoS attack on machines with many connections.
2464 	 */
2465 	else if (cmd == PRC_HOSTDEAD)
2466 		ip = NULL;
2467 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
2468 		return;
2469 
2470 	if (ip == NULL) {
2471 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
2472 		return;
2473 	}
2474 
2475 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
2476 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
2477 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
2478 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
2479 	if (inp != NULL && PRC_IS_REDIRECT(cmd)) {
2480 		/* signal EHOSTDOWN, as it flushes the cached route */
2481 		inp = (*notify)(inp, EHOSTDOWN);
2482 		goto out;
2483 	}
2484 	icmp_tcp_seq = th->th_seq;
2485 	if (inp != NULL)  {
2486 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
2487 		    !(inp->inp_flags & INP_DROPPED) &&
2488 		    !(inp->inp_socket == NULL)) {
2489 			tp = intotcpcb(inp);
2490 			if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
2491 			    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
2492 				if (cmd == PRC_MSGSIZE) {
2493 					/*
2494 					 * MTU discovery:
2495 					 * If we got a needfrag set the MTU
2496 					 * in the route to the suggested new
2497 					 * value (if given) and then notify.
2498 					 */
2499 					mtu = ntohs(icp->icmp_nextmtu);
2500 					/*
2501 					 * If no alternative MTU was
2502 					 * proposed, try the next smaller
2503 					 * one.
2504 					 */
2505 					if (!mtu)
2506 						mtu = ip_next_mtu(
2507 						    ntohs(ip->ip_len), 1);
2508 					if (mtu < V_tcp_minmss +
2509 					    sizeof(struct tcpiphdr))
2510 						mtu = V_tcp_minmss +
2511 						    sizeof(struct tcpiphdr);
2512 					/*
2513 					 * Only process the offered MTU if it
2514 					 * is smaller than the current one.
2515 					 */
2516 					if (mtu < tp->t_maxseg +
2517 					    sizeof(struct tcpiphdr)) {
2518 						bzero(&inc, sizeof(inc));
2519 						inc.inc_faddr = faddr;
2520 						inc.inc_fibnum =
2521 						    inp->inp_inc.inc_fibnum;
2522 						tcp_hc_updatemtu(&inc, mtu);
2523 						tcp_mtudisc(inp, mtu);
2524 					}
2525 				} else
2526 					inp = (*notify)(inp,
2527 					    inetctlerrmap[cmd]);
2528 			}
2529 		}
2530 	} else {
2531 		bzero(&inc, sizeof(inc));
2532 		inc.inc_fport = th->th_dport;
2533 		inc.inc_lport = th->th_sport;
2534 		inc.inc_faddr = faddr;
2535 		inc.inc_laddr = ip->ip_src;
2536 		syncache_unreach(&inc, icmp_tcp_seq);
2537 	}
2538 out:
2539 	if (inp != NULL)
2540 		INP_WUNLOCK(inp);
2541 }
2542 #endif /* INET */
2543 
2544 #ifdef INET6
2545 void
2546 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
2547 {
2548 	struct in6_addr *dst;
2549 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
2550 	struct ip6_hdr *ip6;
2551 	struct mbuf *m;
2552 	struct inpcb *inp;
2553 	struct tcpcb *tp;
2554 	struct icmp6_hdr *icmp6;
2555 	struct ip6ctlparam *ip6cp = NULL;
2556 	const struct sockaddr_in6 *sa6_src = NULL;
2557 	struct in_conninfo inc;
2558 	struct tcp_ports {
2559 		uint16_t th_sport;
2560 		uint16_t th_dport;
2561 	} t_ports;
2562 	tcp_seq icmp_tcp_seq;
2563 	unsigned int mtu;
2564 	unsigned int off;
2565 
2566 	if (sa->sa_family != AF_INET6 ||
2567 	    sa->sa_len != sizeof(struct sockaddr_in6))
2568 		return;
2569 
2570 	/* if the parameter is from icmp6, decode it. */
2571 	if (d != NULL) {
2572 		ip6cp = (struct ip6ctlparam *)d;
2573 		icmp6 = ip6cp->ip6c_icmp6;
2574 		m = ip6cp->ip6c_m;
2575 		ip6 = ip6cp->ip6c_ip6;
2576 		off = ip6cp->ip6c_off;
2577 		sa6_src = ip6cp->ip6c_src;
2578 		dst = ip6cp->ip6c_finaldst;
2579 	} else {
2580 		m = NULL;
2581 		ip6 = NULL;
2582 		off = 0;	/* fool gcc */
2583 		sa6_src = &sa6_any;
2584 		dst = NULL;
2585 	}
2586 
2587 	if (cmd == PRC_MSGSIZE)
2588 		notify = tcp_mtudisc_notify;
2589 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
2590 		cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL ||
2591 		cmd == PRC_TIMXCEED_INTRANS) && ip6 != NULL)
2592 		notify = tcp_drop_syn_sent;
2593 
2594 	/*
2595 	 * Hostdead is ugly because it goes linearly through all PCBs.
2596 	 * XXX: We never get this from ICMP, otherwise it makes an
2597 	 * excellent DoS attack on machines with many connections.
2598 	 */
2599 	else if (cmd == PRC_HOSTDEAD)
2600 		ip6 = NULL;
2601 	else if ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)
2602 		return;
2603 
2604 	if (ip6 == NULL) {
2605 		in6_pcbnotify(&V_tcbinfo, sa, 0,
2606 			      (const struct sockaddr *)sa6_src,
2607 			      0, cmd, NULL, notify);
2608 		return;
2609 	}
2610 
2611 	/* Check if we can safely get the ports from the tcp hdr */
2612 	if (m == NULL ||
2613 	    (m->m_pkthdr.len <
2614 		(int32_t) (off + sizeof(struct tcp_ports)))) {
2615 		return;
2616 	}
2617 	bzero(&t_ports, sizeof(struct tcp_ports));
2618 	m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports);
2619 	inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport,
2620 	    &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL);
2621 	if (inp != NULL && PRC_IS_REDIRECT(cmd)) {
2622 		/* signal EHOSTDOWN, as it flushes the cached route */
2623 		inp = (*notify)(inp, EHOSTDOWN);
2624 		goto out;
2625 	}
2626 	off += sizeof(struct tcp_ports);
2627 	if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) {
2628 		goto out;
2629 	}
2630 	m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq);
2631 	if (inp != NULL)  {
2632 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
2633 		    !(inp->inp_flags & INP_DROPPED) &&
2634 		    !(inp->inp_socket == NULL)) {
2635 			tp = intotcpcb(inp);
2636 			if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
2637 			    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
2638 				if (cmd == PRC_MSGSIZE) {
2639 					/*
2640 					 * MTU discovery:
2641 					 * If we got a needfrag set the MTU
2642 					 * in the route to the suggested new
2643 					 * value (if given) and then notify.
2644 					 */
2645 					mtu = ntohl(icmp6->icmp6_mtu);
2646 					/*
2647 					 * If no alternative MTU was
2648 					 * proposed, or the proposed
2649 					 * MTU was too small, set to
2650 					 * the min.
2651 					 */
2652 					if (mtu < IPV6_MMTU)
2653 						mtu = IPV6_MMTU - 8;
2654 					bzero(&inc, sizeof(inc));
2655 					inc.inc_fibnum = M_GETFIB(m);
2656 					inc.inc_flags |= INC_ISIPV6;
2657 					inc.inc6_faddr = *dst;
2658 					if (in6_setscope(&inc.inc6_faddr,
2659 						m->m_pkthdr.rcvif, NULL))
2660 						goto out;
2661 					/*
2662 					 * Only process the offered MTU if it
2663 					 * is smaller than the current one.
2664 					 */
2665 					if (mtu < tp->t_maxseg +
2666 					    sizeof (struct tcphdr) +
2667 					    sizeof (struct ip6_hdr)) {
2668 						tcp_hc_updatemtu(&inc, mtu);
2669 						tcp_mtudisc(inp, mtu);
2670 						ICMP6STAT_INC(icp6s_pmtuchg);
2671 					}
2672 				} else
2673 					inp = (*notify)(inp,
2674 					    inet6ctlerrmap[cmd]);
2675 			}
2676 		}
2677 	} else {
2678 		bzero(&inc, sizeof(inc));
2679 		inc.inc_fibnum = M_GETFIB(m);
2680 		inc.inc_flags |= INC_ISIPV6;
2681 		inc.inc_fport = t_ports.th_dport;
2682 		inc.inc_lport = t_ports.th_sport;
2683 		inc.inc6_faddr = *dst;
2684 		inc.inc6_laddr = ip6->ip6_src;
2685 		syncache_unreach(&inc, icmp_tcp_seq);
2686 	}
2687 out:
2688 	if (inp != NULL)
2689 		INP_WUNLOCK(inp);
2690 }
2691 #endif /* INET6 */
2692 
2693 static uint32_t
2694 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len)
2695 {
2696 	SIPHASH_CTX ctx;
2697 	uint32_t hash[2];
2698 
2699 	KASSERT(len >= SIPHASH_KEY_LENGTH,
2700 	    ("%s: keylen %u too short ", __func__, len));
2701 	SipHash24_Init(&ctx);
2702 	SipHash_SetKey(&ctx, (uint8_t *)key);
2703 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t));
2704 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t));
2705 	switch (inc->inc_flags & INC_ISIPV6) {
2706 #ifdef INET
2707 	case 0:
2708 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr));
2709 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr));
2710 		break;
2711 #endif
2712 #ifdef INET6
2713 	case INC_ISIPV6:
2714 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr));
2715 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr));
2716 		break;
2717 #endif
2718 	}
2719 	SipHash_Final((uint8_t *)hash, &ctx);
2720 
2721 	return (hash[0] ^ hash[1]);
2722 }
2723 
2724 uint32_t
2725 tcp_new_ts_offset(struct in_conninfo *inc)
2726 {
2727 	struct in_conninfo inc_store, *local_inc;
2728 
2729 	if (!V_tcp_ts_offset_per_conn) {
2730 		memcpy(&inc_store, inc, sizeof(struct in_conninfo));
2731 		inc_store.inc_lport = 0;
2732 		inc_store.inc_fport = 0;
2733 		local_inc = &inc_store;
2734 	} else {
2735 		local_inc = inc;
2736 	}
2737 	return (tcp_keyed_hash(local_inc, V_ts_offset_secret,
2738 	    sizeof(V_ts_offset_secret)));
2739 }
2740 
2741 /*
2742  * Following is where TCP initial sequence number generation occurs.
2743  *
2744  * There are two places where we must use initial sequence numbers:
2745  * 1.  In SYN-ACK packets.
2746  * 2.  In SYN packets.
2747  *
2748  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2749  * tcp_syncache.c for details.
2750  *
2751  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2752  * depends on this property.  In addition, these ISNs should be
2753  * unguessable so as to prevent connection hijacking.  To satisfy
2754  * the requirements of this situation, the algorithm outlined in
2755  * RFC 1948 is used, with only small modifications.
2756  *
2757  * Implementation details:
2758  *
2759  * Time is based off the system timer, and is corrected so that it
2760  * increases by one megabyte per second.  This allows for proper
2761  * recycling on high speed LANs while still leaving over an hour
2762  * before rollover.
2763  *
2764  * As reading the *exact* system time is too expensive to be done
2765  * whenever setting up a TCP connection, we increment the time
2766  * offset in two ways.  First, a small random positive increment
2767  * is added to isn_offset for each connection that is set up.
2768  * Second, the function tcp_isn_tick fires once per clock tick
2769  * and increments isn_offset as necessary so that sequence numbers
2770  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2771  * random positive increments serve only to ensure that the same
2772  * exact sequence number is never sent out twice (as could otherwise
2773  * happen when a port is recycled in less than the system tick
2774  * interval.)
2775  *
2776  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2777  * between seeding of isn_secret.  This is normally set to zero,
2778  * as reseeding should not be necessary.
2779  *
2780  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2781  * isn_offset_old, and isn_ctx is performed using the ISN lock.  In
2782  * general, this means holding an exclusive (write) lock.
2783  */
2784 
2785 #define ISN_BYTES_PER_SECOND 1048576
2786 #define ISN_STATIC_INCREMENT 4096
2787 #define ISN_RANDOM_INCREMENT (4096 - 1)
2788 #define ISN_SECRET_LENGTH    SIPHASH_KEY_LENGTH
2789 
2790 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]);
2791 VNET_DEFINE_STATIC(int, isn_last);
2792 VNET_DEFINE_STATIC(int, isn_last_reseed);
2793 VNET_DEFINE_STATIC(u_int32_t, isn_offset);
2794 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old);
2795 
2796 #define	V_isn_secret			VNET(isn_secret)
2797 #define	V_isn_last			VNET(isn_last)
2798 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2799 #define	V_isn_offset			VNET(isn_offset)
2800 #define	V_isn_offset_old		VNET(isn_offset_old)
2801 
2802 tcp_seq
2803 tcp_new_isn(struct in_conninfo *inc)
2804 {
2805 	tcp_seq new_isn;
2806 	u_int32_t projected_offset;
2807 
2808 	ISN_LOCK();
2809 	/* Seed if this is the first use, reseed if requested. */
2810 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2811 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2812 		< (u_int)ticks))) {
2813 		arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0);
2814 		V_isn_last_reseed = ticks;
2815 	}
2816 
2817 	/* Compute the hash and return the ISN. */
2818 	new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret,
2819 	    sizeof(V_isn_secret));
2820 	V_isn_offset += ISN_STATIC_INCREMENT +
2821 		(arc4random() & ISN_RANDOM_INCREMENT);
2822 	if (ticks != V_isn_last) {
2823 		projected_offset = V_isn_offset_old +
2824 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2825 		if (SEQ_GT(projected_offset, V_isn_offset))
2826 			V_isn_offset = projected_offset;
2827 		V_isn_offset_old = V_isn_offset;
2828 		V_isn_last = ticks;
2829 	}
2830 	new_isn += V_isn_offset;
2831 	ISN_UNLOCK();
2832 	return (new_isn);
2833 }
2834 
2835 /*
2836  * When a specific ICMP unreachable message is received and the
2837  * connection state is SYN-SENT, drop the connection.  This behavior
2838  * is controlled by the icmp_may_rst sysctl.
2839  */
2840 struct inpcb *
2841 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2842 {
2843 	struct tcpcb *tp;
2844 
2845 	NET_EPOCH_ASSERT();
2846 	INP_WLOCK_ASSERT(inp);
2847 
2848 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2849 	    (inp->inp_flags & INP_DROPPED))
2850 		return (inp);
2851 
2852 	tp = intotcpcb(inp);
2853 	if (tp->t_state != TCPS_SYN_SENT)
2854 		return (inp);
2855 
2856 	if (IS_FASTOPEN(tp->t_flags))
2857 		tcp_fastopen_disable_path(tp);
2858 
2859 	tp = tcp_drop(tp, errno);
2860 	if (tp != NULL)
2861 		return (inp);
2862 	else
2863 		return (NULL);
2864 }
2865 
2866 /*
2867  * When `need fragmentation' ICMP is received, update our idea of the MSS
2868  * based on the new value. Also nudge TCP to send something, since we
2869  * know the packet we just sent was dropped.
2870  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2871  */
2872 static struct inpcb *
2873 tcp_mtudisc_notify(struct inpcb *inp, int error)
2874 {
2875 
2876 	tcp_mtudisc(inp, -1);
2877 	return (inp);
2878 }
2879 
2880 static void
2881 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2882 {
2883 	struct tcpcb *tp;
2884 	struct socket *so;
2885 
2886 	INP_WLOCK_ASSERT(inp);
2887 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2888 	    (inp->inp_flags & INP_DROPPED))
2889 		return;
2890 
2891 	tp = intotcpcb(inp);
2892 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2893 
2894 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2895 
2896 	so = inp->inp_socket;
2897 	SOCKBUF_LOCK(&so->so_snd);
2898 	/* If the mss is larger than the socket buffer, decrease the mss. */
2899 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2900 		tp->t_maxseg = so->so_snd.sb_hiwat;
2901 	SOCKBUF_UNLOCK(&so->so_snd);
2902 
2903 	TCPSTAT_INC(tcps_mturesent);
2904 	tp->t_rtttime = 0;
2905 	tp->snd_nxt = tp->snd_una;
2906 	tcp_free_sackholes(tp);
2907 	tp->snd_recover = tp->snd_max;
2908 	if (tp->t_flags & TF_SACK_PERMIT)
2909 		EXIT_FASTRECOVERY(tp->t_flags);
2910 	tp->t_fb->tfb_tcp_output(tp);
2911 }
2912 
2913 #ifdef INET
2914 /*
2915  * Look-up the routing entry to the peer of this inpcb.  If no route
2916  * is found and it cannot be allocated, then return 0.  This routine
2917  * is called by TCP routines that access the rmx structure and by
2918  * tcp_mss_update to get the peer/interface MTU.
2919  */
2920 uint32_t
2921 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2922 {
2923 	struct nhop_object *nh;
2924 	struct ifnet *ifp;
2925 	uint32_t maxmtu = 0;
2926 
2927 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2928 
2929 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2930 
2931 		nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0);
2932 		if (nh == NULL)
2933 			return (0);
2934 
2935 		ifp = nh->nh_ifp;
2936 		maxmtu = nh->nh_mtu;
2937 
2938 		/* Report additional interface capabilities. */
2939 		if (cap != NULL) {
2940 			if (ifp->if_capenable & IFCAP_TSO4 &&
2941 			    ifp->if_hwassist & CSUM_TSO) {
2942 				cap->ifcap |= CSUM_TSO;
2943 				cap->tsomax = ifp->if_hw_tsomax;
2944 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2945 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2946 			}
2947 		}
2948 	}
2949 	return (maxmtu);
2950 }
2951 #endif /* INET */
2952 
2953 #ifdef INET6
2954 uint32_t
2955 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2956 {
2957 	struct nhop_object *nh;
2958 	struct in6_addr dst6;
2959 	uint32_t scopeid;
2960 	struct ifnet *ifp;
2961 	uint32_t maxmtu = 0;
2962 
2963 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2964 
2965 	if (inc->inc_flags & INC_IPV6MINMTU)
2966 		return (IPV6_MMTU);
2967 
2968 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2969 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
2970 		nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0);
2971 		if (nh == NULL)
2972 			return (0);
2973 
2974 		ifp = nh->nh_ifp;
2975 		maxmtu = nh->nh_mtu;
2976 
2977 		/* Report additional interface capabilities. */
2978 		if (cap != NULL) {
2979 			if (ifp->if_capenable & IFCAP_TSO6 &&
2980 			    ifp->if_hwassist & CSUM_TSO) {
2981 				cap->ifcap |= CSUM_TSO;
2982 				cap->tsomax = ifp->if_hw_tsomax;
2983 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2984 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2985 			}
2986 		}
2987 	}
2988 
2989 	return (maxmtu);
2990 }
2991 #endif /* INET6 */
2992 
2993 /*
2994  * Calculate effective SMSS per RFC5681 definition for a given TCP
2995  * connection at its current state, taking into account SACK and etc.
2996  */
2997 u_int
2998 tcp_maxseg(const struct tcpcb *tp)
2999 {
3000 	u_int optlen;
3001 
3002 	if (tp->t_flags & TF_NOOPT)
3003 		return (tp->t_maxseg);
3004 
3005 	/*
3006 	 * Here we have a simplified code from tcp_addoptions(),
3007 	 * without a proper loop, and having most of paddings hardcoded.
3008 	 * We might make mistakes with padding here in some edge cases,
3009 	 * but this is harmless, since result of tcp_maxseg() is used
3010 	 * only in cwnd and ssthresh estimations.
3011 	 */
3012 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
3013 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3014 		if (tp->t_flags & TF_RCVD_TSTMP)
3015 			optlen = TCPOLEN_TSTAMP_APPA;
3016 		else
3017 			optlen = 0;
3018 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3019 		if (tp->t_flags & TF_SIGNATURE)
3020 			optlen += PAD(TCPOLEN_SIGNATURE);
3021 #endif
3022 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
3023 			optlen += TCPOLEN_SACKHDR;
3024 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
3025 			optlen = PAD(optlen);
3026 		}
3027 	} else {
3028 		if (tp->t_flags & TF_REQ_TSTMP)
3029 			optlen = TCPOLEN_TSTAMP_APPA;
3030 		else
3031 			optlen = PAD(TCPOLEN_MAXSEG);
3032 		if (tp->t_flags & TF_REQ_SCALE)
3033 			optlen += PAD(TCPOLEN_WINDOW);
3034 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3035 		if (tp->t_flags & TF_SIGNATURE)
3036 			optlen += PAD(TCPOLEN_SIGNATURE);
3037 #endif
3038 		if (tp->t_flags & TF_SACK_PERMIT)
3039 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
3040 	}
3041 #undef PAD
3042 	optlen = min(optlen, TCP_MAXOLEN);
3043 	return (tp->t_maxseg - optlen);
3044 }
3045 
3046 static int
3047 sysctl_drop(SYSCTL_HANDLER_ARGS)
3048 {
3049 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
3050 	struct sockaddr_storage addrs[2];
3051 	struct inpcb *inp;
3052 	struct tcpcb *tp;
3053 	struct tcptw *tw;
3054 	struct sockaddr_in *fin, *lin;
3055 	struct epoch_tracker et;
3056 #ifdef INET6
3057 	struct sockaddr_in6 *fin6, *lin6;
3058 #endif
3059 	int error;
3060 
3061 	inp = NULL;
3062 	fin = lin = NULL;
3063 #ifdef INET6
3064 	fin6 = lin6 = NULL;
3065 #endif
3066 	error = 0;
3067 
3068 	if (req->oldptr != NULL || req->oldlen != 0)
3069 		return (EINVAL);
3070 	if (req->newptr == NULL)
3071 		return (EPERM);
3072 	if (req->newlen < sizeof(addrs))
3073 		return (ENOMEM);
3074 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3075 	if (error)
3076 		return (error);
3077 
3078 	switch (addrs[0].ss_family) {
3079 #ifdef INET6
3080 	case AF_INET6:
3081 		fin6 = (struct sockaddr_in6 *)&addrs[0];
3082 		lin6 = (struct sockaddr_in6 *)&addrs[1];
3083 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3084 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
3085 			return (EINVAL);
3086 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
3087 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
3088 				return (EINVAL);
3089 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
3090 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
3091 			fin = (struct sockaddr_in *)&addrs[0];
3092 			lin = (struct sockaddr_in *)&addrs[1];
3093 			break;
3094 		}
3095 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
3096 		if (error)
3097 			return (error);
3098 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
3099 		if (error)
3100 			return (error);
3101 		break;
3102 #endif
3103 #ifdef INET
3104 	case AF_INET:
3105 		fin = (struct sockaddr_in *)&addrs[0];
3106 		lin = (struct sockaddr_in *)&addrs[1];
3107 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
3108 		    lin->sin_len != sizeof(struct sockaddr_in))
3109 			return (EINVAL);
3110 		break;
3111 #endif
3112 	default:
3113 		return (EINVAL);
3114 	}
3115 	NET_EPOCH_ENTER(et);
3116 	switch (addrs[0].ss_family) {
3117 #ifdef INET6
3118 	case AF_INET6:
3119 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
3120 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
3121 		    INPLOOKUP_WLOCKPCB, NULL);
3122 		break;
3123 #endif
3124 #ifdef INET
3125 	case AF_INET:
3126 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
3127 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
3128 		break;
3129 #endif
3130 	}
3131 	if (inp != NULL) {
3132 		if (inp->inp_flags & INP_TIMEWAIT) {
3133 			/*
3134 			 * XXXRW: There currently exists a state where an
3135 			 * inpcb is present, but its timewait state has been
3136 			 * discarded.  For now, don't allow dropping of this
3137 			 * type of inpcb.
3138 			 */
3139 			tw = intotw(inp);
3140 			if (tw != NULL)
3141 				tcp_twclose(tw, 0);
3142 			else
3143 				INP_WUNLOCK(inp);
3144 		} else if (!(inp->inp_flags & INP_DROPPED) &&
3145 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
3146 			tp = intotcpcb(inp);
3147 			tp = tcp_drop(tp, ECONNABORTED);
3148 			if (tp != NULL)
3149 				INP_WUNLOCK(inp);
3150 		} else
3151 			INP_WUNLOCK(inp);
3152 	} else
3153 		error = ESRCH;
3154 	NET_EPOCH_EXIT(et);
3155 	return (error);
3156 }
3157 
3158 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
3159     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3160     CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "",
3161     "Drop TCP connection");
3162 
3163 #ifdef KERN_TLS
3164 static int
3165 sysctl_switch_tls(SYSCTL_HANDLER_ARGS)
3166 {
3167 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
3168 	struct sockaddr_storage addrs[2];
3169 	struct inpcb *inp;
3170 	struct sockaddr_in *fin, *lin;
3171 	struct epoch_tracker et;
3172 #ifdef INET6
3173 	struct sockaddr_in6 *fin6, *lin6;
3174 #endif
3175 	int error;
3176 
3177 	inp = NULL;
3178 	fin = lin = NULL;
3179 #ifdef INET6
3180 	fin6 = lin6 = NULL;
3181 #endif
3182 	error = 0;
3183 
3184 	if (req->oldptr != NULL || req->oldlen != 0)
3185 		return (EINVAL);
3186 	if (req->newptr == NULL)
3187 		return (EPERM);
3188 	if (req->newlen < sizeof(addrs))
3189 		return (ENOMEM);
3190 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3191 	if (error)
3192 		return (error);
3193 
3194 	switch (addrs[0].ss_family) {
3195 #ifdef INET6
3196 	case AF_INET6:
3197 		fin6 = (struct sockaddr_in6 *)&addrs[0];
3198 		lin6 = (struct sockaddr_in6 *)&addrs[1];
3199 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3200 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
3201 			return (EINVAL);
3202 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
3203 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
3204 				return (EINVAL);
3205 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
3206 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
3207 			fin = (struct sockaddr_in *)&addrs[0];
3208 			lin = (struct sockaddr_in *)&addrs[1];
3209 			break;
3210 		}
3211 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
3212 		if (error)
3213 			return (error);
3214 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
3215 		if (error)
3216 			return (error);
3217 		break;
3218 #endif
3219 #ifdef INET
3220 	case AF_INET:
3221 		fin = (struct sockaddr_in *)&addrs[0];
3222 		lin = (struct sockaddr_in *)&addrs[1];
3223 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
3224 		    lin->sin_len != sizeof(struct sockaddr_in))
3225 			return (EINVAL);
3226 		break;
3227 #endif
3228 	default:
3229 		return (EINVAL);
3230 	}
3231 	NET_EPOCH_ENTER(et);
3232 	switch (addrs[0].ss_family) {
3233 #ifdef INET6
3234 	case AF_INET6:
3235 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
3236 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
3237 		    INPLOOKUP_WLOCKPCB, NULL);
3238 		break;
3239 #endif
3240 #ifdef INET
3241 	case AF_INET:
3242 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
3243 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
3244 		break;
3245 #endif
3246 	}
3247 	NET_EPOCH_EXIT(et);
3248 	if (inp != NULL) {
3249 		if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0 ||
3250 		    inp->inp_socket == NULL) {
3251 			error = ECONNRESET;
3252 			INP_WUNLOCK(inp);
3253 		} else {
3254 			struct socket *so;
3255 
3256 			so = inp->inp_socket;
3257 			soref(so);
3258 			error = ktls_set_tx_mode(so,
3259 			    arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET);
3260 			INP_WUNLOCK(inp);
3261 			SOCK_LOCK(so);
3262 			sorele(so);
3263 		}
3264 	} else
3265 		error = ESRCH;
3266 	return (error);
3267 }
3268 
3269 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls,
3270     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3271     CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "",
3272     "Switch TCP connection to SW TLS");
3273 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls,
3274     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3275     CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "",
3276     "Switch TCP connection to ifnet TLS");
3277 #endif
3278 
3279 /*
3280  * Generate a standardized TCP log line for use throughout the
3281  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
3282  * allow use in the interrupt context.
3283  *
3284  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
3285  * NB: The function may return NULL if memory allocation failed.
3286  *
3287  * Due to header inclusion and ordering limitations the struct ip
3288  * and ip6_hdr pointers have to be passed as void pointers.
3289  */
3290 char *
3291 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
3292     const void *ip6hdr)
3293 {
3294 
3295 	/* Is logging enabled? */
3296 	if (V_tcp_log_in_vain == 0)
3297 		return (NULL);
3298 
3299 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
3300 }
3301 
3302 char *
3303 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
3304     const void *ip6hdr)
3305 {
3306 
3307 	/* Is logging enabled? */
3308 	if (tcp_log_debug == 0)
3309 		return (NULL);
3310 
3311 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
3312 }
3313 
3314 static char *
3315 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
3316     const void *ip6hdr)
3317 {
3318 	char *s, *sp;
3319 	size_t size;
3320 	struct ip *ip;
3321 #ifdef INET6
3322 	const struct ip6_hdr *ip6;
3323 
3324 	ip6 = (const struct ip6_hdr *)ip6hdr;
3325 #endif /* INET6 */
3326 	ip = (struct ip *)ip4hdr;
3327 
3328 	/*
3329 	 * The log line looks like this:
3330 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
3331 	 */
3332 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
3333 	    sizeof(PRINT_TH_FLAGS) + 1 +
3334 #ifdef INET6
3335 	    2 * INET6_ADDRSTRLEN;
3336 #else
3337 	    2 * INET_ADDRSTRLEN;
3338 #endif /* INET6 */
3339 
3340 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
3341 	if (s == NULL)
3342 		return (NULL);
3343 
3344 	strcat(s, "TCP: [");
3345 	sp = s + strlen(s);
3346 
3347 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
3348 		inet_ntoa_r(inc->inc_faddr, sp);
3349 		sp = s + strlen(s);
3350 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
3351 		sp = s + strlen(s);
3352 		inet_ntoa_r(inc->inc_laddr, sp);
3353 		sp = s + strlen(s);
3354 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
3355 #ifdef INET6
3356 	} else if (inc) {
3357 		ip6_sprintf(sp, &inc->inc6_faddr);
3358 		sp = s + strlen(s);
3359 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
3360 		sp = s + strlen(s);
3361 		ip6_sprintf(sp, &inc->inc6_laddr);
3362 		sp = s + strlen(s);
3363 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
3364 	} else if (ip6 && th) {
3365 		ip6_sprintf(sp, &ip6->ip6_src);
3366 		sp = s + strlen(s);
3367 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
3368 		sp = s + strlen(s);
3369 		ip6_sprintf(sp, &ip6->ip6_dst);
3370 		sp = s + strlen(s);
3371 		sprintf(sp, "]:%i", ntohs(th->th_dport));
3372 #endif /* INET6 */
3373 #ifdef INET
3374 	} else if (ip && th) {
3375 		inet_ntoa_r(ip->ip_src, sp);
3376 		sp = s + strlen(s);
3377 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
3378 		sp = s + strlen(s);
3379 		inet_ntoa_r(ip->ip_dst, sp);
3380 		sp = s + strlen(s);
3381 		sprintf(sp, "]:%i", ntohs(th->th_dport));
3382 #endif /* INET */
3383 	} else {
3384 		free(s, M_TCPLOG);
3385 		return (NULL);
3386 	}
3387 	sp = s + strlen(s);
3388 	if (th)
3389 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
3390 	if (*(s + size - 1) != '\0')
3391 		panic("%s: string too long", __func__);
3392 	return (s);
3393 }
3394 
3395 /*
3396  * A subroutine which makes it easy to track TCP state changes with DTrace.
3397  * This function shouldn't be called for t_state initializations that don't
3398  * correspond to actual TCP state transitions.
3399  */
3400 void
3401 tcp_state_change(struct tcpcb *tp, int newstate)
3402 {
3403 #if defined(KDTRACE_HOOKS)
3404 	int pstate = tp->t_state;
3405 #endif
3406 
3407 	TCPSTATES_DEC(tp->t_state);
3408 	TCPSTATES_INC(newstate);
3409 	tp->t_state = newstate;
3410 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
3411 }
3412 
3413 /*
3414  * Create an external-format (``xtcpcb'') structure using the information in
3415  * the kernel-format tcpcb structure pointed to by tp.  This is done to
3416  * reduce the spew of irrelevant information over this interface, to isolate
3417  * user code from changes in the kernel structure, and potentially to provide
3418  * information-hiding if we decide that some of this information should be
3419  * hidden from users.
3420  */
3421 void
3422 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt)
3423 {
3424 	struct tcpcb *tp = intotcpcb(inp);
3425 	sbintime_t now;
3426 
3427 	bzero(xt, sizeof(*xt));
3428 	if (inp->inp_flags & INP_TIMEWAIT) {
3429 		xt->t_state = TCPS_TIME_WAIT;
3430 	} else {
3431 		xt->t_state = tp->t_state;
3432 		xt->t_logstate = tp->t_logstate;
3433 		xt->t_flags = tp->t_flags;
3434 		xt->t_sndzerowin = tp->t_sndzerowin;
3435 		xt->t_sndrexmitpack = tp->t_sndrexmitpack;
3436 		xt->t_rcvoopack = tp->t_rcvoopack;
3437 
3438 		now = getsbinuptime();
3439 #define	COPYTIMER(ttt)	do {						\
3440 		if (callout_active(&tp->t_timers->ttt))			\
3441 			xt->ttt = (tp->t_timers->ttt.c_time - now) /	\
3442 			    SBT_1MS;					\
3443 		else							\
3444 			xt->ttt = 0;					\
3445 } while (0)
3446 		COPYTIMER(tt_delack);
3447 		COPYTIMER(tt_rexmt);
3448 		COPYTIMER(tt_persist);
3449 		COPYTIMER(tt_keep);
3450 		COPYTIMER(tt_2msl);
3451 #undef COPYTIMER
3452 		xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz;
3453 
3454 		bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack,
3455 		    TCP_FUNCTION_NAME_LEN_MAX);
3456 #ifdef TCP_BLACKBOX
3457 		(void)tcp_log_get_id(tp, xt->xt_logid);
3458 #endif
3459 	}
3460 
3461 	xt->xt_len = sizeof(struct xtcpcb);
3462 	in_pcbtoxinpcb(inp, &xt->xt_inp);
3463 	if (inp->inp_socket == NULL)
3464 		xt->xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
3465 }
3466 
3467 void
3468 tcp_log_end_status(struct tcpcb *tp, uint8_t status)
3469 {
3470 	uint32_t bit, i;
3471 
3472 	if ((tp == NULL) ||
3473 	    (status > TCP_EI_STATUS_MAX_VALUE) ||
3474 	    (status == 0)) {
3475 		/* Invalid */
3476 		return;
3477 	}
3478 	if (status > (sizeof(uint32_t) * 8)) {
3479 		/* Should this be a KASSERT? */
3480 		return;
3481 	}
3482 	bit = 1U << (status - 1);
3483 	if (bit & tp->t_end_info_status) {
3484 		/* already logged */
3485 		return;
3486 	}
3487 	for (i = 0; i < TCP_END_BYTE_INFO; i++) {
3488 		if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) {
3489 			tp->t_end_info_bytes[i] = status;
3490 			tp->t_end_info_status |= bit;
3491 			break;
3492 		}
3493 	}
3494 }
3495