xref: /freebsd/sys/netinet/tcp_syncache.c (revision 39beb93c)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/md5.h>
51 #include <sys/proc.h>		/* for proc0 declaration */
52 #include <sys/random.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/syslog.h>
56 #include <sys/ucred.h>
57 #include <sys/vimage.h>
58 
59 #include <vm/uma.h>
60 
61 #include <net/if.h>
62 #include <net/route.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_var.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/ip_options.h>
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #include <netinet/icmp6.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/in6_pcb.h>
77 #endif
78 #include <netinet/tcp.h>
79 #include <netinet/tcp_fsm.h>
80 #include <netinet/tcp_seq.h>
81 #include <netinet/tcp_timer.h>
82 #include <netinet/tcp_var.h>
83 #include <netinet/tcp_syncache.h>
84 #include <netinet/tcp_offload.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/vinet.h>
89 
90 #ifdef IPSEC
91 #include <netipsec/ipsec.h>
92 #ifdef INET6
93 #include <netipsec/ipsec6.h>
94 #endif
95 #include <netipsec/key.h>
96 #endif /*IPSEC*/
97 
98 #include <machine/in_cksum.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #ifdef VIMAGE_GLOBALS
103 static struct tcp_syncache tcp_syncache;
104 static int tcp_syncookies;
105 static int tcp_syncookiesonly;
106 int tcp_sc_rst_sock_fail;
107 #endif
108 
109 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, syncookies,
110     CTLFLAG_RW, tcp_syncookies, 0,
111     "Use TCP SYN cookies if the syncache overflows");
112 
113 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, syncookies_only,
114     CTLFLAG_RW, tcp_syncookiesonly, 0,
115     "Use only TCP SYN cookies");
116 
117 #ifdef TCP_OFFLOAD_DISABLE
118 #define TOEPCB_ISSET(sc) (0)
119 #else
120 #define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
121 #endif
122 
123 static void	 syncache_drop(struct syncache *, struct syncache_head *);
124 static void	 syncache_free(struct syncache *);
125 static void	 syncache_insert(struct syncache *, struct syncache_head *);
126 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
127 static int	 syncache_respond(struct syncache *);
128 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
129 		    struct mbuf *m);
130 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
131 		    int docallout);
132 static void	 syncache_timer(void *);
133 static void	 syncookie_generate(struct syncache_head *, struct syncache *,
134 		    u_int32_t *);
135 static struct syncache
136 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137 		    struct syncache *, struct tcpopt *, struct tcphdr *,
138 		    struct socket *);
139 
140 /*
141  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
142  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
143  * the odds are that the user has given up attempting to connect by then.
144  */
145 #define SYNCACHE_MAXREXMTS		3
146 
147 /* Arbitrary values */
148 #define TCP_SYNCACHE_HASHSIZE		512
149 #define TCP_SYNCACHE_BUCKETLIMIT	30
150 
151 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
152 
153 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
154     bucketlimit, CTLFLAG_RDTUN,
155     tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
156 
157 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
158     cachelimit, CTLFLAG_RDTUN,
159     tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
160 
161 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
162     count, CTLFLAG_RD,
163     tcp_syncache.cache_count, 0, "Current number of entries in syncache");
164 
165 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
166     hashsize, CTLFLAG_RDTUN,
167     tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
168 
169 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
170     rexmtlimit, CTLFLAG_RW,
171     tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
172 
173 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
174      rst_on_sock_fail, CTLFLAG_RW,
175      tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
176 
177 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
178 
179 #define SYNCACHE_HASH(inc, mask)					\
180 	((V_tcp_syncache.hash_secret ^					\
181 	  (inc)->inc_faddr.s_addr ^					\
182 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
183 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
184 
185 #define SYNCACHE_HASH6(inc, mask)					\
186 	((V_tcp_syncache.hash_secret ^					\
187 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
188 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
189 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
190 
191 #define ENDPTS_EQ(a, b) (						\
192 	(a)->ie_fport == (b)->ie_fport &&				\
193 	(a)->ie_lport == (b)->ie_lport &&				\
194 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
195 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
196 )
197 
198 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
199 
200 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
201 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
202 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
203 
204 /*
205  * Requires the syncache entry to be already removed from the bucket list.
206  */
207 static void
208 syncache_free(struct syncache *sc)
209 {
210 	INIT_VNET_INET(curvnet);
211 
212 	if (sc->sc_ipopts)
213 		(void) m_free(sc->sc_ipopts);
214 	if (sc->sc_cred)
215 		crfree(sc->sc_cred);
216 #ifdef MAC
217 	mac_syncache_destroy(&sc->sc_label);
218 #endif
219 
220 	uma_zfree(V_tcp_syncache.zone, sc);
221 }
222 
223 void
224 syncache_init(void)
225 {
226 	INIT_VNET_INET(curvnet);
227 	int i;
228 
229 	V_tcp_syncookies = 1;
230 	V_tcp_syncookiesonly = 0;
231 	V_tcp_sc_rst_sock_fail = 1;
232 
233 	V_tcp_syncache.cache_count = 0;
234 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
235 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
236 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
237 	V_tcp_syncache.hash_secret = arc4random();
238 
239 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
240 	    &V_tcp_syncache.hashsize);
241 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
242 	    &V_tcp_syncache.bucket_limit);
243 	if (!powerof2(V_tcp_syncache.hashsize) ||
244 	    V_tcp_syncache.hashsize == 0) {
245 		printf("WARNING: syncache hash size is not a power of 2.\n");
246 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
247 	}
248 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
249 
250 	/* Set limits. */
251 	V_tcp_syncache.cache_limit =
252 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
253 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
254 	    &V_tcp_syncache.cache_limit);
255 
256 	/* Allocate the hash table. */
257 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
258 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
259 
260 	/* Initialize the hash buckets. */
261 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
262 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
263 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
264 			 NULL, MTX_DEF);
265 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
266 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
267 		V_tcp_syncache.hashbase[i].sch_length = 0;
268 	}
269 
270 	/* Create the syncache entry zone. */
271 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
272 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
273 	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
274 }
275 
276 /*
277  * Inserts a syncache entry into the specified bucket row.
278  * Locks and unlocks the syncache_head autonomously.
279  */
280 static void
281 syncache_insert(struct syncache *sc, struct syncache_head *sch)
282 {
283 	INIT_VNET_INET(sch->sch_vnet);
284 	struct syncache *sc2;
285 
286 	SCH_LOCK(sch);
287 
288 	/*
289 	 * Make sure that we don't overflow the per-bucket limit.
290 	 * If the bucket is full, toss the oldest element.
291 	 */
292 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
293 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
294 			("sch->sch_length incorrect"));
295 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
296 		syncache_drop(sc2, sch);
297 		V_tcpstat.tcps_sc_bucketoverflow++;
298 	}
299 
300 	/* Put it into the bucket. */
301 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
302 	sch->sch_length++;
303 
304 	/* Reinitialize the bucket row's timer. */
305 	if (sch->sch_length == 1)
306 		sch->sch_nextc = ticks + INT_MAX;
307 	syncache_timeout(sc, sch, 1);
308 
309 	SCH_UNLOCK(sch);
310 
311 	V_tcp_syncache.cache_count++;
312 	V_tcpstat.tcps_sc_added++;
313 }
314 
315 /*
316  * Remove and free entry from syncache bucket row.
317  * Expects locked syncache head.
318  */
319 static void
320 syncache_drop(struct syncache *sc, struct syncache_head *sch)
321 {
322 	INIT_VNET_INET(sch->sch_vnet);
323 
324 	SCH_LOCK_ASSERT(sch);
325 
326 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
327 	sch->sch_length--;
328 
329 #ifndef TCP_OFFLOAD_DISABLE
330 	if (sc->sc_tu)
331 		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
332 #endif
333 	syncache_free(sc);
334 	V_tcp_syncache.cache_count--;
335 }
336 
337 /*
338  * Engage/reengage time on bucket row.
339  */
340 static void
341 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
342 {
343 	sc->sc_rxttime = ticks +
344 		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
345 	sc->sc_rxmits++;
346 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
347 		sch->sch_nextc = sc->sc_rxttime;
348 		if (docallout)
349 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
350 			    syncache_timer, (void *)sch);
351 	}
352 }
353 
354 /*
355  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
356  * If we have retransmitted an entry the maximum number of times, expire it.
357  * One separate timer for each bucket row.
358  */
359 static void
360 syncache_timer(void *xsch)
361 {
362 	struct syncache_head *sch = (struct syncache_head *)xsch;
363 	struct syncache *sc, *nsc;
364 	int tick = ticks;
365 	char *s;
366 
367 	CURVNET_SET(sch->sch_vnet);
368 	INIT_VNET_INET(sch->sch_vnet);
369 
370 	/* NB: syncache_head has already been locked by the callout. */
371 	SCH_LOCK_ASSERT(sch);
372 
373 	/*
374 	 * In the following cycle we may remove some entries and/or
375 	 * advance some timeouts, so re-initialize the bucket timer.
376 	 */
377 	sch->sch_nextc = tick + INT_MAX;
378 
379 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
380 		/*
381 		 * We do not check if the listen socket still exists
382 		 * and accept the case where the listen socket may be
383 		 * gone by the time we resend the SYN/ACK.  We do
384 		 * not expect this to happens often. If it does,
385 		 * then the RST will be sent by the time the remote
386 		 * host does the SYN/ACK->ACK.
387 		 */
388 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
389 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
390 				sch->sch_nextc = sc->sc_rxttime;
391 			continue;
392 		}
393 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
394 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
395 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
396 				    "giving up and removing syncache entry\n",
397 				    s, __func__);
398 				free(s, M_TCPLOG);
399 			}
400 			syncache_drop(sc, sch);
401 			V_tcpstat.tcps_sc_stale++;
402 			continue;
403 		}
404 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
405 			log(LOG_DEBUG, "%s; %s: Response timeout, "
406 			    "retransmitting (%u) SYN|ACK\n",
407 			    s, __func__, sc->sc_rxmits);
408 			free(s, M_TCPLOG);
409 		}
410 
411 		(void) syncache_respond(sc);
412 		V_tcpstat.tcps_sc_retransmitted++;
413 		syncache_timeout(sc, sch, 0);
414 	}
415 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
416 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
417 			syncache_timer, (void *)(sch));
418 	CURVNET_RESTORE();
419 }
420 
421 /*
422  * Find an entry in the syncache.
423  * Returns always with locked syncache_head plus a matching entry or NULL.
424  */
425 struct syncache *
426 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
427 {
428 	INIT_VNET_INET(curvnet);
429 	struct syncache *sc;
430 	struct syncache_head *sch;
431 
432 #ifdef INET6
433 	if (inc->inc_flags & INC_ISIPV6) {
434 		sch = &V_tcp_syncache.hashbase[
435 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
436 		*schp = sch;
437 
438 		SCH_LOCK(sch);
439 
440 		/* Circle through bucket row to find matching entry. */
441 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
442 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
443 				return (sc);
444 		}
445 	} else
446 #endif
447 	{
448 		sch = &V_tcp_syncache.hashbase[
449 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
450 		*schp = sch;
451 
452 		SCH_LOCK(sch);
453 
454 		/* Circle through bucket row to find matching entry. */
455 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
456 #ifdef INET6
457 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
458 				continue;
459 #endif
460 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
461 				return (sc);
462 		}
463 	}
464 	SCH_LOCK_ASSERT(*schp);
465 	return (NULL);			/* always returns with locked sch */
466 }
467 
468 /*
469  * This function is called when we get a RST for a
470  * non-existent connection, so that we can see if the
471  * connection is in the syn cache.  If it is, zap it.
472  */
473 void
474 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
475 {
476 	INIT_VNET_INET(curvnet);
477 	struct syncache *sc;
478 	struct syncache_head *sch;
479 	char *s = NULL;
480 
481 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
482 	SCH_LOCK_ASSERT(sch);
483 
484 	/*
485 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
486 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
487 	 */
488 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
489 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
490 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
491 			    "FIN flag set, segment ignored\n", s, __func__);
492 		V_tcpstat.tcps_badrst++;
493 		goto done;
494 	}
495 
496 	/*
497 	 * No corresponding connection was found in syncache.
498 	 * If syncookies are enabled and possibly exclusively
499 	 * used, or we are under memory pressure, a valid RST
500 	 * may not find a syncache entry.  In that case we're
501 	 * done and no SYN|ACK retransmissions will happen.
502 	 * Otherwise the the RST was misdirected or spoofed.
503 	 */
504 	if (sc == NULL) {
505 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
506 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
507 			    "syncache entry (possibly syncookie only), "
508 			    "segment ignored\n", s, __func__);
509 		V_tcpstat.tcps_badrst++;
510 		goto done;
511 	}
512 
513 	/*
514 	 * If the RST bit is set, check the sequence number to see
515 	 * if this is a valid reset segment.
516 	 * RFC 793 page 37:
517 	 *   In all states except SYN-SENT, all reset (RST) segments
518 	 *   are validated by checking their SEQ-fields.  A reset is
519 	 *   valid if its sequence number is in the window.
520 	 *
521 	 *   The sequence number in the reset segment is normally an
522 	 *   echo of our outgoing acknowlegement numbers, but some hosts
523 	 *   send a reset with the sequence number at the rightmost edge
524 	 *   of our receive window, and we have to handle this case.
525 	 */
526 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
527 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
528 		syncache_drop(sc, sch);
529 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
530 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
531 			    "connection attempt aborted by remote endpoint\n",
532 			    s, __func__);
533 		V_tcpstat.tcps_sc_reset++;
534 	} else {
535 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
536 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
537 			    "IRS %u (+WND %u), segment ignored\n",
538 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
539 		V_tcpstat.tcps_badrst++;
540 	}
541 
542 done:
543 	if (s != NULL)
544 		free(s, M_TCPLOG);
545 	SCH_UNLOCK(sch);
546 }
547 
548 void
549 syncache_badack(struct in_conninfo *inc)
550 {
551 	INIT_VNET_INET(curvnet);
552 	struct syncache *sc;
553 	struct syncache_head *sch;
554 
555 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
556 	SCH_LOCK_ASSERT(sch);
557 	if (sc != NULL) {
558 		syncache_drop(sc, sch);
559 		V_tcpstat.tcps_sc_badack++;
560 	}
561 	SCH_UNLOCK(sch);
562 }
563 
564 void
565 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
566 {
567 	INIT_VNET_INET(curvnet);
568 	struct syncache *sc;
569 	struct syncache_head *sch;
570 
571 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
572 	SCH_LOCK_ASSERT(sch);
573 	if (sc == NULL)
574 		goto done;
575 
576 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
577 	if (ntohl(th->th_seq) != sc->sc_iss)
578 		goto done;
579 
580 	/*
581 	 * If we've rertransmitted 3 times and this is our second error,
582 	 * we remove the entry.  Otherwise, we allow it to continue on.
583 	 * This prevents us from incorrectly nuking an entry during a
584 	 * spurious network outage.
585 	 *
586 	 * See tcp_notify().
587 	 */
588 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
589 		sc->sc_flags |= SCF_UNREACH;
590 		goto done;
591 	}
592 	syncache_drop(sc, sch);
593 	V_tcpstat.tcps_sc_unreach++;
594 done:
595 	SCH_UNLOCK(sch);
596 }
597 
598 /*
599  * Build a new TCP socket structure from a syncache entry.
600  */
601 static struct socket *
602 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
603 {
604 	INIT_VNET_INET(lso->so_vnet);
605 	struct inpcb *inp = NULL;
606 	struct socket *so;
607 	struct tcpcb *tp;
608 	char *s;
609 
610 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
611 
612 	/*
613 	 * Ok, create the full blown connection, and set things up
614 	 * as they would have been set up if we had created the
615 	 * connection when the SYN arrived.  If we can't create
616 	 * the connection, abort it.
617 	 */
618 	so = sonewconn(lso, SS_ISCONNECTED);
619 	if (so == NULL) {
620 		/*
621 		 * Drop the connection; we will either send a RST or
622 		 * have the peer retransmit its SYN again after its
623 		 * RTO and try again.
624 		 */
625 		V_tcpstat.tcps_listendrop++;
626 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
627 			log(LOG_DEBUG, "%s; %s: Socket create failed "
628 			    "due to limits or memory shortage\n",
629 			    s, __func__);
630 			free(s, M_TCPLOG);
631 		}
632 		goto abort2;
633 	}
634 #ifdef MAC
635 	SOCK_LOCK(so);
636 	mac_socketpeer_set_from_mbuf(m, so);
637 	SOCK_UNLOCK(so);
638 #endif
639 
640 	inp = sotoinpcb(so);
641 	inp->inp_inc.inc_fibnum = sc->sc_inc.inc_fibnum;
642 	so->so_fibnum = sc->sc_inc.inc_fibnum;
643 	INP_WLOCK(inp);
644 
645 	/* Insert new socket into PCB hash list. */
646 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
647 #ifdef INET6
648 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
649 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
650 	} else {
651 		inp->inp_vflag &= ~INP_IPV6;
652 		inp->inp_vflag |= INP_IPV4;
653 #endif
654 		inp->inp_laddr = sc->sc_inc.inc_laddr;
655 #ifdef INET6
656 	}
657 #endif
658 	inp->inp_lport = sc->sc_inc.inc_lport;
659 	if (in_pcbinshash(inp) != 0) {
660 		/*
661 		 * Undo the assignments above if we failed to
662 		 * put the PCB on the hash lists.
663 		 */
664 #ifdef INET6
665 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
666 			inp->in6p_laddr = in6addr_any;
667 		else
668 #endif
669 			inp->inp_laddr.s_addr = INADDR_ANY;
670 		inp->inp_lport = 0;
671 		goto abort;
672 	}
673 #ifdef IPSEC
674 	/* Copy old policy into new socket's. */
675 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
676 		printf("syncache_socket: could not copy policy\n");
677 #endif
678 #ifdef INET6
679 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
680 		struct inpcb *oinp = sotoinpcb(lso);
681 		struct in6_addr laddr6;
682 		struct sockaddr_in6 sin6;
683 		/*
684 		 * Inherit socket options from the listening socket.
685 		 * Note that in6p_inputopts are not (and should not be)
686 		 * copied, since it stores previously received options and is
687 		 * used to detect if each new option is different than the
688 		 * previous one and hence should be passed to a user.
689 		 * If we copied in6p_inputopts, a user would not be able to
690 		 * receive options just after calling the accept system call.
691 		 */
692 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
693 		if (oinp->in6p_outputopts)
694 			inp->in6p_outputopts =
695 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
696 
697 		sin6.sin6_family = AF_INET6;
698 		sin6.sin6_len = sizeof(sin6);
699 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
700 		sin6.sin6_port = sc->sc_inc.inc_fport;
701 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
702 		laddr6 = inp->in6p_laddr;
703 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
704 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
705 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
706 		    thread0.td_ucred)) {
707 			inp->in6p_laddr = laddr6;
708 			goto abort;
709 		}
710 		/* Override flowlabel from in6_pcbconnect. */
711 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
712 		inp->inp_flow |= sc->sc_flowlabel;
713 	} else
714 #endif
715 	{
716 		struct in_addr laddr;
717 		struct sockaddr_in sin;
718 
719 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
720 
721 		if (inp->inp_options == NULL) {
722 			inp->inp_options = sc->sc_ipopts;
723 			sc->sc_ipopts = NULL;
724 		}
725 
726 		sin.sin_family = AF_INET;
727 		sin.sin_len = sizeof(sin);
728 		sin.sin_addr = sc->sc_inc.inc_faddr;
729 		sin.sin_port = sc->sc_inc.inc_fport;
730 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
731 		laddr = inp->inp_laddr;
732 		if (inp->inp_laddr.s_addr == INADDR_ANY)
733 			inp->inp_laddr = sc->sc_inc.inc_laddr;
734 		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
735 		    thread0.td_ucred)) {
736 			inp->inp_laddr = laddr;
737 			goto abort;
738 		}
739 	}
740 	tp = intotcpcb(inp);
741 	tp->t_state = TCPS_SYN_RECEIVED;
742 	tp->iss = sc->sc_iss;
743 	tp->irs = sc->sc_irs;
744 	tcp_rcvseqinit(tp);
745 	tcp_sendseqinit(tp);
746 	tp->snd_wl1 = sc->sc_irs;
747 	tp->snd_max = tp->iss + 1;
748 	tp->snd_nxt = tp->iss + 1;
749 	tp->rcv_up = sc->sc_irs + 1;
750 	tp->rcv_wnd = sc->sc_wnd;
751 	tp->rcv_adv += tp->rcv_wnd;
752 	tp->last_ack_sent = tp->rcv_nxt;
753 
754 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
755 	if (sc->sc_flags & SCF_NOOPT)
756 		tp->t_flags |= TF_NOOPT;
757 	else {
758 		if (sc->sc_flags & SCF_WINSCALE) {
759 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
760 			tp->snd_scale = sc->sc_requested_s_scale;
761 			tp->request_r_scale = sc->sc_requested_r_scale;
762 		}
763 		if (sc->sc_flags & SCF_TIMESTAMP) {
764 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
765 			tp->ts_recent = sc->sc_tsreflect;
766 			tp->ts_recent_age = ticks;
767 			tp->ts_offset = sc->sc_tsoff;
768 		}
769 #ifdef TCP_SIGNATURE
770 		if (sc->sc_flags & SCF_SIGNATURE)
771 			tp->t_flags |= TF_SIGNATURE;
772 #endif
773 		if (sc->sc_flags & SCF_SACK)
774 			tp->t_flags |= TF_SACK_PERMIT;
775 	}
776 
777 	if (sc->sc_flags & SCF_ECN)
778 		tp->t_flags |= TF_ECN_PERMIT;
779 
780 	/*
781 	 * Set up MSS and get cached values from tcp_hostcache.
782 	 * This might overwrite some of the defaults we just set.
783 	 */
784 	tcp_mss(tp, sc->sc_peer_mss);
785 
786 	/*
787 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
788 	 */
789 	if (sc->sc_rxmits)
790 		tp->snd_cwnd = tp->t_maxseg;
791 	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
792 
793 	INP_WUNLOCK(inp);
794 
795 	V_tcpstat.tcps_accepts++;
796 	return (so);
797 
798 abort:
799 	INP_WUNLOCK(inp);
800 abort2:
801 	if (so != NULL)
802 		soabort(so);
803 	return (NULL);
804 }
805 
806 /*
807  * This function gets called when we receive an ACK for a
808  * socket in the LISTEN state.  We look up the connection
809  * in the syncache, and if its there, we pull it out of
810  * the cache and turn it into a full-blown connection in
811  * the SYN-RECEIVED state.
812  */
813 int
814 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
815     struct socket **lsop, struct mbuf *m)
816 {
817 	INIT_VNET_INET(curvnet);
818 	struct syncache *sc;
819 	struct syncache_head *sch;
820 	struct syncache scs;
821 	char *s;
822 
823 	/*
824 	 * Global TCP locks are held because we manipulate the PCB lists
825 	 * and create a new socket.
826 	 */
827 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
828 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
829 	    ("%s: can handle only ACK", __func__));
830 
831 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
832 	SCH_LOCK_ASSERT(sch);
833 	if (sc == NULL) {
834 		/*
835 		 * There is no syncache entry, so see if this ACK is
836 		 * a returning syncookie.  To do this, first:
837 		 *  A. See if this socket has had a syncache entry dropped in
838 		 *     the past.  We don't want to accept a bogus syncookie
839 		 *     if we've never received a SYN.
840 		 *  B. check that the syncookie is valid.  If it is, then
841 		 *     cobble up a fake syncache entry, and return.
842 		 */
843 		if (!V_tcp_syncookies) {
844 			SCH_UNLOCK(sch);
845 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
846 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
847 				    "segment rejected (syncookies disabled)\n",
848 				    s, __func__);
849 			goto failed;
850 		}
851 		bzero(&scs, sizeof(scs));
852 		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
853 		SCH_UNLOCK(sch);
854 		if (sc == NULL) {
855 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
856 				log(LOG_DEBUG, "%s; %s: Segment failed "
857 				    "SYNCOOKIE authentication, segment rejected "
858 				    "(probably spoofed)\n", s, __func__);
859 			goto failed;
860 		}
861 	} else {
862 		/* Pull out the entry to unlock the bucket row. */
863 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
864 		sch->sch_length--;
865 		V_tcp_syncache.cache_count--;
866 		SCH_UNLOCK(sch);
867 	}
868 
869 	/*
870 	 * Segment validation:
871 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
872 	 */
873 	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
874 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
875 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
876 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
877 		goto failed;
878 	}
879 
880 	/*
881 	 * The SEQ must fall in the window starting at the received
882 	 * initial receive sequence number + 1 (the SYN).
883 	 */
884 	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
885 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
886 	    !TOEPCB_ISSET(sc)) {
887 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
888 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
889 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
890 		goto failed;
891 	}
892 
893 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
894 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
895 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
896 			    "segment rejected\n", s, __func__);
897 		goto failed;
898 	}
899 	/*
900 	 * If timestamps were negotiated the reflected timestamp
901 	 * must be equal to what we actually sent in the SYN|ACK.
902 	 */
903 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
904 	    !TOEPCB_ISSET(sc)) {
905 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
906 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
907 			    "segment rejected\n",
908 			    s, __func__, to->to_tsecr, sc->sc_ts);
909 		goto failed;
910 	}
911 
912 	*lsop = syncache_socket(sc, *lsop, m);
913 
914 	if (*lsop == NULL)
915 		V_tcpstat.tcps_sc_aborted++;
916 	else
917 		V_tcpstat.tcps_sc_completed++;
918 
919 /* how do we find the inp for the new socket? */
920 	if (sc != &scs)
921 		syncache_free(sc);
922 	return (1);
923 failed:
924 	if (sc != NULL && sc != &scs)
925 		syncache_free(sc);
926 	if (s != NULL)
927 		free(s, M_TCPLOG);
928 	*lsop = NULL;
929 	return (0);
930 }
931 
932 int
933 tcp_offload_syncache_expand(struct in_conninfo *inc, struct tcpopt *to,
934     struct tcphdr *th, struct socket **lsop, struct mbuf *m)
935 {
936 	INIT_VNET_INET(curvnet);
937 	int rc;
938 
939 	INP_INFO_WLOCK(&V_tcbinfo);
940 	rc = syncache_expand(inc, to, th, lsop, m);
941 	INP_INFO_WUNLOCK(&V_tcbinfo);
942 
943 	return (rc);
944 }
945 
946 /*
947  * Given a LISTEN socket and an inbound SYN request, add
948  * this to the syn cache, and send back a segment:
949  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
950  * to the source.
951  *
952  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
953  * Doing so would require that we hold onto the data and deliver it
954  * to the application.  However, if we are the target of a SYN-flood
955  * DoS attack, an attacker could send data which would eventually
956  * consume all available buffer space if it were ACKed.  By not ACKing
957  * the data, we avoid this DoS scenario.
958  */
959 static void
960 _syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
961     struct inpcb *inp, struct socket **lsop, struct mbuf *m,
962     struct toe_usrreqs *tu, void *toepcb)
963 {
964 	INIT_VNET_INET(inp->inp_vnet);
965 	struct tcpcb *tp;
966 	struct socket *so;
967 	struct syncache *sc = NULL;
968 	struct syncache_head *sch;
969 	struct mbuf *ipopts = NULL;
970 	u_int32_t flowtmp;
971 	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
972 	char *s;
973 #ifdef INET6
974 	int autoflowlabel = 0;
975 #endif
976 #ifdef MAC
977 	struct label *maclabel;
978 #endif
979 	struct syncache scs;
980 	struct ucred *cred;
981 
982 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
983 	INP_WLOCK_ASSERT(inp);			/* listen socket */
984 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
985 	    ("%s: unexpected tcp flags", __func__));
986 
987 	/*
988 	 * Combine all so/tp operations very early to drop the INP lock as
989 	 * soon as possible.
990 	 */
991 	so = *lsop;
992 	tp = sototcpcb(so);
993 	cred = crhold(so->so_cred);
994 
995 #ifdef INET6
996 	if ((inc->inc_flags & INC_ISIPV6) &&
997 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
998 		autoflowlabel = 1;
999 #endif
1000 	ip_ttl = inp->inp_ip_ttl;
1001 	ip_tos = inp->inp_ip_tos;
1002 	win = sbspace(&so->so_rcv);
1003 	sb_hiwat = so->so_rcv.sb_hiwat;
1004 	noopt = (tp->t_flags & TF_NOOPT);
1005 
1006 	/* By the time we drop the lock these should no longer be used. */
1007 	so = NULL;
1008 	tp = NULL;
1009 
1010 #ifdef MAC
1011 	if (mac_syncache_init(&maclabel) != 0) {
1012 		INP_WUNLOCK(inp);
1013 		INP_INFO_WUNLOCK(&V_tcbinfo);
1014 		goto done;
1015 	} else
1016 		mac_syncache_create(maclabel, inp);
1017 #endif
1018 	INP_WUNLOCK(inp);
1019 	INP_INFO_WUNLOCK(&V_tcbinfo);
1020 
1021 	/*
1022 	 * Remember the IP options, if any.
1023 	 */
1024 #ifdef INET6
1025 	if (!(inc->inc_flags & INC_ISIPV6))
1026 #endif
1027 		ipopts = (m) ? ip_srcroute(m) : NULL;
1028 
1029 	/*
1030 	 * See if we already have an entry for this connection.
1031 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1032 	 *
1033 	 * XXX: should the syncache be re-initialized with the contents
1034 	 * of the new SYN here (which may have different options?)
1035 	 *
1036 	 * XXX: We do not check the sequence number to see if this is a
1037 	 * real retransmit or a new connection attempt.  The question is
1038 	 * how to handle such a case; either ignore it as spoofed, or
1039 	 * drop the current entry and create a new one?
1040 	 */
1041 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1042 	SCH_LOCK_ASSERT(sch);
1043 	if (sc != NULL) {
1044 #ifndef TCP_OFFLOAD_DISABLE
1045 		if (sc->sc_tu)
1046 			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1047 			    sc->sc_toepcb);
1048 #endif
1049 		V_tcpstat.tcps_sc_dupsyn++;
1050 		if (ipopts) {
1051 			/*
1052 			 * If we were remembering a previous source route,
1053 			 * forget it and use the new one we've been given.
1054 			 */
1055 			if (sc->sc_ipopts)
1056 				(void) m_free(sc->sc_ipopts);
1057 			sc->sc_ipopts = ipopts;
1058 		}
1059 		/*
1060 		 * Update timestamp if present.
1061 		 */
1062 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1063 			sc->sc_tsreflect = to->to_tsval;
1064 		else
1065 			sc->sc_flags &= ~SCF_TIMESTAMP;
1066 #ifdef MAC
1067 		/*
1068 		 * Since we have already unconditionally allocated label
1069 		 * storage, free it up.  The syncache entry will already
1070 		 * have an initialized label we can use.
1071 		 */
1072 		mac_syncache_destroy(&maclabel);
1073 #endif
1074 		/* Retransmit SYN|ACK and reset retransmit count. */
1075 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1076 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1077 			    "resetting timer and retransmitting SYN|ACK\n",
1078 			    s, __func__);
1079 			free(s, M_TCPLOG);
1080 		}
1081 		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1082 			sc->sc_rxmits = 0;
1083 			syncache_timeout(sc, sch, 1);
1084 			V_tcpstat.tcps_sndacks++;
1085 			V_tcpstat.tcps_sndtotal++;
1086 		}
1087 		SCH_UNLOCK(sch);
1088 		goto done;
1089 	}
1090 
1091 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1092 	if (sc == NULL) {
1093 		/*
1094 		 * The zone allocator couldn't provide more entries.
1095 		 * Treat this as if the cache was full; drop the oldest
1096 		 * entry and insert the new one.
1097 		 */
1098 		V_tcpstat.tcps_sc_zonefail++;
1099 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1100 			syncache_drop(sc, sch);
1101 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1102 		if (sc == NULL) {
1103 			if (V_tcp_syncookies) {
1104 				bzero(&scs, sizeof(scs));
1105 				sc = &scs;
1106 			} else {
1107 				SCH_UNLOCK(sch);
1108 				if (ipopts)
1109 					(void) m_free(ipopts);
1110 				goto done;
1111 			}
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * Fill in the syncache values.
1117 	 */
1118 #ifdef MAC
1119 	sc->sc_label = maclabel;
1120 #endif
1121 	sc->sc_cred = cred;
1122 	cred = NULL;
1123 	sc->sc_ipopts = ipopts;
1124 	/* XXX-BZ this fib assignment is just useless. */
1125 	sc->sc_inc.inc_fibnum = inp->inp_inc.inc_fibnum;
1126 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1127 #ifdef INET6
1128 	if (!(inc->inc_flags & INC_ISIPV6))
1129 #endif
1130 	{
1131 		sc->sc_ip_tos = ip_tos;
1132 		sc->sc_ip_ttl = ip_ttl;
1133 	}
1134 #ifndef TCP_OFFLOAD_DISABLE
1135 	sc->sc_tu = tu;
1136 	sc->sc_toepcb = toepcb;
1137 #endif
1138 	sc->sc_irs = th->th_seq;
1139 	sc->sc_iss = arc4random();
1140 	sc->sc_flags = 0;
1141 	sc->sc_flowlabel = 0;
1142 
1143 	/*
1144 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1145 	 * win was derived from socket earlier in the function.
1146 	 */
1147 	win = imax(win, 0);
1148 	win = imin(win, TCP_MAXWIN);
1149 	sc->sc_wnd = win;
1150 
1151 	if (V_tcp_do_rfc1323) {
1152 		/*
1153 		 * A timestamp received in a SYN makes
1154 		 * it ok to send timestamp requests and replies.
1155 		 */
1156 		if (to->to_flags & TOF_TS) {
1157 			sc->sc_tsreflect = to->to_tsval;
1158 			sc->sc_ts = ticks;
1159 			sc->sc_flags |= SCF_TIMESTAMP;
1160 		}
1161 		if (to->to_flags & TOF_SCALE) {
1162 			int wscale = 0;
1163 
1164 			/*
1165 			 * Pick the smallest possible scaling factor that
1166 			 * will still allow us to scale up to sb_max, aka
1167 			 * kern.ipc.maxsockbuf.
1168 			 *
1169 			 * We do this because there are broken firewalls that
1170 			 * will corrupt the window scale option, leading to
1171 			 * the other endpoint believing that our advertised
1172 			 * window is unscaled.  At scale factors larger than
1173 			 * 5 the unscaled window will drop below 1500 bytes,
1174 			 * leading to serious problems when traversing these
1175 			 * broken firewalls.
1176 			 *
1177 			 * With the default maxsockbuf of 256K, a scale factor
1178 			 * of 3 will be chosen by this algorithm.  Those who
1179 			 * choose a larger maxsockbuf should watch out
1180 			 * for the compatiblity problems mentioned above.
1181 			 *
1182 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1183 			 * or <SYN,ACK>) segment itself is never scaled.
1184 			 */
1185 			while (wscale < TCP_MAX_WINSHIFT &&
1186 			    (TCP_MAXWIN << wscale) < sb_max)
1187 				wscale++;
1188 			sc->sc_requested_r_scale = wscale;
1189 			sc->sc_requested_s_scale = to->to_wscale;
1190 			sc->sc_flags |= SCF_WINSCALE;
1191 		}
1192 	}
1193 #ifdef TCP_SIGNATURE
1194 	/*
1195 	 * If listening socket requested TCP digests, and received SYN
1196 	 * contains the option, flag this in the syncache so that
1197 	 * syncache_respond() will do the right thing with the SYN+ACK.
1198 	 * XXX: Currently we always record the option by default and will
1199 	 * attempt to use it in syncache_respond().
1200 	 */
1201 	if (to->to_flags & TOF_SIGNATURE)
1202 		sc->sc_flags |= SCF_SIGNATURE;
1203 #endif
1204 	if (to->to_flags & TOF_SACKPERM)
1205 		sc->sc_flags |= SCF_SACK;
1206 	if (to->to_flags & TOF_MSS)
1207 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1208 	if (noopt)
1209 		sc->sc_flags |= SCF_NOOPT;
1210 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1211 		sc->sc_flags |= SCF_ECN;
1212 
1213 	if (V_tcp_syncookies) {
1214 		syncookie_generate(sch, sc, &flowtmp);
1215 #ifdef INET6
1216 		if (autoflowlabel)
1217 			sc->sc_flowlabel = flowtmp;
1218 #endif
1219 	} else {
1220 #ifdef INET6
1221 		if (autoflowlabel)
1222 			sc->sc_flowlabel =
1223 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1224 #endif
1225 	}
1226 	SCH_UNLOCK(sch);
1227 
1228 	/*
1229 	 * Do a standard 3-way handshake.
1230 	 */
1231 	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1232 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1233 			syncache_free(sc);
1234 		else if (sc != &scs)
1235 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1236 		V_tcpstat.tcps_sndacks++;
1237 		V_tcpstat.tcps_sndtotal++;
1238 	} else {
1239 		if (sc != &scs)
1240 			syncache_free(sc);
1241 		V_tcpstat.tcps_sc_dropped++;
1242 	}
1243 
1244 done:
1245 	if (cred != NULL)
1246 		crfree(cred);
1247 #ifdef MAC
1248 	if (sc == &scs)
1249 		mac_syncache_destroy(&maclabel);
1250 #endif
1251 	if (m) {
1252 
1253 		*lsop = NULL;
1254 		m_freem(m);
1255 	}
1256 }
1257 
1258 static int
1259 syncache_respond(struct syncache *sc)
1260 {
1261 	INIT_VNET_INET(curvnet);
1262 	struct ip *ip = NULL;
1263 	struct mbuf *m;
1264 	struct tcphdr *th;
1265 	int optlen, error;
1266 	u_int16_t hlen, tlen, mssopt;
1267 	struct tcpopt to;
1268 #ifdef INET6
1269 	struct ip6_hdr *ip6 = NULL;
1270 #endif
1271 
1272 	hlen =
1273 #ifdef INET6
1274 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1275 #endif
1276 		sizeof(struct ip);
1277 	tlen = hlen + sizeof(struct tcphdr);
1278 
1279 	/* Determine MSS we advertize to other end of connection. */
1280 	mssopt = tcp_mssopt(&sc->sc_inc);
1281 	if (sc->sc_peer_mss)
1282 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1283 
1284 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1285 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1286 	    ("syncache: mbuf too small"));
1287 
1288 	/* Create the IP+TCP header from scratch. */
1289 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1290 	if (m == NULL)
1291 		return (ENOBUFS);
1292 #ifdef MAC
1293 	mac_syncache_create_mbuf(sc->sc_label, m);
1294 #endif
1295 	m->m_data += max_linkhdr;
1296 	m->m_len = tlen;
1297 	m->m_pkthdr.len = tlen;
1298 	m->m_pkthdr.rcvif = NULL;
1299 
1300 #ifdef INET6
1301 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1302 		ip6 = mtod(m, struct ip6_hdr *);
1303 		ip6->ip6_vfc = IPV6_VERSION;
1304 		ip6->ip6_nxt = IPPROTO_TCP;
1305 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1306 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1307 		ip6->ip6_plen = htons(tlen - hlen);
1308 		/* ip6_hlim is set after checksum */
1309 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1310 		ip6->ip6_flow |= sc->sc_flowlabel;
1311 
1312 		th = (struct tcphdr *)(ip6 + 1);
1313 	} else
1314 #endif
1315 	{
1316 		ip = mtod(m, struct ip *);
1317 		ip->ip_v = IPVERSION;
1318 		ip->ip_hl = sizeof(struct ip) >> 2;
1319 		ip->ip_len = tlen;
1320 		ip->ip_id = 0;
1321 		ip->ip_off = 0;
1322 		ip->ip_sum = 0;
1323 		ip->ip_p = IPPROTO_TCP;
1324 		ip->ip_src = sc->sc_inc.inc_laddr;
1325 		ip->ip_dst = sc->sc_inc.inc_faddr;
1326 		ip->ip_ttl = sc->sc_ip_ttl;
1327 		ip->ip_tos = sc->sc_ip_tos;
1328 
1329 		/*
1330 		 * See if we should do MTU discovery.  Route lookups are
1331 		 * expensive, so we will only unset the DF bit if:
1332 		 *
1333 		 *	1) path_mtu_discovery is disabled
1334 		 *	2) the SCF_UNREACH flag has been set
1335 		 */
1336 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1337 		       ip->ip_off |= IP_DF;
1338 
1339 		th = (struct tcphdr *)(ip + 1);
1340 	}
1341 	th->th_sport = sc->sc_inc.inc_lport;
1342 	th->th_dport = sc->sc_inc.inc_fport;
1343 
1344 	th->th_seq = htonl(sc->sc_iss);
1345 	th->th_ack = htonl(sc->sc_irs + 1);
1346 	th->th_off = sizeof(struct tcphdr) >> 2;
1347 	th->th_x2 = 0;
1348 	th->th_flags = TH_SYN|TH_ACK;
1349 	th->th_win = htons(sc->sc_wnd);
1350 	th->th_urp = 0;
1351 
1352 	if (sc->sc_flags & SCF_ECN) {
1353 		th->th_flags |= TH_ECE;
1354 		V_tcpstat.tcps_ecn_shs++;
1355 	}
1356 
1357 	/* Tack on the TCP options. */
1358 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1359 		to.to_flags = 0;
1360 
1361 		to.to_mss = mssopt;
1362 		to.to_flags = TOF_MSS;
1363 		if (sc->sc_flags & SCF_WINSCALE) {
1364 			to.to_wscale = sc->sc_requested_r_scale;
1365 			to.to_flags |= TOF_SCALE;
1366 		}
1367 		if (sc->sc_flags & SCF_TIMESTAMP) {
1368 			/* Virgin timestamp or TCP cookie enhanced one. */
1369 			to.to_tsval = sc->sc_ts;
1370 			to.to_tsecr = sc->sc_tsreflect;
1371 			to.to_flags |= TOF_TS;
1372 		}
1373 		if (sc->sc_flags & SCF_SACK)
1374 			to.to_flags |= TOF_SACKPERM;
1375 #ifdef TCP_SIGNATURE
1376 		if (sc->sc_flags & SCF_SIGNATURE)
1377 			to.to_flags |= TOF_SIGNATURE;
1378 #endif
1379 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1380 
1381 		/* Adjust headers by option size. */
1382 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1383 		m->m_len += optlen;
1384 		m->m_pkthdr.len += optlen;
1385 
1386 #ifdef TCP_SIGNATURE
1387 		if (sc->sc_flags & SCF_SIGNATURE)
1388 			tcp_signature_compute(m, 0, 0, optlen,
1389 			    to.to_signature, IPSEC_DIR_OUTBOUND);
1390 #endif
1391 #ifdef INET6
1392 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1393 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1394 		else
1395 #endif
1396 			ip->ip_len += optlen;
1397 	} else
1398 		optlen = 0;
1399 
1400 #ifdef INET6
1401 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1402 		th->th_sum = 0;
1403 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1404 				       tlen + optlen - hlen);
1405 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1406 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1407 	} else
1408 #endif
1409 	{
1410 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1411 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1412 		m->m_pkthdr.csum_flags = CSUM_TCP;
1413 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1414 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1415 	}
1416 	return (error);
1417 }
1418 
1419 void
1420 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1421     struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1422 {
1423 	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1424 }
1425 
1426 void
1427 tcp_offload_syncache_add(struct in_conninfo *inc, struct tcpopt *to,
1428     struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1429     struct toe_usrreqs *tu, void *toepcb)
1430 {
1431 	INIT_VNET_INET(curvnet);
1432 
1433 	INP_INFO_WLOCK(&V_tcbinfo);
1434 	INP_WLOCK(inp);
1435 	_syncache_add(inc, to, th, inp, lsop, NULL, tu, toepcb);
1436 }
1437 
1438 /*
1439  * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1440  * receive and to be able to handle SYN floods from bogus source addresses
1441  * (where we will never receive any reply).  SYN floods try to exhaust all
1442  * our memory and available slots in the SYN cache table to cause a denial
1443  * of service to legitimate users of the local host.
1444  *
1445  * The idea of SYN cookies is to encode and include all necessary information
1446  * about the connection setup state within the SYN-ACK we send back and thus
1447  * to get along without keeping any local state until the ACK to the SYN-ACK
1448  * arrives (if ever).  Everything we need to know should be available from
1449  * the information we encoded in the SYN-ACK.
1450  *
1451  * More information about the theory behind SYN cookies and its first
1452  * discussion and specification can be found at:
1453  *  http://cr.yp.to/syncookies.html    (overview)
1454  *  http://cr.yp.to/syncookies/archive (gory details)
1455  *
1456  * This implementation extends the orginal idea and first implementation
1457  * of FreeBSD by using not only the initial sequence number field to store
1458  * information but also the timestamp field if present.  This way we can
1459  * keep track of the entire state we need to know to recreate the session in
1460  * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1461  * these days.  For those that do not we still have to live with the known
1462  * shortcomings of the ISN only SYN cookies.
1463  *
1464  * Cookie layers:
1465  *
1466  * Initial sequence number we send:
1467  * 31|................................|0
1468  *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1469  *    D = MD5 Digest (first dword)
1470  *    M = MSS index
1471  *    R = Rotation of secret
1472  *    P = Odd or Even secret
1473  *
1474  * The MD5 Digest is computed with over following parameters:
1475  *  a) randomly rotated secret
1476  *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1477  *  c) the received initial sequence number from remote host
1478  *  d) the rotation offset and odd/even bit
1479  *
1480  * Timestamp we send:
1481  * 31|................................|0
1482  *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1483  *    D = MD5 Digest (third dword) (only as filler)
1484  *    S = Requested send window scale
1485  *    R = Requested receive window scale
1486  *    A = SACK allowed
1487  *    5 = TCP-MD5 enabled (not implemented yet)
1488  *    XORed with MD5 Digest (forth dword)
1489  *
1490  * The timestamp isn't cryptographically secure and doesn't need to be.
1491  * The double use of the MD5 digest dwords ties it to a specific remote/
1492  * local host/port, remote initial sequence number and our local time
1493  * limited secret.  A received timestamp is reverted (XORed) and then
1494  * the contained MD5 dword is compared to the computed one to ensure the
1495  * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1496  * have been tampered with but this isn't different from supplying bogus
1497  * values in the SYN in the first place.
1498  *
1499  * Some problems with SYN cookies remain however:
1500  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1501  * original SYN was accepted, the connection is established.  The second
1502  * SYN is inflight, and if it arrives with an ISN that falls within the
1503  * receive window, the connection is killed.
1504  *
1505  * Notes:
1506  * A heuristic to determine when to accept syn cookies is not necessary.
1507  * An ACK flood would cause the syncookie verification to be attempted,
1508  * but a SYN flood causes syncookies to be generated.  Both are of equal
1509  * cost, so there's no point in trying to optimize the ACK flood case.
1510  * Also, if you don't process certain ACKs for some reason, then all someone
1511  * would have to do is launch a SYN and ACK flood at the same time, which
1512  * would stop cookie verification and defeat the entire purpose of syncookies.
1513  */
1514 static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1515 
1516 static void
1517 syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1518     u_int32_t *flowlabel)
1519 {
1520 	INIT_VNET_INET(curvnet);
1521 	MD5_CTX ctx;
1522 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1523 	u_int32_t data;
1524 	u_int32_t *secbits;
1525 	u_int off, pmss, mss;
1526 	int i;
1527 
1528 	SCH_LOCK_ASSERT(sch);
1529 
1530 	/* Which of the two secrets to use. */
1531 	secbits = sch->sch_oddeven ?
1532 			sch->sch_secbits_odd : sch->sch_secbits_even;
1533 
1534 	/* Reseed secret if too old. */
1535 	if (sch->sch_reseed < time_uptime) {
1536 		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1537 		secbits = sch->sch_oddeven ?
1538 				sch->sch_secbits_odd : sch->sch_secbits_even;
1539 		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1540 			secbits[i] = arc4random();
1541 		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1542 	}
1543 
1544 	/* Secret rotation offset. */
1545 	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1546 
1547 	/* Maximum segment size calculation. */
1548 	pmss =
1549 	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1550 	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1551 		if (tcp_sc_msstab[mss] <= pmss)
1552 			break;
1553 
1554 	/* Fold parameters and MD5 digest into the ISN we will send. */
1555 	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1556 	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1557 	data |= mss << 4;	/* mss, 3 bits */
1558 
1559 	MD5Init(&ctx);
1560 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1561 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1562 	MD5Update(&ctx, secbits, off);
1563 	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1564 	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1565 	MD5Update(&ctx, &data, sizeof(data));
1566 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1567 
1568 	data |= (md5_buffer[0] << 7);
1569 	sc->sc_iss = data;
1570 
1571 #ifdef INET6
1572 	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1573 #endif
1574 
1575 	/* Additional parameters are stored in the timestamp if present. */
1576 	if (sc->sc_flags & SCF_TIMESTAMP) {
1577 		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1578 		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1579 		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1580 		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1581 		data |= md5_buffer[2] << 10;		/* more digest bits */
1582 		data ^= md5_buffer[3];
1583 		sc->sc_ts = data;
1584 		sc->sc_tsoff = data - ticks;		/* after XOR */
1585 	}
1586 
1587 	V_tcpstat.tcps_sc_sendcookie++;
1588 }
1589 
1590 static struct syncache *
1591 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1592     struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1593     struct socket *so)
1594 {
1595 	INIT_VNET_INET(curvnet);
1596 	MD5_CTX ctx;
1597 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1598 	u_int32_t data = 0;
1599 	u_int32_t *secbits;
1600 	tcp_seq ack, seq;
1601 	int off, mss, wnd, flags;
1602 
1603 	SCH_LOCK_ASSERT(sch);
1604 
1605 	/*
1606 	 * Pull information out of SYN-ACK/ACK and
1607 	 * revert sequence number advances.
1608 	 */
1609 	ack = th->th_ack - 1;
1610 	seq = th->th_seq - 1;
1611 	off = (ack >> 1) & 0x7;
1612 	mss = (ack >> 4) & 0x7;
1613 	flags = ack & 0x7f;
1614 
1615 	/* Which of the two secrets to use. */
1616 	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1617 
1618 	/*
1619 	 * The secret wasn't updated for the lifetime of a syncookie,
1620 	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1621 	 */
1622 	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1623 		return (NULL);
1624 	}
1625 
1626 	/* Recompute the digest so we can compare it. */
1627 	MD5Init(&ctx);
1628 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1629 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1630 	MD5Update(&ctx, secbits, off);
1631 	MD5Update(&ctx, inc, sizeof(*inc));
1632 	MD5Update(&ctx, &seq, sizeof(seq));
1633 	MD5Update(&ctx, &flags, sizeof(flags));
1634 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1635 
1636 	/* Does the digest part of or ACK'ed ISS match? */
1637 	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1638 		return (NULL);
1639 
1640 	/* Does the digest part of our reflected timestamp match? */
1641 	if (to->to_flags & TOF_TS) {
1642 		data = md5_buffer[3] ^ to->to_tsecr;
1643 		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1644 			return (NULL);
1645 	}
1646 
1647 	/* Fill in the syncache values. */
1648 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1649 	sc->sc_ipopts = NULL;
1650 
1651 	sc->sc_irs = seq;
1652 	sc->sc_iss = ack;
1653 
1654 #ifdef INET6
1655 	if (inc->inc_flags & INC_ISIPV6) {
1656 		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1657 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1658 	} else
1659 #endif
1660 	{
1661 		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1662 		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1663 	}
1664 
1665 	/* Additional parameters that were encoded in the timestamp. */
1666 	if (data) {
1667 		sc->sc_flags |= SCF_TIMESTAMP;
1668 		sc->sc_tsreflect = to->to_tsval;
1669 		sc->sc_ts = to->to_tsecr;
1670 		sc->sc_tsoff = to->to_tsecr - ticks;
1671 		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1672 		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1673 		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1674 		    TCP_MAX_WINSHIFT);
1675 		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1676 		    TCP_MAX_WINSHIFT);
1677 		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1678 			sc->sc_flags |= SCF_WINSCALE;
1679 	} else
1680 		sc->sc_flags |= SCF_NOOPT;
1681 
1682 	wnd = sbspace(&so->so_rcv);
1683 	wnd = imax(wnd, 0);
1684 	wnd = imin(wnd, TCP_MAXWIN);
1685 	sc->sc_wnd = wnd;
1686 
1687 	sc->sc_rxmits = 0;
1688 	sc->sc_peer_mss = tcp_sc_msstab[mss];
1689 
1690 	V_tcpstat.tcps_sc_recvcookie++;
1691 	return (sc);
1692 }
1693 
1694 /*
1695  * Returns the current number of syncache entries.  This number
1696  * will probably change before you get around to calling
1697  * syncache_pcblist.
1698  */
1699 
1700 int
1701 syncache_pcbcount(void)
1702 {
1703 	INIT_VNET_INET(curvnet);
1704 	struct syncache_head *sch;
1705 	int count, i;
1706 
1707 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1708 		/* No need to lock for a read. */
1709 		sch = &V_tcp_syncache.hashbase[i];
1710 		count += sch->sch_length;
1711 	}
1712 	return count;
1713 }
1714 
1715 /*
1716  * Exports the syncache entries to userland so that netstat can display
1717  * them alongside the other sockets.  This function is intended to be
1718  * called only from tcp_pcblist.
1719  *
1720  * Due to concurrency on an active system, the number of pcbs exported
1721  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1722  * amount of space the caller allocated for this function to use.
1723  */
1724 int
1725 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1726 {
1727 	INIT_VNET_INET(curvnet);
1728 	struct xtcpcb xt;
1729 	struct syncache *sc;
1730 	struct syncache_head *sch;
1731 	int count, error, i;
1732 
1733 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1734 		sch = &V_tcp_syncache.hashbase[i];
1735 		SCH_LOCK(sch);
1736 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1737 			if (count >= max_pcbs) {
1738 				SCH_UNLOCK(sch);
1739 				goto exit;
1740 			}
1741 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1742 				continue;
1743 			bzero(&xt, sizeof(xt));
1744 			xt.xt_len = sizeof(xt);
1745 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1746 				xt.xt_inp.inp_vflag = INP_IPV6;
1747 			else
1748 				xt.xt_inp.inp_vflag = INP_IPV4;
1749 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1750 			xt.xt_tp.t_inpcb = &xt.xt_inp;
1751 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1752 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1753 			xt.xt_socket.xso_len = sizeof (struct xsocket);
1754 			xt.xt_socket.so_type = SOCK_STREAM;
1755 			xt.xt_socket.so_state = SS_ISCONNECTING;
1756 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1757 			if (error) {
1758 				SCH_UNLOCK(sch);
1759 				goto exit;
1760 			}
1761 			count++;
1762 		}
1763 		SCH_UNLOCK(sch);
1764 	}
1765 exit:
1766 	*pcbs_exported = count;
1767 	return error;
1768 }
1769