xref: /freebsd/sys/netinet/tcp_syncache.c (revision 2b833162)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/hash.h>
45 #include <sys/refcount.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/proc.h>		/* for proc0 declaration */
54 #include <sys/random.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/syslog.h>
58 #include <sys/ucred.h>
59 
60 #include <sys/md5.h>
61 #include <crypto/siphash/siphash.h>
62 
63 #include <vm/uma.h>
64 
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/route.h>
68 #include <net/vnet.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_kdtrace.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #include <netinet/in_pcb.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_options.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet/icmp6.h>
81 #include <netinet6/nd6.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/in6_pcb.h>
84 #endif
85 #include <netinet/tcp.h>
86 #include <netinet/tcp_fastopen.h>
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #include <netinet/tcp_ecn.h>
93 #ifdef TCP_OFFLOAD
94 #include <netinet/toecore.h>
95 #endif
96 #include <netinet/udp.h>
97 
98 #include <netipsec/ipsec_support.h>
99 
100 #include <machine/in_cksum.h>
101 
102 #include <security/mac/mac_framework.h>
103 
104 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
105 #define	V_tcp_syncookies		VNET(tcp_syncookies)
106 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
107     &VNET_NAME(tcp_syncookies), 0,
108     "Use TCP SYN cookies if the syncache overflows");
109 
110 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
111 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
113     &VNET_NAME(tcp_syncookiesonly), 0,
114     "Use only TCP SYN cookies");
115 
116 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
117 #define V_functions_inherit_listen_socket_stack \
118     VNET(functions_inherit_listen_socket_stack)
119 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
120     CTLFLAG_VNET | CTLFLAG_RW,
121     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
122     "Inherit listen socket's stack");
123 
124 #ifdef TCP_OFFLOAD
125 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
126 #endif
127 
128 static void	 syncache_drop(struct syncache *, struct syncache_head *);
129 static void	 syncache_free(struct syncache *);
130 static void	 syncache_insert(struct syncache *, struct syncache_head *);
131 static int	 syncache_respond(struct syncache *, const struct mbuf *, int);
132 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
133 		    struct mbuf *m);
134 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
135 		    int docallout);
136 static void	 syncache_timer(void *);
137 
138 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
139 		    uint8_t *, uintptr_t);
140 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
141 static struct syncache
142 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
143 		    struct syncache *, struct tcphdr *, struct tcpopt *,
144 		    struct socket *, uint16_t);
145 static void	syncache_pause(struct in_conninfo *);
146 static void	syncache_unpause(void *);
147 static void	 syncookie_reseed(void *);
148 #ifdef INVARIANTS
149 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
150 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
151 		    struct socket *lso, uint16_t port);
152 #endif
153 
154 /*
155  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
156  * 3 retransmits corresponds to a timeout with default values of
157  * tcp_rexmit_initial * (             1 +
158  *                       tcp_backoff[1] +
159  *                       tcp_backoff[2] +
160  *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
161  * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
162  * the odds are that the user has given up attempting to connect by then.
163  */
164 #define SYNCACHE_MAXREXMTS		3
165 
166 /* Arbitrary values */
167 #define TCP_SYNCACHE_HASHSIZE		512
168 #define TCP_SYNCACHE_BUCKETLIMIT	30
169 
170 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
171 #define	V_tcp_syncache			VNET(tcp_syncache)
172 
173 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache,
174     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
175     "TCP SYN cache");
176 
177 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
178     &VNET_NAME(tcp_syncache.bucket_limit), 0,
179     "Per-bucket hash limit for syncache");
180 
181 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
182     &VNET_NAME(tcp_syncache.cache_limit), 0,
183     "Overall entry limit for syncache");
184 
185 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
186     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
187 
188 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
189     &VNET_NAME(tcp_syncache.hashsize), 0,
190     "Size of TCP syncache hashtable");
191 
192 SYSCTL_BOOL(_net_inet_tcp_syncache, OID_AUTO, see_other, CTLFLAG_VNET |
193     CTLFLAG_RW, &VNET_NAME(tcp_syncache.see_other), 0,
194     "All syncache(4) entries are visible, ignoring UID/GID, jail(2) "
195     "and mac(4) checks");
196 
197 static int
198 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
199 {
200 	int error;
201 	u_int new;
202 
203 	new = V_tcp_syncache.rexmt_limit;
204 	error = sysctl_handle_int(oidp, &new, 0, req);
205 	if ((error == 0) && (req->newptr != NULL)) {
206 		if (new > TCP_MAXRXTSHIFT)
207 			error = EINVAL;
208 		else
209 			V_tcp_syncache.rexmt_limit = new;
210 	}
211 	return (error);
212 }
213 
214 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
215     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
216     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
217     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
218     "Limit on SYN/ACK retransmissions");
219 
220 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
221 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
222     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
223     "Send reset on socket allocation failure");
224 
225 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
226 
227 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
228 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
229 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
230 
231 /*
232  * Requires the syncache entry to be already removed from the bucket list.
233  */
234 static void
235 syncache_free(struct syncache *sc)
236 {
237 
238 	if (sc->sc_ipopts)
239 		(void) m_free(sc->sc_ipopts);
240 	if (sc->sc_cred)
241 		crfree(sc->sc_cred);
242 #ifdef MAC
243 	mac_syncache_destroy(&sc->sc_label);
244 #endif
245 
246 	uma_zfree(V_tcp_syncache.zone, sc);
247 }
248 
249 void
250 syncache_init(void)
251 {
252 	int i;
253 
254 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
255 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
256 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
257 	V_tcp_syncache.hash_secret = arc4random();
258 
259 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
260 	    &V_tcp_syncache.hashsize);
261 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
262 	    &V_tcp_syncache.bucket_limit);
263 	if (!powerof2(V_tcp_syncache.hashsize) ||
264 	    V_tcp_syncache.hashsize == 0) {
265 		printf("WARNING: syncache hash size is not a power of 2.\n");
266 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
267 	}
268 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
269 
270 	/* Set limits. */
271 	V_tcp_syncache.cache_limit =
272 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
273 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
274 	    &V_tcp_syncache.cache_limit);
275 
276 	/* Allocate the hash table. */
277 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
278 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
279 
280 #ifdef VIMAGE
281 	V_tcp_syncache.vnet = curvnet;
282 #endif
283 
284 	/* Initialize the hash buckets. */
285 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
286 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
287 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
288 			 NULL, MTX_DEF);
289 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
290 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
291 		V_tcp_syncache.hashbase[i].sch_length = 0;
292 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
293 		V_tcp_syncache.hashbase[i].sch_last_overflow =
294 		    -(SYNCOOKIE_LIFETIME + 1);
295 	}
296 
297 	/* Create the syncache entry zone. */
298 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
299 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
300 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
301 	    V_tcp_syncache.cache_limit);
302 
303 	/* Start the SYN cookie reseeder callout. */
304 	callout_init(&V_tcp_syncache.secret.reseed, 1);
305 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
306 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
307 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
308 	    syncookie_reseed, &V_tcp_syncache);
309 
310 	/* Initialize the pause machinery. */
311 	mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
312 	callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
313 	    0);
314 	V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
315 	V_tcp_syncache.pause_backoff = 0;
316 	V_tcp_syncache.paused = false;
317 }
318 
319 #ifdef VIMAGE
320 void
321 syncache_destroy(void)
322 {
323 	struct syncache_head *sch;
324 	struct syncache *sc, *nsc;
325 	int i;
326 
327 	/*
328 	 * Stop the re-seed timer before freeing resources.  No need to
329 	 * possibly schedule it another time.
330 	 */
331 	callout_drain(&V_tcp_syncache.secret.reseed);
332 
333 	/* Stop the SYN cache pause callout. */
334 	mtx_lock(&V_tcp_syncache.pause_mtx);
335 	if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
336 		mtx_unlock(&V_tcp_syncache.pause_mtx);
337 		callout_drain(&V_tcp_syncache.pause_co);
338 	} else
339 		mtx_unlock(&V_tcp_syncache.pause_mtx);
340 
341 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
342 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
343 		sch = &V_tcp_syncache.hashbase[i];
344 		callout_drain(&sch->sch_timer);
345 
346 		SCH_LOCK(sch);
347 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
348 			syncache_drop(sc, sch);
349 		SCH_UNLOCK(sch);
350 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
351 		    ("%s: sch->sch_bucket not empty", __func__));
352 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
353 		    __func__, sch->sch_length));
354 		mtx_destroy(&sch->sch_mtx);
355 	}
356 
357 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
358 	    ("%s: cache_count not 0", __func__));
359 
360 	/* Free the allocated global resources. */
361 	uma_zdestroy(V_tcp_syncache.zone);
362 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
363 	mtx_destroy(&V_tcp_syncache.pause_mtx);
364 }
365 #endif
366 
367 /*
368  * Inserts a syncache entry into the specified bucket row.
369  * Locks and unlocks the syncache_head autonomously.
370  */
371 static void
372 syncache_insert(struct syncache *sc, struct syncache_head *sch)
373 {
374 	struct syncache *sc2;
375 
376 	SCH_LOCK(sch);
377 
378 	/*
379 	 * Make sure that we don't overflow the per-bucket limit.
380 	 * If the bucket is full, toss the oldest element.
381 	 */
382 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
383 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
384 			("sch->sch_length incorrect"));
385 		syncache_pause(&sc->sc_inc);
386 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
387 		sch->sch_last_overflow = time_uptime;
388 		syncache_drop(sc2, sch);
389 	}
390 
391 	/* Put it into the bucket. */
392 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
393 	sch->sch_length++;
394 
395 #ifdef TCP_OFFLOAD
396 	if (ADDED_BY_TOE(sc)) {
397 		struct toedev *tod = sc->sc_tod;
398 
399 		tod->tod_syncache_added(tod, sc->sc_todctx);
400 	}
401 #endif
402 
403 	/* Reinitialize the bucket row's timer. */
404 	if (sch->sch_length == 1)
405 		sch->sch_nextc = ticks + INT_MAX;
406 	syncache_timeout(sc, sch, 1);
407 
408 	SCH_UNLOCK(sch);
409 
410 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
411 	TCPSTAT_INC(tcps_sc_added);
412 }
413 
414 /*
415  * Remove and free entry from syncache bucket row.
416  * Expects locked syncache head.
417  */
418 static void
419 syncache_drop(struct syncache *sc, struct syncache_head *sch)
420 {
421 
422 	SCH_LOCK_ASSERT(sch);
423 
424 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
425 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
426 	sch->sch_length--;
427 
428 #ifdef TCP_OFFLOAD
429 	if (ADDED_BY_TOE(sc)) {
430 		struct toedev *tod = sc->sc_tod;
431 
432 		tod->tod_syncache_removed(tod, sc->sc_todctx);
433 	}
434 #endif
435 
436 	syncache_free(sc);
437 }
438 
439 /*
440  * Engage/reengage time on bucket row.
441  */
442 static void
443 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
444 {
445 	int rexmt;
446 
447 	if (sc->sc_rxmits == 0)
448 		rexmt = tcp_rexmit_initial;
449 	else
450 		TCPT_RANGESET(rexmt,
451 		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
452 		    tcp_rexmit_min, TCPTV_REXMTMAX);
453 	sc->sc_rxttime = ticks + rexmt;
454 	sc->sc_rxmits++;
455 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
456 		sch->sch_nextc = sc->sc_rxttime;
457 		if (docallout)
458 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
459 			    syncache_timer, (void *)sch);
460 	}
461 }
462 
463 /*
464  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
465  * If we have retransmitted an entry the maximum number of times, expire it.
466  * One separate timer for each bucket row.
467  */
468 static void
469 syncache_timer(void *xsch)
470 {
471 	struct syncache_head *sch = (struct syncache_head *)xsch;
472 	struct syncache *sc, *nsc;
473 	struct epoch_tracker et;
474 	int tick = ticks;
475 	char *s;
476 	bool paused;
477 
478 	CURVNET_SET(sch->sch_sc->vnet);
479 
480 	/* NB: syncache_head has already been locked by the callout. */
481 	SCH_LOCK_ASSERT(sch);
482 
483 	/*
484 	 * In the following cycle we may remove some entries and/or
485 	 * advance some timeouts, so re-initialize the bucket timer.
486 	 */
487 	sch->sch_nextc = tick + INT_MAX;
488 
489 	/*
490 	 * If we have paused processing, unconditionally remove
491 	 * all syncache entries.
492 	 */
493 	mtx_lock(&V_tcp_syncache.pause_mtx);
494 	paused = V_tcp_syncache.paused;
495 	mtx_unlock(&V_tcp_syncache.pause_mtx);
496 
497 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
498 		if (paused) {
499 			syncache_drop(sc, sch);
500 			continue;
501 		}
502 		/*
503 		 * We do not check if the listen socket still exists
504 		 * and accept the case where the listen socket may be
505 		 * gone by the time we resend the SYN/ACK.  We do
506 		 * not expect this to happens often. If it does,
507 		 * then the RST will be sent by the time the remote
508 		 * host does the SYN/ACK->ACK.
509 		 */
510 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
511 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
512 				sch->sch_nextc = sc->sc_rxttime;
513 			continue;
514 		}
515 		if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
516 			sc->sc_flags &= ~SCF_ECN_MASK;
517 		}
518 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
519 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
520 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
521 				    "giving up and removing syncache entry\n",
522 				    s, __func__);
523 				free(s, M_TCPLOG);
524 			}
525 			syncache_drop(sc, sch);
526 			TCPSTAT_INC(tcps_sc_stale);
527 			continue;
528 		}
529 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
530 			log(LOG_DEBUG, "%s; %s: Response timeout, "
531 			    "retransmitting (%u) SYN|ACK\n",
532 			    s, __func__, sc->sc_rxmits);
533 			free(s, M_TCPLOG);
534 		}
535 
536 		NET_EPOCH_ENTER(et);
537 		syncache_respond(sc, NULL, TH_SYN|TH_ACK);
538 		NET_EPOCH_EXIT(et);
539 		TCPSTAT_INC(tcps_sc_retransmitted);
540 		syncache_timeout(sc, sch, 0);
541 	}
542 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
543 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
544 			syncache_timer, (void *)(sch));
545 	CURVNET_RESTORE();
546 }
547 
548 /*
549  * Returns true if the system is only using cookies at the moment.
550  * This could be due to a sysadmin decision to only use cookies, or it
551  * could be due to the system detecting an attack.
552  */
553 static inline bool
554 syncache_cookiesonly(void)
555 {
556 
557 	return (V_tcp_syncookies && (V_tcp_syncache.paused ||
558 	    V_tcp_syncookiesonly));
559 }
560 
561 /*
562  * Find the hash bucket for the given connection.
563  */
564 static struct syncache_head *
565 syncache_hashbucket(struct in_conninfo *inc)
566 {
567 	uint32_t hash;
568 
569 	/*
570 	 * The hash is built on foreign port + local port + foreign address.
571 	 * We rely on the fact that struct in_conninfo starts with 16 bits
572 	 * of foreign port, then 16 bits of local port then followed by 128
573 	 * bits of foreign address.  In case of IPv4 address, the first 3
574 	 * 32-bit words of the address always are zeroes.
575 	 */
576 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
577 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
578 
579 	return (&V_tcp_syncache.hashbase[hash]);
580 }
581 
582 /*
583  * Find an entry in the syncache.
584  * Returns always with locked syncache_head plus a matching entry or NULL.
585  */
586 static struct syncache *
587 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
588 {
589 	struct syncache *sc;
590 	struct syncache_head *sch;
591 
592 	*schp = sch = syncache_hashbucket(inc);
593 	SCH_LOCK(sch);
594 
595 	/* Circle through bucket row to find matching entry. */
596 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
597 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
598 		    sizeof(struct in_endpoints)) == 0)
599 			break;
600 
601 	return (sc);	/* Always returns with locked sch. */
602 }
603 
604 /*
605  * This function is called when we get a RST for a
606  * non-existent connection, so that we can see if the
607  * connection is in the syn cache.  If it is, zap it.
608  * If required send a challenge ACK.
609  */
610 void
611 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m,
612     uint16_t port)
613 {
614 	struct syncache *sc;
615 	struct syncache_head *sch;
616 	char *s = NULL;
617 
618 	if (syncache_cookiesonly())
619 		return;
620 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
621 	SCH_LOCK_ASSERT(sch);
622 
623 	/*
624 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
625 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
626 	 */
627 	if (tcp_get_flags(th) & (TH_ACK|TH_SYN|TH_FIN)) {
628 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
629 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
630 			    "FIN flag set, segment ignored\n", s, __func__);
631 		TCPSTAT_INC(tcps_badrst);
632 		goto done;
633 	}
634 
635 	/*
636 	 * No corresponding connection was found in syncache.
637 	 * If syncookies are enabled and possibly exclusively
638 	 * used, or we are under memory pressure, a valid RST
639 	 * may not find a syncache entry.  In that case we're
640 	 * done and no SYN|ACK retransmissions will happen.
641 	 * Otherwise the RST was misdirected or spoofed.
642 	 */
643 	if (sc == NULL) {
644 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
645 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
646 			    "syncache entry (possibly syncookie only), "
647 			    "segment ignored\n", s, __func__);
648 		TCPSTAT_INC(tcps_badrst);
649 		goto done;
650 	}
651 
652 	/* The remote UDP encaps port does not match. */
653 	if (sc->sc_port != port) {
654 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
655 			log(LOG_DEBUG, "%s; %s: Spurious RST with matching "
656 			    "syncache entry but non-matching UDP encaps port, "
657 			    "segment ignored\n", s, __func__);
658 		TCPSTAT_INC(tcps_badrst);
659 		goto done;
660 	}
661 
662 	/*
663 	 * If the RST bit is set, check the sequence number to see
664 	 * if this is a valid reset segment.
665 	 *
666 	 * RFC 793 page 37:
667 	 *   In all states except SYN-SENT, all reset (RST) segments
668 	 *   are validated by checking their SEQ-fields.  A reset is
669 	 *   valid if its sequence number is in the window.
670 	 *
671 	 * RFC 793 page 69:
672 	 *   There are four cases for the acceptability test for an incoming
673 	 *   segment:
674 	 *
675 	 * Segment Receive  Test
676 	 * Length  Window
677 	 * ------- -------  -------------------------------------------
678 	 *    0       0     SEG.SEQ = RCV.NXT
679 	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
680 	 *   >0       0     not acceptable
681 	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
682 	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
683 	 *
684 	 * Note that when receiving a SYN segment in the LISTEN state,
685 	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
686 	 * described in RFC 793, page 66.
687 	 */
688 	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
689 	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
690 	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
691 		if (V_tcp_insecure_rst ||
692 		    th->th_seq == sc->sc_irs + 1) {
693 			syncache_drop(sc, sch);
694 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
695 				log(LOG_DEBUG,
696 				    "%s; %s: Our SYN|ACK was rejected, "
697 				    "connection attempt aborted by remote "
698 				    "endpoint\n",
699 				    s, __func__);
700 			TCPSTAT_INC(tcps_sc_reset);
701 		} else {
702 			TCPSTAT_INC(tcps_badrst);
703 			/* Send challenge ACK. */
704 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
705 				log(LOG_DEBUG, "%s; %s: RST with invalid "
706 				    " SEQ %u != NXT %u (+WND %u), "
707 				    "sending challenge ACK\n",
708 				    s, __func__,
709 				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
710 			syncache_respond(sc, m, TH_ACK);
711 		}
712 	} else {
713 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
714 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
715 			    "NXT %u (+WND %u), segment ignored\n",
716 			    s, __func__,
717 			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
718 		TCPSTAT_INC(tcps_badrst);
719 	}
720 
721 done:
722 	if (s != NULL)
723 		free(s, M_TCPLOG);
724 	SCH_UNLOCK(sch);
725 }
726 
727 void
728 syncache_badack(struct in_conninfo *inc, uint16_t port)
729 {
730 	struct syncache *sc;
731 	struct syncache_head *sch;
732 
733 	if (syncache_cookiesonly())
734 		return;
735 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
736 	SCH_LOCK_ASSERT(sch);
737 	if ((sc != NULL) && (sc->sc_port == port)) {
738 		syncache_drop(sc, sch);
739 		TCPSTAT_INC(tcps_sc_badack);
740 	}
741 	SCH_UNLOCK(sch);
742 }
743 
744 void
745 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq, uint16_t port)
746 {
747 	struct syncache *sc;
748 	struct syncache_head *sch;
749 
750 	if (syncache_cookiesonly())
751 		return;
752 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
753 	SCH_LOCK_ASSERT(sch);
754 	if (sc == NULL)
755 		goto done;
756 
757 	/* If the port != sc_port, then it's a bogus ICMP msg */
758 	if (port != sc->sc_port)
759 		goto done;
760 
761 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
762 	if (ntohl(th_seq) != sc->sc_iss)
763 		goto done;
764 
765 	/*
766 	 * If we've rertransmitted 3 times and this is our second error,
767 	 * we remove the entry.  Otherwise, we allow it to continue on.
768 	 * This prevents us from incorrectly nuking an entry during a
769 	 * spurious network outage.
770 	 *
771 	 * See tcp_notify().
772 	 */
773 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
774 		sc->sc_flags |= SCF_UNREACH;
775 		goto done;
776 	}
777 	syncache_drop(sc, sch);
778 	TCPSTAT_INC(tcps_sc_unreach);
779 done:
780 	SCH_UNLOCK(sch);
781 }
782 
783 /*
784  * Build a new TCP socket structure from a syncache entry.
785  *
786  * On success return the newly created socket with its underlying inp locked.
787  */
788 static struct socket *
789 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
790 {
791 	struct tcp_function_block *blk;
792 	struct inpcb *inp = NULL;
793 	struct socket *so;
794 	struct tcpcb *tp;
795 	int error;
796 	char *s;
797 
798 	NET_EPOCH_ASSERT();
799 
800 	/*
801 	 * Ok, create the full blown connection, and set things up
802 	 * as they would have been set up if we had created the
803 	 * connection when the SYN arrived.
804 	 */
805 	if ((so = solisten_clone(lso)) == NULL)
806 		goto allocfail;
807 #ifdef MAC
808 	mac_socketpeer_set_from_mbuf(m, so);
809 #endif
810 	error = in_pcballoc(so, &V_tcbinfo);
811 	if (error) {
812 		sodealloc(so);
813 		goto allocfail;
814 	}
815 	inp = sotoinpcb(so);
816 	if ((tp = tcp_newtcpcb(inp)) == NULL) {
817 		in_pcbdetach(inp);
818 		in_pcbfree(inp);
819 		sodealloc(so);
820 		goto allocfail;
821 	}
822 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
823 #ifdef INET6
824 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
825 		inp->inp_vflag &= ~INP_IPV4;
826 		inp->inp_vflag |= INP_IPV6;
827 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
828 	} else {
829 		inp->inp_vflag &= ~INP_IPV6;
830 		inp->inp_vflag |= INP_IPV4;
831 #endif
832 		inp->inp_ip_ttl = sc->sc_ip_ttl;
833 		inp->inp_ip_tos = sc->sc_ip_tos;
834 		inp->inp_laddr = sc->sc_inc.inc_laddr;
835 #ifdef INET6
836 	}
837 #endif
838 
839 	/*
840 	 * If there's an mbuf and it has a flowid, then let's initialise the
841 	 * inp with that particular flowid.
842 	 */
843 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
844 		inp->inp_flowid = m->m_pkthdr.flowid;
845 		inp->inp_flowtype = M_HASHTYPE_GET(m);
846 #ifdef NUMA
847 		inp->inp_numa_domain = m->m_pkthdr.numa_domain;
848 #endif
849 	}
850 
851 	inp->inp_lport = sc->sc_inc.inc_lport;
852 #ifdef INET6
853 	if (inp->inp_vflag & INP_IPV6PROTO) {
854 		struct inpcb *oinp = sotoinpcb(lso);
855 
856 		/*
857 		 * Inherit socket options from the listening socket.
858 		 * Note that in6p_inputopts are not (and should not be)
859 		 * copied, since it stores previously received options and is
860 		 * used to detect if each new option is different than the
861 		 * previous one and hence should be passed to a user.
862 		 * If we copied in6p_inputopts, a user would not be able to
863 		 * receive options just after calling the accept system call.
864 		 */
865 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
866 		if (oinp->in6p_outputopts)
867 			inp->in6p_outputopts =
868 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
869 		inp->in6p_hops = oinp->in6p_hops;
870 	}
871 
872 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
873 		struct sockaddr_in6 sin6;
874 
875 		sin6.sin6_family = AF_INET6;
876 		sin6.sin6_len = sizeof(sin6);
877 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
878 		sin6.sin6_port = sc->sc_inc.inc_fport;
879 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
880 		INP_HASH_WLOCK(&V_tcbinfo);
881 		error = in6_pcbconnect(inp, &sin6, thread0.td_ucred, false);
882 		INP_HASH_WUNLOCK(&V_tcbinfo);
883 		if (error != 0)
884 			goto abort;
885 		/* Override flowlabel from in6_pcbconnect. */
886 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
887 		inp->inp_flow |= sc->sc_flowlabel;
888 	}
889 #endif /* INET6 */
890 #if defined(INET) && defined(INET6)
891 	else
892 #endif
893 #ifdef INET
894 	{
895 		struct sockaddr_in sin;
896 
897 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
898 
899 		if (inp->inp_options == NULL) {
900 			inp->inp_options = sc->sc_ipopts;
901 			sc->sc_ipopts = NULL;
902 		}
903 
904 		sin.sin_family = AF_INET;
905 		sin.sin_len = sizeof(sin);
906 		sin.sin_addr = sc->sc_inc.inc_faddr;
907 		sin.sin_port = sc->sc_inc.inc_fport;
908 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
909 		INP_HASH_WLOCK(&V_tcbinfo);
910 		error = in_pcbconnect(inp, &sin, thread0.td_ucred, false);
911 		INP_HASH_WUNLOCK(&V_tcbinfo);
912 		if (error != 0)
913 			goto abort;
914 	}
915 #endif /* INET */
916 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
917 	/* Copy old policy into new socket's. */
918 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
919 		printf("syncache_socket: could not copy policy\n");
920 #endif
921 	tp->t_state = TCPS_SYN_RECEIVED;
922 	tp->iss = sc->sc_iss;
923 	tp->irs = sc->sc_irs;
924 	tp->t_port = sc->sc_port;
925 	tcp_rcvseqinit(tp);
926 	tcp_sendseqinit(tp);
927 	blk = sototcpcb(lso)->t_fb;
928 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
929 		/*
930 		 * Our parents t_fb was not the default,
931 		 * we need to release our ref on tp->t_fb and
932 		 * pickup one on the new entry.
933 		 */
934 		struct tcp_function_block *rblk;
935 		void *ptr = NULL;
936 
937 		rblk = find_and_ref_tcp_fb(blk);
938 		KASSERT(rblk != NULL,
939 		    ("cannot find blk %p out of syncache?", blk));
940 
941 		if (rblk->tfb_tcp_fb_init == NULL ||
942 		    (*rblk->tfb_tcp_fb_init)(tp, &ptr) == 0) {
943 			/* Release the old stack */
944 			if (tp->t_fb->tfb_tcp_fb_fini != NULL)
945 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
946 			refcount_release(&tp->t_fb->tfb_refcnt);
947 			/* Now set in all the pointers */
948 			tp->t_fb = rblk;
949 			tp->t_fb_ptr = ptr;
950 		} else {
951 			/*
952 			 * Initialization failed. Release the reference count on
953 			 * the looked up default stack.
954 			 */
955 			refcount_release(&rblk->tfb_refcnt);
956 		}
957 	}
958 	tp->snd_wl1 = sc->sc_irs;
959 	tp->snd_max = tp->iss + 1;
960 	tp->snd_nxt = tp->iss + 1;
961 	tp->rcv_up = sc->sc_irs + 1;
962 	tp->rcv_wnd = sc->sc_wnd;
963 	tp->rcv_adv += tp->rcv_wnd;
964 	tp->last_ack_sent = tp->rcv_nxt;
965 
966 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
967 	if (sc->sc_flags & SCF_NOOPT)
968 		tp->t_flags |= TF_NOOPT;
969 	else {
970 		if (sc->sc_flags & SCF_WINSCALE) {
971 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
972 			tp->snd_scale = sc->sc_requested_s_scale;
973 			tp->request_r_scale = sc->sc_requested_r_scale;
974 		}
975 		if (sc->sc_flags & SCF_TIMESTAMP) {
976 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
977 			tp->ts_recent = sc->sc_tsreflect;
978 			tp->ts_recent_age = tcp_ts_getticks();
979 			tp->ts_offset = sc->sc_tsoff;
980 		}
981 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
982 		if (sc->sc_flags & SCF_SIGNATURE)
983 			tp->t_flags |= TF_SIGNATURE;
984 #endif
985 		if (sc->sc_flags & SCF_SACK)
986 			tp->t_flags |= TF_SACK_PERMIT;
987 	}
988 
989 	tcp_ecn_syncache_socket(tp, sc);
990 
991 	/*
992 	 * Set up MSS and get cached values from tcp_hostcache.
993 	 * This might overwrite some of the defaults we just set.
994 	 */
995 	tcp_mss(tp, sc->sc_peer_mss);
996 
997 	/*
998 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
999 	 * limited to one segment in cc_conn_init().
1000 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
1001 	 */
1002 	if (sc->sc_rxmits > 1)
1003 		tp->snd_cwnd = 1;
1004 
1005 #ifdef TCP_OFFLOAD
1006 	/*
1007 	 * Allow a TOE driver to install its hooks.  Note that we hold the
1008 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
1009 	 * new connection before the TOE driver has done its thing.
1010 	 */
1011 	if (ADDED_BY_TOE(sc)) {
1012 		struct toedev *tod = sc->sc_tod;
1013 
1014 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
1015 	}
1016 #endif
1017 	/*
1018 	 * Copy and activate timers.
1019 	 */
1020 	tp->t_maxunacktime = sototcpcb(lso)->t_maxunacktime;
1021 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
1022 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
1023 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
1024 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1025 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1026 
1027 	TCPSTAT_INC(tcps_accepts);
1028 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, TCPS_LISTEN);
1029 
1030 	if (!solisten_enqueue(so, SS_ISCONNECTED))
1031 		tp->t_flags |= TF_SONOTCONN;
1032 
1033 	return (so);
1034 
1035 allocfail:
1036 	/*
1037 	 * Drop the connection; we will either send a RST or have the peer
1038 	 * retransmit its SYN again after its RTO and try again.
1039 	 */
1040 	if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1041 		log(LOG_DEBUG, "%s; %s: Socket create failed "
1042 		    "due to limits or memory shortage\n",
1043 		    s, __func__);
1044 		free(s, M_TCPLOG);
1045 	}
1046 	TCPSTAT_INC(tcps_listendrop);
1047 	return (NULL);
1048 
1049 abort:
1050 	in_pcbdetach(inp);
1051 	in_pcbfree(inp);
1052 	sodealloc(so);
1053 	if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1054 		log(LOG_DEBUG, "%s; %s: in%s_pcbconnect failed with error %i\n",
1055 		    s, __func__, (sc->sc_inc.inc_flags & INC_ISIPV6) ? "6" : "",
1056 		    error);
1057 		free(s, M_TCPLOG);
1058 	}
1059 	TCPSTAT_INC(tcps_listendrop);
1060 	return (NULL);
1061 }
1062 
1063 /*
1064  * This function gets called when we receive an ACK for a
1065  * socket in the LISTEN state.  We look up the connection
1066  * in the syncache, and if its there, we pull it out of
1067  * the cache and turn it into a full-blown connection in
1068  * the SYN-RECEIVED state.
1069  *
1070  * On syncache_socket() success the newly created socket
1071  * has its underlying inp locked.
1072  */
1073 int
1074 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1075     struct socket **lsop, struct mbuf *m, uint16_t port)
1076 {
1077 	struct syncache *sc;
1078 	struct syncache_head *sch;
1079 	struct syncache scs;
1080 	char *s;
1081 	bool locked;
1082 
1083 	NET_EPOCH_ASSERT();
1084 	KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1085 	    ("%s: can handle only ACK", __func__));
1086 
1087 	if (syncache_cookiesonly()) {
1088 		sc = NULL;
1089 		sch = syncache_hashbucket(inc);
1090 		locked = false;
1091 	} else {
1092 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1093 		locked = true;
1094 		SCH_LOCK_ASSERT(sch);
1095 	}
1096 
1097 #ifdef INVARIANTS
1098 	/*
1099 	 * Test code for syncookies comparing the syncache stored
1100 	 * values with the reconstructed values from the cookie.
1101 	 */
1102 	if (sc != NULL)
1103 		syncookie_cmp(inc, sch, sc, th, to, *lsop, port);
1104 #endif
1105 
1106 	if (sc == NULL) {
1107 		/*
1108 		 * There is no syncache entry, so see if this ACK is
1109 		 * a returning syncookie.  To do this, first:
1110 		 *  A. Check if syncookies are used in case of syncache
1111 		 *     overflows
1112 		 *  B. See if this socket has had a syncache entry dropped in
1113 		 *     the recent past. We don't want to accept a bogus
1114 		 *     syncookie if we've never received a SYN or accept it
1115 		 *     twice.
1116 		 *  C. check that the syncookie is valid.  If it is, then
1117 		 *     cobble up a fake syncache entry, and return.
1118 		 */
1119 		if (locked && !V_tcp_syncookies) {
1120 			SCH_UNLOCK(sch);
1121 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1122 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1123 				    "segment rejected (syncookies disabled)\n",
1124 				    s, __func__);
1125 			goto failed;
1126 		}
1127 		if (locked && !V_tcp_syncookiesonly &&
1128 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1129 			SCH_UNLOCK(sch);
1130 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1131 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1132 				    "segment rejected (no syncache entry)\n",
1133 				    s, __func__);
1134 			goto failed;
1135 		}
1136 		bzero(&scs, sizeof(scs));
1137 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop, port);
1138 		if (locked)
1139 			SCH_UNLOCK(sch);
1140 		if (sc == NULL) {
1141 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1142 				log(LOG_DEBUG, "%s; %s: Segment failed "
1143 				    "SYNCOOKIE authentication, segment rejected "
1144 				    "(probably spoofed)\n", s, __func__);
1145 			goto failed;
1146 		}
1147 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1148 		/* If received ACK has MD5 signature, check it. */
1149 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1150 		    (!TCPMD5_ENABLED() ||
1151 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1152 			/* Drop the ACK. */
1153 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1154 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1155 				    "MD5 signature doesn't match.\n",
1156 				    s, __func__);
1157 				free(s, M_TCPLOG);
1158 			}
1159 			TCPSTAT_INC(tcps_sig_err_sigopt);
1160 			return (-1); /* Do not send RST */
1161 		}
1162 #endif /* TCP_SIGNATURE */
1163 		TCPSTATES_INC(TCPS_SYN_RECEIVED);
1164 	} else {
1165 		if (sc->sc_port != port) {
1166 			SCH_UNLOCK(sch);
1167 			return (0);
1168 		}
1169 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1170 		/*
1171 		 * If listening socket requested TCP digests, check that
1172 		 * received ACK has signature and it is correct.
1173 		 * If not, drop the ACK and leave sc entry in th cache,
1174 		 * because SYN was received with correct signature.
1175 		 */
1176 		if (sc->sc_flags & SCF_SIGNATURE) {
1177 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1178 				/* No signature */
1179 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1180 				SCH_UNLOCK(sch);
1181 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1182 					log(LOG_DEBUG, "%s; %s: Segment "
1183 					    "rejected, MD5 signature wasn't "
1184 					    "provided.\n", s, __func__);
1185 					free(s, M_TCPLOG);
1186 				}
1187 				return (-1); /* Do not send RST */
1188 			}
1189 			if (!TCPMD5_ENABLED() ||
1190 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1191 				/* Doesn't match or no SA */
1192 				SCH_UNLOCK(sch);
1193 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1194 					log(LOG_DEBUG, "%s; %s: Segment "
1195 					    "rejected, MD5 signature doesn't "
1196 					    "match.\n", s, __func__);
1197 					free(s, M_TCPLOG);
1198 				}
1199 				return (-1); /* Do not send RST */
1200 			}
1201 		}
1202 #endif /* TCP_SIGNATURE */
1203 
1204 		/*
1205 		 * RFC 7323 PAWS: If we have a timestamp on this segment and
1206 		 * it's less than ts_recent, drop it.
1207 		 * XXXMT: RFC 7323 also requires to send an ACK.
1208 		 *        In tcp_input.c this is only done for TCP segments
1209 		 *        with user data, so be consistent here and just drop
1210 		 *        the segment.
1211 		 */
1212 		if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1213 		    TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1214 			SCH_UNLOCK(sch);
1215 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1216 				log(LOG_DEBUG,
1217 				    "%s; %s: SEG.TSval %u < TS.Recent %u, "
1218 				    "segment dropped\n", s, __func__,
1219 				    to->to_tsval, sc->sc_tsreflect);
1220 				free(s, M_TCPLOG);
1221 			}
1222 			return (-1);  /* Do not send RST */
1223 		}
1224 
1225 		/*
1226 		 * If timestamps were not negotiated during SYN/ACK and a
1227 		 * segment with a timestamp is received, ignore the
1228 		 * timestamp and process the packet normally.
1229 		 * See section 3.2 of RFC 7323.
1230 		 */
1231 		if (!(sc->sc_flags & SCF_TIMESTAMP) &&
1232 		    (to->to_flags & TOF_TS)) {
1233 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1234 				log(LOG_DEBUG, "%s; %s: Timestamp not "
1235 				    "expected, segment processed normally\n",
1236 				    s, __func__);
1237 				free(s, M_TCPLOG);
1238 				s = NULL;
1239 			}
1240 		}
1241 
1242 		/*
1243 		 * If timestamps were negotiated during SYN/ACK and a
1244 		 * segment without a timestamp is received, silently drop
1245 		 * the segment, unless the missing timestamps are tolerated.
1246 		 * See section 3.2 of RFC 7323.
1247 		 */
1248 		if ((sc->sc_flags & SCF_TIMESTAMP) &&
1249 		    !(to->to_flags & TOF_TS)) {
1250 			if (V_tcp_tolerate_missing_ts) {
1251 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1252 					log(LOG_DEBUG,
1253 					    "%s; %s: Timestamp missing, "
1254 					    "segment processed normally\n",
1255 					    s, __func__);
1256 					free(s, M_TCPLOG);
1257 				}
1258 			} else {
1259 				SCH_UNLOCK(sch);
1260 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1261 					log(LOG_DEBUG,
1262 					    "%s; %s: Timestamp missing, "
1263 					    "segment silently dropped\n",
1264 					    s, __func__);
1265 					free(s, M_TCPLOG);
1266 				}
1267 				return (-1);  /* Do not send RST */
1268 			}
1269 		}
1270 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1271 		sch->sch_length--;
1272 #ifdef TCP_OFFLOAD
1273 		if (ADDED_BY_TOE(sc)) {
1274 			struct toedev *tod = sc->sc_tod;
1275 
1276 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1277 		}
1278 #endif
1279 		SCH_UNLOCK(sch);
1280 	}
1281 
1282 	/*
1283 	 * Segment validation:
1284 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1285 	 */
1286 	if (th->th_ack != sc->sc_iss + 1) {
1287 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1288 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1289 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1290 		goto failed;
1291 	}
1292 
1293 	/*
1294 	 * The SEQ must fall in the window starting at the received
1295 	 * initial receive sequence number + 1 (the SYN).
1296 	 */
1297 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1298 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1299 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1300 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1301 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1302 		goto failed;
1303 	}
1304 
1305 	*lsop = syncache_socket(sc, *lsop, m);
1306 
1307 	if (__predict_false(*lsop == NULL)) {
1308 		TCPSTAT_INC(tcps_sc_aborted);
1309 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1310 	} else
1311 		TCPSTAT_INC(tcps_sc_completed);
1312 
1313 /* how do we find the inp for the new socket? */
1314 	if (sc != &scs)
1315 		syncache_free(sc);
1316 	return (1);
1317 failed:
1318 	if (sc != NULL) {
1319 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1320 		if (sc != &scs)
1321 			syncache_free(sc);
1322 	}
1323 	if (s != NULL)
1324 		free(s, M_TCPLOG);
1325 	*lsop = NULL;
1326 	return (0);
1327 }
1328 
1329 static struct socket *
1330 syncache_tfo_expand(struct syncache *sc, struct socket *lso, struct mbuf *m,
1331     uint64_t response_cookie)
1332 {
1333 	struct inpcb *inp;
1334 	struct tcpcb *tp;
1335 	unsigned int *pending_counter;
1336 	struct socket *so;
1337 
1338 	NET_EPOCH_ASSERT();
1339 
1340 	pending_counter = intotcpcb(sotoinpcb(lso))->t_tfo_pending;
1341 	so = syncache_socket(sc, lso, m);
1342 	if (so == NULL) {
1343 		TCPSTAT_INC(tcps_sc_aborted);
1344 		atomic_subtract_int(pending_counter, 1);
1345 	} else {
1346 		soisconnected(so);
1347 		inp = sotoinpcb(so);
1348 		tp = intotcpcb(inp);
1349 		tp->t_flags |= TF_FASTOPEN;
1350 		tp->t_tfo_cookie.server = response_cookie;
1351 		tp->snd_max = tp->iss;
1352 		tp->snd_nxt = tp->iss;
1353 		tp->t_tfo_pending = pending_counter;
1354 		TCPSTATES_INC(TCPS_SYN_RECEIVED);
1355 		TCPSTAT_INC(tcps_sc_completed);
1356 	}
1357 
1358 	return (so);
1359 }
1360 
1361 /*
1362  * Given a LISTEN socket and an inbound SYN request, add
1363  * this to the syn cache, and send back a segment:
1364  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1365  * to the source.
1366  *
1367  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1368  * Doing so would require that we hold onto the data and deliver it
1369  * to the application.  However, if we are the target of a SYN-flood
1370  * DoS attack, an attacker could send data which would eventually
1371  * consume all available buffer space if it were ACKed.  By not ACKing
1372  * the data, we avoid this DoS scenario.
1373  *
1374  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1375  * cookie is processed and a new socket is created.  In this case, any data
1376  * accompanying the SYN will be queued to the socket by tcp_input() and will
1377  * be ACKed either when the application sends response data or the delayed
1378  * ACK timer expires, whichever comes first.
1379  */
1380 struct socket *
1381 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1382     struct inpcb *inp, struct socket *so, struct mbuf *m, void *tod,
1383     void *todctx, uint8_t iptos, uint16_t port)
1384 {
1385 	struct tcpcb *tp;
1386 	struct socket *rv = NULL;
1387 	struct syncache *sc = NULL;
1388 	struct syncache_head *sch;
1389 	struct mbuf *ipopts = NULL;
1390 	u_int ltflags;
1391 	int win, ip_ttl, ip_tos;
1392 	char *s;
1393 #ifdef INET6
1394 	int autoflowlabel = 0;
1395 #endif
1396 #ifdef MAC
1397 	struct label *maclabel;
1398 #endif
1399 	struct syncache scs;
1400 	struct ucred *cred;
1401 	uint64_t tfo_response_cookie;
1402 	unsigned int *tfo_pending = NULL;
1403 	int tfo_cookie_valid = 0;
1404 	int tfo_response_cookie_valid = 0;
1405 	bool locked;
1406 
1407 	INP_RLOCK_ASSERT(inp);			/* listen socket */
1408 	KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1409 	    ("%s: unexpected tcp flags", __func__));
1410 
1411 	/*
1412 	 * Combine all so/tp operations very early to drop the INP lock as
1413 	 * soon as possible.
1414 	 */
1415 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1416 	tp = sototcpcb(so);
1417 	cred = V_tcp_syncache.see_other ? NULL : crhold(so->so_cred);
1418 
1419 #ifdef INET6
1420 	if (inc->inc_flags & INC_ISIPV6) {
1421 		if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1422 			autoflowlabel = 1;
1423 		}
1424 		ip_ttl = in6_selecthlim(inp, NULL);
1425 		if ((inp->in6p_outputopts == NULL) ||
1426 		    (inp->in6p_outputopts->ip6po_tclass == -1)) {
1427 			ip_tos = 0;
1428 		} else {
1429 			ip_tos = inp->in6p_outputopts->ip6po_tclass;
1430 		}
1431 	}
1432 #endif
1433 #if defined(INET6) && defined(INET)
1434 	else
1435 #endif
1436 #ifdef INET
1437 	{
1438 		ip_ttl = inp->inp_ip_ttl;
1439 		ip_tos = inp->inp_ip_tos;
1440 	}
1441 #endif
1442 	win = so->sol_sbrcv_hiwat;
1443 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1444 
1445 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1446 	    (tp->t_tfo_pending != NULL) &&
1447 	    (to->to_flags & TOF_FASTOPEN)) {
1448 		/*
1449 		 * Limit the number of pending TFO connections to
1450 		 * approximately half of the queue limit.  This prevents TFO
1451 		 * SYN floods from starving the service by filling the
1452 		 * listen queue with bogus TFO connections.
1453 		 */
1454 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1455 		    (so->sol_qlimit / 2)) {
1456 			int result;
1457 
1458 			result = tcp_fastopen_check_cookie(inc,
1459 			    to->to_tfo_cookie, to->to_tfo_len,
1460 			    &tfo_response_cookie);
1461 			tfo_cookie_valid = (result > 0);
1462 			tfo_response_cookie_valid = (result >= 0);
1463 		}
1464 
1465 		/*
1466 		 * Remember the TFO pending counter as it will have to be
1467 		 * decremented below if we don't make it to syncache_tfo_expand().
1468 		 */
1469 		tfo_pending = tp->t_tfo_pending;
1470 	}
1471 
1472 #ifdef MAC
1473 	if (mac_syncache_init(&maclabel) != 0) {
1474 		INP_RUNLOCK(inp);
1475 		goto done;
1476 	} else
1477 		mac_syncache_create(maclabel, inp);
1478 #endif
1479 	if (!tfo_cookie_valid)
1480 		INP_RUNLOCK(inp);
1481 
1482 	/*
1483 	 * Remember the IP options, if any.
1484 	 */
1485 #ifdef INET6
1486 	if (!(inc->inc_flags & INC_ISIPV6))
1487 #endif
1488 #ifdef INET
1489 		ipopts = (m) ? ip_srcroute(m) : NULL;
1490 #else
1491 		ipopts = NULL;
1492 #endif
1493 
1494 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1495 	/*
1496 	 * When the socket is TCP-MD5 enabled check that,
1497 	 *  - a signed packet is valid
1498 	 *  - a non-signed packet does not have a security association
1499 	 *
1500 	 *  If a signed packet fails validation or a non-signed packet has a
1501 	 *  security association, the packet will be dropped.
1502 	 */
1503 	if (ltflags & TF_SIGNATURE) {
1504 		if (to->to_flags & TOF_SIGNATURE) {
1505 			if (!TCPMD5_ENABLED() ||
1506 			    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1507 				goto done;
1508 		} else {
1509 			if (TCPMD5_ENABLED() &&
1510 			    TCPMD5_INPUT(m, NULL, NULL) != ENOENT)
1511 				goto done;
1512 		}
1513 	} else if (to->to_flags & TOF_SIGNATURE)
1514 		goto done;
1515 #endif	/* TCP_SIGNATURE */
1516 	/*
1517 	 * See if we already have an entry for this connection.
1518 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1519 	 *
1520 	 * XXX: should the syncache be re-initialized with the contents
1521 	 * of the new SYN here (which may have different options?)
1522 	 *
1523 	 * XXX: We do not check the sequence number to see if this is a
1524 	 * real retransmit or a new connection attempt.  The question is
1525 	 * how to handle such a case; either ignore it as spoofed, or
1526 	 * drop the current entry and create a new one?
1527 	 */
1528 	if (syncache_cookiesonly()) {
1529 		sc = NULL;
1530 		sch = syncache_hashbucket(inc);
1531 		locked = false;
1532 	} else {
1533 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1534 		locked = true;
1535 		SCH_LOCK_ASSERT(sch);
1536 	}
1537 	if (sc != NULL) {
1538 		if (tfo_cookie_valid)
1539 			INP_RUNLOCK(inp);
1540 		TCPSTAT_INC(tcps_sc_dupsyn);
1541 		if (ipopts) {
1542 			/*
1543 			 * If we were remembering a previous source route,
1544 			 * forget it and use the new one we've been given.
1545 			 */
1546 			if (sc->sc_ipopts)
1547 				(void) m_free(sc->sc_ipopts);
1548 			sc->sc_ipopts = ipopts;
1549 		}
1550 		/*
1551 		 * Update timestamp if present.
1552 		 */
1553 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1554 			sc->sc_tsreflect = to->to_tsval;
1555 		else
1556 			sc->sc_flags &= ~SCF_TIMESTAMP;
1557 		/*
1558 		 * Adjust ECN response if needed, e.g. different
1559 		 * IP ECN field, or a fallback by the remote host.
1560 		 */
1561 		if (sc->sc_flags & SCF_ECN_MASK) {
1562 			sc->sc_flags &= ~SCF_ECN_MASK;
1563 			sc->sc_flags = tcp_ecn_syncache_add(tcp_get_flags(th), iptos);
1564 		}
1565 #ifdef MAC
1566 		/*
1567 		 * Since we have already unconditionally allocated label
1568 		 * storage, free it up.  The syncache entry will already
1569 		 * have an initialized label we can use.
1570 		 */
1571 		mac_syncache_destroy(&maclabel);
1572 #endif
1573 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1574 		/* Retransmit SYN|ACK and reset retransmit count. */
1575 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1576 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1577 			    "resetting timer and retransmitting SYN|ACK\n",
1578 			    s, __func__);
1579 			free(s, M_TCPLOG);
1580 		}
1581 		if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1582 			sc->sc_rxmits = 0;
1583 			syncache_timeout(sc, sch, 1);
1584 			TCPSTAT_INC(tcps_sndacks);
1585 			TCPSTAT_INC(tcps_sndtotal);
1586 		}
1587 		SCH_UNLOCK(sch);
1588 		goto donenoprobe;
1589 	}
1590 
1591 	if (tfo_cookie_valid) {
1592 		bzero(&scs, sizeof(scs));
1593 		sc = &scs;
1594 		goto skip_alloc;
1595 	}
1596 
1597 	/*
1598 	 * Skip allocating a syncache entry if we are just going to discard
1599 	 * it later.
1600 	 */
1601 	if (!locked) {
1602 		bzero(&scs, sizeof(scs));
1603 		sc = &scs;
1604 	} else
1605 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1606 	if (sc == NULL) {
1607 		/*
1608 		 * The zone allocator couldn't provide more entries.
1609 		 * Treat this as if the cache was full; drop the oldest
1610 		 * entry and insert the new one.
1611 		 */
1612 		TCPSTAT_INC(tcps_sc_zonefail);
1613 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1614 			sch->sch_last_overflow = time_uptime;
1615 			syncache_drop(sc, sch);
1616 			syncache_pause(inc);
1617 		}
1618 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1619 		if (sc == NULL) {
1620 			if (V_tcp_syncookies) {
1621 				bzero(&scs, sizeof(scs));
1622 				sc = &scs;
1623 			} else {
1624 				KASSERT(locked,
1625 				    ("%s: bucket unexpectedly unlocked",
1626 				    __func__));
1627 				SCH_UNLOCK(sch);
1628 				if (ipopts)
1629 					(void) m_free(ipopts);
1630 				goto done;
1631 			}
1632 		}
1633 	}
1634 
1635 skip_alloc:
1636 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1637 		sc->sc_tfo_cookie = &tfo_response_cookie;
1638 
1639 	/*
1640 	 * Fill in the syncache values.
1641 	 */
1642 #ifdef MAC
1643 	sc->sc_label = maclabel;
1644 #endif
1645 	sc->sc_cred = cred;
1646 	sc->sc_port = port;
1647 	cred = NULL;
1648 	sc->sc_ipopts = ipopts;
1649 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1650 	sc->sc_ip_tos = ip_tos;
1651 	sc->sc_ip_ttl = ip_ttl;
1652 #ifdef TCP_OFFLOAD
1653 	sc->sc_tod = tod;
1654 	sc->sc_todctx = todctx;
1655 #endif
1656 	sc->sc_irs = th->th_seq;
1657 	sc->sc_flags = 0;
1658 	sc->sc_flowlabel = 0;
1659 
1660 	/*
1661 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1662 	 * win was derived from socket earlier in the function.
1663 	 */
1664 	win = imax(win, 0);
1665 	win = imin(win, TCP_MAXWIN);
1666 	sc->sc_wnd = win;
1667 
1668 	if (V_tcp_do_rfc1323 &&
1669 	    !(ltflags & TF_NOOPT)) {
1670 		/*
1671 		 * A timestamp received in a SYN makes
1672 		 * it ok to send timestamp requests and replies.
1673 		 */
1674 		if ((to->to_flags & TOF_TS) && (V_tcp_do_rfc1323 != 2)) {
1675 			sc->sc_tsreflect = to->to_tsval;
1676 			sc->sc_flags |= SCF_TIMESTAMP;
1677 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1678 		}
1679 		if ((to->to_flags & TOF_SCALE) && (V_tcp_do_rfc1323 != 3)) {
1680 			int wscale = 0;
1681 
1682 			/*
1683 			 * Pick the smallest possible scaling factor that
1684 			 * will still allow us to scale up to sb_max, aka
1685 			 * kern.ipc.maxsockbuf.
1686 			 *
1687 			 * We do this because there are broken firewalls that
1688 			 * will corrupt the window scale option, leading to
1689 			 * the other endpoint believing that our advertised
1690 			 * window is unscaled.  At scale factors larger than
1691 			 * 5 the unscaled window will drop below 1500 bytes,
1692 			 * leading to serious problems when traversing these
1693 			 * broken firewalls.
1694 			 *
1695 			 * With the default maxsockbuf of 256K, a scale factor
1696 			 * of 3 will be chosen by this algorithm.  Those who
1697 			 * choose a larger maxsockbuf should watch out
1698 			 * for the compatibility problems mentioned above.
1699 			 *
1700 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1701 			 * or <SYN,ACK>) segment itself is never scaled.
1702 			 */
1703 			while (wscale < TCP_MAX_WINSHIFT &&
1704 			    (TCP_MAXWIN << wscale) < sb_max)
1705 				wscale++;
1706 			sc->sc_requested_r_scale = wscale;
1707 			sc->sc_requested_s_scale = to->to_wscale;
1708 			sc->sc_flags |= SCF_WINSCALE;
1709 		}
1710 	}
1711 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1712 	/*
1713 	 * If incoming packet has an MD5 signature, flag this in the
1714 	 * syncache so that syncache_respond() will do the right thing
1715 	 * with the SYN+ACK.
1716 	 */
1717 	if (to->to_flags & TOF_SIGNATURE)
1718 		sc->sc_flags |= SCF_SIGNATURE;
1719 #endif	/* TCP_SIGNATURE */
1720 	if (to->to_flags & TOF_SACKPERM)
1721 		sc->sc_flags |= SCF_SACK;
1722 	if (to->to_flags & TOF_MSS)
1723 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1724 	if (ltflags & TF_NOOPT)
1725 		sc->sc_flags |= SCF_NOOPT;
1726 	/* ECN Handshake */
1727 	if (V_tcp_do_ecn)
1728 		sc->sc_flags |= tcp_ecn_syncache_add(tcp_get_flags(th), iptos);
1729 
1730 	if (V_tcp_syncookies)
1731 		sc->sc_iss = syncookie_generate(sch, sc);
1732 	else
1733 		sc->sc_iss = arc4random();
1734 #ifdef INET6
1735 	if (autoflowlabel) {
1736 		if (V_tcp_syncookies)
1737 			sc->sc_flowlabel = sc->sc_iss;
1738 		else
1739 			sc->sc_flowlabel = ip6_randomflowlabel();
1740 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1741 	}
1742 #endif
1743 	if (locked)
1744 		SCH_UNLOCK(sch);
1745 
1746 	if (tfo_cookie_valid) {
1747 		rv = syncache_tfo_expand(sc, so, m, tfo_response_cookie);
1748 		/* INP_RUNLOCK(inp) will be performed by the caller */
1749 		goto tfo_expanded;
1750 	}
1751 
1752 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1753 	/*
1754 	 * Do a standard 3-way handshake.
1755 	 */
1756 	if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1757 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1758 			syncache_free(sc);
1759 		else if (sc != &scs)
1760 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1761 		TCPSTAT_INC(tcps_sndacks);
1762 		TCPSTAT_INC(tcps_sndtotal);
1763 	} else {
1764 		if (sc != &scs)
1765 			syncache_free(sc);
1766 		TCPSTAT_INC(tcps_sc_dropped);
1767 	}
1768 	goto donenoprobe;
1769 
1770 done:
1771 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1772 donenoprobe:
1773 	if (m)
1774 		m_freem(m);
1775 	/*
1776 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1777 	 * result in a new socket was processed and the associated pending
1778 	 * counter has not yet been decremented.  All such TFO processing paths
1779 	 * transit this point.
1780 	 */
1781 	if (tfo_pending != NULL)
1782 		tcp_fastopen_decrement_counter(tfo_pending);
1783 
1784 tfo_expanded:
1785 	if (cred != NULL)
1786 		crfree(cred);
1787 #ifdef MAC
1788 	if (sc == &scs)
1789 		mac_syncache_destroy(&maclabel);
1790 #endif
1791 	return (rv);
1792 }
1793 
1794 /*
1795  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1796  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1797  */
1798 static int
1799 syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1800 {
1801 	struct ip *ip = NULL;
1802 	struct mbuf *m;
1803 	struct tcphdr *th = NULL;
1804 	struct udphdr *udp = NULL;
1805 	int optlen, error = 0;	/* Make compiler happy */
1806 	u_int16_t hlen, tlen, mssopt, ulen;
1807 	struct tcpopt to;
1808 #ifdef INET6
1809 	struct ip6_hdr *ip6 = NULL;
1810 #endif
1811 
1812 	NET_EPOCH_ASSERT();
1813 
1814 	hlen =
1815 #ifdef INET6
1816 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1817 #endif
1818 		sizeof(struct ip);
1819 	tlen = hlen + sizeof(struct tcphdr);
1820 	if (sc->sc_port) {
1821 		tlen += sizeof(struct udphdr);
1822 	}
1823 	/* Determine MSS we advertize to other end of connection. */
1824 	mssopt = tcp_mssopt(&sc->sc_inc);
1825 	if (sc->sc_port)
1826 		mssopt -= V_tcp_udp_tunneling_overhead;
1827 	mssopt = max(mssopt, V_tcp_minmss);
1828 
1829 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1830 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1831 	    ("syncache: mbuf too small: hlen %u, sc_port %u, max_linkhdr %d + "
1832 	    "tlen %d + TCP_MAXOLEN %ju <= MHLEN %d", hlen, sc->sc_port,
1833 	    max_linkhdr, tlen, (uintmax_t)TCP_MAXOLEN, MHLEN));
1834 
1835 	/* Create the IP+TCP header from scratch. */
1836 	m = m_gethdr(M_NOWAIT, MT_DATA);
1837 	if (m == NULL)
1838 		return (ENOBUFS);
1839 #ifdef MAC
1840 	mac_syncache_create_mbuf(sc->sc_label, m);
1841 #endif
1842 	m->m_data += max_linkhdr;
1843 	m->m_len = tlen;
1844 	m->m_pkthdr.len = tlen;
1845 	m->m_pkthdr.rcvif = NULL;
1846 
1847 #ifdef INET6
1848 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1849 		ip6 = mtod(m, struct ip6_hdr *);
1850 		ip6->ip6_vfc = IPV6_VERSION;
1851 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1852 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1853 		ip6->ip6_plen = htons(tlen - hlen);
1854 		/* ip6_hlim is set after checksum */
1855 		/* Zero out traffic class and flow label. */
1856 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1857 		ip6->ip6_flow |= sc->sc_flowlabel;
1858 		if (sc->sc_port != 0) {
1859 			ip6->ip6_nxt = IPPROTO_UDP;
1860 			udp = (struct udphdr *)(ip6 + 1);
1861 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1862 			udp->uh_dport = sc->sc_port;
1863 			ulen = (tlen - sizeof(struct ip6_hdr));
1864 			th = (struct tcphdr *)(udp + 1);
1865 		} else {
1866 			ip6->ip6_nxt = IPPROTO_TCP;
1867 			th = (struct tcphdr *)(ip6 + 1);
1868 		}
1869 		ip6->ip6_flow |= htonl(sc->sc_ip_tos << IPV6_FLOWLABEL_LEN);
1870 	}
1871 #endif
1872 #if defined(INET6) && defined(INET)
1873 	else
1874 #endif
1875 #ifdef INET
1876 	{
1877 		ip = mtod(m, struct ip *);
1878 		ip->ip_v = IPVERSION;
1879 		ip->ip_hl = sizeof(struct ip) >> 2;
1880 		ip->ip_len = htons(tlen);
1881 		ip->ip_id = 0;
1882 		ip->ip_off = 0;
1883 		ip->ip_sum = 0;
1884 		ip->ip_src = sc->sc_inc.inc_laddr;
1885 		ip->ip_dst = sc->sc_inc.inc_faddr;
1886 		ip->ip_ttl = sc->sc_ip_ttl;
1887 		ip->ip_tos = sc->sc_ip_tos;
1888 
1889 		/*
1890 		 * See if we should do MTU discovery.  Route lookups are
1891 		 * expensive, so we will only unset the DF bit if:
1892 		 *
1893 		 *	1) path_mtu_discovery is disabled
1894 		 *	2) the SCF_UNREACH flag has been set
1895 		 */
1896 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1897 		       ip->ip_off |= htons(IP_DF);
1898 		if (sc->sc_port == 0) {
1899 			ip->ip_p = IPPROTO_TCP;
1900 			th = (struct tcphdr *)(ip + 1);
1901 		} else {
1902 			ip->ip_p = IPPROTO_UDP;
1903 			udp = (struct udphdr *)(ip + 1);
1904 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1905 			udp->uh_dport = sc->sc_port;
1906 			ulen = (tlen - sizeof(struct ip));
1907 			th = (struct tcphdr *)(udp + 1);
1908 		}
1909 	}
1910 #endif /* INET */
1911 	th->th_sport = sc->sc_inc.inc_lport;
1912 	th->th_dport = sc->sc_inc.inc_fport;
1913 
1914 	if (flags & TH_SYN)
1915 		th->th_seq = htonl(sc->sc_iss);
1916 	else
1917 		th->th_seq = htonl(sc->sc_iss + 1);
1918 	th->th_ack = htonl(sc->sc_irs + 1);
1919 	th->th_off = sizeof(struct tcphdr) >> 2;
1920 	th->th_win = htons(sc->sc_wnd);
1921 	th->th_urp = 0;
1922 
1923 	flags = tcp_ecn_syncache_respond(flags, sc);
1924 	tcp_set_flags(th, flags);
1925 
1926 	/* Tack on the TCP options. */
1927 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1928 		to.to_flags = 0;
1929 
1930 		if (flags & TH_SYN) {
1931 			to.to_mss = mssopt;
1932 			to.to_flags = TOF_MSS;
1933 			if (sc->sc_flags & SCF_WINSCALE) {
1934 				to.to_wscale = sc->sc_requested_r_scale;
1935 				to.to_flags |= TOF_SCALE;
1936 			}
1937 			if (sc->sc_flags & SCF_SACK)
1938 				to.to_flags |= TOF_SACKPERM;
1939 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1940 			if (sc->sc_flags & SCF_SIGNATURE)
1941 				to.to_flags |= TOF_SIGNATURE;
1942 #endif
1943 			if (sc->sc_tfo_cookie) {
1944 				to.to_flags |= TOF_FASTOPEN;
1945 				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1946 				to.to_tfo_cookie = sc->sc_tfo_cookie;
1947 				/* don't send cookie again when retransmitting response */
1948 				sc->sc_tfo_cookie = NULL;
1949 			}
1950 		}
1951 		if (sc->sc_flags & SCF_TIMESTAMP) {
1952 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1953 			to.to_tsecr = sc->sc_tsreflect;
1954 			to.to_flags |= TOF_TS;
1955 		}
1956 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1957 
1958 		/* Adjust headers by option size. */
1959 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1960 		m->m_len += optlen;
1961 		m->m_pkthdr.len += optlen;
1962 #ifdef INET6
1963 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1964 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1965 		else
1966 #endif
1967 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1968 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1969 		if (sc->sc_flags & SCF_SIGNATURE) {
1970 			KASSERT(to.to_flags & TOF_SIGNATURE,
1971 			    ("tcp_addoptions() didn't set tcp_signature"));
1972 
1973 			/* NOTE: to.to_signature is inside of mbuf */
1974 			if (!TCPMD5_ENABLED() ||
1975 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1976 				m_freem(m);
1977 				return (EACCES);
1978 			}
1979 		}
1980 #endif
1981 	} else
1982 		optlen = 0;
1983 
1984 	if (udp) {
1985 		ulen += optlen;
1986 		udp->uh_ulen = htons(ulen);
1987 	}
1988 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1989 	/*
1990 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1991 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1992 	 * to SYN|ACK due to lack of inp here.
1993 	 */
1994 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1995 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1996 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1997 	}
1998 #ifdef INET6
1999 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
2000 		if (sc->sc_port) {
2001 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
2002 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2003 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen,
2004 			      IPPROTO_UDP, 0);
2005 			th->th_sum = htons(0);
2006 		} else {
2007 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2008 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2009 			th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
2010 			    IPPROTO_TCP, 0);
2011 		}
2012 		ip6->ip6_hlim = sc->sc_ip_ttl;
2013 #ifdef TCP_OFFLOAD
2014 		if (ADDED_BY_TOE(sc)) {
2015 			struct toedev *tod = sc->sc_tod;
2016 
2017 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2018 
2019 			return (error);
2020 		}
2021 #endif
2022 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
2023 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2024 	}
2025 #endif
2026 #if defined(INET6) && defined(INET)
2027 	else
2028 #endif
2029 #ifdef INET
2030 	{
2031 		if (sc->sc_port) {
2032 			m->m_pkthdr.csum_flags = CSUM_UDP;
2033 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2034 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
2035 			      ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
2036 			th->th_sum = htons(0);
2037 		} else {
2038 			m->m_pkthdr.csum_flags = CSUM_TCP;
2039 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2040 			th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2041 			    htons(tlen + optlen - hlen + IPPROTO_TCP));
2042 		}
2043 #ifdef TCP_OFFLOAD
2044 		if (ADDED_BY_TOE(sc)) {
2045 			struct toedev *tod = sc->sc_tod;
2046 
2047 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2048 
2049 			return (error);
2050 		}
2051 #endif
2052 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
2053 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
2054 	}
2055 #endif
2056 	return (error);
2057 }
2058 
2059 /*
2060  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
2061  * that exceed the capacity of the syncache by avoiding the storage of any
2062  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
2063  * attacks where the attacker does not have access to our responses.
2064  *
2065  * Syncookies encode and include all necessary information about the
2066  * connection setup within the SYN|ACK that we send back.  That way we
2067  * can avoid keeping any local state until the ACK to our SYN|ACK returns
2068  * (if ever).  Normally the syncache and syncookies are running in parallel
2069  * with the latter taking over when the former is exhausted.  When matching
2070  * syncache entry is found the syncookie is ignored.
2071  *
2072  * The only reliable information persisting the 3WHS is our initial sequence
2073  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
2074  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2075  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
2076  * returns and signifies a legitimate connection if it matches the ACK.
2077  *
2078  * The available space of 32 bits to store the hash and to encode the SYN
2079  * option information is very tight and we should have at least 24 bits for
2080  * the MAC to keep the number of guesses by blind spoofing reasonably high.
2081  *
2082  * SYN option information we have to encode to fully restore a connection:
2083  * MSS: is imporant to chose an optimal segment size to avoid IP level
2084  *   fragmentation along the path.  The common MSS values can be encoded
2085  *   in a 3-bit table.  Uncommon values are captured by the next lower value
2086  *   in the table leading to a slight increase in packetization overhead.
2087  * WSCALE: is necessary to allow large windows to be used for high delay-
2088  *   bandwidth product links.  Not scaling the window when it was initially
2089  *   negotiated is bad for performance as lack of scaling further decreases
2090  *   the apparent available send window.  We only need to encode the WSCALE
2091  *   we received from the remote end.  Our end can be recalculated at any
2092  *   time.  The common WSCALE values can be encoded in a 3-bit table.
2093  *   Uncommon values are captured by the next lower value in the table
2094  *   making us under-estimate the available window size halving our
2095  *   theoretically possible maximum throughput for that connection.
2096  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2097  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2098  *   that are included in all segments on a connection.  We enable them when
2099  *   the ACK has them.
2100  *
2101  * Security of syncookies and attack vectors:
2102  *
2103  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2104  * together with the gloabl secret to make it unique per connection attempt.
2105  * Thus any change of any of those parameters results in a different MAC output
2106  * in an unpredictable way unless a collision is encountered.  24 bits of the
2107  * MAC are embedded into the ISS.
2108  *
2109  * To prevent replay attacks two rotating global secrets are updated with a
2110  * new random value every 15 seconds.  The life-time of a syncookie is thus
2111  * 15-30 seconds.
2112  *
2113  * Vector 1: Attacking the secret.  This requires finding a weakness in the
2114  * MAC itself or the way it is used here.  The attacker can do a chosen plain
2115  * text attack by varying and testing the all parameters under his control.
2116  * The strength depends on the size and randomness of the secret, and the
2117  * cryptographic security of the MAC function.  Due to the constant updating
2118  * of the secret the attacker has at most 29.999 seconds to find the secret
2119  * and launch spoofed connections.  After that he has to start all over again.
2120  *
2121  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
2122  * size an average of 4,823 attempts are required for a 50% chance of success
2123  * to spoof a single syncookie (birthday collision paradox).  However the
2124  * attacker is blind and doesn't know if one of his attempts succeeded unless
2125  * he has a side channel to interfere success from.  A single connection setup
2126  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2127  * This many attempts are required for each one blind spoofed connection.  For
2128  * every additional spoofed connection he has to launch another N attempts.
2129  * Thus for a sustained rate 100 spoofed connections per second approximately
2130  * 1,800,000 packets per second would have to be sent.
2131  *
2132  * NB: The MAC function should be fast so that it doesn't become a CPU
2133  * exhaustion attack vector itself.
2134  *
2135  * References:
2136  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2137  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2138  *   http://cr.yp.to/syncookies.html    (overview)
2139  *   http://cr.yp.to/syncookies/archive (details)
2140  *
2141  *
2142  * Schematic construction of a syncookie enabled Initial Sequence Number:
2143  *  0        1         2         3
2144  *  12345678901234567890123456789012
2145  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2146  *
2147  *  x 24 MAC (truncated)
2148  *  W  3 Send Window Scale index
2149  *  M  3 MSS index
2150  *  S  1 SACK permitted
2151  *  P  1 Odd/even secret
2152  */
2153 
2154 /*
2155  * Distribution and probability of certain MSS values.  Those in between are
2156  * rounded down to the next lower one.
2157  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2158  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
2159  */
2160 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2161 
2162 /*
2163  * Distribution and probability of certain WSCALE values.  We have to map the
2164  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2165  * bits based on prevalence of certain values.  Where we don't have an exact
2166  * match for are rounded down to the next lower one letting us under-estimate
2167  * the true available window.  At the moment this would happen only for the
2168  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2169  * and window size).  The absence of the WSCALE option (no scaling in either
2170  * direction) is encoded with index zero.
2171  * [WSCALE values histograms, Allman, 2012]
2172  *                            X 10 10 35  5  6 14 10%   by host
2173  *                            X 11  4  5  5 18 49  3%   by connections
2174  */
2175 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2176 
2177 /*
2178  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
2179  * and good cryptographic properties.
2180  */
2181 static uint32_t
2182 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2183     uint8_t *secbits, uintptr_t secmod)
2184 {
2185 	SIPHASH_CTX ctx;
2186 	uint32_t siphash[2];
2187 
2188 	SipHash24_Init(&ctx);
2189 	SipHash_SetKey(&ctx, secbits);
2190 	switch (inc->inc_flags & INC_ISIPV6) {
2191 #ifdef INET
2192 	case 0:
2193 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2194 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2195 		break;
2196 #endif
2197 #ifdef INET6
2198 	case INC_ISIPV6:
2199 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2200 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2201 		break;
2202 #endif
2203 	}
2204 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2205 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2206 	SipHash_Update(&ctx, &irs, sizeof(irs));
2207 	SipHash_Update(&ctx, &flags, sizeof(flags));
2208 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2209 	SipHash_Final((u_int8_t *)&siphash, &ctx);
2210 
2211 	return (siphash[0] ^ siphash[1]);
2212 }
2213 
2214 static tcp_seq
2215 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2216 {
2217 	u_int i, secbit, wscale;
2218 	uint32_t iss, hash;
2219 	uint8_t *secbits;
2220 	union syncookie cookie;
2221 
2222 	cookie.cookie = 0;
2223 
2224 	/* Map our computed MSS into the 3-bit index. */
2225 	for (i = nitems(tcp_sc_msstab) - 1;
2226 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2227 	     i--)
2228 		;
2229 	cookie.flags.mss_idx = i;
2230 
2231 	/*
2232 	 * Map the send window scale into the 3-bit index but only if
2233 	 * the wscale option was received.
2234 	 */
2235 	if (sc->sc_flags & SCF_WINSCALE) {
2236 		wscale = sc->sc_requested_s_scale;
2237 		for (i = nitems(tcp_sc_wstab) - 1;
2238 		    tcp_sc_wstab[i] > wscale && i > 0;
2239 		     i--)
2240 			;
2241 		cookie.flags.wscale_idx = i;
2242 	}
2243 
2244 	/* Can we do SACK? */
2245 	if (sc->sc_flags & SCF_SACK)
2246 		cookie.flags.sack_ok = 1;
2247 
2248 	/* Which of the two secrets to use. */
2249 	secbit = V_tcp_syncache.secret.oddeven & 0x1;
2250 	cookie.flags.odd_even = secbit;
2251 
2252 	secbits = V_tcp_syncache.secret.key[secbit];
2253 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2254 	    (uintptr_t)sch);
2255 
2256 	/*
2257 	 * Put the flags into the hash and XOR them to get better ISS number
2258 	 * variance.  This doesn't enhance the cryptographic strength and is
2259 	 * done to prevent the 8 cookie bits from showing up directly on the
2260 	 * wire.
2261 	 */
2262 	iss = hash & ~0xff;
2263 	iss |= cookie.cookie ^ (hash >> 24);
2264 
2265 	TCPSTAT_INC(tcps_sc_sendcookie);
2266 	return (iss);
2267 }
2268 
2269 static struct syncache *
2270 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2271     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2272     struct socket *lso, uint16_t port)
2273 {
2274 	uint32_t hash;
2275 	uint8_t *secbits;
2276 	tcp_seq ack, seq;
2277 	int wnd, wscale = 0;
2278 	union syncookie cookie;
2279 
2280 	/*
2281 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2282 	 * advances.
2283 	 */
2284 	ack = th->th_ack - 1;
2285 	seq = th->th_seq - 1;
2286 
2287 	/*
2288 	 * Unpack the flags containing enough information to restore the
2289 	 * connection.
2290 	 */
2291 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2292 
2293 	/* Which of the two secrets to use. */
2294 	secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2295 
2296 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2297 
2298 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2299 	if ((ack & ~0xff) != (hash & ~0xff))
2300 		return (NULL);
2301 
2302 	/* Fill in the syncache values. */
2303 	sc->sc_flags = 0;
2304 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2305 	sc->sc_ipopts = NULL;
2306 
2307 	sc->sc_irs = seq;
2308 	sc->sc_iss = ack;
2309 
2310 	switch (inc->inc_flags & INC_ISIPV6) {
2311 #ifdef INET
2312 	case 0:
2313 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2314 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2315 		break;
2316 #endif
2317 #ifdef INET6
2318 	case INC_ISIPV6:
2319 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2320 			sc->sc_flowlabel =
2321 			    htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2322 		break;
2323 #endif
2324 	}
2325 
2326 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2327 
2328 	/* We can simply recompute receive window scale we sent earlier. */
2329 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2330 		wscale++;
2331 
2332 	/* Only use wscale if it was enabled in the orignal SYN. */
2333 	if (cookie.flags.wscale_idx > 0) {
2334 		sc->sc_requested_r_scale = wscale;
2335 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2336 		sc->sc_flags |= SCF_WINSCALE;
2337 	}
2338 
2339 	wnd = lso->sol_sbrcv_hiwat;
2340 	wnd = imax(wnd, 0);
2341 	wnd = imin(wnd, TCP_MAXWIN);
2342 	sc->sc_wnd = wnd;
2343 
2344 	if (cookie.flags.sack_ok)
2345 		sc->sc_flags |= SCF_SACK;
2346 
2347 	if (to->to_flags & TOF_TS) {
2348 		sc->sc_flags |= SCF_TIMESTAMP;
2349 		sc->sc_tsreflect = to->to_tsval;
2350 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2351 	}
2352 
2353 	if (to->to_flags & TOF_SIGNATURE)
2354 		sc->sc_flags |= SCF_SIGNATURE;
2355 
2356 	sc->sc_rxmits = 0;
2357 
2358 	sc->sc_port = port;
2359 
2360 	TCPSTAT_INC(tcps_sc_recvcookie);
2361 	return (sc);
2362 }
2363 
2364 #ifdef INVARIANTS
2365 static int
2366 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2367     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2368     struct socket *lso, uint16_t port)
2369 {
2370 	struct syncache scs, *scx;
2371 	char *s;
2372 
2373 	bzero(&scs, sizeof(scs));
2374 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso, port);
2375 
2376 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2377 		return (0);
2378 
2379 	if (scx != NULL) {
2380 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2381 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2382 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2383 
2384 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2385 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2386 			    s, __func__, sc->sc_requested_r_scale,
2387 			    scx->sc_requested_r_scale);
2388 
2389 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2390 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2391 			    s, __func__, sc->sc_requested_s_scale,
2392 			    scx->sc_requested_s_scale);
2393 
2394 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2395 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2396 	}
2397 
2398 	if (s != NULL)
2399 		free(s, M_TCPLOG);
2400 	return (0);
2401 }
2402 #endif /* INVARIANTS */
2403 
2404 static void
2405 syncookie_reseed(void *arg)
2406 {
2407 	struct tcp_syncache *sc = arg;
2408 	uint8_t *secbits;
2409 	int secbit;
2410 
2411 	/*
2412 	 * Reseeding the secret doesn't have to be protected by a lock.
2413 	 * It only must be ensured that the new random values are visible
2414 	 * to all CPUs in a SMP environment.  The atomic with release
2415 	 * semantics ensures that.
2416 	 */
2417 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2418 	secbits = sc->secret.key[secbit];
2419 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2420 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2421 
2422 	/* Reschedule ourself. */
2423 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2424 }
2425 
2426 /*
2427  * We have overflowed a bucket. Let's pause dealing with the syncache.
2428  * This function will increment the bucketoverflow statistics appropriately
2429  * (once per pause when pausing is enabled; otherwise, once per overflow).
2430  */
2431 static void
2432 syncache_pause(struct in_conninfo *inc)
2433 {
2434 	time_t delta;
2435 	const char *s;
2436 
2437 	/* XXX:
2438 	 * 2. Add sysctl read here so we don't get the benefit of this
2439 	 * change without the new sysctl.
2440 	 */
2441 
2442 	/*
2443 	 * Try an unlocked read. If we already know that another thread
2444 	 * has activated the feature, there is no need to proceed.
2445 	 */
2446 	if (V_tcp_syncache.paused)
2447 		return;
2448 
2449 	/* Are cookied enabled? If not, we can't pause. */
2450 	if (!V_tcp_syncookies) {
2451 		TCPSTAT_INC(tcps_sc_bucketoverflow);
2452 		return;
2453 	}
2454 
2455 	/*
2456 	 * We may be the first thread to find an overflow. Get the lock
2457 	 * and evaluate if we need to take action.
2458 	 */
2459 	mtx_lock(&V_tcp_syncache.pause_mtx);
2460 	if (V_tcp_syncache.paused) {
2461 		mtx_unlock(&V_tcp_syncache.pause_mtx);
2462 		return;
2463 	}
2464 
2465 	/* Activate protection. */
2466 	V_tcp_syncache.paused = true;
2467 	TCPSTAT_INC(tcps_sc_bucketoverflow);
2468 
2469 	/*
2470 	 * Determine the last backoff time. If we are seeing a re-newed
2471 	 * attack within that same time after last reactivating the syncache,
2472 	 * consider it an extension of the same attack.
2473 	 */
2474 	delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2475 	if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2476 		if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2477 			delta <<= 1;
2478 			V_tcp_syncache.pause_backoff++;
2479 		}
2480 	} else {
2481 		delta = TCP_SYNCACHE_PAUSE_TIME;
2482 		V_tcp_syncache.pause_backoff = 0;
2483 	}
2484 
2485 	/* Log a warning, including IP addresses, if able. */
2486 	if (inc != NULL)
2487 		s = tcp_log_addrs(inc, NULL, NULL, NULL);
2488 	else
2489 		s = (const char *)NULL;
2490 	log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2491 	    "the next %lld seconds%s%s%s\n", (long long)delta,
2492 	    (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2493 	    (s != NULL) ? ")" : "");
2494 	free(__DECONST(void *, s), M_TCPLOG);
2495 
2496 	/* Use the calculated delta to set a new pause time. */
2497 	V_tcp_syncache.pause_until = time_uptime + delta;
2498 	callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2499 	    &V_tcp_syncache);
2500 	mtx_unlock(&V_tcp_syncache.pause_mtx);
2501 }
2502 
2503 /* Evaluate whether we need to unpause. */
2504 static void
2505 syncache_unpause(void *arg)
2506 {
2507 	struct tcp_syncache *sc;
2508 	time_t delta;
2509 
2510 	sc = arg;
2511 	mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2512 	callout_deactivate(&sc->pause_co);
2513 
2514 	/*
2515 	 * Check to make sure we are not running early. If the pause
2516 	 * time has expired, then deactivate the protection.
2517 	 */
2518 	if ((delta = sc->pause_until - time_uptime) > 0)
2519 		callout_schedule(&sc->pause_co, delta * hz);
2520 	else
2521 		sc->paused = false;
2522 }
2523 
2524 /*
2525  * Exports the syncache entries to userland so that netstat can display
2526  * them alongside the other sockets.  This function is intended to be
2527  * called only from tcp_pcblist.
2528  *
2529  * Due to concurrency on an active system, the number of pcbs exported
2530  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2531  * amount of space the caller allocated for this function to use.
2532  */
2533 int
2534 syncache_pcblist(struct sysctl_req *req)
2535 {
2536 	struct xtcpcb xt;
2537 	struct syncache *sc;
2538 	struct syncache_head *sch;
2539 	int error, i;
2540 
2541 	bzero(&xt, sizeof(xt));
2542 	xt.xt_len = sizeof(xt);
2543 	xt.t_state = TCPS_SYN_RECEIVED;
2544 	xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2545 	xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2546 	xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2547 	xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2548 
2549 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
2550 		sch = &V_tcp_syncache.hashbase[i];
2551 		SCH_LOCK(sch);
2552 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2553 			if (sc->sc_cred != NULL &&
2554 			    cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2555 				continue;
2556 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2557 				xt.xt_inp.inp_vflag = INP_IPV6;
2558 			else
2559 				xt.xt_inp.inp_vflag = INP_IPV4;
2560 			xt.xt_encaps_port = sc->sc_port;
2561 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2562 			    sizeof (struct in_conninfo));
2563 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2564 			if (error) {
2565 				SCH_UNLOCK(sch);
2566 				return (0);
2567 			}
2568 		}
2569 		SCH_UNLOCK(sch);
2570 	}
2571 
2572 	return (0);
2573 }
2574