xref: /freebsd/sys/netinet/tcp_syncache.c (revision 5b9c547c)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program. [2001 McAfee, Inc.]
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_pcbgroup.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/proc.h>		/* for proc0 declaration */
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/ucred.h>
56 
57 #include <sys/md5.h>
58 #include <crypto/siphash/siphash.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/route.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_var.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet/ip_var.h>
73 #include <netinet/ip_options.h>
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/nd6.h>
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/in6_pcb.h>
80 #endif
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #include <netinet/tcp_syncache.h>
87 #ifdef INET6
88 #include <netinet6/tcp6_var.h>
89 #endif
90 #ifdef TCP_OFFLOAD
91 #include <netinet/toecore.h>
92 #endif
93 
94 #ifdef IPSEC
95 #include <netipsec/ipsec.h>
96 #ifdef INET6
97 #include <netipsec/ipsec6.h>
98 #endif
99 #include <netipsec/key.h>
100 #endif /*IPSEC*/
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 static VNET_DEFINE(int, tcp_syncookies) = 1;
107 #define	V_tcp_syncookies		VNET(tcp_syncookies)
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookies), 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
113 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(tcp_syncookiesonly), 0,
116     "Use only TCP SYN cookies");
117 
118 #ifdef TCP_OFFLOAD
119 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
120 #endif
121 
122 static void	 syncache_drop(struct syncache *, struct syncache_head *);
123 static void	 syncache_free(struct syncache *);
124 static void	 syncache_insert(struct syncache *, struct syncache_head *);
125 static int	 syncache_respond(struct syncache *, struct syncache_head *, int);
126 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
127 		    struct mbuf *m);
128 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
129 		    int docallout);
130 static void	 syncache_timer(void *);
131 
132 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
133 		    uint8_t *, uintptr_t);
134 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
135 static struct syncache
136 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137 		    struct syncache *, struct tcphdr *, struct tcpopt *,
138 		    struct socket *);
139 static void	 syncookie_reseed(void *);
140 #ifdef INVARIANTS
141 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
142 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
143 		    struct socket *lso);
144 #endif
145 
146 /*
147  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
148  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
149  * the odds are that the user has given up attempting to connect by then.
150  */
151 #define SYNCACHE_MAXREXMTS		3
152 
153 /* Arbitrary values */
154 #define TCP_SYNCACHE_HASHSIZE		512
155 #define TCP_SYNCACHE_BUCKETLIMIT	30
156 
157 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
158 #define	V_tcp_syncache			VNET(tcp_syncache)
159 
160 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
161     "TCP SYN cache");
162 
163 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
164     &VNET_NAME(tcp_syncache.bucket_limit), 0,
165     "Per-bucket hash limit for syncache");
166 
167 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
168     &VNET_NAME(tcp_syncache.cache_limit), 0,
169     "Overall entry limit for syncache");
170 
171 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
172     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
173 
174 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
175     &VNET_NAME(tcp_syncache.hashsize), 0,
176     "Size of TCP syncache hashtable");
177 
178 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLFLAG_RW,
179     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
180     "Limit on SYN/ACK retransmissions");
181 
182 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
183 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
184     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
185     "Send reset on socket allocation failure");
186 
187 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
188 
189 #define SYNCACHE_HASH(inc, mask)					\
190 	((V_tcp_syncache.hash_secret ^					\
191 	  (inc)->inc_faddr.s_addr ^					\
192 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
193 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
194 
195 #define SYNCACHE_HASH6(inc, mask)					\
196 	((V_tcp_syncache.hash_secret ^					\
197 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
198 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
199 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
200 
201 #define ENDPTS_EQ(a, b) (						\
202 	(a)->ie_fport == (b)->ie_fport &&				\
203 	(a)->ie_lport == (b)->ie_lport &&				\
204 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
205 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
206 )
207 
208 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
209 
210 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
211 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
212 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
213 
214 /*
215  * Requires the syncache entry to be already removed from the bucket list.
216  */
217 static void
218 syncache_free(struct syncache *sc)
219 {
220 
221 	if (sc->sc_ipopts)
222 		(void) m_free(sc->sc_ipopts);
223 	if (sc->sc_cred)
224 		crfree(sc->sc_cred);
225 #ifdef MAC
226 	mac_syncache_destroy(&sc->sc_label);
227 #endif
228 
229 	uma_zfree(V_tcp_syncache.zone, sc);
230 }
231 
232 void
233 syncache_init(void)
234 {
235 	int i;
236 
237 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
238 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
239 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
240 	V_tcp_syncache.hash_secret = arc4random();
241 
242 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
243 	    &V_tcp_syncache.hashsize);
244 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
245 	    &V_tcp_syncache.bucket_limit);
246 	if (!powerof2(V_tcp_syncache.hashsize) ||
247 	    V_tcp_syncache.hashsize == 0) {
248 		printf("WARNING: syncache hash size is not a power of 2.\n");
249 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
250 	}
251 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
252 
253 	/* Set limits. */
254 	V_tcp_syncache.cache_limit =
255 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
256 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
257 	    &V_tcp_syncache.cache_limit);
258 
259 	/* Allocate the hash table. */
260 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
261 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
262 
263 #ifdef VIMAGE
264 	V_tcp_syncache.vnet = curvnet;
265 #endif
266 
267 	/* Initialize the hash buckets. */
268 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
269 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
270 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
271 			 NULL, MTX_DEF);
272 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
273 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
274 		V_tcp_syncache.hashbase[i].sch_length = 0;
275 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
276 	}
277 
278 	/* Create the syncache entry zone. */
279 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
280 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
281 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
282 	    V_tcp_syncache.cache_limit);
283 
284 	/* Start the SYN cookie reseeder callout. */
285 	callout_init(&V_tcp_syncache.secret.reseed, 1);
286 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
287 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
288 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
289 	    syncookie_reseed, &V_tcp_syncache);
290 }
291 
292 #ifdef VIMAGE
293 void
294 syncache_destroy(void)
295 {
296 	struct syncache_head *sch;
297 	struct syncache *sc, *nsc;
298 	int i;
299 
300 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
301 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
302 
303 		sch = &V_tcp_syncache.hashbase[i];
304 		callout_drain(&sch->sch_timer);
305 
306 		SCH_LOCK(sch);
307 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
308 			syncache_drop(sc, sch);
309 		SCH_UNLOCK(sch);
310 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
311 		    ("%s: sch->sch_bucket not empty", __func__));
312 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
313 		    __func__, sch->sch_length));
314 		mtx_destroy(&sch->sch_mtx);
315 	}
316 
317 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
318 	    ("%s: cache_count not 0", __func__));
319 
320 	/* Free the allocated global resources. */
321 	uma_zdestroy(V_tcp_syncache.zone);
322 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
323 
324 	callout_drain(&V_tcp_syncache.secret.reseed);
325 }
326 #endif
327 
328 /*
329  * Inserts a syncache entry into the specified bucket row.
330  * Locks and unlocks the syncache_head autonomously.
331  */
332 static void
333 syncache_insert(struct syncache *sc, struct syncache_head *sch)
334 {
335 	struct syncache *sc2;
336 
337 	SCH_LOCK(sch);
338 
339 	/*
340 	 * Make sure that we don't overflow the per-bucket limit.
341 	 * If the bucket is full, toss the oldest element.
342 	 */
343 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
344 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
345 			("sch->sch_length incorrect"));
346 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
347 		syncache_drop(sc2, sch);
348 		TCPSTAT_INC(tcps_sc_bucketoverflow);
349 	}
350 
351 	/* Put it into the bucket. */
352 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
353 	sch->sch_length++;
354 
355 #ifdef TCP_OFFLOAD
356 	if (ADDED_BY_TOE(sc)) {
357 		struct toedev *tod = sc->sc_tod;
358 
359 		tod->tod_syncache_added(tod, sc->sc_todctx);
360 	}
361 #endif
362 
363 	/* Reinitialize the bucket row's timer. */
364 	if (sch->sch_length == 1)
365 		sch->sch_nextc = ticks + INT_MAX;
366 	syncache_timeout(sc, sch, 1);
367 
368 	SCH_UNLOCK(sch);
369 
370 	TCPSTAT_INC(tcps_sc_added);
371 }
372 
373 /*
374  * Remove and free entry from syncache bucket row.
375  * Expects locked syncache head.
376  */
377 static void
378 syncache_drop(struct syncache *sc, struct syncache_head *sch)
379 {
380 
381 	SCH_LOCK_ASSERT(sch);
382 
383 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
384 	sch->sch_length--;
385 
386 #ifdef TCP_OFFLOAD
387 	if (ADDED_BY_TOE(sc)) {
388 		struct toedev *tod = sc->sc_tod;
389 
390 		tod->tod_syncache_removed(tod, sc->sc_todctx);
391 	}
392 #endif
393 
394 	syncache_free(sc);
395 }
396 
397 /*
398  * Engage/reengage time on bucket row.
399  */
400 static void
401 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
402 {
403 	sc->sc_rxttime = ticks +
404 		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
405 	sc->sc_rxmits++;
406 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
407 		sch->sch_nextc = sc->sc_rxttime;
408 		if (docallout)
409 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
410 			    syncache_timer, (void *)sch);
411 	}
412 }
413 
414 /*
415  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
416  * If we have retransmitted an entry the maximum number of times, expire it.
417  * One separate timer for each bucket row.
418  */
419 static void
420 syncache_timer(void *xsch)
421 {
422 	struct syncache_head *sch = (struct syncache_head *)xsch;
423 	struct syncache *sc, *nsc;
424 	int tick = ticks;
425 	char *s;
426 
427 	CURVNET_SET(sch->sch_sc->vnet);
428 
429 	/* NB: syncache_head has already been locked by the callout. */
430 	SCH_LOCK_ASSERT(sch);
431 
432 	/*
433 	 * In the following cycle we may remove some entries and/or
434 	 * advance some timeouts, so re-initialize the bucket timer.
435 	 */
436 	sch->sch_nextc = tick + INT_MAX;
437 
438 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
439 		/*
440 		 * We do not check if the listen socket still exists
441 		 * and accept the case where the listen socket may be
442 		 * gone by the time we resend the SYN/ACK.  We do
443 		 * not expect this to happens often. If it does,
444 		 * then the RST will be sent by the time the remote
445 		 * host does the SYN/ACK->ACK.
446 		 */
447 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
448 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
449 				sch->sch_nextc = sc->sc_rxttime;
450 			continue;
451 		}
452 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
453 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
454 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
455 				    "giving up and removing syncache entry\n",
456 				    s, __func__);
457 				free(s, M_TCPLOG);
458 			}
459 			syncache_drop(sc, sch);
460 			TCPSTAT_INC(tcps_sc_stale);
461 			continue;
462 		}
463 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
464 			log(LOG_DEBUG, "%s; %s: Response timeout, "
465 			    "retransmitting (%u) SYN|ACK\n",
466 			    s, __func__, sc->sc_rxmits);
467 			free(s, M_TCPLOG);
468 		}
469 
470 		syncache_respond(sc, sch, 1);
471 		TCPSTAT_INC(tcps_sc_retransmitted);
472 		syncache_timeout(sc, sch, 0);
473 	}
474 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
475 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
476 			syncache_timer, (void *)(sch));
477 	CURVNET_RESTORE();
478 }
479 
480 /*
481  * Find an entry in the syncache.
482  * Returns always with locked syncache_head plus a matching entry or NULL.
483  */
484 static struct syncache *
485 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
486 {
487 	struct syncache *sc;
488 	struct syncache_head *sch;
489 
490 #ifdef INET6
491 	if (inc->inc_flags & INC_ISIPV6) {
492 		sch = &V_tcp_syncache.hashbase[
493 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
494 		*schp = sch;
495 
496 		SCH_LOCK(sch);
497 
498 		/* Circle through bucket row to find matching entry. */
499 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
500 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
501 				return (sc);
502 		}
503 	} else
504 #endif
505 	{
506 		sch = &V_tcp_syncache.hashbase[
507 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
508 		*schp = sch;
509 
510 		SCH_LOCK(sch);
511 
512 		/* Circle through bucket row to find matching entry. */
513 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
514 #ifdef INET6
515 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
516 				continue;
517 #endif
518 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
519 				return (sc);
520 		}
521 	}
522 	SCH_LOCK_ASSERT(*schp);
523 	return (NULL);			/* always returns with locked sch */
524 }
525 
526 /*
527  * This function is called when we get a RST for a
528  * non-existent connection, so that we can see if the
529  * connection is in the syn cache.  If it is, zap it.
530  */
531 void
532 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
533 {
534 	struct syncache *sc;
535 	struct syncache_head *sch;
536 	char *s = NULL;
537 
538 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
539 	SCH_LOCK_ASSERT(sch);
540 
541 	/*
542 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
543 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
544 	 */
545 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
546 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
547 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
548 			    "FIN flag set, segment ignored\n", s, __func__);
549 		TCPSTAT_INC(tcps_badrst);
550 		goto done;
551 	}
552 
553 	/*
554 	 * No corresponding connection was found in syncache.
555 	 * If syncookies are enabled and possibly exclusively
556 	 * used, or we are under memory pressure, a valid RST
557 	 * may not find a syncache entry.  In that case we're
558 	 * done and no SYN|ACK retransmissions will happen.
559 	 * Otherwise the RST was misdirected or spoofed.
560 	 */
561 	if (sc == NULL) {
562 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
563 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
564 			    "syncache entry (possibly syncookie only), "
565 			    "segment ignored\n", s, __func__);
566 		TCPSTAT_INC(tcps_badrst);
567 		goto done;
568 	}
569 
570 	/*
571 	 * If the RST bit is set, check the sequence number to see
572 	 * if this is a valid reset segment.
573 	 * RFC 793 page 37:
574 	 *   In all states except SYN-SENT, all reset (RST) segments
575 	 *   are validated by checking their SEQ-fields.  A reset is
576 	 *   valid if its sequence number is in the window.
577 	 *
578 	 *   The sequence number in the reset segment is normally an
579 	 *   echo of our outgoing acknowlegement numbers, but some hosts
580 	 *   send a reset with the sequence number at the rightmost edge
581 	 *   of our receive window, and we have to handle this case.
582 	 */
583 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
584 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
585 		syncache_drop(sc, sch);
586 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
587 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
588 			    "connection attempt aborted by remote endpoint\n",
589 			    s, __func__);
590 		TCPSTAT_INC(tcps_sc_reset);
591 	} else {
592 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
593 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
594 			    "IRS %u (+WND %u), segment ignored\n",
595 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
596 		TCPSTAT_INC(tcps_badrst);
597 	}
598 
599 done:
600 	if (s != NULL)
601 		free(s, M_TCPLOG);
602 	SCH_UNLOCK(sch);
603 }
604 
605 void
606 syncache_badack(struct in_conninfo *inc)
607 {
608 	struct syncache *sc;
609 	struct syncache_head *sch;
610 
611 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
612 	SCH_LOCK_ASSERT(sch);
613 	if (sc != NULL) {
614 		syncache_drop(sc, sch);
615 		TCPSTAT_INC(tcps_sc_badack);
616 	}
617 	SCH_UNLOCK(sch);
618 }
619 
620 void
621 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
622 {
623 	struct syncache *sc;
624 	struct syncache_head *sch;
625 
626 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
627 	SCH_LOCK_ASSERT(sch);
628 	if (sc == NULL)
629 		goto done;
630 
631 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
632 	if (ntohl(th->th_seq) != sc->sc_iss)
633 		goto done;
634 
635 	/*
636 	 * If we've rertransmitted 3 times and this is our second error,
637 	 * we remove the entry.  Otherwise, we allow it to continue on.
638 	 * This prevents us from incorrectly nuking an entry during a
639 	 * spurious network outage.
640 	 *
641 	 * See tcp_notify().
642 	 */
643 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
644 		sc->sc_flags |= SCF_UNREACH;
645 		goto done;
646 	}
647 	syncache_drop(sc, sch);
648 	TCPSTAT_INC(tcps_sc_unreach);
649 done:
650 	SCH_UNLOCK(sch);
651 }
652 
653 /*
654  * Build a new TCP socket structure from a syncache entry.
655  */
656 static struct socket *
657 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
658 {
659 	struct inpcb *inp = NULL;
660 	struct socket *so;
661 	struct tcpcb *tp;
662 	int error;
663 	char *s;
664 
665 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
666 
667 	/*
668 	 * Ok, create the full blown connection, and set things up
669 	 * as they would have been set up if we had created the
670 	 * connection when the SYN arrived.  If we can't create
671 	 * the connection, abort it.
672 	 */
673 	so = sonewconn(lso, 0);
674 	if (so == NULL) {
675 		/*
676 		 * Drop the connection; we will either send a RST or
677 		 * have the peer retransmit its SYN again after its
678 		 * RTO and try again.
679 		 */
680 		TCPSTAT_INC(tcps_listendrop);
681 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
682 			log(LOG_DEBUG, "%s; %s: Socket create failed "
683 			    "due to limits or memory shortage\n",
684 			    s, __func__);
685 			free(s, M_TCPLOG);
686 		}
687 		goto abort2;
688 	}
689 #ifdef MAC
690 	mac_socketpeer_set_from_mbuf(m, so);
691 #endif
692 
693 	inp = sotoinpcb(so);
694 	inp->inp_inc.inc_fibnum = so->so_fibnum;
695 	INP_WLOCK(inp);
696 	INP_HASH_WLOCK(&V_tcbinfo);
697 
698 	/* Insert new socket into PCB hash list. */
699 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
700 #ifdef INET6
701 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
702 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
703 	} else {
704 		inp->inp_vflag &= ~INP_IPV6;
705 		inp->inp_vflag |= INP_IPV4;
706 #endif
707 		inp->inp_laddr = sc->sc_inc.inc_laddr;
708 #ifdef INET6
709 	}
710 #endif
711 
712 	/*
713 	 * If there's an mbuf and it has a flowid, then let's initialise the
714 	 * inp with that particular flowid.
715 	 */
716 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
717 		inp->inp_flowid = m->m_pkthdr.flowid;
718 		inp->inp_flowtype = M_HASHTYPE_GET(m);
719 	}
720 
721 	/*
722 	 * Install in the reservation hash table for now, but don't yet
723 	 * install a connection group since the full 4-tuple isn't yet
724 	 * configured.
725 	 */
726 	inp->inp_lport = sc->sc_inc.inc_lport;
727 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
728 		/*
729 		 * Undo the assignments above if we failed to
730 		 * put the PCB on the hash lists.
731 		 */
732 #ifdef INET6
733 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
734 			inp->in6p_laddr = in6addr_any;
735 		else
736 #endif
737 			inp->inp_laddr.s_addr = INADDR_ANY;
738 		inp->inp_lport = 0;
739 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
740 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
741 			    "with error %i\n",
742 			    s, __func__, error);
743 			free(s, M_TCPLOG);
744 		}
745 		INP_HASH_WUNLOCK(&V_tcbinfo);
746 		goto abort;
747 	}
748 #ifdef IPSEC
749 	/* Copy old policy into new socket's. */
750 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
751 		printf("syncache_socket: could not copy policy\n");
752 #endif
753 #ifdef INET6
754 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
755 		struct inpcb *oinp = sotoinpcb(lso);
756 		struct in6_addr laddr6;
757 		struct sockaddr_in6 sin6;
758 		/*
759 		 * Inherit socket options from the listening socket.
760 		 * Note that in6p_inputopts are not (and should not be)
761 		 * copied, since it stores previously received options and is
762 		 * used to detect if each new option is different than the
763 		 * previous one and hence should be passed to a user.
764 		 * If we copied in6p_inputopts, a user would not be able to
765 		 * receive options just after calling the accept system call.
766 		 */
767 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
768 		if (oinp->in6p_outputopts)
769 			inp->in6p_outputopts =
770 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
771 
772 		sin6.sin6_family = AF_INET6;
773 		sin6.sin6_len = sizeof(sin6);
774 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
775 		sin6.sin6_port = sc->sc_inc.inc_fport;
776 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
777 		laddr6 = inp->in6p_laddr;
778 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
779 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
780 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
781 		    thread0.td_ucred, m)) != 0) {
782 			inp->in6p_laddr = laddr6;
783 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
784 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
785 				    "with error %i\n",
786 				    s, __func__, error);
787 				free(s, M_TCPLOG);
788 			}
789 			INP_HASH_WUNLOCK(&V_tcbinfo);
790 			goto abort;
791 		}
792 		/* Override flowlabel from in6_pcbconnect. */
793 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
794 		inp->inp_flow |= sc->sc_flowlabel;
795 	}
796 #endif /* INET6 */
797 #if defined(INET) && defined(INET6)
798 	else
799 #endif
800 #ifdef INET
801 	{
802 		struct in_addr laddr;
803 		struct sockaddr_in sin;
804 
805 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
806 
807 		if (inp->inp_options == NULL) {
808 			inp->inp_options = sc->sc_ipopts;
809 			sc->sc_ipopts = NULL;
810 		}
811 
812 		sin.sin_family = AF_INET;
813 		sin.sin_len = sizeof(sin);
814 		sin.sin_addr = sc->sc_inc.inc_faddr;
815 		sin.sin_port = sc->sc_inc.inc_fport;
816 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
817 		laddr = inp->inp_laddr;
818 		if (inp->inp_laddr.s_addr == INADDR_ANY)
819 			inp->inp_laddr = sc->sc_inc.inc_laddr;
820 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
821 		    thread0.td_ucred, m)) != 0) {
822 			inp->inp_laddr = laddr;
823 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
824 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
825 				    "with error %i\n",
826 				    s, __func__, error);
827 				free(s, M_TCPLOG);
828 			}
829 			INP_HASH_WUNLOCK(&V_tcbinfo);
830 			goto abort;
831 		}
832 	}
833 #endif /* INET */
834 	INP_HASH_WUNLOCK(&V_tcbinfo);
835 	tp = intotcpcb(inp);
836 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
837 	tp->iss = sc->sc_iss;
838 	tp->irs = sc->sc_irs;
839 	tcp_rcvseqinit(tp);
840 	tcp_sendseqinit(tp);
841 	tp->snd_wl1 = sc->sc_irs;
842 	tp->snd_max = tp->iss + 1;
843 	tp->snd_nxt = tp->iss + 1;
844 	tp->rcv_up = sc->sc_irs + 1;
845 	tp->rcv_wnd = sc->sc_wnd;
846 	tp->rcv_adv += tp->rcv_wnd;
847 	tp->last_ack_sent = tp->rcv_nxt;
848 
849 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
850 	if (sc->sc_flags & SCF_NOOPT)
851 		tp->t_flags |= TF_NOOPT;
852 	else {
853 		if (sc->sc_flags & SCF_WINSCALE) {
854 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
855 			tp->snd_scale = sc->sc_requested_s_scale;
856 			tp->request_r_scale = sc->sc_requested_r_scale;
857 		}
858 		if (sc->sc_flags & SCF_TIMESTAMP) {
859 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
860 			tp->ts_recent = sc->sc_tsreflect;
861 			tp->ts_recent_age = tcp_ts_getticks();
862 			tp->ts_offset = sc->sc_tsoff;
863 		}
864 #ifdef TCP_SIGNATURE
865 		if (sc->sc_flags & SCF_SIGNATURE)
866 			tp->t_flags |= TF_SIGNATURE;
867 #endif
868 		if (sc->sc_flags & SCF_SACK)
869 			tp->t_flags |= TF_SACK_PERMIT;
870 	}
871 
872 	if (sc->sc_flags & SCF_ECN)
873 		tp->t_flags |= TF_ECN_PERMIT;
874 
875 	/*
876 	 * Set up MSS and get cached values from tcp_hostcache.
877 	 * This might overwrite some of the defaults we just set.
878 	 */
879 	tcp_mss(tp, sc->sc_peer_mss);
880 
881 	/*
882 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
883 	 * limited to one segment in cc_conn_init().
884 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
885 	 */
886 	if (sc->sc_rxmits > 1)
887 		tp->snd_cwnd = 1;
888 
889 #ifdef TCP_OFFLOAD
890 	/*
891 	 * Allow a TOE driver to install its hooks.  Note that we hold the
892 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
893 	 * new connection before the TOE driver has done its thing.
894 	 */
895 	if (ADDED_BY_TOE(sc)) {
896 		struct toedev *tod = sc->sc_tod;
897 
898 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
899 	}
900 #endif
901 	/*
902 	 * Copy and activate timers.
903 	 */
904 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
905 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
906 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
907 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
908 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
909 
910 	INP_WUNLOCK(inp);
911 
912 	soisconnected(so);
913 
914 	TCPSTAT_INC(tcps_accepts);
915 	return (so);
916 
917 abort:
918 	INP_WUNLOCK(inp);
919 abort2:
920 	if (so != NULL)
921 		soabort(so);
922 	return (NULL);
923 }
924 
925 /*
926  * This function gets called when we receive an ACK for a
927  * socket in the LISTEN state.  We look up the connection
928  * in the syncache, and if its there, we pull it out of
929  * the cache and turn it into a full-blown connection in
930  * the SYN-RECEIVED state.
931  */
932 int
933 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
934     struct socket **lsop, struct mbuf *m)
935 {
936 	struct syncache *sc;
937 	struct syncache_head *sch;
938 	struct syncache scs;
939 	char *s;
940 
941 	/*
942 	 * Global TCP locks are held because we manipulate the PCB lists
943 	 * and create a new socket.
944 	 */
945 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
946 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
947 	    ("%s: can handle only ACK", __func__));
948 
949 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
950 	SCH_LOCK_ASSERT(sch);
951 
952 #ifdef INVARIANTS
953 	/*
954 	 * Test code for syncookies comparing the syncache stored
955 	 * values with the reconstructed values from the cookie.
956 	 */
957 	if (sc != NULL)
958 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
959 #endif
960 
961 	if (sc == NULL) {
962 		/*
963 		 * There is no syncache entry, so see if this ACK is
964 		 * a returning syncookie.  To do this, first:
965 		 *  A. See if this socket has had a syncache entry dropped in
966 		 *     the past.  We don't want to accept a bogus syncookie
967 		 *     if we've never received a SYN.
968 		 *  B. check that the syncookie is valid.  If it is, then
969 		 *     cobble up a fake syncache entry, and return.
970 		 */
971 		if (!V_tcp_syncookies) {
972 			SCH_UNLOCK(sch);
973 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
974 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
975 				    "segment rejected (syncookies disabled)\n",
976 				    s, __func__);
977 			goto failed;
978 		}
979 		bzero(&scs, sizeof(scs));
980 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
981 		SCH_UNLOCK(sch);
982 		if (sc == NULL) {
983 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
984 				log(LOG_DEBUG, "%s; %s: Segment failed "
985 				    "SYNCOOKIE authentication, segment rejected "
986 				    "(probably spoofed)\n", s, __func__);
987 			goto failed;
988 		}
989 	} else {
990 		/* Pull out the entry to unlock the bucket row. */
991 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
992 		sch->sch_length--;
993 #ifdef TCP_OFFLOAD
994 		if (ADDED_BY_TOE(sc)) {
995 			struct toedev *tod = sc->sc_tod;
996 
997 			tod->tod_syncache_removed(tod, sc->sc_todctx);
998 		}
999 #endif
1000 		SCH_UNLOCK(sch);
1001 	}
1002 
1003 	/*
1004 	 * Segment validation:
1005 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1006 	 */
1007 	if (th->th_ack != sc->sc_iss + 1) {
1008 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1009 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1010 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1011 		goto failed;
1012 	}
1013 
1014 	/*
1015 	 * The SEQ must fall in the window starting at the received
1016 	 * initial receive sequence number + 1 (the SYN).
1017 	 */
1018 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1019 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1020 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1021 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1022 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1023 		goto failed;
1024 	}
1025 
1026 	/*
1027 	 * If timestamps were not negotiated during SYN/ACK they
1028 	 * must not appear on any segment during this session.
1029 	 */
1030 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1031 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1032 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1033 			    "segment rejected\n", s, __func__);
1034 		goto failed;
1035 	}
1036 
1037 	/*
1038 	 * If timestamps were negotiated during SYN/ACK they should
1039 	 * appear on every segment during this session.
1040 	 * XXXAO: This is only informal as there have been unverified
1041 	 * reports of non-compliants stacks.
1042 	 */
1043 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1044 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1045 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1046 			    "no action\n", s, __func__);
1047 			free(s, M_TCPLOG);
1048 			s = NULL;
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * If timestamps were negotiated the reflected timestamp
1054 	 * must be equal to what we actually sent in the SYN|ACK.
1055 	 */
1056 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1057 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1058 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1059 			    "segment rejected\n",
1060 			    s, __func__, to->to_tsecr, sc->sc_ts);
1061 		goto failed;
1062 	}
1063 
1064 	*lsop = syncache_socket(sc, *lsop, m);
1065 
1066 	if (*lsop == NULL)
1067 		TCPSTAT_INC(tcps_sc_aborted);
1068 	else
1069 		TCPSTAT_INC(tcps_sc_completed);
1070 
1071 /* how do we find the inp for the new socket? */
1072 	if (sc != &scs)
1073 		syncache_free(sc);
1074 	return (1);
1075 failed:
1076 	if (sc != NULL && sc != &scs)
1077 		syncache_free(sc);
1078 	if (s != NULL)
1079 		free(s, M_TCPLOG);
1080 	*lsop = NULL;
1081 	return (0);
1082 }
1083 
1084 /*
1085  * Given a LISTEN socket and an inbound SYN request, add
1086  * this to the syn cache, and send back a segment:
1087  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1088  * to the source.
1089  *
1090  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1091  * Doing so would require that we hold onto the data and deliver it
1092  * to the application.  However, if we are the target of a SYN-flood
1093  * DoS attack, an attacker could send data which would eventually
1094  * consume all available buffer space if it were ACKed.  By not ACKing
1095  * the data, we avoid this DoS scenario.
1096  */
1097 void
1098 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1099     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1100     void *todctx)
1101 {
1102 	struct tcpcb *tp;
1103 	struct socket *so;
1104 	struct syncache *sc = NULL;
1105 	struct syncache_head *sch;
1106 	struct mbuf *ipopts = NULL;
1107 	u_int ltflags;
1108 	int win, sb_hiwat, ip_ttl, ip_tos;
1109 	char *s;
1110 #ifdef INET6
1111 	int autoflowlabel = 0;
1112 #endif
1113 #ifdef MAC
1114 	struct label *maclabel;
1115 #endif
1116 	struct syncache scs;
1117 	struct ucred *cred;
1118 
1119 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1120 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1121 	    ("%s: unexpected tcp flags", __func__));
1122 
1123 	/*
1124 	 * Combine all so/tp operations very early to drop the INP lock as
1125 	 * soon as possible.
1126 	 */
1127 	so = *lsop;
1128 	tp = sototcpcb(so);
1129 	cred = crhold(so->so_cred);
1130 
1131 #ifdef INET6
1132 	if ((inc->inc_flags & INC_ISIPV6) &&
1133 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1134 		autoflowlabel = 1;
1135 #endif
1136 	ip_ttl = inp->inp_ip_ttl;
1137 	ip_tos = inp->inp_ip_tos;
1138 	win = sbspace(&so->so_rcv);
1139 	sb_hiwat = so->so_rcv.sb_hiwat;
1140 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1141 
1142 	/* By the time we drop the lock these should no longer be used. */
1143 	so = NULL;
1144 	tp = NULL;
1145 
1146 #ifdef MAC
1147 	if (mac_syncache_init(&maclabel) != 0) {
1148 		INP_WUNLOCK(inp);
1149 		goto done;
1150 	} else
1151 		mac_syncache_create(maclabel, inp);
1152 #endif
1153 	INP_WUNLOCK(inp);
1154 
1155 	/*
1156 	 * Remember the IP options, if any.
1157 	 */
1158 #ifdef INET6
1159 	if (!(inc->inc_flags & INC_ISIPV6))
1160 #endif
1161 #ifdef INET
1162 		ipopts = (m) ? ip_srcroute(m) : NULL;
1163 #else
1164 		ipopts = NULL;
1165 #endif
1166 
1167 	/*
1168 	 * See if we already have an entry for this connection.
1169 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1170 	 *
1171 	 * XXX: should the syncache be re-initialized with the contents
1172 	 * of the new SYN here (which may have different options?)
1173 	 *
1174 	 * XXX: We do not check the sequence number to see if this is a
1175 	 * real retransmit or a new connection attempt.  The question is
1176 	 * how to handle such a case; either ignore it as spoofed, or
1177 	 * drop the current entry and create a new one?
1178 	 */
1179 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1180 	SCH_LOCK_ASSERT(sch);
1181 	if (sc != NULL) {
1182 		TCPSTAT_INC(tcps_sc_dupsyn);
1183 		if (ipopts) {
1184 			/*
1185 			 * If we were remembering a previous source route,
1186 			 * forget it and use the new one we've been given.
1187 			 */
1188 			if (sc->sc_ipopts)
1189 				(void) m_free(sc->sc_ipopts);
1190 			sc->sc_ipopts = ipopts;
1191 		}
1192 		/*
1193 		 * Update timestamp if present.
1194 		 */
1195 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1196 			sc->sc_tsreflect = to->to_tsval;
1197 		else
1198 			sc->sc_flags &= ~SCF_TIMESTAMP;
1199 #ifdef MAC
1200 		/*
1201 		 * Since we have already unconditionally allocated label
1202 		 * storage, free it up.  The syncache entry will already
1203 		 * have an initialized label we can use.
1204 		 */
1205 		mac_syncache_destroy(&maclabel);
1206 #endif
1207 		/* Retransmit SYN|ACK and reset retransmit count. */
1208 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1209 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1210 			    "resetting timer and retransmitting SYN|ACK\n",
1211 			    s, __func__);
1212 			free(s, M_TCPLOG);
1213 		}
1214 		if (syncache_respond(sc, sch, 1) == 0) {
1215 			sc->sc_rxmits = 0;
1216 			syncache_timeout(sc, sch, 1);
1217 			TCPSTAT_INC(tcps_sndacks);
1218 			TCPSTAT_INC(tcps_sndtotal);
1219 		}
1220 		SCH_UNLOCK(sch);
1221 		goto done;
1222 	}
1223 
1224 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1225 	if (sc == NULL) {
1226 		/*
1227 		 * The zone allocator couldn't provide more entries.
1228 		 * Treat this as if the cache was full; drop the oldest
1229 		 * entry and insert the new one.
1230 		 */
1231 		TCPSTAT_INC(tcps_sc_zonefail);
1232 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1233 			syncache_drop(sc, sch);
1234 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1235 		if (sc == NULL) {
1236 			if (V_tcp_syncookies) {
1237 				bzero(&scs, sizeof(scs));
1238 				sc = &scs;
1239 			} else {
1240 				SCH_UNLOCK(sch);
1241 				if (ipopts)
1242 					(void) m_free(ipopts);
1243 				goto done;
1244 			}
1245 		}
1246 	}
1247 
1248 	/*
1249 	 * Fill in the syncache values.
1250 	 */
1251 #ifdef MAC
1252 	sc->sc_label = maclabel;
1253 #endif
1254 	sc->sc_cred = cred;
1255 	cred = NULL;
1256 	sc->sc_ipopts = ipopts;
1257 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1258 #ifdef INET6
1259 	if (!(inc->inc_flags & INC_ISIPV6))
1260 #endif
1261 	{
1262 		sc->sc_ip_tos = ip_tos;
1263 		sc->sc_ip_ttl = ip_ttl;
1264 	}
1265 #ifdef TCP_OFFLOAD
1266 	sc->sc_tod = tod;
1267 	sc->sc_todctx = todctx;
1268 #endif
1269 	sc->sc_irs = th->th_seq;
1270 	sc->sc_iss = arc4random();
1271 	sc->sc_flags = 0;
1272 	sc->sc_flowlabel = 0;
1273 
1274 	/*
1275 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1276 	 * win was derived from socket earlier in the function.
1277 	 */
1278 	win = imax(win, 0);
1279 	win = imin(win, TCP_MAXWIN);
1280 	sc->sc_wnd = win;
1281 
1282 	if (V_tcp_do_rfc1323) {
1283 		/*
1284 		 * A timestamp received in a SYN makes
1285 		 * it ok to send timestamp requests and replies.
1286 		 */
1287 		if (to->to_flags & TOF_TS) {
1288 			sc->sc_tsreflect = to->to_tsval;
1289 			sc->sc_ts = tcp_ts_getticks();
1290 			sc->sc_flags |= SCF_TIMESTAMP;
1291 		}
1292 		if (to->to_flags & TOF_SCALE) {
1293 			int wscale = 0;
1294 
1295 			/*
1296 			 * Pick the smallest possible scaling factor that
1297 			 * will still allow us to scale up to sb_max, aka
1298 			 * kern.ipc.maxsockbuf.
1299 			 *
1300 			 * We do this because there are broken firewalls that
1301 			 * will corrupt the window scale option, leading to
1302 			 * the other endpoint believing that our advertised
1303 			 * window is unscaled.  At scale factors larger than
1304 			 * 5 the unscaled window will drop below 1500 bytes,
1305 			 * leading to serious problems when traversing these
1306 			 * broken firewalls.
1307 			 *
1308 			 * With the default maxsockbuf of 256K, a scale factor
1309 			 * of 3 will be chosen by this algorithm.  Those who
1310 			 * choose a larger maxsockbuf should watch out
1311 			 * for the compatiblity problems mentioned above.
1312 			 *
1313 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1314 			 * or <SYN,ACK>) segment itself is never scaled.
1315 			 */
1316 			while (wscale < TCP_MAX_WINSHIFT &&
1317 			    (TCP_MAXWIN << wscale) < sb_max)
1318 				wscale++;
1319 			sc->sc_requested_r_scale = wscale;
1320 			sc->sc_requested_s_scale = to->to_wscale;
1321 			sc->sc_flags |= SCF_WINSCALE;
1322 		}
1323 	}
1324 #ifdef TCP_SIGNATURE
1325 	/*
1326 	 * If listening socket requested TCP digests, OR received SYN
1327 	 * contains the option, flag this in the syncache so that
1328 	 * syncache_respond() will do the right thing with the SYN+ACK.
1329 	 */
1330 	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1331 		sc->sc_flags |= SCF_SIGNATURE;
1332 #endif
1333 	if (to->to_flags & TOF_SACKPERM)
1334 		sc->sc_flags |= SCF_SACK;
1335 	if (to->to_flags & TOF_MSS)
1336 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1337 	if (ltflags & TF_NOOPT)
1338 		sc->sc_flags |= SCF_NOOPT;
1339 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1340 		sc->sc_flags |= SCF_ECN;
1341 
1342 	if (V_tcp_syncookies)
1343 		sc->sc_iss = syncookie_generate(sch, sc);
1344 #ifdef INET6
1345 	if (autoflowlabel) {
1346 		if (V_tcp_syncookies)
1347 			sc->sc_flowlabel = sc->sc_iss;
1348 		else
1349 			sc->sc_flowlabel = ip6_randomflowlabel();
1350 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1351 	}
1352 #endif
1353 	SCH_UNLOCK(sch);
1354 
1355 	/*
1356 	 * Do a standard 3-way handshake.
1357 	 */
1358 	if (syncache_respond(sc, sch, 0) == 0) {
1359 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1360 			syncache_free(sc);
1361 		else if (sc != &scs)
1362 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1363 		TCPSTAT_INC(tcps_sndacks);
1364 		TCPSTAT_INC(tcps_sndtotal);
1365 	} else {
1366 		if (sc != &scs)
1367 			syncache_free(sc);
1368 		TCPSTAT_INC(tcps_sc_dropped);
1369 	}
1370 
1371 done:
1372 	if (cred != NULL)
1373 		crfree(cred);
1374 #ifdef MAC
1375 	if (sc == &scs)
1376 		mac_syncache_destroy(&maclabel);
1377 #endif
1378 	if (m) {
1379 
1380 		*lsop = NULL;
1381 		m_freem(m);
1382 	}
1383 }
1384 
1385 static int
1386 syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked)
1387 {
1388 	struct ip *ip = NULL;
1389 	struct mbuf *m;
1390 	struct tcphdr *th = NULL;
1391 	int optlen, error = 0;	/* Make compiler happy */
1392 	u_int16_t hlen, tlen, mssopt;
1393 	struct tcpopt to;
1394 #ifdef INET6
1395 	struct ip6_hdr *ip6 = NULL;
1396 #endif
1397 #ifdef TCP_SIGNATURE
1398 	struct secasvar *sav;
1399 #endif
1400 
1401 	hlen =
1402 #ifdef INET6
1403 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1404 #endif
1405 		sizeof(struct ip);
1406 	tlen = hlen + sizeof(struct tcphdr);
1407 
1408 	/* Determine MSS we advertize to other end of connection. */
1409 	mssopt = tcp_mssopt(&sc->sc_inc);
1410 	if (sc->sc_peer_mss)
1411 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1412 
1413 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1414 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1415 	    ("syncache: mbuf too small"));
1416 
1417 	/* Create the IP+TCP header from scratch. */
1418 	m = m_gethdr(M_NOWAIT, MT_DATA);
1419 	if (m == NULL)
1420 		return (ENOBUFS);
1421 #ifdef MAC
1422 	mac_syncache_create_mbuf(sc->sc_label, m);
1423 #endif
1424 	m->m_data += max_linkhdr;
1425 	m->m_len = tlen;
1426 	m->m_pkthdr.len = tlen;
1427 	m->m_pkthdr.rcvif = NULL;
1428 
1429 #ifdef INET6
1430 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1431 		ip6 = mtod(m, struct ip6_hdr *);
1432 		ip6->ip6_vfc = IPV6_VERSION;
1433 		ip6->ip6_nxt = IPPROTO_TCP;
1434 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1435 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1436 		ip6->ip6_plen = htons(tlen - hlen);
1437 		/* ip6_hlim is set after checksum */
1438 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1439 		ip6->ip6_flow |= sc->sc_flowlabel;
1440 
1441 		th = (struct tcphdr *)(ip6 + 1);
1442 	}
1443 #endif
1444 #if defined(INET6) && defined(INET)
1445 	else
1446 #endif
1447 #ifdef INET
1448 	{
1449 		ip = mtod(m, struct ip *);
1450 		ip->ip_v = IPVERSION;
1451 		ip->ip_hl = sizeof(struct ip) >> 2;
1452 		ip->ip_len = htons(tlen);
1453 		ip->ip_id = 0;
1454 		ip->ip_off = 0;
1455 		ip->ip_sum = 0;
1456 		ip->ip_p = IPPROTO_TCP;
1457 		ip->ip_src = sc->sc_inc.inc_laddr;
1458 		ip->ip_dst = sc->sc_inc.inc_faddr;
1459 		ip->ip_ttl = sc->sc_ip_ttl;
1460 		ip->ip_tos = sc->sc_ip_tos;
1461 
1462 		/*
1463 		 * See if we should do MTU discovery.  Route lookups are
1464 		 * expensive, so we will only unset the DF bit if:
1465 		 *
1466 		 *	1) path_mtu_discovery is disabled
1467 		 *	2) the SCF_UNREACH flag has been set
1468 		 */
1469 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1470 		       ip->ip_off |= htons(IP_DF);
1471 
1472 		th = (struct tcphdr *)(ip + 1);
1473 	}
1474 #endif /* INET */
1475 	th->th_sport = sc->sc_inc.inc_lport;
1476 	th->th_dport = sc->sc_inc.inc_fport;
1477 
1478 	th->th_seq = htonl(sc->sc_iss);
1479 	th->th_ack = htonl(sc->sc_irs + 1);
1480 	th->th_off = sizeof(struct tcphdr) >> 2;
1481 	th->th_x2 = 0;
1482 	th->th_flags = TH_SYN|TH_ACK;
1483 	th->th_win = htons(sc->sc_wnd);
1484 	th->th_urp = 0;
1485 
1486 	if (sc->sc_flags & SCF_ECN) {
1487 		th->th_flags |= TH_ECE;
1488 		TCPSTAT_INC(tcps_ecn_shs);
1489 	}
1490 
1491 	/* Tack on the TCP options. */
1492 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1493 		to.to_flags = 0;
1494 
1495 		to.to_mss = mssopt;
1496 		to.to_flags = TOF_MSS;
1497 		if (sc->sc_flags & SCF_WINSCALE) {
1498 			to.to_wscale = sc->sc_requested_r_scale;
1499 			to.to_flags |= TOF_SCALE;
1500 		}
1501 		if (sc->sc_flags & SCF_TIMESTAMP) {
1502 			/* Virgin timestamp or TCP cookie enhanced one. */
1503 			to.to_tsval = sc->sc_ts;
1504 			to.to_tsecr = sc->sc_tsreflect;
1505 			to.to_flags |= TOF_TS;
1506 		}
1507 		if (sc->sc_flags & SCF_SACK)
1508 			to.to_flags |= TOF_SACKPERM;
1509 #ifdef TCP_SIGNATURE
1510 		sav = NULL;
1511 		if (sc->sc_flags & SCF_SIGNATURE) {
1512 			sav = tcp_get_sav(m, IPSEC_DIR_OUTBOUND);
1513 			if (sav != NULL)
1514 				to.to_flags |= TOF_SIGNATURE;
1515 			else {
1516 
1517 				/*
1518 				 * We've got SCF_SIGNATURE flag
1519 				 * inherited from listening socket,
1520 				 * but no SADB key for given source
1521 				 * address. Assume signature is not
1522 				 * required and remove signature flag
1523 				 * instead of silently dropping
1524 				 * connection.
1525 				 */
1526 				if (locked == 0)
1527 					SCH_LOCK(sch);
1528 				sc->sc_flags &= ~SCF_SIGNATURE;
1529 				if (locked == 0)
1530 					SCH_UNLOCK(sch);
1531 			}
1532 		}
1533 #endif
1534 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1535 
1536 		/* Adjust headers by option size. */
1537 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1538 		m->m_len += optlen;
1539 		m->m_pkthdr.len += optlen;
1540 
1541 #ifdef TCP_SIGNATURE
1542 		if (sc->sc_flags & SCF_SIGNATURE)
1543 			tcp_signature_do_compute(m, 0, optlen,
1544 			    to.to_signature, sav);
1545 #endif
1546 #ifdef INET6
1547 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1548 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1549 		else
1550 #endif
1551 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1552 	} else
1553 		optlen = 0;
1554 
1555 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1556 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1557 #ifdef INET6
1558 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1559 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1560 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1561 		    IPPROTO_TCP, 0);
1562 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1563 #ifdef TCP_OFFLOAD
1564 		if (ADDED_BY_TOE(sc)) {
1565 			struct toedev *tod = sc->sc_tod;
1566 
1567 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1568 
1569 			return (error);
1570 		}
1571 #endif
1572 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1573 	}
1574 #endif
1575 #if defined(INET6) && defined(INET)
1576 	else
1577 #endif
1578 #ifdef INET
1579 	{
1580 		m->m_pkthdr.csum_flags = CSUM_TCP;
1581 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1582 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1583 #ifdef TCP_OFFLOAD
1584 		if (ADDED_BY_TOE(sc)) {
1585 			struct toedev *tod = sc->sc_tod;
1586 
1587 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1588 
1589 			return (error);
1590 		}
1591 #endif
1592 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1593 	}
1594 #endif
1595 	return (error);
1596 }
1597 
1598 /*
1599  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1600  * that exceed the capacity of the syncache by avoiding the storage of any
1601  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1602  * attacks where the attacker does not have access to our responses.
1603  *
1604  * Syncookies encode and include all necessary information about the
1605  * connection setup within the SYN|ACK that we send back.  That way we
1606  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1607  * (if ever).  Normally the syncache and syncookies are running in parallel
1608  * with the latter taking over when the former is exhausted.  When matching
1609  * syncache entry is found the syncookie is ignored.
1610  *
1611  * The only reliable information persisting the 3WHS is our inital sequence
1612  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1613  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1614  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1615  * returns and signifies a legitimate connection if it matches the ACK.
1616  *
1617  * The available space of 32 bits to store the hash and to encode the SYN
1618  * option information is very tight and we should have at least 24 bits for
1619  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1620  *
1621  * SYN option information we have to encode to fully restore a connection:
1622  * MSS: is imporant to chose an optimal segment size to avoid IP level
1623  *   fragmentation along the path.  The common MSS values can be encoded
1624  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1625  *   in the table leading to a slight increase in packetization overhead.
1626  * WSCALE: is necessary to allow large windows to be used for high delay-
1627  *   bandwidth product links.  Not scaling the window when it was initially
1628  *   negotiated is bad for performance as lack of scaling further decreases
1629  *   the apparent available send window.  We only need to encode the WSCALE
1630  *   we received from the remote end.  Our end can be recalculated at any
1631  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1632  *   Uncommon values are captured by the next lower value in the table
1633  *   making us under-estimate the available window size halving our
1634  *   theoretically possible maximum throughput for that connection.
1635  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1636  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1637  *   that are included in all segments on a connection.  We enable them when
1638  *   the ACK has them.
1639  *
1640  * Security of syncookies and attack vectors:
1641  *
1642  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1643  * together with the gloabl secret to make it unique per connection attempt.
1644  * Thus any change of any of those parameters results in a different MAC output
1645  * in an unpredictable way unless a collision is encountered.  24 bits of the
1646  * MAC are embedded into the ISS.
1647  *
1648  * To prevent replay attacks two rotating global secrets are updated with a
1649  * new random value every 15 seconds.  The life-time of a syncookie is thus
1650  * 15-30 seconds.
1651  *
1652  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1653  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1654  * text attack by varying and testing the all parameters under his control.
1655  * The strength depends on the size and randomness of the secret, and the
1656  * cryptographic security of the MAC function.  Due to the constant updating
1657  * of the secret the attacker has at most 29.999 seconds to find the secret
1658  * and launch spoofed connections.  After that he has to start all over again.
1659  *
1660  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1661  * size an average of 4,823 attempts are required for a 50% chance of success
1662  * to spoof a single syncookie (birthday collision paradox).  However the
1663  * attacker is blind and doesn't know if one of his attempts succeeded unless
1664  * he has a side channel to interfere success from.  A single connection setup
1665  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1666  * This many attempts are required for each one blind spoofed connection.  For
1667  * every additional spoofed connection he has to launch another N attempts.
1668  * Thus for a sustained rate 100 spoofed connections per second approximately
1669  * 1,800,000 packets per second would have to be sent.
1670  *
1671  * NB: The MAC function should be fast so that it doesn't become a CPU
1672  * exhaustion attack vector itself.
1673  *
1674  * References:
1675  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1676  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1677  *   http://cr.yp.to/syncookies.html    (overview)
1678  *   http://cr.yp.to/syncookies/archive (details)
1679  *
1680  *
1681  * Schematic construction of a syncookie enabled Initial Sequence Number:
1682  *  0        1         2         3
1683  *  12345678901234567890123456789012
1684  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1685  *
1686  *  x 24 MAC (truncated)
1687  *  W  3 Send Window Scale index
1688  *  M  3 MSS index
1689  *  S  1 SACK permitted
1690  *  P  1 Odd/even secret
1691  */
1692 
1693 /*
1694  * Distribution and probability of certain MSS values.  Those in between are
1695  * rounded down to the next lower one.
1696  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1697  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1698  */
1699 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1700 
1701 /*
1702  * Distribution and probability of certain WSCALE values.  We have to map the
1703  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1704  * bits based on prevalence of certain values.  Where we don't have an exact
1705  * match for are rounded down to the next lower one letting us under-estimate
1706  * the true available window.  At the moment this would happen only for the
1707  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1708  * and window size).  The absence of the WSCALE option (no scaling in either
1709  * direction) is encoded with index zero.
1710  * [WSCALE values histograms, Allman, 2012]
1711  *                            X 10 10 35  5  6 14 10%   by host
1712  *                            X 11  4  5  5 18 49  3%   by connections
1713  */
1714 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1715 
1716 /*
1717  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1718  * and good cryptographic properties.
1719  */
1720 static uint32_t
1721 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1722     uint8_t *secbits, uintptr_t secmod)
1723 {
1724 	SIPHASH_CTX ctx;
1725 	uint32_t siphash[2];
1726 
1727 	SipHash24_Init(&ctx);
1728 	SipHash_SetKey(&ctx, secbits);
1729 	switch (inc->inc_flags & INC_ISIPV6) {
1730 #ifdef INET
1731 	case 0:
1732 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1733 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1734 		break;
1735 #endif
1736 #ifdef INET6
1737 	case INC_ISIPV6:
1738 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1739 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1740 		break;
1741 #endif
1742 	}
1743 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1744 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1745 	SipHash_Update(&ctx, &irs, sizeof(irs));
1746 	SipHash_Update(&ctx, &flags, sizeof(flags));
1747 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1748 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1749 
1750 	return (siphash[0] ^ siphash[1]);
1751 }
1752 
1753 static tcp_seq
1754 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1755 {
1756 	u_int i, mss, secbit, wscale;
1757 	uint32_t iss, hash;
1758 	uint8_t *secbits;
1759 	union syncookie cookie;
1760 
1761 	SCH_LOCK_ASSERT(sch);
1762 
1763 	cookie.cookie = 0;
1764 
1765 	/* Map our computed MSS into the 3-bit index. */
1766 	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1767 	for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1768 	     tcp_sc_msstab[i] > mss && i > 0;
1769 	     i--)
1770 		;
1771 	cookie.flags.mss_idx = i;
1772 
1773 	/*
1774 	 * Map the send window scale into the 3-bit index but only if
1775 	 * the wscale option was received.
1776 	 */
1777 	if (sc->sc_flags & SCF_WINSCALE) {
1778 		wscale = sc->sc_requested_s_scale;
1779 		for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1780 		     tcp_sc_wstab[i] > wscale && i > 0;
1781 		     i--)
1782 			;
1783 		cookie.flags.wscale_idx = i;
1784 	}
1785 
1786 	/* Can we do SACK? */
1787 	if (sc->sc_flags & SCF_SACK)
1788 		cookie.flags.sack_ok = 1;
1789 
1790 	/* Which of the two secrets to use. */
1791 	secbit = sch->sch_sc->secret.oddeven & 0x1;
1792 	cookie.flags.odd_even = secbit;
1793 
1794 	secbits = sch->sch_sc->secret.key[secbit];
1795 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1796 	    (uintptr_t)sch);
1797 
1798 	/*
1799 	 * Put the flags into the hash and XOR them to get better ISS number
1800 	 * variance.  This doesn't enhance the cryptographic strength and is
1801 	 * done to prevent the 8 cookie bits from showing up directly on the
1802 	 * wire.
1803 	 */
1804 	iss = hash & ~0xff;
1805 	iss |= cookie.cookie ^ (hash >> 24);
1806 
1807 	/* Randomize the timestamp. */
1808 	if (sc->sc_flags & SCF_TIMESTAMP) {
1809 		sc->sc_ts = arc4random();
1810 		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1811 	}
1812 
1813 	TCPSTAT_INC(tcps_sc_sendcookie);
1814 	return (iss);
1815 }
1816 
1817 static struct syncache *
1818 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1819     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1820     struct socket *lso)
1821 {
1822 	uint32_t hash;
1823 	uint8_t *secbits;
1824 	tcp_seq ack, seq;
1825 	int wnd, wscale = 0;
1826 	union syncookie cookie;
1827 
1828 	SCH_LOCK_ASSERT(sch);
1829 
1830 	/*
1831 	 * Pull information out of SYN-ACK/ACK and revert sequence number
1832 	 * advances.
1833 	 */
1834 	ack = th->th_ack - 1;
1835 	seq = th->th_seq - 1;
1836 
1837 	/*
1838 	 * Unpack the flags containing enough information to restore the
1839 	 * connection.
1840 	 */
1841 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1842 
1843 	/* Which of the two secrets to use. */
1844 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1845 
1846 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1847 
1848 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1849 	if ((ack & ~0xff) != (hash & ~0xff))
1850 		return (NULL);
1851 
1852 	/* Fill in the syncache values. */
1853 	sc->sc_flags = 0;
1854 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1855 	sc->sc_ipopts = NULL;
1856 
1857 	sc->sc_irs = seq;
1858 	sc->sc_iss = ack;
1859 
1860 	switch (inc->inc_flags & INC_ISIPV6) {
1861 #ifdef INET
1862 	case 0:
1863 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
1864 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
1865 		break;
1866 #endif
1867 #ifdef INET6
1868 	case INC_ISIPV6:
1869 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
1870 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
1871 		break;
1872 #endif
1873 	}
1874 
1875 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
1876 
1877 	/* We can simply recompute receive window scale we sent earlier. */
1878 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
1879 		wscale++;
1880 
1881 	/* Only use wscale if it was enabled in the orignal SYN. */
1882 	if (cookie.flags.wscale_idx > 0) {
1883 		sc->sc_requested_r_scale = wscale;
1884 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
1885 		sc->sc_flags |= SCF_WINSCALE;
1886 	}
1887 
1888 	wnd = sbspace(&lso->so_rcv);
1889 	wnd = imax(wnd, 0);
1890 	wnd = imin(wnd, TCP_MAXWIN);
1891 	sc->sc_wnd = wnd;
1892 
1893 	if (cookie.flags.sack_ok)
1894 		sc->sc_flags |= SCF_SACK;
1895 
1896 	if (to->to_flags & TOF_TS) {
1897 		sc->sc_flags |= SCF_TIMESTAMP;
1898 		sc->sc_tsreflect = to->to_tsval;
1899 		sc->sc_ts = to->to_tsecr;
1900 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
1901 	}
1902 
1903 	if (to->to_flags & TOF_SIGNATURE)
1904 		sc->sc_flags |= SCF_SIGNATURE;
1905 
1906 	sc->sc_rxmits = 0;
1907 
1908 	TCPSTAT_INC(tcps_sc_recvcookie);
1909 	return (sc);
1910 }
1911 
1912 #ifdef INVARIANTS
1913 static int
1914 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
1915     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1916     struct socket *lso)
1917 {
1918 	struct syncache scs, *scx;
1919 	char *s;
1920 
1921 	bzero(&scs, sizeof(scs));
1922 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
1923 
1924 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
1925 		return (0);
1926 
1927 	if (scx != NULL) {
1928 		if (sc->sc_peer_mss != scx->sc_peer_mss)
1929 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
1930 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
1931 
1932 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
1933 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
1934 			    s, __func__, sc->sc_requested_r_scale,
1935 			    scx->sc_requested_r_scale);
1936 
1937 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
1938 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
1939 			    s, __func__, sc->sc_requested_s_scale,
1940 			    scx->sc_requested_s_scale);
1941 
1942 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
1943 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
1944 	}
1945 
1946 	if (s != NULL)
1947 		free(s, M_TCPLOG);
1948 	return (0);
1949 }
1950 #endif /* INVARIANTS */
1951 
1952 static void
1953 syncookie_reseed(void *arg)
1954 {
1955 	struct tcp_syncache *sc = arg;
1956 	uint8_t *secbits;
1957 	int secbit;
1958 
1959 	/*
1960 	 * Reseeding the secret doesn't have to be protected by a lock.
1961 	 * It only must be ensured that the new random values are visible
1962 	 * to all CPUs in a SMP environment.  The atomic with release
1963 	 * semantics ensures that.
1964 	 */
1965 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
1966 	secbits = sc->secret.key[secbit];
1967 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
1968 	atomic_add_rel_int(&sc->secret.oddeven, 1);
1969 
1970 	/* Reschedule ourself. */
1971 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
1972 }
1973 
1974 /*
1975  * Returns the current number of syncache entries.  This number
1976  * will probably change before you get around to calling
1977  * syncache_pcblist.
1978  */
1979 int
1980 syncache_pcbcount(void)
1981 {
1982 	struct syncache_head *sch;
1983 	int count, i;
1984 
1985 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1986 		/* No need to lock for a read. */
1987 		sch = &V_tcp_syncache.hashbase[i];
1988 		count += sch->sch_length;
1989 	}
1990 	return count;
1991 }
1992 
1993 /*
1994  * Exports the syncache entries to userland so that netstat can display
1995  * them alongside the other sockets.  This function is intended to be
1996  * called only from tcp_pcblist.
1997  *
1998  * Due to concurrency on an active system, the number of pcbs exported
1999  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2000  * amount of space the caller allocated for this function to use.
2001  */
2002 int
2003 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2004 {
2005 	struct xtcpcb xt;
2006 	struct syncache *sc;
2007 	struct syncache_head *sch;
2008 	int count, error, i;
2009 
2010 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2011 		sch = &V_tcp_syncache.hashbase[i];
2012 		SCH_LOCK(sch);
2013 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2014 			if (count >= max_pcbs) {
2015 				SCH_UNLOCK(sch);
2016 				goto exit;
2017 			}
2018 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2019 				continue;
2020 			bzero(&xt, sizeof(xt));
2021 			xt.xt_len = sizeof(xt);
2022 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2023 				xt.xt_inp.inp_vflag = INP_IPV6;
2024 			else
2025 				xt.xt_inp.inp_vflag = INP_IPV4;
2026 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2027 			xt.xt_tp.t_inpcb = &xt.xt_inp;
2028 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2029 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2030 			xt.xt_socket.xso_len = sizeof (struct xsocket);
2031 			xt.xt_socket.so_type = SOCK_STREAM;
2032 			xt.xt_socket.so_state = SS_ISCONNECTING;
2033 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2034 			if (error) {
2035 				SCH_UNLOCK(sch);
2036 				goto exit;
2037 			}
2038 			count++;
2039 		}
2040 		SCH_UNLOCK(sch);
2041 	}
2042 exit:
2043 	*pcbs_exported = count;
2044 	return error;
2045 }
2046