xref: /freebsd/sys/netinet/tcp_syncache.c (revision 681ce946)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/hash.h>
45 #include <sys/refcount.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/proc.h>		/* for proc0 declaration */
54 #include <sys/random.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/syslog.h>
58 #include <sys/ucred.h>
59 
60 #include <sys/md5.h>
61 #include <crypto/siphash/siphash.h>
62 
63 #include <vm/uma.h>
64 
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/route.h>
68 #include <net/vnet.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_kdtrace.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #include <netinet/in_pcb.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_options.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet/icmp6.h>
81 #include <netinet6/nd6.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/in6_pcb.h>
84 #endif
85 #include <netinet/tcp.h>
86 #include <netinet/tcp_fastopen.h>
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #ifdef INET6
93 #include <netinet6/tcp6_var.h>
94 #endif
95 #ifdef TCP_OFFLOAD
96 #include <netinet/toecore.h>
97 #endif
98 #include <netinet/udp.h>
99 #include <netinet/udp_var.h>
100 
101 #include <netipsec/ipsec_support.h>
102 
103 #include <machine/in_cksum.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
108 #define	V_tcp_syncookies		VNET(tcp_syncookies)
109 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
110     &VNET_NAME(tcp_syncookies), 0,
111     "Use TCP SYN cookies if the syncache overflows");
112 
113 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
114 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
115 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
116     &VNET_NAME(tcp_syncookiesonly), 0,
117     "Use only TCP SYN cookies");
118 
119 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
120 #define V_functions_inherit_listen_socket_stack \
121     VNET(functions_inherit_listen_socket_stack)
122 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
123     CTLFLAG_VNET | CTLFLAG_RW,
124     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
125     "Inherit listen socket's stack");
126 
127 #ifdef TCP_OFFLOAD
128 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
129 #endif
130 
131 static void	 syncache_drop(struct syncache *, struct syncache_head *);
132 static void	 syncache_free(struct syncache *);
133 static void	 syncache_insert(struct syncache *, struct syncache_head *);
134 static int	 syncache_respond(struct syncache *, const struct mbuf *, int);
135 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
136 		    struct mbuf *m);
137 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
138 		    int docallout);
139 static void	 syncache_timer(void *);
140 
141 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
142 		    uint8_t *, uintptr_t);
143 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
144 static struct syncache
145 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
146 		    struct syncache *, struct tcphdr *, struct tcpopt *,
147 		    struct socket *, uint16_t);
148 static void	syncache_pause(struct in_conninfo *);
149 static void	syncache_unpause(void *);
150 static void	 syncookie_reseed(void *);
151 #ifdef INVARIANTS
152 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
153 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
154 		    struct socket *lso, uint16_t port);
155 #endif
156 
157 /*
158  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
159  * 3 retransmits corresponds to a timeout with default values of
160  * tcp_rexmit_initial * (             1 +
161  *                       tcp_backoff[1] +
162  *                       tcp_backoff[2] +
163  *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
164  * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
165  * the odds are that the user has given up attempting to connect by then.
166  */
167 #define SYNCACHE_MAXREXMTS		3
168 
169 /* Arbitrary values */
170 #define TCP_SYNCACHE_HASHSIZE		512
171 #define TCP_SYNCACHE_BUCKETLIMIT	30
172 
173 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
174 #define	V_tcp_syncache			VNET(tcp_syncache)
175 
176 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache,
177     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
178     "TCP SYN cache");
179 
180 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
181     &VNET_NAME(tcp_syncache.bucket_limit), 0,
182     "Per-bucket hash limit for syncache");
183 
184 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
185     &VNET_NAME(tcp_syncache.cache_limit), 0,
186     "Overall entry limit for syncache");
187 
188 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
189     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
190 
191 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
192     &VNET_NAME(tcp_syncache.hashsize), 0,
193     "Size of TCP syncache hashtable");
194 
195 SYSCTL_BOOL(_net_inet_tcp_syncache, OID_AUTO, see_other, CTLFLAG_VNET |
196     CTLFLAG_RW, &VNET_NAME(tcp_syncache.see_other), 0,
197     "All syncache(4) entries are visible, ignoring UID/GID, jail(2) "
198     "and mac(4) checks");
199 
200 static int
201 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
202 {
203 	int error;
204 	u_int new;
205 
206 	new = V_tcp_syncache.rexmt_limit;
207 	error = sysctl_handle_int(oidp, &new, 0, req);
208 	if ((error == 0) && (req->newptr != NULL)) {
209 		if (new > TCP_MAXRXTSHIFT)
210 			error = EINVAL;
211 		else
212 			V_tcp_syncache.rexmt_limit = new;
213 	}
214 	return (error);
215 }
216 
217 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
218     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
219     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
220     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
221     "Limit on SYN/ACK retransmissions");
222 
223 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
224 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
225     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
226     "Send reset on socket allocation failure");
227 
228 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
229 
230 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
231 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
232 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
233 
234 /*
235  * Requires the syncache entry to be already removed from the bucket list.
236  */
237 static void
238 syncache_free(struct syncache *sc)
239 {
240 
241 	if (sc->sc_ipopts)
242 		(void) m_free(sc->sc_ipopts);
243 	if (sc->sc_cred)
244 		crfree(sc->sc_cred);
245 #ifdef MAC
246 	mac_syncache_destroy(&sc->sc_label);
247 #endif
248 
249 	uma_zfree(V_tcp_syncache.zone, sc);
250 }
251 
252 void
253 syncache_init(void)
254 {
255 	int i;
256 
257 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
258 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
259 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
260 	V_tcp_syncache.hash_secret = arc4random();
261 
262 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
263 	    &V_tcp_syncache.hashsize);
264 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
265 	    &V_tcp_syncache.bucket_limit);
266 	if (!powerof2(V_tcp_syncache.hashsize) ||
267 	    V_tcp_syncache.hashsize == 0) {
268 		printf("WARNING: syncache hash size is not a power of 2.\n");
269 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
270 	}
271 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
272 
273 	/* Set limits. */
274 	V_tcp_syncache.cache_limit =
275 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
276 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
277 	    &V_tcp_syncache.cache_limit);
278 
279 	/* Allocate the hash table. */
280 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
281 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
282 
283 #ifdef VIMAGE
284 	V_tcp_syncache.vnet = curvnet;
285 #endif
286 
287 	/* Initialize the hash buckets. */
288 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
289 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
290 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
291 			 NULL, MTX_DEF);
292 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
293 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
294 		V_tcp_syncache.hashbase[i].sch_length = 0;
295 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
296 		V_tcp_syncache.hashbase[i].sch_last_overflow =
297 		    -(SYNCOOKIE_LIFETIME + 1);
298 	}
299 
300 	/* Create the syncache entry zone. */
301 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
302 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
303 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
304 	    V_tcp_syncache.cache_limit);
305 
306 	/* Start the SYN cookie reseeder callout. */
307 	callout_init(&V_tcp_syncache.secret.reseed, 1);
308 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
309 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
310 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
311 	    syncookie_reseed, &V_tcp_syncache);
312 
313 	/* Initialize the pause machinery. */
314 	mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
315 	callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
316 	    0);
317 	V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
318 	V_tcp_syncache.pause_backoff = 0;
319 	V_tcp_syncache.paused = false;
320 }
321 
322 #ifdef VIMAGE
323 void
324 syncache_destroy(void)
325 {
326 	struct syncache_head *sch;
327 	struct syncache *sc, *nsc;
328 	int i;
329 
330 	/*
331 	 * Stop the re-seed timer before freeing resources.  No need to
332 	 * possibly schedule it another time.
333 	 */
334 	callout_drain(&V_tcp_syncache.secret.reseed);
335 
336 	/* Stop the SYN cache pause callout. */
337 	mtx_lock(&V_tcp_syncache.pause_mtx);
338 	if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
339 		mtx_unlock(&V_tcp_syncache.pause_mtx);
340 		callout_drain(&V_tcp_syncache.pause_co);
341 	} else
342 		mtx_unlock(&V_tcp_syncache.pause_mtx);
343 
344 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
345 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
346 		sch = &V_tcp_syncache.hashbase[i];
347 		callout_drain(&sch->sch_timer);
348 
349 		SCH_LOCK(sch);
350 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
351 			syncache_drop(sc, sch);
352 		SCH_UNLOCK(sch);
353 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
354 		    ("%s: sch->sch_bucket not empty", __func__));
355 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
356 		    __func__, sch->sch_length));
357 		mtx_destroy(&sch->sch_mtx);
358 	}
359 
360 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
361 	    ("%s: cache_count not 0", __func__));
362 
363 	/* Free the allocated global resources. */
364 	uma_zdestroy(V_tcp_syncache.zone);
365 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
366 	mtx_destroy(&V_tcp_syncache.pause_mtx);
367 }
368 #endif
369 
370 /*
371  * Inserts a syncache entry into the specified bucket row.
372  * Locks and unlocks the syncache_head autonomously.
373  */
374 static void
375 syncache_insert(struct syncache *sc, struct syncache_head *sch)
376 {
377 	struct syncache *sc2;
378 
379 	SCH_LOCK(sch);
380 
381 	/*
382 	 * Make sure that we don't overflow the per-bucket limit.
383 	 * If the bucket is full, toss the oldest element.
384 	 */
385 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
386 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
387 			("sch->sch_length incorrect"));
388 		syncache_pause(&sc->sc_inc);
389 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
390 		sch->sch_last_overflow = time_uptime;
391 		syncache_drop(sc2, sch);
392 	}
393 
394 	/* Put it into the bucket. */
395 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
396 	sch->sch_length++;
397 
398 #ifdef TCP_OFFLOAD
399 	if (ADDED_BY_TOE(sc)) {
400 		struct toedev *tod = sc->sc_tod;
401 
402 		tod->tod_syncache_added(tod, sc->sc_todctx);
403 	}
404 #endif
405 
406 	/* Reinitialize the bucket row's timer. */
407 	if (sch->sch_length == 1)
408 		sch->sch_nextc = ticks + INT_MAX;
409 	syncache_timeout(sc, sch, 1);
410 
411 	SCH_UNLOCK(sch);
412 
413 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
414 	TCPSTAT_INC(tcps_sc_added);
415 }
416 
417 /*
418  * Remove and free entry from syncache bucket row.
419  * Expects locked syncache head.
420  */
421 static void
422 syncache_drop(struct syncache *sc, struct syncache_head *sch)
423 {
424 
425 	SCH_LOCK_ASSERT(sch);
426 
427 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
428 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
429 	sch->sch_length--;
430 
431 #ifdef TCP_OFFLOAD
432 	if (ADDED_BY_TOE(sc)) {
433 		struct toedev *tod = sc->sc_tod;
434 
435 		tod->tod_syncache_removed(tod, sc->sc_todctx);
436 	}
437 #endif
438 
439 	syncache_free(sc);
440 }
441 
442 /*
443  * Engage/reengage time on bucket row.
444  */
445 static void
446 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
447 {
448 	int rexmt;
449 
450 	if (sc->sc_rxmits == 0)
451 		rexmt = tcp_rexmit_initial;
452 	else
453 		TCPT_RANGESET(rexmt,
454 		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
455 		    tcp_rexmit_min, TCPTV_REXMTMAX);
456 	sc->sc_rxttime = ticks + rexmt;
457 	sc->sc_rxmits++;
458 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
459 		sch->sch_nextc = sc->sc_rxttime;
460 		if (docallout)
461 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
462 			    syncache_timer, (void *)sch);
463 	}
464 }
465 
466 /*
467  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
468  * If we have retransmitted an entry the maximum number of times, expire it.
469  * One separate timer for each bucket row.
470  */
471 static void
472 syncache_timer(void *xsch)
473 {
474 	struct syncache_head *sch = (struct syncache_head *)xsch;
475 	struct syncache *sc, *nsc;
476 	struct epoch_tracker et;
477 	int tick = ticks;
478 	char *s;
479 	bool paused;
480 
481 	CURVNET_SET(sch->sch_sc->vnet);
482 
483 	/* NB: syncache_head has already been locked by the callout. */
484 	SCH_LOCK_ASSERT(sch);
485 
486 	/*
487 	 * In the following cycle we may remove some entries and/or
488 	 * advance some timeouts, so re-initialize the bucket timer.
489 	 */
490 	sch->sch_nextc = tick + INT_MAX;
491 
492 	/*
493 	 * If we have paused processing, unconditionally remove
494 	 * all syncache entries.
495 	 */
496 	mtx_lock(&V_tcp_syncache.pause_mtx);
497 	paused = V_tcp_syncache.paused;
498 	mtx_unlock(&V_tcp_syncache.pause_mtx);
499 
500 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
501 		if (paused) {
502 			syncache_drop(sc, sch);
503 			continue;
504 		}
505 		/*
506 		 * We do not check if the listen socket still exists
507 		 * and accept the case where the listen socket may be
508 		 * gone by the time we resend the SYN/ACK.  We do
509 		 * not expect this to happens often. If it does,
510 		 * then the RST will be sent by the time the remote
511 		 * host does the SYN/ACK->ACK.
512 		 */
513 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
514 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
515 				sch->sch_nextc = sc->sc_rxttime;
516 			continue;
517 		}
518 		if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
519 			sc->sc_flags &= ~SCF_ECN;
520 		}
521 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
522 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
523 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
524 				    "giving up and removing syncache entry\n",
525 				    s, __func__);
526 				free(s, M_TCPLOG);
527 			}
528 			syncache_drop(sc, sch);
529 			TCPSTAT_INC(tcps_sc_stale);
530 			continue;
531 		}
532 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
533 			log(LOG_DEBUG, "%s; %s: Response timeout, "
534 			    "retransmitting (%u) SYN|ACK\n",
535 			    s, __func__, sc->sc_rxmits);
536 			free(s, M_TCPLOG);
537 		}
538 
539 		NET_EPOCH_ENTER(et);
540 		syncache_respond(sc, NULL, TH_SYN|TH_ACK);
541 		NET_EPOCH_EXIT(et);
542 		TCPSTAT_INC(tcps_sc_retransmitted);
543 		syncache_timeout(sc, sch, 0);
544 	}
545 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
546 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
547 			syncache_timer, (void *)(sch));
548 	CURVNET_RESTORE();
549 }
550 
551 /*
552  * Returns true if the system is only using cookies at the moment.
553  * This could be due to a sysadmin decision to only use cookies, or it
554  * could be due to the system detecting an attack.
555  */
556 static inline bool
557 syncache_cookiesonly(void)
558 {
559 
560 	return (V_tcp_syncookies && (V_tcp_syncache.paused ||
561 	    V_tcp_syncookiesonly));
562 }
563 
564 /*
565  * Find the hash bucket for the given connection.
566  */
567 static struct syncache_head *
568 syncache_hashbucket(struct in_conninfo *inc)
569 {
570 	uint32_t hash;
571 
572 	/*
573 	 * The hash is built on foreign port + local port + foreign address.
574 	 * We rely on the fact that struct in_conninfo starts with 16 bits
575 	 * of foreign port, then 16 bits of local port then followed by 128
576 	 * bits of foreign address.  In case of IPv4 address, the first 3
577 	 * 32-bit words of the address always are zeroes.
578 	 */
579 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
580 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
581 
582 	return (&V_tcp_syncache.hashbase[hash]);
583 }
584 
585 /*
586  * Find an entry in the syncache.
587  * Returns always with locked syncache_head plus a matching entry or NULL.
588  */
589 static struct syncache *
590 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
591 {
592 	struct syncache *sc;
593 	struct syncache_head *sch;
594 
595 	*schp = sch = syncache_hashbucket(inc);
596 	SCH_LOCK(sch);
597 
598 	/* Circle through bucket row to find matching entry. */
599 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
600 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
601 		    sizeof(struct in_endpoints)) == 0)
602 			break;
603 
604 	return (sc);	/* Always returns with locked sch. */
605 }
606 
607 /*
608  * This function is called when we get a RST for a
609  * non-existent connection, so that we can see if the
610  * connection is in the syn cache.  If it is, zap it.
611  * If required send a challenge ACK.
612  */
613 void
614 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m,
615     uint16_t port)
616 {
617 	struct syncache *sc;
618 	struct syncache_head *sch;
619 	char *s = NULL;
620 
621 	if (syncache_cookiesonly())
622 		return;
623 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
624 	SCH_LOCK_ASSERT(sch);
625 
626 	/*
627 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
628 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
629 	 */
630 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
631 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
632 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
633 			    "FIN flag set, segment ignored\n", s, __func__);
634 		TCPSTAT_INC(tcps_badrst);
635 		goto done;
636 	}
637 
638 	/*
639 	 * No corresponding connection was found in syncache.
640 	 * If syncookies are enabled and possibly exclusively
641 	 * used, or we are under memory pressure, a valid RST
642 	 * may not find a syncache entry.  In that case we're
643 	 * done and no SYN|ACK retransmissions will happen.
644 	 * Otherwise the RST was misdirected or spoofed.
645 	 */
646 	if (sc == NULL) {
647 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
648 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
649 			    "syncache entry (possibly syncookie only), "
650 			    "segment ignored\n", s, __func__);
651 		TCPSTAT_INC(tcps_badrst);
652 		goto done;
653 	}
654 
655 	/* The remote UDP encaps port does not match. */
656 	if (sc->sc_port != port) {
657 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
658 			log(LOG_DEBUG, "%s; %s: Spurious RST with matching "
659 			    "syncache entry but non-matching UDP encaps port, "
660 			    "segment ignored\n", s, __func__);
661 		TCPSTAT_INC(tcps_badrst);
662 		goto done;
663 	}
664 
665 	/*
666 	 * If the RST bit is set, check the sequence number to see
667 	 * if this is a valid reset segment.
668 	 *
669 	 * RFC 793 page 37:
670 	 *   In all states except SYN-SENT, all reset (RST) segments
671 	 *   are validated by checking their SEQ-fields.  A reset is
672 	 *   valid if its sequence number is in the window.
673 	 *
674 	 * RFC 793 page 69:
675 	 *   There are four cases for the acceptability test for an incoming
676 	 *   segment:
677 	 *
678 	 * Segment Receive  Test
679 	 * Length  Window
680 	 * ------- -------  -------------------------------------------
681 	 *    0       0     SEG.SEQ = RCV.NXT
682 	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
683 	 *   >0       0     not acceptable
684 	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
685 	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
686 	 *
687 	 * Note that when receiving a SYN segment in the LISTEN state,
688 	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
689 	 * described in RFC 793, page 66.
690 	 */
691 	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
692 	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
693 	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
694 		if (V_tcp_insecure_rst ||
695 		    th->th_seq == sc->sc_irs + 1) {
696 			syncache_drop(sc, sch);
697 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
698 				log(LOG_DEBUG,
699 				    "%s; %s: Our SYN|ACK was rejected, "
700 				    "connection attempt aborted by remote "
701 				    "endpoint\n",
702 				    s, __func__);
703 			TCPSTAT_INC(tcps_sc_reset);
704 		} else {
705 			TCPSTAT_INC(tcps_badrst);
706 			/* Send challenge ACK. */
707 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
708 				log(LOG_DEBUG, "%s; %s: RST with invalid "
709 				    " SEQ %u != NXT %u (+WND %u), "
710 				    "sending challenge ACK\n",
711 				    s, __func__,
712 				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
713 			syncache_respond(sc, m, TH_ACK);
714 		}
715 	} else {
716 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
717 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
718 			    "NXT %u (+WND %u), segment ignored\n",
719 			    s, __func__,
720 			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
721 		TCPSTAT_INC(tcps_badrst);
722 	}
723 
724 done:
725 	if (s != NULL)
726 		free(s, M_TCPLOG);
727 	SCH_UNLOCK(sch);
728 }
729 
730 void
731 syncache_badack(struct in_conninfo *inc, uint16_t port)
732 {
733 	struct syncache *sc;
734 	struct syncache_head *sch;
735 
736 	if (syncache_cookiesonly())
737 		return;
738 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
739 	SCH_LOCK_ASSERT(sch);
740 	if ((sc != NULL) && (sc->sc_port == port)) {
741 		syncache_drop(sc, sch);
742 		TCPSTAT_INC(tcps_sc_badack);
743 	}
744 	SCH_UNLOCK(sch);
745 }
746 
747 void
748 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq, uint16_t port)
749 {
750 	struct syncache *sc;
751 	struct syncache_head *sch;
752 
753 	if (syncache_cookiesonly())
754 		return;
755 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
756 	SCH_LOCK_ASSERT(sch);
757 	if (sc == NULL)
758 		goto done;
759 
760 	/* If the port != sc_port, then it's a bogus ICMP msg */
761 	if (port != sc->sc_port)
762 		goto done;
763 
764 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
765 	if (ntohl(th_seq) != sc->sc_iss)
766 		goto done;
767 
768 	/*
769 	 * If we've rertransmitted 3 times and this is our second error,
770 	 * we remove the entry.  Otherwise, we allow it to continue on.
771 	 * This prevents us from incorrectly nuking an entry during a
772 	 * spurious network outage.
773 	 *
774 	 * See tcp_notify().
775 	 */
776 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
777 		sc->sc_flags |= SCF_UNREACH;
778 		goto done;
779 	}
780 	syncache_drop(sc, sch);
781 	TCPSTAT_INC(tcps_sc_unreach);
782 done:
783 	SCH_UNLOCK(sch);
784 }
785 
786 /*
787  * Build a new TCP socket structure from a syncache entry.
788  *
789  * On success return the newly created socket with its underlying inp locked.
790  */
791 static struct socket *
792 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
793 {
794 	struct tcp_function_block *blk;
795 	struct inpcb *inp = NULL;
796 	struct socket *so;
797 	struct tcpcb *tp;
798 	int error;
799 	char *s;
800 
801 	NET_EPOCH_ASSERT();
802 
803 	/*
804 	 * Ok, create the full blown connection, and set things up
805 	 * as they would have been set up if we had created the
806 	 * connection when the SYN arrived.  If we can't create
807 	 * the connection, abort it.
808 	 */
809 	so = sonewconn(lso, 0);
810 	if (so == NULL) {
811 		/*
812 		 * Drop the connection; we will either send a RST or
813 		 * have the peer retransmit its SYN again after its
814 		 * RTO and try again.
815 		 */
816 		TCPSTAT_INC(tcps_listendrop);
817 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
818 			log(LOG_DEBUG, "%s; %s: Socket create failed "
819 			    "due to limits or memory shortage\n",
820 			    s, __func__);
821 			free(s, M_TCPLOG);
822 		}
823 		goto abort2;
824 	}
825 #ifdef MAC
826 	mac_socketpeer_set_from_mbuf(m, so);
827 #endif
828 
829 	inp = sotoinpcb(so);
830 	inp->inp_inc.inc_fibnum = so->so_fibnum;
831 	INP_WLOCK(inp);
832 	/*
833 	 * Exclusive pcbinfo lock is not required in syncache socket case even
834 	 * if two inpcb locks can be acquired simultaneously:
835 	 *  - the inpcb in LISTEN state,
836 	 *  - the newly created inp.
837 	 *
838 	 * In this case, an inp cannot be at same time in LISTEN state and
839 	 * just created by an accept() call.
840 	 */
841 	INP_HASH_WLOCK(&V_tcbinfo);
842 
843 	/* Insert new socket into PCB hash list. */
844 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
845 #ifdef INET6
846 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
847 		inp->inp_vflag &= ~INP_IPV4;
848 		inp->inp_vflag |= INP_IPV6;
849 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
850 	} else {
851 		inp->inp_vflag &= ~INP_IPV6;
852 		inp->inp_vflag |= INP_IPV4;
853 #endif
854 		inp->inp_ip_ttl = sc->sc_ip_ttl;
855 		inp->inp_ip_tos = sc->sc_ip_tos;
856 		inp->inp_laddr = sc->sc_inc.inc_laddr;
857 #ifdef INET6
858 	}
859 #endif
860 
861 	/*
862 	 * If there's an mbuf and it has a flowid, then let's initialise the
863 	 * inp with that particular flowid.
864 	 */
865 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
866 		inp->inp_flowid = m->m_pkthdr.flowid;
867 		inp->inp_flowtype = M_HASHTYPE_GET(m);
868 #ifdef NUMA
869 		inp->inp_numa_domain = m->m_pkthdr.numa_domain;
870 #endif
871 	}
872 
873 	inp->inp_lport = sc->sc_inc.inc_lport;
874 #ifdef INET6
875 	if (inp->inp_vflag & INP_IPV6PROTO) {
876 		struct inpcb *oinp = sotoinpcb(lso);
877 
878 		/*
879 		 * Inherit socket options from the listening socket.
880 		 * Note that in6p_inputopts are not (and should not be)
881 		 * copied, since it stores previously received options and is
882 		 * used to detect if each new option is different than the
883 		 * previous one and hence should be passed to a user.
884 		 * If we copied in6p_inputopts, a user would not be able to
885 		 * receive options just after calling the accept system call.
886 		 */
887 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
888 		if (oinp->in6p_outputopts)
889 			inp->in6p_outputopts =
890 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
891 		inp->in6p_hops = oinp->in6p_hops;
892 	}
893 
894 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
895 		struct in6_addr laddr6;
896 		struct sockaddr_in6 sin6;
897 
898 		sin6.sin6_family = AF_INET6;
899 		sin6.sin6_len = sizeof(sin6);
900 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
901 		sin6.sin6_port = sc->sc_inc.inc_fport;
902 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
903 		laddr6 = inp->in6p_laddr;
904 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
905 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
906 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
907 		    thread0.td_ucred, m, false)) != 0) {
908 			inp->in6p_laddr = laddr6;
909 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
910 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
911 				    "with error %i\n",
912 				    s, __func__, error);
913 				free(s, M_TCPLOG);
914 			}
915 			INP_HASH_WUNLOCK(&V_tcbinfo);
916 			goto abort;
917 		}
918 		/* Override flowlabel from in6_pcbconnect. */
919 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
920 		inp->inp_flow |= sc->sc_flowlabel;
921 	}
922 #endif /* INET6 */
923 #if defined(INET) && defined(INET6)
924 	else
925 #endif
926 #ifdef INET
927 	{
928 		struct in_addr laddr;
929 		struct sockaddr_in sin;
930 
931 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
932 
933 		if (inp->inp_options == NULL) {
934 			inp->inp_options = sc->sc_ipopts;
935 			sc->sc_ipopts = NULL;
936 		}
937 
938 		sin.sin_family = AF_INET;
939 		sin.sin_len = sizeof(sin);
940 		sin.sin_addr = sc->sc_inc.inc_faddr;
941 		sin.sin_port = sc->sc_inc.inc_fport;
942 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
943 		laddr = inp->inp_laddr;
944 		if (inp->inp_laddr.s_addr == INADDR_ANY)
945 			inp->inp_laddr = sc->sc_inc.inc_laddr;
946 		if ((error = in_pcbconnect(inp, (struct sockaddr *)&sin,
947 		    thread0.td_ucred, false)) != 0) {
948 			inp->inp_laddr = laddr;
949 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
950 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
951 				    "with error %i\n",
952 				    s, __func__, error);
953 				free(s, M_TCPLOG);
954 			}
955 			INP_HASH_WUNLOCK(&V_tcbinfo);
956 			goto abort;
957 		}
958 	}
959 #endif /* INET */
960 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
961 	/* Copy old policy into new socket's. */
962 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
963 		printf("syncache_socket: could not copy policy\n");
964 #endif
965 	INP_HASH_WUNLOCK(&V_tcbinfo);
966 	tp = intotcpcb(inp);
967 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
968 	tp->iss = sc->sc_iss;
969 	tp->irs = sc->sc_irs;
970 	tp->t_port = sc->sc_port;
971 	tcp_rcvseqinit(tp);
972 	tcp_sendseqinit(tp);
973 	blk = sototcpcb(lso)->t_fb;
974 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
975 		/*
976 		 * Our parents t_fb was not the default,
977 		 * we need to release our ref on tp->t_fb and
978 		 * pickup one on the new entry.
979 		 */
980 		struct tcp_function_block *rblk;
981 
982 		rblk = find_and_ref_tcp_fb(blk);
983 		KASSERT(rblk != NULL,
984 		    ("cannot find blk %p out of syncache?", blk));
985 		if (tp->t_fb->tfb_tcp_fb_fini)
986 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
987 		refcount_release(&tp->t_fb->tfb_refcnt);
988 		tp->t_fb = rblk;
989 		/*
990 		 * XXXrrs this is quite dangerous, it is possible
991 		 * for the new function to fail to init. We also
992 		 * are not asking if the handoff_is_ok though at
993 		 * the very start thats probalbly ok.
994 		 */
995 		if (tp->t_fb->tfb_tcp_fb_init) {
996 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
997 		}
998 	}
999 	tp->snd_wl1 = sc->sc_irs;
1000 	tp->snd_max = tp->iss + 1;
1001 	tp->snd_nxt = tp->iss + 1;
1002 	tp->rcv_up = sc->sc_irs + 1;
1003 	tp->rcv_wnd = sc->sc_wnd;
1004 	tp->rcv_adv += tp->rcv_wnd;
1005 	tp->last_ack_sent = tp->rcv_nxt;
1006 
1007 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
1008 	if (sc->sc_flags & SCF_NOOPT)
1009 		tp->t_flags |= TF_NOOPT;
1010 	else {
1011 		if (sc->sc_flags & SCF_WINSCALE) {
1012 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
1013 			tp->snd_scale = sc->sc_requested_s_scale;
1014 			tp->request_r_scale = sc->sc_requested_r_scale;
1015 		}
1016 		if (sc->sc_flags & SCF_TIMESTAMP) {
1017 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
1018 			tp->ts_recent = sc->sc_tsreflect;
1019 			tp->ts_recent_age = tcp_ts_getticks();
1020 			tp->ts_offset = sc->sc_tsoff;
1021 		}
1022 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1023 		if (sc->sc_flags & SCF_SIGNATURE)
1024 			tp->t_flags |= TF_SIGNATURE;
1025 #endif
1026 		if (sc->sc_flags & SCF_SACK)
1027 			tp->t_flags |= TF_SACK_PERMIT;
1028 	}
1029 
1030 	if (sc->sc_flags & SCF_ECN)
1031 		tp->t_flags2 |= TF2_ECN_PERMIT;
1032 
1033 	/*
1034 	 * Set up MSS and get cached values from tcp_hostcache.
1035 	 * This might overwrite some of the defaults we just set.
1036 	 */
1037 	tcp_mss(tp, sc->sc_peer_mss);
1038 
1039 	/*
1040 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
1041 	 * limited to one segment in cc_conn_init().
1042 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
1043 	 */
1044 	if (sc->sc_rxmits > 1)
1045 		tp->snd_cwnd = 1;
1046 
1047 #ifdef TCP_OFFLOAD
1048 	/*
1049 	 * Allow a TOE driver to install its hooks.  Note that we hold the
1050 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
1051 	 * new connection before the TOE driver has done its thing.
1052 	 */
1053 	if (ADDED_BY_TOE(sc)) {
1054 		struct toedev *tod = sc->sc_tod;
1055 
1056 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
1057 	}
1058 #endif
1059 	/*
1060 	 * Copy and activate timers.
1061 	 */
1062 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
1063 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
1064 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
1065 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1066 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1067 
1068 	TCPSTAT_INC(tcps_accepts);
1069 	return (so);
1070 
1071 abort:
1072 	INP_WUNLOCK(inp);
1073 abort2:
1074 	if (so != NULL)
1075 		soabort(so);
1076 	return (NULL);
1077 }
1078 
1079 /*
1080  * This function gets called when we receive an ACK for a
1081  * socket in the LISTEN state.  We look up the connection
1082  * in the syncache, and if its there, we pull it out of
1083  * the cache and turn it into a full-blown connection in
1084  * the SYN-RECEIVED state.
1085  *
1086  * On syncache_socket() success the newly created socket
1087  * has its underlying inp locked.
1088  */
1089 int
1090 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1091     struct socket **lsop, struct mbuf *m, uint16_t port)
1092 {
1093 	struct syncache *sc;
1094 	struct syncache_head *sch;
1095 	struct syncache scs;
1096 	char *s;
1097 	bool locked;
1098 
1099 	NET_EPOCH_ASSERT();
1100 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1101 	    ("%s: can handle only ACK", __func__));
1102 
1103 	if (syncache_cookiesonly()) {
1104 		sc = NULL;
1105 		sch = syncache_hashbucket(inc);
1106 		locked = false;
1107 	} else {
1108 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1109 		locked = true;
1110 		SCH_LOCK_ASSERT(sch);
1111 	}
1112 
1113 #ifdef INVARIANTS
1114 	/*
1115 	 * Test code for syncookies comparing the syncache stored
1116 	 * values with the reconstructed values from the cookie.
1117 	 */
1118 	if (sc != NULL)
1119 		syncookie_cmp(inc, sch, sc, th, to, *lsop, port);
1120 #endif
1121 
1122 	if (sc == NULL) {
1123 		/*
1124 		 * There is no syncache entry, so see if this ACK is
1125 		 * a returning syncookie.  To do this, first:
1126 		 *  A. Check if syncookies are used in case of syncache
1127 		 *     overflows
1128 		 *  B. See if this socket has had a syncache entry dropped in
1129 		 *     the recent past. We don't want to accept a bogus
1130 		 *     syncookie if we've never received a SYN or accept it
1131 		 *     twice.
1132 		 *  C. check that the syncookie is valid.  If it is, then
1133 		 *     cobble up a fake syncache entry, and return.
1134 		 */
1135 		if (locked && !V_tcp_syncookies) {
1136 			SCH_UNLOCK(sch);
1137 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1138 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1139 				    "segment rejected (syncookies disabled)\n",
1140 				    s, __func__);
1141 			goto failed;
1142 		}
1143 		if (locked && !V_tcp_syncookiesonly &&
1144 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1145 			SCH_UNLOCK(sch);
1146 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1147 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1148 				    "segment rejected (no syncache entry)\n",
1149 				    s, __func__);
1150 			goto failed;
1151 		}
1152 		bzero(&scs, sizeof(scs));
1153 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop, port);
1154 		if (locked)
1155 			SCH_UNLOCK(sch);
1156 		if (sc == NULL) {
1157 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1158 				log(LOG_DEBUG, "%s; %s: Segment failed "
1159 				    "SYNCOOKIE authentication, segment rejected "
1160 				    "(probably spoofed)\n", s, __func__);
1161 			goto failed;
1162 		}
1163 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1164 		/* If received ACK has MD5 signature, check it. */
1165 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1166 		    (!TCPMD5_ENABLED() ||
1167 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1168 			/* Drop the ACK. */
1169 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1170 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1171 				    "MD5 signature doesn't match.\n",
1172 				    s, __func__);
1173 				free(s, M_TCPLOG);
1174 			}
1175 			TCPSTAT_INC(tcps_sig_err_sigopt);
1176 			return (-1); /* Do not send RST */
1177 		}
1178 #endif /* TCP_SIGNATURE */
1179 	} else {
1180 		if (sc->sc_port != port) {
1181 			SCH_UNLOCK(sch);
1182 			return (0);
1183 		}
1184 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1185 		/*
1186 		 * If listening socket requested TCP digests, check that
1187 		 * received ACK has signature and it is correct.
1188 		 * If not, drop the ACK and leave sc entry in th cache,
1189 		 * because SYN was received with correct signature.
1190 		 */
1191 		if (sc->sc_flags & SCF_SIGNATURE) {
1192 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1193 				/* No signature */
1194 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1195 				SCH_UNLOCK(sch);
1196 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1197 					log(LOG_DEBUG, "%s; %s: Segment "
1198 					    "rejected, MD5 signature wasn't "
1199 					    "provided.\n", s, __func__);
1200 					free(s, M_TCPLOG);
1201 				}
1202 				return (-1); /* Do not send RST */
1203 			}
1204 			if (!TCPMD5_ENABLED() ||
1205 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1206 				/* Doesn't match or no SA */
1207 				SCH_UNLOCK(sch);
1208 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1209 					log(LOG_DEBUG, "%s; %s: Segment "
1210 					    "rejected, MD5 signature doesn't "
1211 					    "match.\n", s, __func__);
1212 					free(s, M_TCPLOG);
1213 				}
1214 				return (-1); /* Do not send RST */
1215 			}
1216 		}
1217 #endif /* TCP_SIGNATURE */
1218 
1219 		/*
1220 		 * RFC 7323 PAWS: If we have a timestamp on this segment and
1221 		 * it's less than ts_recent, drop it.
1222 		 * XXXMT: RFC 7323 also requires to send an ACK.
1223 		 *        In tcp_input.c this is only done for TCP segments
1224 		 *        with user data, so be consistent here and just drop
1225 		 *        the segment.
1226 		 */
1227 		if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1228 		    TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1229 			SCH_UNLOCK(sch);
1230 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1231 				log(LOG_DEBUG,
1232 				    "%s; %s: SEG.TSval %u < TS.Recent %u, "
1233 				    "segment dropped\n", s, __func__,
1234 				    to->to_tsval, sc->sc_tsreflect);
1235 				free(s, M_TCPLOG);
1236 			}
1237 			return (-1);  /* Do not send RST */
1238 		}
1239 
1240 		/*
1241 		 * If timestamps were not negotiated during SYN/ACK and a
1242 		 * segment with a timestamp is received, ignore the
1243 		 * timestamp and process the packet normally.
1244 		 * See section 3.2 of RFC 7323.
1245 		 */
1246 		if (!(sc->sc_flags & SCF_TIMESTAMP) &&
1247 		    (to->to_flags & TOF_TS)) {
1248 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1249 				log(LOG_DEBUG, "%s; %s: Timestamp not "
1250 				    "expected, segment processed normally\n",
1251 				    s, __func__);
1252 				free(s, M_TCPLOG);
1253 				s = NULL;
1254 			}
1255 		}
1256 
1257 		/*
1258 		 * If timestamps were negotiated during SYN/ACK and a
1259 		 * segment without a timestamp is received, silently drop
1260 		 * the segment, unless the missing timestamps are tolerated.
1261 		 * See section 3.2 of RFC 7323.
1262 		 */
1263 		if ((sc->sc_flags & SCF_TIMESTAMP) &&
1264 		    !(to->to_flags & TOF_TS)) {
1265 			if (V_tcp_tolerate_missing_ts) {
1266 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1267 					log(LOG_DEBUG,
1268 					    "%s; %s: Timestamp missing, "
1269 					    "segment processed normally\n",
1270 					    s, __func__);
1271 					free(s, M_TCPLOG);
1272 				}
1273 			} else {
1274 				SCH_UNLOCK(sch);
1275 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1276 					log(LOG_DEBUG,
1277 					    "%s; %s: Timestamp missing, "
1278 					    "segment silently dropped\n",
1279 					    s, __func__);
1280 					free(s, M_TCPLOG);
1281 				}
1282 				return (-1);  /* Do not send RST */
1283 			}
1284 		}
1285 
1286 		/*
1287 		 * Pull out the entry to unlock the bucket row.
1288 		 *
1289 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1290 		 * tcp_state_change().  The tcpcb is not existent at this
1291 		 * moment.  A new one will be allocated via syncache_socket->
1292 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1293 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1294 		 */
1295 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1296 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1297 		sch->sch_length--;
1298 #ifdef TCP_OFFLOAD
1299 		if (ADDED_BY_TOE(sc)) {
1300 			struct toedev *tod = sc->sc_tod;
1301 
1302 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1303 		}
1304 #endif
1305 		SCH_UNLOCK(sch);
1306 	}
1307 
1308 	/*
1309 	 * Segment validation:
1310 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1311 	 */
1312 	if (th->th_ack != sc->sc_iss + 1) {
1313 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1314 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1315 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1316 		goto failed;
1317 	}
1318 
1319 	/*
1320 	 * The SEQ must fall in the window starting at the received
1321 	 * initial receive sequence number + 1 (the SYN).
1322 	 */
1323 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1324 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1325 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1326 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1327 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1328 		goto failed;
1329 	}
1330 
1331 	*lsop = syncache_socket(sc, *lsop, m);
1332 
1333 	if (*lsop == NULL)
1334 		TCPSTAT_INC(tcps_sc_aborted);
1335 	else
1336 		TCPSTAT_INC(tcps_sc_completed);
1337 
1338 /* how do we find the inp for the new socket? */
1339 	if (sc != &scs)
1340 		syncache_free(sc);
1341 	return (1);
1342 failed:
1343 	if (sc != NULL && sc != &scs)
1344 		syncache_free(sc);
1345 	if (s != NULL)
1346 		free(s, M_TCPLOG);
1347 	*lsop = NULL;
1348 	return (0);
1349 }
1350 
1351 static struct socket *
1352 syncache_tfo_expand(struct syncache *sc, struct socket *lso, struct mbuf *m,
1353     uint64_t response_cookie)
1354 {
1355 	struct inpcb *inp;
1356 	struct tcpcb *tp;
1357 	unsigned int *pending_counter;
1358 	struct socket *so;
1359 
1360 	NET_EPOCH_ASSERT();
1361 
1362 	pending_counter = intotcpcb(sotoinpcb(lso))->t_tfo_pending;
1363 	so = syncache_socket(sc, lso, m);
1364 	if (so == NULL) {
1365 		TCPSTAT_INC(tcps_sc_aborted);
1366 		atomic_subtract_int(pending_counter, 1);
1367 	} else {
1368 		soisconnected(so);
1369 		inp = sotoinpcb(so);
1370 		tp = intotcpcb(inp);
1371 		tp->t_flags |= TF_FASTOPEN;
1372 		tp->t_tfo_cookie.server = response_cookie;
1373 		tp->snd_max = tp->iss;
1374 		tp->snd_nxt = tp->iss;
1375 		tp->t_tfo_pending = pending_counter;
1376 		TCPSTAT_INC(tcps_sc_completed);
1377 	}
1378 
1379 	return (so);
1380 }
1381 
1382 /*
1383  * Given a LISTEN socket and an inbound SYN request, add
1384  * this to the syn cache, and send back a segment:
1385  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1386  * to the source.
1387  *
1388  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1389  * Doing so would require that we hold onto the data and deliver it
1390  * to the application.  However, if we are the target of a SYN-flood
1391  * DoS attack, an attacker could send data which would eventually
1392  * consume all available buffer space if it were ACKed.  By not ACKing
1393  * the data, we avoid this DoS scenario.
1394  *
1395  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1396  * cookie is processed and a new socket is created.  In this case, any data
1397  * accompanying the SYN will be queued to the socket by tcp_input() and will
1398  * be ACKed either when the application sends response data or the delayed
1399  * ACK timer expires, whichever comes first.
1400  */
1401 struct socket *
1402 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1403     struct inpcb *inp, struct socket *so, struct mbuf *m, void *tod,
1404     void *todctx, uint8_t iptos, uint16_t port)
1405 {
1406 	struct tcpcb *tp;
1407 	struct socket *rv = NULL;
1408 	struct syncache *sc = NULL;
1409 	struct syncache_head *sch;
1410 	struct mbuf *ipopts = NULL;
1411 	u_int ltflags;
1412 	int win, ip_ttl, ip_tos;
1413 	char *s;
1414 #ifdef INET6
1415 	int autoflowlabel = 0;
1416 #endif
1417 #ifdef MAC
1418 	struct label *maclabel;
1419 #endif
1420 	struct syncache scs;
1421 	struct ucred *cred;
1422 	uint64_t tfo_response_cookie;
1423 	unsigned int *tfo_pending = NULL;
1424 	int tfo_cookie_valid = 0;
1425 	int tfo_response_cookie_valid = 0;
1426 	bool locked;
1427 
1428 	INP_RLOCK_ASSERT(inp);			/* listen socket */
1429 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1430 	    ("%s: unexpected tcp flags", __func__));
1431 
1432 	/*
1433 	 * Combine all so/tp operations very early to drop the INP lock as
1434 	 * soon as possible.
1435 	 */
1436 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1437 	tp = sototcpcb(so);
1438 	cred = V_tcp_syncache.see_other ? NULL : crhold(so->so_cred);
1439 
1440 #ifdef INET6
1441 	if (inc->inc_flags & INC_ISIPV6) {
1442 		if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1443 			autoflowlabel = 1;
1444 		}
1445 		ip_ttl = in6_selecthlim(inp, NULL);
1446 		if ((inp->in6p_outputopts == NULL) ||
1447 		    (inp->in6p_outputopts->ip6po_tclass == -1)) {
1448 			ip_tos = 0;
1449 		} else {
1450 			ip_tos = inp->in6p_outputopts->ip6po_tclass;
1451 		}
1452 	}
1453 #endif
1454 #if defined(INET6) && defined(INET)
1455 	else
1456 #endif
1457 #ifdef INET
1458 	{
1459 		ip_ttl = inp->inp_ip_ttl;
1460 		ip_tos = inp->inp_ip_tos;
1461 	}
1462 #endif
1463 	win = so->sol_sbrcv_hiwat;
1464 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1465 
1466 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1467 	    (tp->t_tfo_pending != NULL) &&
1468 	    (to->to_flags & TOF_FASTOPEN)) {
1469 		/*
1470 		 * Limit the number of pending TFO connections to
1471 		 * approximately half of the queue limit.  This prevents TFO
1472 		 * SYN floods from starving the service by filling the
1473 		 * listen queue with bogus TFO connections.
1474 		 */
1475 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1476 		    (so->sol_qlimit / 2)) {
1477 			int result;
1478 
1479 			result = tcp_fastopen_check_cookie(inc,
1480 			    to->to_tfo_cookie, to->to_tfo_len,
1481 			    &tfo_response_cookie);
1482 			tfo_cookie_valid = (result > 0);
1483 			tfo_response_cookie_valid = (result >= 0);
1484 		}
1485 
1486 		/*
1487 		 * Remember the TFO pending counter as it will have to be
1488 		 * decremented below if we don't make it to syncache_tfo_expand().
1489 		 */
1490 		tfo_pending = tp->t_tfo_pending;
1491 	}
1492 
1493 #ifdef MAC
1494 	if (mac_syncache_init(&maclabel) != 0) {
1495 		INP_RUNLOCK(inp);
1496 		goto done;
1497 	} else
1498 		mac_syncache_create(maclabel, inp);
1499 #endif
1500 	if (!tfo_cookie_valid)
1501 		INP_RUNLOCK(inp);
1502 
1503 	/*
1504 	 * Remember the IP options, if any.
1505 	 */
1506 #ifdef INET6
1507 	if (!(inc->inc_flags & INC_ISIPV6))
1508 #endif
1509 #ifdef INET
1510 		ipopts = (m) ? ip_srcroute(m) : NULL;
1511 #else
1512 		ipopts = NULL;
1513 #endif
1514 
1515 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1516 	/*
1517 	 * If listening socket requested TCP digests, check that received
1518 	 * SYN has signature and it is correct. If signature doesn't match
1519 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1520 	 */
1521 	if (ltflags & TF_SIGNATURE) {
1522 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1523 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1524 			goto done;
1525 		}
1526 		if (!TCPMD5_ENABLED() ||
1527 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1528 			goto done;
1529 	}
1530 #endif	/* TCP_SIGNATURE */
1531 	/*
1532 	 * See if we already have an entry for this connection.
1533 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1534 	 *
1535 	 * XXX: should the syncache be re-initialized with the contents
1536 	 * of the new SYN here (which may have different options?)
1537 	 *
1538 	 * XXX: We do not check the sequence number to see if this is a
1539 	 * real retransmit or a new connection attempt.  The question is
1540 	 * how to handle such a case; either ignore it as spoofed, or
1541 	 * drop the current entry and create a new one?
1542 	 */
1543 	if (syncache_cookiesonly()) {
1544 		sc = NULL;
1545 		sch = syncache_hashbucket(inc);
1546 		locked = false;
1547 	} else {
1548 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1549 		locked = true;
1550 		SCH_LOCK_ASSERT(sch);
1551 	}
1552 	if (sc != NULL) {
1553 		if (tfo_cookie_valid)
1554 			INP_RUNLOCK(inp);
1555 		TCPSTAT_INC(tcps_sc_dupsyn);
1556 		if (ipopts) {
1557 			/*
1558 			 * If we were remembering a previous source route,
1559 			 * forget it and use the new one we've been given.
1560 			 */
1561 			if (sc->sc_ipopts)
1562 				(void) m_free(sc->sc_ipopts);
1563 			sc->sc_ipopts = ipopts;
1564 		}
1565 		/*
1566 		 * Update timestamp if present.
1567 		 */
1568 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1569 			sc->sc_tsreflect = to->to_tsval;
1570 		else
1571 			sc->sc_flags &= ~SCF_TIMESTAMP;
1572 		/*
1573 		 * Disable ECN if needed.
1574 		 */
1575 		if ((sc->sc_flags & SCF_ECN) &&
1576 		    ((th->th_flags & (TH_ECE|TH_CWR)) != (TH_ECE|TH_CWR))) {
1577 			sc->sc_flags &= ~SCF_ECN;
1578 		}
1579 #ifdef MAC
1580 		/*
1581 		 * Since we have already unconditionally allocated label
1582 		 * storage, free it up.  The syncache entry will already
1583 		 * have an initialized label we can use.
1584 		 */
1585 		mac_syncache_destroy(&maclabel);
1586 #endif
1587 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1588 		/* Retransmit SYN|ACK and reset retransmit count. */
1589 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1590 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1591 			    "resetting timer and retransmitting SYN|ACK\n",
1592 			    s, __func__);
1593 			free(s, M_TCPLOG);
1594 		}
1595 		if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1596 			sc->sc_rxmits = 0;
1597 			syncache_timeout(sc, sch, 1);
1598 			TCPSTAT_INC(tcps_sndacks);
1599 			TCPSTAT_INC(tcps_sndtotal);
1600 		}
1601 		SCH_UNLOCK(sch);
1602 		goto donenoprobe;
1603 	}
1604 
1605 	if (tfo_cookie_valid) {
1606 		bzero(&scs, sizeof(scs));
1607 		sc = &scs;
1608 		goto skip_alloc;
1609 	}
1610 
1611 	/*
1612 	 * Skip allocating a syncache entry if we are just going to discard
1613 	 * it later.
1614 	 */
1615 	if (!locked) {
1616 		bzero(&scs, sizeof(scs));
1617 		sc = &scs;
1618 	} else
1619 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1620 	if (sc == NULL) {
1621 		/*
1622 		 * The zone allocator couldn't provide more entries.
1623 		 * Treat this as if the cache was full; drop the oldest
1624 		 * entry and insert the new one.
1625 		 */
1626 		TCPSTAT_INC(tcps_sc_zonefail);
1627 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1628 			sch->sch_last_overflow = time_uptime;
1629 			syncache_drop(sc, sch);
1630 			syncache_pause(inc);
1631 		}
1632 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1633 		if (sc == NULL) {
1634 			if (V_tcp_syncookies) {
1635 				bzero(&scs, sizeof(scs));
1636 				sc = &scs;
1637 			} else {
1638 				KASSERT(locked,
1639 				    ("%s: bucket unexpectedly unlocked",
1640 				    __func__));
1641 				SCH_UNLOCK(sch);
1642 				if (ipopts)
1643 					(void) m_free(ipopts);
1644 				goto done;
1645 			}
1646 		}
1647 	}
1648 
1649 skip_alloc:
1650 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1651 		sc->sc_tfo_cookie = &tfo_response_cookie;
1652 
1653 	/*
1654 	 * Fill in the syncache values.
1655 	 */
1656 #ifdef MAC
1657 	sc->sc_label = maclabel;
1658 #endif
1659 	sc->sc_cred = cred;
1660 	sc->sc_port = port;
1661 	cred = NULL;
1662 	sc->sc_ipopts = ipopts;
1663 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1664 	sc->sc_ip_tos = ip_tos;
1665 	sc->sc_ip_ttl = ip_ttl;
1666 #ifdef TCP_OFFLOAD
1667 	sc->sc_tod = tod;
1668 	sc->sc_todctx = todctx;
1669 #endif
1670 	sc->sc_irs = th->th_seq;
1671 	sc->sc_flags = 0;
1672 	sc->sc_flowlabel = 0;
1673 
1674 	/*
1675 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1676 	 * win was derived from socket earlier in the function.
1677 	 */
1678 	win = imax(win, 0);
1679 	win = imin(win, TCP_MAXWIN);
1680 	sc->sc_wnd = win;
1681 
1682 	if (V_tcp_do_rfc1323 &&
1683 	    !(ltflags & TF_NOOPT)) {
1684 		/*
1685 		 * A timestamp received in a SYN makes
1686 		 * it ok to send timestamp requests and replies.
1687 		 */
1688 		if (to->to_flags & TOF_TS) {
1689 			sc->sc_tsreflect = to->to_tsval;
1690 			sc->sc_flags |= SCF_TIMESTAMP;
1691 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1692 		}
1693 		if (to->to_flags & TOF_SCALE) {
1694 			int wscale = 0;
1695 
1696 			/*
1697 			 * Pick the smallest possible scaling factor that
1698 			 * will still allow us to scale up to sb_max, aka
1699 			 * kern.ipc.maxsockbuf.
1700 			 *
1701 			 * We do this because there are broken firewalls that
1702 			 * will corrupt the window scale option, leading to
1703 			 * the other endpoint believing that our advertised
1704 			 * window is unscaled.  At scale factors larger than
1705 			 * 5 the unscaled window will drop below 1500 bytes,
1706 			 * leading to serious problems when traversing these
1707 			 * broken firewalls.
1708 			 *
1709 			 * With the default maxsockbuf of 256K, a scale factor
1710 			 * of 3 will be chosen by this algorithm.  Those who
1711 			 * choose a larger maxsockbuf should watch out
1712 			 * for the compatibility problems mentioned above.
1713 			 *
1714 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1715 			 * or <SYN,ACK>) segment itself is never scaled.
1716 			 */
1717 			while (wscale < TCP_MAX_WINSHIFT &&
1718 			    (TCP_MAXWIN << wscale) < sb_max)
1719 				wscale++;
1720 			sc->sc_requested_r_scale = wscale;
1721 			sc->sc_requested_s_scale = to->to_wscale;
1722 			sc->sc_flags |= SCF_WINSCALE;
1723 		}
1724 	}
1725 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1726 	/*
1727 	 * If listening socket requested TCP digests, flag this in the
1728 	 * syncache so that syncache_respond() will do the right thing
1729 	 * with the SYN+ACK.
1730 	 */
1731 	if (ltflags & TF_SIGNATURE)
1732 		sc->sc_flags |= SCF_SIGNATURE;
1733 #endif	/* TCP_SIGNATURE */
1734 	if (to->to_flags & TOF_SACKPERM)
1735 		sc->sc_flags |= SCF_SACK;
1736 	if (to->to_flags & TOF_MSS)
1737 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1738 	if (ltflags & TF_NOOPT)
1739 		sc->sc_flags |= SCF_NOOPT;
1740 	if (((th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) &&
1741 	    V_tcp_do_ecn)
1742 		sc->sc_flags |= SCF_ECN;
1743 
1744 	if (V_tcp_syncookies)
1745 		sc->sc_iss = syncookie_generate(sch, sc);
1746 	else
1747 		sc->sc_iss = arc4random();
1748 #ifdef INET6
1749 	if (autoflowlabel) {
1750 		if (V_tcp_syncookies)
1751 			sc->sc_flowlabel = sc->sc_iss;
1752 		else
1753 			sc->sc_flowlabel = ip6_randomflowlabel();
1754 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1755 	}
1756 #endif
1757 	if (locked)
1758 		SCH_UNLOCK(sch);
1759 
1760 	if (tfo_cookie_valid) {
1761 		rv = syncache_tfo_expand(sc, so, m, tfo_response_cookie);
1762 		/* INP_RUNLOCK(inp) will be performed by the caller */
1763 		goto tfo_expanded;
1764 	}
1765 
1766 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1767 	/*
1768 	 * Do a standard 3-way handshake.
1769 	 */
1770 	if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1771 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1772 			syncache_free(sc);
1773 		else if (sc != &scs)
1774 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1775 		TCPSTAT_INC(tcps_sndacks);
1776 		TCPSTAT_INC(tcps_sndtotal);
1777 	} else {
1778 		if (sc != &scs)
1779 			syncache_free(sc);
1780 		TCPSTAT_INC(tcps_sc_dropped);
1781 	}
1782 	goto donenoprobe;
1783 
1784 done:
1785 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1786 donenoprobe:
1787 	if (m)
1788 		m_freem(m);
1789 	/*
1790 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1791 	 * result in a new socket was processed and the associated pending
1792 	 * counter has not yet been decremented.  All such TFO processing paths
1793 	 * transit this point.
1794 	 */
1795 	if (tfo_pending != NULL)
1796 		tcp_fastopen_decrement_counter(tfo_pending);
1797 
1798 tfo_expanded:
1799 	if (cred != NULL)
1800 		crfree(cred);
1801 #ifdef MAC
1802 	if (sc == &scs)
1803 		mac_syncache_destroy(&maclabel);
1804 #endif
1805 	return (rv);
1806 }
1807 
1808 /*
1809  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1810  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1811  */
1812 static int
1813 syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1814 {
1815 	struct ip *ip = NULL;
1816 	struct mbuf *m;
1817 	struct tcphdr *th = NULL;
1818 	struct udphdr *udp = NULL;
1819 	int optlen, error = 0;	/* Make compiler happy */
1820 	u_int16_t hlen, tlen, mssopt, ulen;
1821 	struct tcpopt to;
1822 #ifdef INET6
1823 	struct ip6_hdr *ip6 = NULL;
1824 #endif
1825 
1826 	NET_EPOCH_ASSERT();
1827 
1828 	hlen =
1829 #ifdef INET6
1830 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1831 #endif
1832 		sizeof(struct ip);
1833 	tlen = hlen + sizeof(struct tcphdr);
1834 	if (sc->sc_port) {
1835 		tlen += sizeof(struct udphdr);
1836 	}
1837 	/* Determine MSS we advertize to other end of connection. */
1838 	mssopt = tcp_mssopt(&sc->sc_inc);
1839 	if (sc->sc_port)
1840 		mssopt -= V_tcp_udp_tunneling_overhead;
1841 	mssopt = max(mssopt, V_tcp_minmss);
1842 
1843 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1844 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1845 	    ("syncache: mbuf too small"));
1846 
1847 	/* Create the IP+TCP header from scratch. */
1848 	m = m_gethdr(M_NOWAIT, MT_DATA);
1849 	if (m == NULL)
1850 		return (ENOBUFS);
1851 #ifdef MAC
1852 	mac_syncache_create_mbuf(sc->sc_label, m);
1853 #endif
1854 	m->m_data += max_linkhdr;
1855 	m->m_len = tlen;
1856 	m->m_pkthdr.len = tlen;
1857 	m->m_pkthdr.rcvif = NULL;
1858 
1859 #ifdef INET6
1860 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1861 		ip6 = mtod(m, struct ip6_hdr *);
1862 		ip6->ip6_vfc = IPV6_VERSION;
1863 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1864 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1865 		ip6->ip6_plen = htons(tlen - hlen);
1866 		/* ip6_hlim is set after checksum */
1867 		/* Zero out traffic class and flow label. */
1868 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1869 		ip6->ip6_flow |= sc->sc_flowlabel;
1870 		if (sc->sc_port != 0) {
1871 			ip6->ip6_nxt = IPPROTO_UDP;
1872 			udp = (struct udphdr *)(ip6 + 1);
1873 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1874 			udp->uh_dport = sc->sc_port;
1875 			ulen = (tlen - sizeof(struct ip6_hdr));
1876 			th = (struct tcphdr *)(udp + 1);
1877 		} else {
1878 			ip6->ip6_nxt = IPPROTO_TCP;
1879 			th = (struct tcphdr *)(ip6 + 1);
1880 		}
1881 		ip6->ip6_flow |= htonl(sc->sc_ip_tos << 20);
1882 	}
1883 #endif
1884 #if defined(INET6) && defined(INET)
1885 	else
1886 #endif
1887 #ifdef INET
1888 	{
1889 		ip = mtod(m, struct ip *);
1890 		ip->ip_v = IPVERSION;
1891 		ip->ip_hl = sizeof(struct ip) >> 2;
1892 		ip->ip_len = htons(tlen);
1893 		ip->ip_id = 0;
1894 		ip->ip_off = 0;
1895 		ip->ip_sum = 0;
1896 		ip->ip_src = sc->sc_inc.inc_laddr;
1897 		ip->ip_dst = sc->sc_inc.inc_faddr;
1898 		ip->ip_ttl = sc->sc_ip_ttl;
1899 		ip->ip_tos = sc->sc_ip_tos;
1900 
1901 		/*
1902 		 * See if we should do MTU discovery.  Route lookups are
1903 		 * expensive, so we will only unset the DF bit if:
1904 		 *
1905 		 *	1) path_mtu_discovery is disabled
1906 		 *	2) the SCF_UNREACH flag has been set
1907 		 */
1908 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1909 		       ip->ip_off |= htons(IP_DF);
1910 		if (sc->sc_port == 0) {
1911 			ip->ip_p = IPPROTO_TCP;
1912 			th = (struct tcphdr *)(ip + 1);
1913 		} else {
1914 			ip->ip_p = IPPROTO_UDP;
1915 			udp = (struct udphdr *)(ip + 1);
1916 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1917 			udp->uh_dport = sc->sc_port;
1918 			ulen = (tlen - sizeof(struct ip));
1919 			th = (struct tcphdr *)(udp + 1);
1920 		}
1921 	}
1922 #endif /* INET */
1923 	th->th_sport = sc->sc_inc.inc_lport;
1924 	th->th_dport = sc->sc_inc.inc_fport;
1925 
1926 	if (flags & TH_SYN)
1927 		th->th_seq = htonl(sc->sc_iss);
1928 	else
1929 		th->th_seq = htonl(sc->sc_iss + 1);
1930 	th->th_ack = htonl(sc->sc_irs + 1);
1931 	th->th_off = sizeof(struct tcphdr) >> 2;
1932 	th->th_x2 = 0;
1933 	th->th_flags = flags;
1934 	th->th_win = htons(sc->sc_wnd);
1935 	th->th_urp = 0;
1936 
1937 	if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
1938 		th->th_flags |= TH_ECE;
1939 		TCPSTAT_INC(tcps_ecn_shs);
1940 	}
1941 
1942 	/* Tack on the TCP options. */
1943 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1944 		to.to_flags = 0;
1945 
1946 		if (flags & TH_SYN) {
1947 			to.to_mss = mssopt;
1948 			to.to_flags = TOF_MSS;
1949 			if (sc->sc_flags & SCF_WINSCALE) {
1950 				to.to_wscale = sc->sc_requested_r_scale;
1951 				to.to_flags |= TOF_SCALE;
1952 			}
1953 			if (sc->sc_flags & SCF_SACK)
1954 				to.to_flags |= TOF_SACKPERM;
1955 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1956 			if (sc->sc_flags & SCF_SIGNATURE)
1957 				to.to_flags |= TOF_SIGNATURE;
1958 #endif
1959 			if (sc->sc_tfo_cookie) {
1960 				to.to_flags |= TOF_FASTOPEN;
1961 				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1962 				to.to_tfo_cookie = sc->sc_tfo_cookie;
1963 				/* don't send cookie again when retransmitting response */
1964 				sc->sc_tfo_cookie = NULL;
1965 			}
1966 		}
1967 		if (sc->sc_flags & SCF_TIMESTAMP) {
1968 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1969 			to.to_tsecr = sc->sc_tsreflect;
1970 			to.to_flags |= TOF_TS;
1971 		}
1972 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1973 
1974 		/* Adjust headers by option size. */
1975 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1976 		m->m_len += optlen;
1977 		m->m_pkthdr.len += optlen;
1978 #ifdef INET6
1979 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1980 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1981 		else
1982 #endif
1983 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1984 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1985 		if (sc->sc_flags & SCF_SIGNATURE) {
1986 			KASSERT(to.to_flags & TOF_SIGNATURE,
1987 			    ("tcp_addoptions() didn't set tcp_signature"));
1988 
1989 			/* NOTE: to.to_signature is inside of mbuf */
1990 			if (!TCPMD5_ENABLED() ||
1991 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1992 				m_freem(m);
1993 				return (EACCES);
1994 			}
1995 		}
1996 #endif
1997 	} else
1998 		optlen = 0;
1999 
2000 	if (udp) {
2001 		ulen += optlen;
2002 		udp->uh_ulen = htons(ulen);
2003 	}
2004 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
2005 	/*
2006 	 * If we have peer's SYN and it has a flowid, then let's assign it to
2007 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
2008 	 * to SYN|ACK due to lack of inp here.
2009 	 */
2010 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
2011 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
2012 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
2013 	}
2014 #ifdef INET6
2015 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
2016 		if (sc->sc_port) {
2017 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
2018 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2019 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen,
2020 			      IPPROTO_UDP, 0);
2021 			th->th_sum = htons(0);
2022 		} else {
2023 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2024 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2025 			th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
2026 			    IPPROTO_TCP, 0);
2027 		}
2028 		ip6->ip6_hlim = sc->sc_ip_ttl;
2029 #ifdef TCP_OFFLOAD
2030 		if (ADDED_BY_TOE(sc)) {
2031 			struct toedev *tod = sc->sc_tod;
2032 
2033 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2034 
2035 			return (error);
2036 		}
2037 #endif
2038 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
2039 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2040 	}
2041 #endif
2042 #if defined(INET6) && defined(INET)
2043 	else
2044 #endif
2045 #ifdef INET
2046 	{
2047 		if (sc->sc_port) {
2048 			m->m_pkthdr.csum_flags = CSUM_UDP;
2049 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2050 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
2051 			      ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
2052 			th->th_sum = htons(0);
2053 		} else {
2054 			m->m_pkthdr.csum_flags = CSUM_TCP;
2055 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2056 			th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2057 			    htons(tlen + optlen - hlen + IPPROTO_TCP));
2058 		}
2059 #ifdef TCP_OFFLOAD
2060 		if (ADDED_BY_TOE(sc)) {
2061 			struct toedev *tod = sc->sc_tod;
2062 
2063 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2064 
2065 			return (error);
2066 		}
2067 #endif
2068 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
2069 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
2070 	}
2071 #endif
2072 	return (error);
2073 }
2074 
2075 /*
2076  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
2077  * that exceed the capacity of the syncache by avoiding the storage of any
2078  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
2079  * attacks where the attacker does not have access to our responses.
2080  *
2081  * Syncookies encode and include all necessary information about the
2082  * connection setup within the SYN|ACK that we send back.  That way we
2083  * can avoid keeping any local state until the ACK to our SYN|ACK returns
2084  * (if ever).  Normally the syncache and syncookies are running in parallel
2085  * with the latter taking over when the former is exhausted.  When matching
2086  * syncache entry is found the syncookie is ignored.
2087  *
2088  * The only reliable information persisting the 3WHS is our initial sequence
2089  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
2090  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2091  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
2092  * returns and signifies a legitimate connection if it matches the ACK.
2093  *
2094  * The available space of 32 bits to store the hash and to encode the SYN
2095  * option information is very tight and we should have at least 24 bits for
2096  * the MAC to keep the number of guesses by blind spoofing reasonably high.
2097  *
2098  * SYN option information we have to encode to fully restore a connection:
2099  * MSS: is imporant to chose an optimal segment size to avoid IP level
2100  *   fragmentation along the path.  The common MSS values can be encoded
2101  *   in a 3-bit table.  Uncommon values are captured by the next lower value
2102  *   in the table leading to a slight increase in packetization overhead.
2103  * WSCALE: is necessary to allow large windows to be used for high delay-
2104  *   bandwidth product links.  Not scaling the window when it was initially
2105  *   negotiated is bad for performance as lack of scaling further decreases
2106  *   the apparent available send window.  We only need to encode the WSCALE
2107  *   we received from the remote end.  Our end can be recalculated at any
2108  *   time.  The common WSCALE values can be encoded in a 3-bit table.
2109  *   Uncommon values are captured by the next lower value in the table
2110  *   making us under-estimate the available window size halving our
2111  *   theoretically possible maximum throughput for that connection.
2112  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2113  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2114  *   that are included in all segments on a connection.  We enable them when
2115  *   the ACK has them.
2116  *
2117  * Security of syncookies and attack vectors:
2118  *
2119  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2120  * together with the gloabl secret to make it unique per connection attempt.
2121  * Thus any change of any of those parameters results in a different MAC output
2122  * in an unpredictable way unless a collision is encountered.  24 bits of the
2123  * MAC are embedded into the ISS.
2124  *
2125  * To prevent replay attacks two rotating global secrets are updated with a
2126  * new random value every 15 seconds.  The life-time of a syncookie is thus
2127  * 15-30 seconds.
2128  *
2129  * Vector 1: Attacking the secret.  This requires finding a weakness in the
2130  * MAC itself or the way it is used here.  The attacker can do a chosen plain
2131  * text attack by varying and testing the all parameters under his control.
2132  * The strength depends on the size and randomness of the secret, and the
2133  * cryptographic security of the MAC function.  Due to the constant updating
2134  * of the secret the attacker has at most 29.999 seconds to find the secret
2135  * and launch spoofed connections.  After that he has to start all over again.
2136  *
2137  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
2138  * size an average of 4,823 attempts are required for a 50% chance of success
2139  * to spoof a single syncookie (birthday collision paradox).  However the
2140  * attacker is blind and doesn't know if one of his attempts succeeded unless
2141  * he has a side channel to interfere success from.  A single connection setup
2142  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2143  * This many attempts are required for each one blind spoofed connection.  For
2144  * every additional spoofed connection he has to launch another N attempts.
2145  * Thus for a sustained rate 100 spoofed connections per second approximately
2146  * 1,800,000 packets per second would have to be sent.
2147  *
2148  * NB: The MAC function should be fast so that it doesn't become a CPU
2149  * exhaustion attack vector itself.
2150  *
2151  * References:
2152  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2153  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2154  *   http://cr.yp.to/syncookies.html    (overview)
2155  *   http://cr.yp.to/syncookies/archive (details)
2156  *
2157  *
2158  * Schematic construction of a syncookie enabled Initial Sequence Number:
2159  *  0        1         2         3
2160  *  12345678901234567890123456789012
2161  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2162  *
2163  *  x 24 MAC (truncated)
2164  *  W  3 Send Window Scale index
2165  *  M  3 MSS index
2166  *  S  1 SACK permitted
2167  *  P  1 Odd/even secret
2168  */
2169 
2170 /*
2171  * Distribution and probability of certain MSS values.  Those in between are
2172  * rounded down to the next lower one.
2173  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2174  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
2175  */
2176 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2177 
2178 /*
2179  * Distribution and probability of certain WSCALE values.  We have to map the
2180  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2181  * bits based on prevalence of certain values.  Where we don't have an exact
2182  * match for are rounded down to the next lower one letting us under-estimate
2183  * the true available window.  At the moment this would happen only for the
2184  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2185  * and window size).  The absence of the WSCALE option (no scaling in either
2186  * direction) is encoded with index zero.
2187  * [WSCALE values histograms, Allman, 2012]
2188  *                            X 10 10 35  5  6 14 10%   by host
2189  *                            X 11  4  5  5 18 49  3%   by connections
2190  */
2191 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2192 
2193 /*
2194  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
2195  * and good cryptographic properties.
2196  */
2197 static uint32_t
2198 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2199     uint8_t *secbits, uintptr_t secmod)
2200 {
2201 	SIPHASH_CTX ctx;
2202 	uint32_t siphash[2];
2203 
2204 	SipHash24_Init(&ctx);
2205 	SipHash_SetKey(&ctx, secbits);
2206 	switch (inc->inc_flags & INC_ISIPV6) {
2207 #ifdef INET
2208 	case 0:
2209 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2210 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2211 		break;
2212 #endif
2213 #ifdef INET6
2214 	case INC_ISIPV6:
2215 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2216 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2217 		break;
2218 #endif
2219 	}
2220 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2221 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2222 	SipHash_Update(&ctx, &irs, sizeof(irs));
2223 	SipHash_Update(&ctx, &flags, sizeof(flags));
2224 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2225 	SipHash_Final((u_int8_t *)&siphash, &ctx);
2226 
2227 	return (siphash[0] ^ siphash[1]);
2228 }
2229 
2230 static tcp_seq
2231 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2232 {
2233 	u_int i, secbit, wscale;
2234 	uint32_t iss, hash;
2235 	uint8_t *secbits;
2236 	union syncookie cookie;
2237 
2238 	cookie.cookie = 0;
2239 
2240 	/* Map our computed MSS into the 3-bit index. */
2241 	for (i = nitems(tcp_sc_msstab) - 1;
2242 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2243 	     i--)
2244 		;
2245 	cookie.flags.mss_idx = i;
2246 
2247 	/*
2248 	 * Map the send window scale into the 3-bit index but only if
2249 	 * the wscale option was received.
2250 	 */
2251 	if (sc->sc_flags & SCF_WINSCALE) {
2252 		wscale = sc->sc_requested_s_scale;
2253 		for (i = nitems(tcp_sc_wstab) - 1;
2254 		    tcp_sc_wstab[i] > wscale && i > 0;
2255 		     i--)
2256 			;
2257 		cookie.flags.wscale_idx = i;
2258 	}
2259 
2260 	/* Can we do SACK? */
2261 	if (sc->sc_flags & SCF_SACK)
2262 		cookie.flags.sack_ok = 1;
2263 
2264 	/* Which of the two secrets to use. */
2265 	secbit = V_tcp_syncache.secret.oddeven & 0x1;
2266 	cookie.flags.odd_even = secbit;
2267 
2268 	secbits = V_tcp_syncache.secret.key[secbit];
2269 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2270 	    (uintptr_t)sch);
2271 
2272 	/*
2273 	 * Put the flags into the hash and XOR them to get better ISS number
2274 	 * variance.  This doesn't enhance the cryptographic strength and is
2275 	 * done to prevent the 8 cookie bits from showing up directly on the
2276 	 * wire.
2277 	 */
2278 	iss = hash & ~0xff;
2279 	iss |= cookie.cookie ^ (hash >> 24);
2280 
2281 	TCPSTAT_INC(tcps_sc_sendcookie);
2282 	return (iss);
2283 }
2284 
2285 static struct syncache *
2286 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2287     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2288     struct socket *lso, uint16_t port)
2289 {
2290 	uint32_t hash;
2291 	uint8_t *secbits;
2292 	tcp_seq ack, seq;
2293 	int wnd, wscale = 0;
2294 	union syncookie cookie;
2295 
2296 	/*
2297 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2298 	 * advances.
2299 	 */
2300 	ack = th->th_ack - 1;
2301 	seq = th->th_seq - 1;
2302 
2303 	/*
2304 	 * Unpack the flags containing enough information to restore the
2305 	 * connection.
2306 	 */
2307 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2308 
2309 	/* Which of the two secrets to use. */
2310 	secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2311 
2312 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2313 
2314 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2315 	if ((ack & ~0xff) != (hash & ~0xff))
2316 		return (NULL);
2317 
2318 	/* Fill in the syncache values. */
2319 	sc->sc_flags = 0;
2320 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2321 	sc->sc_ipopts = NULL;
2322 
2323 	sc->sc_irs = seq;
2324 	sc->sc_iss = ack;
2325 
2326 	switch (inc->inc_flags & INC_ISIPV6) {
2327 #ifdef INET
2328 	case 0:
2329 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2330 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2331 		break;
2332 #endif
2333 #ifdef INET6
2334 	case INC_ISIPV6:
2335 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2336 			sc->sc_flowlabel =
2337 			    htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2338 		break;
2339 #endif
2340 	}
2341 
2342 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2343 
2344 	/* We can simply recompute receive window scale we sent earlier. */
2345 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2346 		wscale++;
2347 
2348 	/* Only use wscale if it was enabled in the orignal SYN. */
2349 	if (cookie.flags.wscale_idx > 0) {
2350 		sc->sc_requested_r_scale = wscale;
2351 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2352 		sc->sc_flags |= SCF_WINSCALE;
2353 	}
2354 
2355 	wnd = lso->sol_sbrcv_hiwat;
2356 	wnd = imax(wnd, 0);
2357 	wnd = imin(wnd, TCP_MAXWIN);
2358 	sc->sc_wnd = wnd;
2359 
2360 	if (cookie.flags.sack_ok)
2361 		sc->sc_flags |= SCF_SACK;
2362 
2363 	if (to->to_flags & TOF_TS) {
2364 		sc->sc_flags |= SCF_TIMESTAMP;
2365 		sc->sc_tsreflect = to->to_tsval;
2366 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2367 	}
2368 
2369 	if (to->to_flags & TOF_SIGNATURE)
2370 		sc->sc_flags |= SCF_SIGNATURE;
2371 
2372 	sc->sc_rxmits = 0;
2373 
2374 	sc->sc_port = port;
2375 
2376 	TCPSTAT_INC(tcps_sc_recvcookie);
2377 	return (sc);
2378 }
2379 
2380 #ifdef INVARIANTS
2381 static int
2382 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2383     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2384     struct socket *lso, uint16_t port)
2385 {
2386 	struct syncache scs, *scx;
2387 	char *s;
2388 
2389 	bzero(&scs, sizeof(scs));
2390 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso, port);
2391 
2392 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2393 		return (0);
2394 
2395 	if (scx != NULL) {
2396 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2397 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2398 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2399 
2400 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2401 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2402 			    s, __func__, sc->sc_requested_r_scale,
2403 			    scx->sc_requested_r_scale);
2404 
2405 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2406 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2407 			    s, __func__, sc->sc_requested_s_scale,
2408 			    scx->sc_requested_s_scale);
2409 
2410 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2411 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2412 	}
2413 
2414 	if (s != NULL)
2415 		free(s, M_TCPLOG);
2416 	return (0);
2417 }
2418 #endif /* INVARIANTS */
2419 
2420 static void
2421 syncookie_reseed(void *arg)
2422 {
2423 	struct tcp_syncache *sc = arg;
2424 	uint8_t *secbits;
2425 	int secbit;
2426 
2427 	/*
2428 	 * Reseeding the secret doesn't have to be protected by a lock.
2429 	 * It only must be ensured that the new random values are visible
2430 	 * to all CPUs in a SMP environment.  The atomic with release
2431 	 * semantics ensures that.
2432 	 */
2433 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2434 	secbits = sc->secret.key[secbit];
2435 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2436 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2437 
2438 	/* Reschedule ourself. */
2439 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2440 }
2441 
2442 /*
2443  * We have overflowed a bucket. Let's pause dealing with the syncache.
2444  * This function will increment the bucketoverflow statistics appropriately
2445  * (once per pause when pausing is enabled; otherwise, once per overflow).
2446  */
2447 static void
2448 syncache_pause(struct in_conninfo *inc)
2449 {
2450 	time_t delta;
2451 	const char *s;
2452 
2453 	/* XXX:
2454 	 * 2. Add sysctl read here so we don't get the benefit of this
2455 	 * change without the new sysctl.
2456 	 */
2457 
2458 	/*
2459 	 * Try an unlocked read. If we already know that another thread
2460 	 * has activated the feature, there is no need to proceed.
2461 	 */
2462 	if (V_tcp_syncache.paused)
2463 		return;
2464 
2465 	/* Are cookied enabled? If not, we can't pause. */
2466 	if (!V_tcp_syncookies) {
2467 		TCPSTAT_INC(tcps_sc_bucketoverflow);
2468 		return;
2469 	}
2470 
2471 	/*
2472 	 * We may be the first thread to find an overflow. Get the lock
2473 	 * and evaluate if we need to take action.
2474 	 */
2475 	mtx_lock(&V_tcp_syncache.pause_mtx);
2476 	if (V_tcp_syncache.paused) {
2477 		mtx_unlock(&V_tcp_syncache.pause_mtx);
2478 		return;
2479 	}
2480 
2481 	/* Activate protection. */
2482 	V_tcp_syncache.paused = true;
2483 	TCPSTAT_INC(tcps_sc_bucketoverflow);
2484 
2485 	/*
2486 	 * Determine the last backoff time. If we are seeing a re-newed
2487 	 * attack within that same time after last reactivating the syncache,
2488 	 * consider it an extension of the same attack.
2489 	 */
2490 	delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2491 	if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2492 		if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2493 			delta <<= 1;
2494 			V_tcp_syncache.pause_backoff++;
2495 		}
2496 	} else {
2497 		delta = TCP_SYNCACHE_PAUSE_TIME;
2498 		V_tcp_syncache.pause_backoff = 0;
2499 	}
2500 
2501 	/* Log a warning, including IP addresses, if able. */
2502 	if (inc != NULL)
2503 		s = tcp_log_addrs(inc, NULL, NULL, NULL);
2504 	else
2505 		s = (const char *)NULL;
2506 	log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2507 	    "the next %lld seconds%s%s%s\n", (long long)delta,
2508 	    (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2509 	    (s != NULL) ? ")" : "");
2510 	free(__DECONST(void *, s), M_TCPLOG);
2511 
2512 	/* Use the calculated delta to set a new pause time. */
2513 	V_tcp_syncache.pause_until = time_uptime + delta;
2514 	callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2515 	    &V_tcp_syncache);
2516 	mtx_unlock(&V_tcp_syncache.pause_mtx);
2517 }
2518 
2519 /* Evaluate whether we need to unpause. */
2520 static void
2521 syncache_unpause(void *arg)
2522 {
2523 	struct tcp_syncache *sc;
2524 	time_t delta;
2525 
2526 	sc = arg;
2527 	mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2528 	callout_deactivate(&sc->pause_co);
2529 
2530 	/*
2531 	 * Check to make sure we are not running early. If the pause
2532 	 * time has expired, then deactivate the protection.
2533 	 */
2534 	if ((delta = sc->pause_until - time_uptime) > 0)
2535 		callout_schedule(&sc->pause_co, delta * hz);
2536 	else
2537 		sc->paused = false;
2538 }
2539 
2540 /*
2541  * Exports the syncache entries to userland so that netstat can display
2542  * them alongside the other sockets.  This function is intended to be
2543  * called only from tcp_pcblist.
2544  *
2545  * Due to concurrency on an active system, the number of pcbs exported
2546  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2547  * amount of space the caller allocated for this function to use.
2548  */
2549 int
2550 syncache_pcblist(struct sysctl_req *req)
2551 {
2552 	struct xtcpcb xt;
2553 	struct syncache *sc;
2554 	struct syncache_head *sch;
2555 	int error, i;
2556 
2557 	bzero(&xt, sizeof(xt));
2558 	xt.xt_len = sizeof(xt);
2559 	xt.t_state = TCPS_SYN_RECEIVED;
2560 	xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2561 	xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2562 	xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2563 	xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2564 
2565 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
2566 		sch = &V_tcp_syncache.hashbase[i];
2567 		SCH_LOCK(sch);
2568 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2569 			if (sc->sc_cred != NULL &&
2570 			    cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2571 				continue;
2572 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2573 				xt.xt_inp.inp_vflag = INP_IPV6;
2574 			else
2575 				xt.xt_inp.inp_vflag = INP_IPV4;
2576 			xt.xt_encaps_port = sc->sc_port;
2577 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2578 			    sizeof (struct in_conninfo));
2579 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2580 			if (error) {
2581 				SCH_UNLOCK(sch);
2582 				return (0);
2583 			}
2584 		}
2585 		SCH_UNLOCK(sch);
2586 	}
2587 
2588 	return (0);
2589 }
2590