xref: /freebsd/sys/netinet/tcp_syncache.c (revision 780fb4a2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #include <netinet/in_pcb.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_options.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet/icmp6.h>
81 #include <netinet6/nd6.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/in6_pcb.h>
84 #endif
85 #include <netinet/tcp.h>
86 #include <netinet/tcp_fastopen.h>
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #ifdef INET6
93 #include <netinet6/tcp6_var.h>
94 #endif
95 #ifdef TCP_OFFLOAD
96 #include <netinet/toecore.h>
97 #endif
98 
99 #include <netipsec/ipsec_support.h>
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 static VNET_DEFINE(int, tcp_syncookies) = 1;
106 #define	V_tcp_syncookies		VNET(tcp_syncookies)
107 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108     &VNET_NAME(tcp_syncookies), 0,
109     "Use TCP SYN cookies if the syncache overflows");
110 
111 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116 
117 static VNET_DEFINE(int, functions_inherit_listen_socket_stack) = 1;
118 #define V_functions_inherit_listen_socket_stack \
119     VNET(functions_inherit_listen_socket_stack)
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
121     CTLFLAG_VNET | CTLFLAG_RW,
122     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
123     "Inherit listen socket's stack");
124 
125 #ifdef TCP_OFFLOAD
126 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
127 #endif
128 
129 static void	 syncache_drop(struct syncache *, struct syncache_head *);
130 static void	 syncache_free(struct syncache *);
131 static void	 syncache_insert(struct syncache *, struct syncache_head *);
132 static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
133 		    const struct mbuf *);
134 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
135 		    struct mbuf *m);
136 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
137 		    int docallout);
138 static void	 syncache_timer(void *);
139 
140 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
141 		    uint8_t *, uintptr_t);
142 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
143 static struct syncache
144 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
145 		    struct syncache *, struct tcphdr *, struct tcpopt *,
146 		    struct socket *);
147 static void	 syncookie_reseed(void *);
148 #ifdef INVARIANTS
149 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
150 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
151 		    struct socket *lso);
152 #endif
153 
154 /*
155  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
156  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
157  * the odds are that the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		3
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
166 #define	V_tcp_syncache			VNET(tcp_syncache)
167 
168 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
169     "TCP SYN cache");
170 
171 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
172     &VNET_NAME(tcp_syncache.bucket_limit), 0,
173     "Per-bucket hash limit for syncache");
174 
175 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
176     &VNET_NAME(tcp_syncache.cache_limit), 0,
177     "Overall entry limit for syncache");
178 
179 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
180     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
181 
182 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
183     &VNET_NAME(tcp_syncache.hashsize), 0,
184     "Size of TCP syncache hashtable");
185 
186 static int
187 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
188 {
189 	int error;
190 	u_int new;
191 
192 	new = V_tcp_syncache.rexmt_limit;
193 	error = sysctl_handle_int(oidp, &new, 0, req);
194 	if ((error == 0) && (req->newptr != NULL)) {
195 		if (new > TCP_MAXRXTSHIFT)
196 			error = EINVAL;
197 		else
198 			V_tcp_syncache.rexmt_limit = new;
199 	}
200 	return (error);
201 }
202 
203 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
204     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
205     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
206     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
207     "Limit on SYN/ACK retransmissions");
208 
209 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
210 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
211     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
212     "Send reset on socket allocation failure");
213 
214 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
215 
216 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
217 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
218 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
219 
220 /*
221  * Requires the syncache entry to be already removed from the bucket list.
222  */
223 static void
224 syncache_free(struct syncache *sc)
225 {
226 
227 	if (sc->sc_ipopts)
228 		(void) m_free(sc->sc_ipopts);
229 	if (sc->sc_cred)
230 		crfree(sc->sc_cred);
231 #ifdef MAC
232 	mac_syncache_destroy(&sc->sc_label);
233 #endif
234 
235 	uma_zfree(V_tcp_syncache.zone, sc);
236 }
237 
238 void
239 syncache_init(void)
240 {
241 	int i;
242 
243 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
244 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
245 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
246 	V_tcp_syncache.hash_secret = arc4random();
247 
248 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
249 	    &V_tcp_syncache.hashsize);
250 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
251 	    &V_tcp_syncache.bucket_limit);
252 	if (!powerof2(V_tcp_syncache.hashsize) ||
253 	    V_tcp_syncache.hashsize == 0) {
254 		printf("WARNING: syncache hash size is not a power of 2.\n");
255 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
256 	}
257 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
258 
259 	/* Set limits. */
260 	V_tcp_syncache.cache_limit =
261 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
262 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
263 	    &V_tcp_syncache.cache_limit);
264 
265 	/* Allocate the hash table. */
266 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
267 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
268 
269 #ifdef VIMAGE
270 	V_tcp_syncache.vnet = curvnet;
271 #endif
272 
273 	/* Initialize the hash buckets. */
274 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
275 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
276 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
277 			 NULL, MTX_DEF);
278 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
279 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
280 		V_tcp_syncache.hashbase[i].sch_length = 0;
281 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
282 		V_tcp_syncache.hashbase[i].sch_last_overflow =
283 		    -(SYNCOOKIE_LIFETIME + 1);
284 	}
285 
286 	/* Create the syncache entry zone. */
287 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
288 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
289 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
290 	    V_tcp_syncache.cache_limit);
291 
292 	/* Start the SYN cookie reseeder callout. */
293 	callout_init(&V_tcp_syncache.secret.reseed, 1);
294 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
295 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
296 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
297 	    syncookie_reseed, &V_tcp_syncache);
298 }
299 
300 #ifdef VIMAGE
301 void
302 syncache_destroy(void)
303 {
304 	struct syncache_head *sch;
305 	struct syncache *sc, *nsc;
306 	int i;
307 
308 	/*
309 	 * Stop the re-seed timer before freeing resources.  No need to
310 	 * possibly schedule it another time.
311 	 */
312 	callout_drain(&V_tcp_syncache.secret.reseed);
313 
314 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
315 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
316 
317 		sch = &V_tcp_syncache.hashbase[i];
318 		callout_drain(&sch->sch_timer);
319 
320 		SCH_LOCK(sch);
321 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
322 			syncache_drop(sc, sch);
323 		SCH_UNLOCK(sch);
324 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
325 		    ("%s: sch->sch_bucket not empty", __func__));
326 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
327 		    __func__, sch->sch_length));
328 		mtx_destroy(&sch->sch_mtx);
329 	}
330 
331 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
332 	    ("%s: cache_count not 0", __func__));
333 
334 	/* Free the allocated global resources. */
335 	uma_zdestroy(V_tcp_syncache.zone);
336 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
337 }
338 #endif
339 
340 /*
341  * Inserts a syncache entry into the specified bucket row.
342  * Locks and unlocks the syncache_head autonomously.
343  */
344 static void
345 syncache_insert(struct syncache *sc, struct syncache_head *sch)
346 {
347 	struct syncache *sc2;
348 
349 	SCH_LOCK(sch);
350 
351 	/*
352 	 * Make sure that we don't overflow the per-bucket limit.
353 	 * If the bucket is full, toss the oldest element.
354 	 */
355 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
356 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
357 			("sch->sch_length incorrect"));
358 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
359 		sch->sch_last_overflow = time_uptime;
360 		syncache_drop(sc2, sch);
361 		TCPSTAT_INC(tcps_sc_bucketoverflow);
362 	}
363 
364 	/* Put it into the bucket. */
365 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
366 	sch->sch_length++;
367 
368 #ifdef TCP_OFFLOAD
369 	if (ADDED_BY_TOE(sc)) {
370 		struct toedev *tod = sc->sc_tod;
371 
372 		tod->tod_syncache_added(tod, sc->sc_todctx);
373 	}
374 #endif
375 
376 	/* Reinitialize the bucket row's timer. */
377 	if (sch->sch_length == 1)
378 		sch->sch_nextc = ticks + INT_MAX;
379 	syncache_timeout(sc, sch, 1);
380 
381 	SCH_UNLOCK(sch);
382 
383 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
384 	TCPSTAT_INC(tcps_sc_added);
385 }
386 
387 /*
388  * Remove and free entry from syncache bucket row.
389  * Expects locked syncache head.
390  */
391 static void
392 syncache_drop(struct syncache *sc, struct syncache_head *sch)
393 {
394 
395 	SCH_LOCK_ASSERT(sch);
396 
397 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
398 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
399 	sch->sch_length--;
400 
401 #ifdef TCP_OFFLOAD
402 	if (ADDED_BY_TOE(sc)) {
403 		struct toedev *tod = sc->sc_tod;
404 
405 		tod->tod_syncache_removed(tod, sc->sc_todctx);
406 	}
407 #endif
408 
409 	syncache_free(sc);
410 }
411 
412 /*
413  * Engage/reengage time on bucket row.
414  */
415 static void
416 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
417 {
418 	int rexmt;
419 
420 	if (sc->sc_rxmits == 0)
421 		rexmt = TCPTV_RTOBASE;
422 	else
423 		TCPT_RANGESET(rexmt, TCPTV_RTOBASE * tcp_syn_backoff[sc->sc_rxmits],
424 		    tcp_rexmit_min, TCPTV_REXMTMAX);
425 	sc->sc_rxttime = ticks + rexmt;
426 	sc->sc_rxmits++;
427 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
428 		sch->sch_nextc = sc->sc_rxttime;
429 		if (docallout)
430 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
431 			    syncache_timer, (void *)sch);
432 	}
433 }
434 
435 /*
436  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
437  * If we have retransmitted an entry the maximum number of times, expire it.
438  * One separate timer for each bucket row.
439  */
440 static void
441 syncache_timer(void *xsch)
442 {
443 	struct syncache_head *sch = (struct syncache_head *)xsch;
444 	struct syncache *sc, *nsc;
445 	int tick = ticks;
446 	char *s;
447 
448 	CURVNET_SET(sch->sch_sc->vnet);
449 
450 	/* NB: syncache_head has already been locked by the callout. */
451 	SCH_LOCK_ASSERT(sch);
452 
453 	/*
454 	 * In the following cycle we may remove some entries and/or
455 	 * advance some timeouts, so re-initialize the bucket timer.
456 	 */
457 	sch->sch_nextc = tick + INT_MAX;
458 
459 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
460 		/*
461 		 * We do not check if the listen socket still exists
462 		 * and accept the case where the listen socket may be
463 		 * gone by the time we resend the SYN/ACK.  We do
464 		 * not expect this to happens often. If it does,
465 		 * then the RST will be sent by the time the remote
466 		 * host does the SYN/ACK->ACK.
467 		 */
468 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
469 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
470 				sch->sch_nextc = sc->sc_rxttime;
471 			continue;
472 		}
473 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
474 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
475 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
476 				    "giving up and removing syncache entry\n",
477 				    s, __func__);
478 				free(s, M_TCPLOG);
479 			}
480 			syncache_drop(sc, sch);
481 			TCPSTAT_INC(tcps_sc_stale);
482 			continue;
483 		}
484 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
485 			log(LOG_DEBUG, "%s; %s: Response timeout, "
486 			    "retransmitting (%u) SYN|ACK\n",
487 			    s, __func__, sc->sc_rxmits);
488 			free(s, M_TCPLOG);
489 		}
490 
491 		syncache_respond(sc, sch, 1, NULL);
492 		TCPSTAT_INC(tcps_sc_retransmitted);
493 		syncache_timeout(sc, sch, 0);
494 	}
495 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
496 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
497 			syncache_timer, (void *)(sch));
498 	CURVNET_RESTORE();
499 }
500 
501 /*
502  * Find an entry in the syncache.
503  * Returns always with locked syncache_head plus a matching entry or NULL.
504  */
505 static struct syncache *
506 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
507 {
508 	struct syncache *sc;
509 	struct syncache_head *sch;
510 	uint32_t hash;
511 
512 	/*
513 	 * The hash is built on foreign port + local port + foreign address.
514 	 * We rely on the fact that struct in_conninfo starts with 16 bits
515 	 * of foreign port, then 16 bits of local port then followed by 128
516 	 * bits of foreign address.  In case of IPv4 address, the first 3
517 	 * 32-bit words of the address always are zeroes.
518 	 */
519 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
520 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
521 
522 	sch = &V_tcp_syncache.hashbase[hash];
523 	*schp = sch;
524 	SCH_LOCK(sch);
525 
526 	/* Circle through bucket row to find matching entry. */
527 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
528 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
529 		    sizeof(struct in_endpoints)) == 0)
530 			break;
531 
532 	return (sc);	/* Always returns with locked sch. */
533 }
534 
535 /*
536  * This function is called when we get a RST for a
537  * non-existent connection, so that we can see if the
538  * connection is in the syn cache.  If it is, zap it.
539  */
540 void
541 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
542 {
543 	struct syncache *sc;
544 	struct syncache_head *sch;
545 	char *s = NULL;
546 
547 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
548 	SCH_LOCK_ASSERT(sch);
549 
550 	/*
551 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
552 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
553 	 */
554 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
555 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
556 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
557 			    "FIN flag set, segment ignored\n", s, __func__);
558 		TCPSTAT_INC(tcps_badrst);
559 		goto done;
560 	}
561 
562 	/*
563 	 * No corresponding connection was found in syncache.
564 	 * If syncookies are enabled and possibly exclusively
565 	 * used, or we are under memory pressure, a valid RST
566 	 * may not find a syncache entry.  In that case we're
567 	 * done and no SYN|ACK retransmissions will happen.
568 	 * Otherwise the RST was misdirected or spoofed.
569 	 */
570 	if (sc == NULL) {
571 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
572 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
573 			    "syncache entry (possibly syncookie only), "
574 			    "segment ignored\n", s, __func__);
575 		TCPSTAT_INC(tcps_badrst);
576 		goto done;
577 	}
578 
579 	/*
580 	 * If the RST bit is set, check the sequence number to see
581 	 * if this is a valid reset segment.
582 	 * RFC 793 page 37:
583 	 *   In all states except SYN-SENT, all reset (RST) segments
584 	 *   are validated by checking their SEQ-fields.  A reset is
585 	 *   valid if its sequence number is in the window.
586 	 *
587 	 *   The sequence number in the reset segment is normally an
588 	 *   echo of our outgoing acknowlegement numbers, but some hosts
589 	 *   send a reset with the sequence number at the rightmost edge
590 	 *   of our receive window, and we have to handle this case.
591 	 */
592 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
593 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
594 		syncache_drop(sc, sch);
595 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
596 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
597 			    "connection attempt aborted by remote endpoint\n",
598 			    s, __func__);
599 		TCPSTAT_INC(tcps_sc_reset);
600 	} else {
601 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
602 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
603 			    "IRS %u (+WND %u), segment ignored\n",
604 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
605 		TCPSTAT_INC(tcps_badrst);
606 	}
607 
608 done:
609 	if (s != NULL)
610 		free(s, M_TCPLOG);
611 	SCH_UNLOCK(sch);
612 }
613 
614 void
615 syncache_badack(struct in_conninfo *inc)
616 {
617 	struct syncache *sc;
618 	struct syncache_head *sch;
619 
620 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
621 	SCH_LOCK_ASSERT(sch);
622 	if (sc != NULL) {
623 		syncache_drop(sc, sch);
624 		TCPSTAT_INC(tcps_sc_badack);
625 	}
626 	SCH_UNLOCK(sch);
627 }
628 
629 void
630 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
631 {
632 	struct syncache *sc;
633 	struct syncache_head *sch;
634 
635 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
636 	SCH_LOCK_ASSERT(sch);
637 	if (sc == NULL)
638 		goto done;
639 
640 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
641 	if (ntohl(th_seq) != sc->sc_iss)
642 		goto done;
643 
644 	/*
645 	 * If we've rertransmitted 3 times and this is our second error,
646 	 * we remove the entry.  Otherwise, we allow it to continue on.
647 	 * This prevents us from incorrectly nuking an entry during a
648 	 * spurious network outage.
649 	 *
650 	 * See tcp_notify().
651 	 */
652 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
653 		sc->sc_flags |= SCF_UNREACH;
654 		goto done;
655 	}
656 	syncache_drop(sc, sch);
657 	TCPSTAT_INC(tcps_sc_unreach);
658 done:
659 	SCH_UNLOCK(sch);
660 }
661 
662 /*
663  * Build a new TCP socket structure from a syncache entry.
664  *
665  * On success return the newly created socket with its underlying inp locked.
666  */
667 static struct socket *
668 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
669 {
670 	struct tcp_function_block *blk;
671 	struct inpcb *inp = NULL;
672 	struct socket *so;
673 	struct tcpcb *tp;
674 	int error;
675 	char *s;
676 
677 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
678 
679 	/*
680 	 * Ok, create the full blown connection, and set things up
681 	 * as they would have been set up if we had created the
682 	 * connection when the SYN arrived.  If we can't create
683 	 * the connection, abort it.
684 	 */
685 	so = sonewconn(lso, 0);
686 	if (so == NULL) {
687 		/*
688 		 * Drop the connection; we will either send a RST or
689 		 * have the peer retransmit its SYN again after its
690 		 * RTO and try again.
691 		 */
692 		TCPSTAT_INC(tcps_listendrop);
693 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
694 			log(LOG_DEBUG, "%s; %s: Socket create failed "
695 			    "due to limits or memory shortage\n",
696 			    s, __func__);
697 			free(s, M_TCPLOG);
698 		}
699 		goto abort2;
700 	}
701 #ifdef MAC
702 	mac_socketpeer_set_from_mbuf(m, so);
703 #endif
704 
705 	inp = sotoinpcb(so);
706 	inp->inp_inc.inc_fibnum = so->so_fibnum;
707 	INP_WLOCK(inp);
708 	/*
709 	 * Exclusive pcbinfo lock is not required in syncache socket case even
710 	 * if two inpcb locks can be acquired simultaneously:
711 	 *  - the inpcb in LISTEN state,
712 	 *  - the newly created inp.
713 	 *
714 	 * In this case, an inp cannot be at same time in LISTEN state and
715 	 * just created by an accept() call.
716 	 */
717 	INP_HASH_WLOCK(&V_tcbinfo);
718 
719 	/* Insert new socket into PCB hash list. */
720 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
721 #ifdef INET6
722 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
723 		inp->inp_vflag &= ~INP_IPV4;
724 		inp->inp_vflag |= INP_IPV6;
725 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
726 	} else {
727 		inp->inp_vflag &= ~INP_IPV6;
728 		inp->inp_vflag |= INP_IPV4;
729 #endif
730 		inp->inp_laddr = sc->sc_inc.inc_laddr;
731 #ifdef INET6
732 	}
733 #endif
734 
735 	/*
736 	 * If there's an mbuf and it has a flowid, then let's initialise the
737 	 * inp with that particular flowid.
738 	 */
739 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
740 		inp->inp_flowid = m->m_pkthdr.flowid;
741 		inp->inp_flowtype = M_HASHTYPE_GET(m);
742 	}
743 
744 	/*
745 	 * Install in the reservation hash table for now, but don't yet
746 	 * install a connection group since the full 4-tuple isn't yet
747 	 * configured.
748 	 */
749 	inp->inp_lport = sc->sc_inc.inc_lport;
750 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
751 		/*
752 		 * Undo the assignments above if we failed to
753 		 * put the PCB on the hash lists.
754 		 */
755 #ifdef INET6
756 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
757 			inp->in6p_laddr = in6addr_any;
758 		else
759 #endif
760 			inp->inp_laddr.s_addr = INADDR_ANY;
761 		inp->inp_lport = 0;
762 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
763 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
764 			    "with error %i\n",
765 			    s, __func__, error);
766 			free(s, M_TCPLOG);
767 		}
768 		INP_HASH_WUNLOCK(&V_tcbinfo);
769 		goto abort;
770 	}
771 #ifdef INET6
772 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
773 		struct inpcb *oinp = sotoinpcb(lso);
774 		struct in6_addr laddr6;
775 		struct sockaddr_in6 sin6;
776 		/*
777 		 * Inherit socket options from the listening socket.
778 		 * Note that in6p_inputopts are not (and should not be)
779 		 * copied, since it stores previously received options and is
780 		 * used to detect if each new option is different than the
781 		 * previous one and hence should be passed to a user.
782 		 * If we copied in6p_inputopts, a user would not be able to
783 		 * receive options just after calling the accept system call.
784 		 */
785 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
786 		if (oinp->in6p_outputopts)
787 			inp->in6p_outputopts =
788 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
789 
790 		sin6.sin6_family = AF_INET6;
791 		sin6.sin6_len = sizeof(sin6);
792 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
793 		sin6.sin6_port = sc->sc_inc.inc_fport;
794 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
795 		laddr6 = inp->in6p_laddr;
796 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
797 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
798 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
799 		    thread0.td_ucred, m)) != 0) {
800 			inp->in6p_laddr = laddr6;
801 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
802 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
803 				    "with error %i\n",
804 				    s, __func__, error);
805 				free(s, M_TCPLOG);
806 			}
807 			INP_HASH_WUNLOCK(&V_tcbinfo);
808 			goto abort;
809 		}
810 		/* Override flowlabel from in6_pcbconnect. */
811 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
812 		inp->inp_flow |= sc->sc_flowlabel;
813 	}
814 #endif /* INET6 */
815 #if defined(INET) && defined(INET6)
816 	else
817 #endif
818 #ifdef INET
819 	{
820 		struct in_addr laddr;
821 		struct sockaddr_in sin;
822 
823 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
824 
825 		if (inp->inp_options == NULL) {
826 			inp->inp_options = sc->sc_ipopts;
827 			sc->sc_ipopts = NULL;
828 		}
829 
830 		sin.sin_family = AF_INET;
831 		sin.sin_len = sizeof(sin);
832 		sin.sin_addr = sc->sc_inc.inc_faddr;
833 		sin.sin_port = sc->sc_inc.inc_fport;
834 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
835 		laddr = inp->inp_laddr;
836 		if (inp->inp_laddr.s_addr == INADDR_ANY)
837 			inp->inp_laddr = sc->sc_inc.inc_laddr;
838 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
839 		    thread0.td_ucred, m)) != 0) {
840 			inp->inp_laddr = laddr;
841 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
842 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
843 				    "with error %i\n",
844 				    s, __func__, error);
845 				free(s, M_TCPLOG);
846 			}
847 			INP_HASH_WUNLOCK(&V_tcbinfo);
848 			goto abort;
849 		}
850 	}
851 #endif /* INET */
852 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
853 	/* Copy old policy into new socket's. */
854 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
855 		printf("syncache_socket: could not copy policy\n");
856 #endif
857 	INP_HASH_WUNLOCK(&V_tcbinfo);
858 	tp = intotcpcb(inp);
859 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
860 	tp->iss = sc->sc_iss;
861 	tp->irs = sc->sc_irs;
862 	tcp_rcvseqinit(tp);
863 	tcp_sendseqinit(tp);
864 	blk = sototcpcb(lso)->t_fb;
865 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
866 		/*
867 		 * Our parents t_fb was not the default,
868 		 * we need to release our ref on tp->t_fb and
869 		 * pickup one on the new entry.
870 		 */
871 		struct tcp_function_block *rblk;
872 
873 		rblk = find_and_ref_tcp_fb(blk);
874 		KASSERT(rblk != NULL,
875 		    ("cannot find blk %p out of syncache?", blk));
876 		if (tp->t_fb->tfb_tcp_fb_fini)
877 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
878 		refcount_release(&tp->t_fb->tfb_refcnt);
879 		tp->t_fb = rblk;
880 		/*
881 		 * XXXrrs this is quite dangerous, it is possible
882 		 * for the new function to fail to init. We also
883 		 * are not asking if the handoff_is_ok though at
884 		 * the very start thats probalbly ok.
885 		 */
886 		if (tp->t_fb->tfb_tcp_fb_init) {
887 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
888 		}
889 	}
890 	tp->snd_wl1 = sc->sc_irs;
891 	tp->snd_max = tp->iss + 1;
892 	tp->snd_nxt = tp->iss + 1;
893 	tp->rcv_up = sc->sc_irs + 1;
894 	tp->rcv_wnd = sc->sc_wnd;
895 	tp->rcv_adv += tp->rcv_wnd;
896 	tp->last_ack_sent = tp->rcv_nxt;
897 
898 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
899 	if (sc->sc_flags & SCF_NOOPT)
900 		tp->t_flags |= TF_NOOPT;
901 	else {
902 		if (sc->sc_flags & SCF_WINSCALE) {
903 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
904 			tp->snd_scale = sc->sc_requested_s_scale;
905 			tp->request_r_scale = sc->sc_requested_r_scale;
906 		}
907 		if (sc->sc_flags & SCF_TIMESTAMP) {
908 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
909 			tp->ts_recent = sc->sc_tsreflect;
910 			tp->ts_recent_age = tcp_ts_getticks();
911 			tp->ts_offset = sc->sc_tsoff;
912 		}
913 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
914 		if (sc->sc_flags & SCF_SIGNATURE)
915 			tp->t_flags |= TF_SIGNATURE;
916 #endif
917 		if (sc->sc_flags & SCF_SACK)
918 			tp->t_flags |= TF_SACK_PERMIT;
919 	}
920 
921 	if (sc->sc_flags & SCF_ECN)
922 		tp->t_flags |= TF_ECN_PERMIT;
923 
924 	/*
925 	 * Set up MSS and get cached values from tcp_hostcache.
926 	 * This might overwrite some of the defaults we just set.
927 	 */
928 	tcp_mss(tp, sc->sc_peer_mss);
929 
930 	/*
931 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
932 	 * limited to one segment in cc_conn_init().
933 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
934 	 */
935 	if (sc->sc_rxmits > 1)
936 		tp->snd_cwnd = 1;
937 
938 #ifdef TCP_OFFLOAD
939 	/*
940 	 * Allow a TOE driver to install its hooks.  Note that we hold the
941 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
942 	 * new connection before the TOE driver has done its thing.
943 	 */
944 	if (ADDED_BY_TOE(sc)) {
945 		struct toedev *tod = sc->sc_tod;
946 
947 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
948 	}
949 #endif
950 	/*
951 	 * Copy and activate timers.
952 	 */
953 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
954 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
955 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
956 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
957 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
958 
959 	TCPSTAT_INC(tcps_accepts);
960 	return (so);
961 
962 abort:
963 	INP_WUNLOCK(inp);
964 abort2:
965 	if (so != NULL)
966 		soabort(so);
967 	return (NULL);
968 }
969 
970 /*
971  * This function gets called when we receive an ACK for a
972  * socket in the LISTEN state.  We look up the connection
973  * in the syncache, and if its there, we pull it out of
974  * the cache and turn it into a full-blown connection in
975  * the SYN-RECEIVED state.
976  *
977  * On syncache_socket() success the newly created socket
978  * has its underlying inp locked.
979  */
980 int
981 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
982     struct socket **lsop, struct mbuf *m)
983 {
984 	struct syncache *sc;
985 	struct syncache_head *sch;
986 	struct syncache scs;
987 	char *s;
988 
989 	/*
990 	 * Global TCP locks are held because we manipulate the PCB lists
991 	 * and create a new socket.
992 	 */
993 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
994 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
995 	    ("%s: can handle only ACK", __func__));
996 
997 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
998 	SCH_LOCK_ASSERT(sch);
999 
1000 #ifdef INVARIANTS
1001 	/*
1002 	 * Test code for syncookies comparing the syncache stored
1003 	 * values with the reconstructed values from the cookie.
1004 	 */
1005 	if (sc != NULL)
1006 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1007 #endif
1008 
1009 	if (sc == NULL) {
1010 		/*
1011 		 * There is no syncache entry, so see if this ACK is
1012 		 * a returning syncookie.  To do this, first:
1013 		 *  A. Check if syncookies are used in case of syncache
1014 		 *     overflows
1015 		 *  B. See if this socket has had a syncache entry dropped in
1016 		 *     the recent past. We don't want to accept a bogus
1017 		 *     syncookie if we've never received a SYN or accept it
1018 		 *     twice.
1019 		 *  C. check that the syncookie is valid.  If it is, then
1020 		 *     cobble up a fake syncache entry, and return.
1021 		 */
1022 		if (!V_tcp_syncookies) {
1023 			SCH_UNLOCK(sch);
1024 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1025 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1026 				    "segment rejected (syncookies disabled)\n",
1027 				    s, __func__);
1028 			goto failed;
1029 		}
1030 		if (!V_tcp_syncookiesonly &&
1031 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1032 			SCH_UNLOCK(sch);
1033 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1034 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1035 				    "segment rejected (no syncache entry)\n",
1036 				    s, __func__);
1037 			goto failed;
1038 		}
1039 		bzero(&scs, sizeof(scs));
1040 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1041 		SCH_UNLOCK(sch);
1042 		if (sc == NULL) {
1043 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1044 				log(LOG_DEBUG, "%s; %s: Segment failed "
1045 				    "SYNCOOKIE authentication, segment rejected "
1046 				    "(probably spoofed)\n", s, __func__);
1047 			goto failed;
1048 		}
1049 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1050 		/* If received ACK has MD5 signature, check it. */
1051 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1052 		    (!TCPMD5_ENABLED() ||
1053 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1054 			/* Drop the ACK. */
1055 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1056 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1057 				    "MD5 signature doesn't match.\n",
1058 				    s, __func__);
1059 				free(s, M_TCPLOG);
1060 			}
1061 			TCPSTAT_INC(tcps_sig_err_sigopt);
1062 			return (-1); /* Do not send RST */
1063 		}
1064 #endif /* TCP_SIGNATURE */
1065 	} else {
1066 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1067 		/*
1068 		 * If listening socket requested TCP digests, check that
1069 		 * received ACK has signature and it is correct.
1070 		 * If not, drop the ACK and leave sc entry in th cache,
1071 		 * because SYN was received with correct signature.
1072 		 */
1073 		if (sc->sc_flags & SCF_SIGNATURE) {
1074 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1075 				/* No signature */
1076 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1077 				SCH_UNLOCK(sch);
1078 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1079 					log(LOG_DEBUG, "%s; %s: Segment "
1080 					    "rejected, MD5 signature wasn't "
1081 					    "provided.\n", s, __func__);
1082 					free(s, M_TCPLOG);
1083 				}
1084 				return (-1); /* Do not send RST */
1085 			}
1086 			if (!TCPMD5_ENABLED() ||
1087 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1088 				/* Doesn't match or no SA */
1089 				SCH_UNLOCK(sch);
1090 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1091 					log(LOG_DEBUG, "%s; %s: Segment "
1092 					    "rejected, MD5 signature doesn't "
1093 					    "match.\n", s, __func__);
1094 					free(s, M_TCPLOG);
1095 				}
1096 				return (-1); /* Do not send RST */
1097 			}
1098 		}
1099 #endif /* TCP_SIGNATURE */
1100 		/*
1101 		 * Pull out the entry to unlock the bucket row.
1102 		 *
1103 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1104 		 * tcp_state_change().  The tcpcb is not existent at this
1105 		 * moment.  A new one will be allocated via syncache_socket->
1106 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1107 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1108 		 */
1109 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1110 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1111 		sch->sch_length--;
1112 #ifdef TCP_OFFLOAD
1113 		if (ADDED_BY_TOE(sc)) {
1114 			struct toedev *tod = sc->sc_tod;
1115 
1116 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1117 		}
1118 #endif
1119 		SCH_UNLOCK(sch);
1120 	}
1121 
1122 	/*
1123 	 * Segment validation:
1124 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1125 	 */
1126 	if (th->th_ack != sc->sc_iss + 1) {
1127 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1128 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1129 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1130 		goto failed;
1131 	}
1132 
1133 	/*
1134 	 * The SEQ must fall in the window starting at the received
1135 	 * initial receive sequence number + 1 (the SYN).
1136 	 */
1137 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1138 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1139 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1140 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1141 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1142 		goto failed;
1143 	}
1144 
1145 	/*
1146 	 * If timestamps were not negotiated during SYN/ACK they
1147 	 * must not appear on any segment during this session.
1148 	 */
1149 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1150 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1151 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1152 			    "segment rejected\n", s, __func__);
1153 		goto failed;
1154 	}
1155 
1156 	/*
1157 	 * If timestamps were negotiated during SYN/ACK they should
1158 	 * appear on every segment during this session.
1159 	 * XXXAO: This is only informal as there have been unverified
1160 	 * reports of non-compliants stacks.
1161 	 */
1162 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1163 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1164 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1165 			    "no action\n", s, __func__);
1166 			free(s, M_TCPLOG);
1167 			s = NULL;
1168 		}
1169 	}
1170 
1171 	*lsop = syncache_socket(sc, *lsop, m);
1172 
1173 	if (*lsop == NULL)
1174 		TCPSTAT_INC(tcps_sc_aborted);
1175 	else
1176 		TCPSTAT_INC(tcps_sc_completed);
1177 
1178 /* how do we find the inp for the new socket? */
1179 	if (sc != &scs)
1180 		syncache_free(sc);
1181 	return (1);
1182 failed:
1183 	if (sc != NULL && sc != &scs)
1184 		syncache_free(sc);
1185 	if (s != NULL)
1186 		free(s, M_TCPLOG);
1187 	*lsop = NULL;
1188 	return (0);
1189 }
1190 
1191 static void
1192 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1193     uint64_t response_cookie)
1194 {
1195 	struct inpcb *inp;
1196 	struct tcpcb *tp;
1197 	unsigned int *pending_counter;
1198 
1199 	/*
1200 	 * Global TCP locks are held because we manipulate the PCB lists
1201 	 * and create a new socket.
1202 	 */
1203 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1204 
1205 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1206 	*lsop = syncache_socket(sc, *lsop, m);
1207 	if (*lsop == NULL) {
1208 		TCPSTAT_INC(tcps_sc_aborted);
1209 		atomic_subtract_int(pending_counter, 1);
1210 	} else {
1211 		soisconnected(*lsop);
1212 		inp = sotoinpcb(*lsop);
1213 		tp = intotcpcb(inp);
1214 		tp->t_flags |= TF_FASTOPEN;
1215 		tp->t_tfo_cookie.server = response_cookie;
1216 		tp->snd_max = tp->iss;
1217 		tp->snd_nxt = tp->iss;
1218 		tp->t_tfo_pending = pending_counter;
1219 		TCPSTAT_INC(tcps_sc_completed);
1220 	}
1221 }
1222 
1223 /*
1224  * Given a LISTEN socket and an inbound SYN request, add
1225  * this to the syn cache, and send back a segment:
1226  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1227  * to the source.
1228  *
1229  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1230  * Doing so would require that we hold onto the data and deliver it
1231  * to the application.  However, if we are the target of a SYN-flood
1232  * DoS attack, an attacker could send data which would eventually
1233  * consume all available buffer space if it were ACKed.  By not ACKing
1234  * the data, we avoid this DoS scenario.
1235  *
1236  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1237  * cookie is processed and a new socket is created.  In this case, any data
1238  * accompanying the SYN will be queued to the socket by tcp_input() and will
1239  * be ACKed either when the application sends response data or the delayed
1240  * ACK timer expires, whichever comes first.
1241  */
1242 int
1243 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1244     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1245     void *todctx)
1246 {
1247 	struct tcpcb *tp;
1248 	struct socket *so;
1249 	struct syncache *sc = NULL;
1250 	struct syncache_head *sch;
1251 	struct mbuf *ipopts = NULL;
1252 	u_int ltflags;
1253 	int win, ip_ttl, ip_tos;
1254 	char *s;
1255 	int rv = 0;
1256 #ifdef INET6
1257 	int autoflowlabel = 0;
1258 #endif
1259 #ifdef MAC
1260 	struct label *maclabel;
1261 #endif
1262 	struct syncache scs;
1263 	struct ucred *cred;
1264 	uint64_t tfo_response_cookie;
1265 	unsigned int *tfo_pending = NULL;
1266 	int tfo_cookie_valid = 0;
1267 	int tfo_response_cookie_valid = 0;
1268 
1269 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1270 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1271 	    ("%s: unexpected tcp flags", __func__));
1272 
1273 	/*
1274 	 * Combine all so/tp operations very early to drop the INP lock as
1275 	 * soon as possible.
1276 	 */
1277 	so = *lsop;
1278 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1279 	tp = sototcpcb(so);
1280 	cred = crhold(so->so_cred);
1281 
1282 #ifdef INET6
1283 	if ((inc->inc_flags & INC_ISIPV6) &&
1284 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1285 		autoflowlabel = 1;
1286 #endif
1287 	ip_ttl = inp->inp_ip_ttl;
1288 	ip_tos = inp->inp_ip_tos;
1289 	win = so->sol_sbrcv_hiwat;
1290 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1291 
1292 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1293 	    (tp->t_tfo_pending != NULL) &&
1294 	    (to->to_flags & TOF_FASTOPEN)) {
1295 		/*
1296 		 * Limit the number of pending TFO connections to
1297 		 * approximately half of the queue limit.  This prevents TFO
1298 		 * SYN floods from starving the service by filling the
1299 		 * listen queue with bogus TFO connections.
1300 		 */
1301 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1302 		    (so->sol_qlimit / 2)) {
1303 			int result;
1304 
1305 			result = tcp_fastopen_check_cookie(inc,
1306 			    to->to_tfo_cookie, to->to_tfo_len,
1307 			    &tfo_response_cookie);
1308 			tfo_cookie_valid = (result > 0);
1309 			tfo_response_cookie_valid = (result >= 0);
1310 		}
1311 
1312 		/*
1313 		 * Remember the TFO pending counter as it will have to be
1314 		 * decremented below if we don't make it to syncache_tfo_expand().
1315 		 */
1316 		tfo_pending = tp->t_tfo_pending;
1317 	}
1318 
1319 	/* By the time we drop the lock these should no longer be used. */
1320 	so = NULL;
1321 	tp = NULL;
1322 
1323 #ifdef MAC
1324 	if (mac_syncache_init(&maclabel) != 0) {
1325 		INP_WUNLOCK(inp);
1326 		goto done;
1327 	} else
1328 		mac_syncache_create(maclabel, inp);
1329 #endif
1330 	if (!tfo_cookie_valid)
1331 		INP_WUNLOCK(inp);
1332 
1333 	/*
1334 	 * Remember the IP options, if any.
1335 	 */
1336 #ifdef INET6
1337 	if (!(inc->inc_flags & INC_ISIPV6))
1338 #endif
1339 #ifdef INET
1340 		ipopts = (m) ? ip_srcroute(m) : NULL;
1341 #else
1342 		ipopts = NULL;
1343 #endif
1344 
1345 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1346 	/*
1347 	 * If listening socket requested TCP digests, check that received
1348 	 * SYN has signature and it is correct. If signature doesn't match
1349 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1350 	 */
1351 	if (ltflags & TF_SIGNATURE) {
1352 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1353 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1354 			goto done;
1355 		}
1356 		if (!TCPMD5_ENABLED() ||
1357 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1358 			goto done;
1359 	}
1360 #endif	/* TCP_SIGNATURE */
1361 	/*
1362 	 * See if we already have an entry for this connection.
1363 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1364 	 *
1365 	 * XXX: should the syncache be re-initialized with the contents
1366 	 * of the new SYN here (which may have different options?)
1367 	 *
1368 	 * XXX: We do not check the sequence number to see if this is a
1369 	 * real retransmit or a new connection attempt.  The question is
1370 	 * how to handle such a case; either ignore it as spoofed, or
1371 	 * drop the current entry and create a new one?
1372 	 */
1373 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1374 	SCH_LOCK_ASSERT(sch);
1375 	if (sc != NULL) {
1376 		if (tfo_cookie_valid)
1377 			INP_WUNLOCK(inp);
1378 		TCPSTAT_INC(tcps_sc_dupsyn);
1379 		if (ipopts) {
1380 			/*
1381 			 * If we were remembering a previous source route,
1382 			 * forget it and use the new one we've been given.
1383 			 */
1384 			if (sc->sc_ipopts)
1385 				(void) m_free(sc->sc_ipopts);
1386 			sc->sc_ipopts = ipopts;
1387 		}
1388 		/*
1389 		 * Update timestamp if present.
1390 		 */
1391 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1392 			sc->sc_tsreflect = to->to_tsval;
1393 		else
1394 			sc->sc_flags &= ~SCF_TIMESTAMP;
1395 #ifdef MAC
1396 		/*
1397 		 * Since we have already unconditionally allocated label
1398 		 * storage, free it up.  The syncache entry will already
1399 		 * have an initialized label we can use.
1400 		 */
1401 		mac_syncache_destroy(&maclabel);
1402 #endif
1403 		/* Retransmit SYN|ACK and reset retransmit count. */
1404 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1405 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1406 			    "resetting timer and retransmitting SYN|ACK\n",
1407 			    s, __func__);
1408 			free(s, M_TCPLOG);
1409 		}
1410 		if (syncache_respond(sc, sch, 1, m) == 0) {
1411 			sc->sc_rxmits = 0;
1412 			syncache_timeout(sc, sch, 1);
1413 			TCPSTAT_INC(tcps_sndacks);
1414 			TCPSTAT_INC(tcps_sndtotal);
1415 		}
1416 		SCH_UNLOCK(sch);
1417 		goto done;
1418 	}
1419 
1420 	if (tfo_cookie_valid) {
1421 		bzero(&scs, sizeof(scs));
1422 		sc = &scs;
1423 		goto skip_alloc;
1424 	}
1425 
1426 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1427 	if (sc == NULL) {
1428 		/*
1429 		 * The zone allocator couldn't provide more entries.
1430 		 * Treat this as if the cache was full; drop the oldest
1431 		 * entry and insert the new one.
1432 		 */
1433 		TCPSTAT_INC(tcps_sc_zonefail);
1434 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1435 			sch->sch_last_overflow = time_uptime;
1436 			syncache_drop(sc, sch);
1437 		}
1438 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1439 		if (sc == NULL) {
1440 			if (V_tcp_syncookies) {
1441 				bzero(&scs, sizeof(scs));
1442 				sc = &scs;
1443 			} else {
1444 				SCH_UNLOCK(sch);
1445 				if (ipopts)
1446 					(void) m_free(ipopts);
1447 				goto done;
1448 			}
1449 		}
1450 	}
1451 
1452 skip_alloc:
1453 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1454 		sc->sc_tfo_cookie = &tfo_response_cookie;
1455 
1456 	/*
1457 	 * Fill in the syncache values.
1458 	 */
1459 #ifdef MAC
1460 	sc->sc_label = maclabel;
1461 #endif
1462 	sc->sc_cred = cred;
1463 	cred = NULL;
1464 	sc->sc_ipopts = ipopts;
1465 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1466 #ifdef INET6
1467 	if (!(inc->inc_flags & INC_ISIPV6))
1468 #endif
1469 	{
1470 		sc->sc_ip_tos = ip_tos;
1471 		sc->sc_ip_ttl = ip_ttl;
1472 	}
1473 #ifdef TCP_OFFLOAD
1474 	sc->sc_tod = tod;
1475 	sc->sc_todctx = todctx;
1476 #endif
1477 	sc->sc_irs = th->th_seq;
1478 	sc->sc_iss = arc4random();
1479 	sc->sc_flags = 0;
1480 	sc->sc_flowlabel = 0;
1481 
1482 	/*
1483 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1484 	 * win was derived from socket earlier in the function.
1485 	 */
1486 	win = imax(win, 0);
1487 	win = imin(win, TCP_MAXWIN);
1488 	sc->sc_wnd = win;
1489 
1490 	if (V_tcp_do_rfc1323) {
1491 		/*
1492 		 * A timestamp received in a SYN makes
1493 		 * it ok to send timestamp requests and replies.
1494 		 */
1495 		if (to->to_flags & TOF_TS) {
1496 			sc->sc_tsreflect = to->to_tsval;
1497 			sc->sc_flags |= SCF_TIMESTAMP;
1498 		}
1499 		if (to->to_flags & TOF_SCALE) {
1500 			int wscale = 0;
1501 
1502 			/*
1503 			 * Pick the smallest possible scaling factor that
1504 			 * will still allow us to scale up to sb_max, aka
1505 			 * kern.ipc.maxsockbuf.
1506 			 *
1507 			 * We do this because there are broken firewalls that
1508 			 * will corrupt the window scale option, leading to
1509 			 * the other endpoint believing that our advertised
1510 			 * window is unscaled.  At scale factors larger than
1511 			 * 5 the unscaled window will drop below 1500 bytes,
1512 			 * leading to serious problems when traversing these
1513 			 * broken firewalls.
1514 			 *
1515 			 * With the default maxsockbuf of 256K, a scale factor
1516 			 * of 3 will be chosen by this algorithm.  Those who
1517 			 * choose a larger maxsockbuf should watch out
1518 			 * for the compatibility problems mentioned above.
1519 			 *
1520 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1521 			 * or <SYN,ACK>) segment itself is never scaled.
1522 			 */
1523 			while (wscale < TCP_MAX_WINSHIFT &&
1524 			    (TCP_MAXWIN << wscale) < sb_max)
1525 				wscale++;
1526 			sc->sc_requested_r_scale = wscale;
1527 			sc->sc_requested_s_scale = to->to_wscale;
1528 			sc->sc_flags |= SCF_WINSCALE;
1529 		}
1530 	}
1531 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1532 	/*
1533 	 * If listening socket requested TCP digests, flag this in the
1534 	 * syncache so that syncache_respond() will do the right thing
1535 	 * with the SYN+ACK.
1536 	 */
1537 	if (ltflags & TF_SIGNATURE)
1538 		sc->sc_flags |= SCF_SIGNATURE;
1539 #endif	/* TCP_SIGNATURE */
1540 	if (to->to_flags & TOF_SACKPERM)
1541 		sc->sc_flags |= SCF_SACK;
1542 	if (to->to_flags & TOF_MSS)
1543 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1544 	if (ltflags & TF_NOOPT)
1545 		sc->sc_flags |= SCF_NOOPT;
1546 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1547 		sc->sc_flags |= SCF_ECN;
1548 
1549 	if (V_tcp_syncookies)
1550 		sc->sc_iss = syncookie_generate(sch, sc);
1551 #ifdef INET6
1552 	if (autoflowlabel) {
1553 		if (V_tcp_syncookies)
1554 			sc->sc_flowlabel = sc->sc_iss;
1555 		else
1556 			sc->sc_flowlabel = ip6_randomflowlabel();
1557 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1558 	}
1559 #endif
1560 	SCH_UNLOCK(sch);
1561 
1562 	if (tfo_cookie_valid) {
1563 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1564 		/* INP_WUNLOCK(inp) will be performed by the caller */
1565 		rv = 1;
1566 		goto tfo_expanded;
1567 	}
1568 
1569 	/*
1570 	 * Do a standard 3-way handshake.
1571 	 */
1572 	if (syncache_respond(sc, sch, 0, m) == 0) {
1573 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1574 			syncache_free(sc);
1575 		else if (sc != &scs)
1576 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1577 		TCPSTAT_INC(tcps_sndacks);
1578 		TCPSTAT_INC(tcps_sndtotal);
1579 	} else {
1580 		if (sc != &scs)
1581 			syncache_free(sc);
1582 		TCPSTAT_INC(tcps_sc_dropped);
1583 	}
1584 
1585 done:
1586 	if (m) {
1587 		*lsop = NULL;
1588 		m_freem(m);
1589 	}
1590 	/*
1591 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1592 	 * result in a new socket was processed and the associated pending
1593 	 * counter has not yet been decremented.  All such TFO processing paths
1594 	 * transit this point.
1595 	 */
1596 	if (tfo_pending != NULL)
1597 		tcp_fastopen_decrement_counter(tfo_pending);
1598 
1599 tfo_expanded:
1600 	if (cred != NULL)
1601 		crfree(cred);
1602 #ifdef MAC
1603 	if (sc == &scs)
1604 		mac_syncache_destroy(&maclabel);
1605 #endif
1606 	return (rv);
1607 }
1608 
1609 /*
1610  * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1611  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1612  */
1613 static int
1614 syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1615     const struct mbuf *m0)
1616 {
1617 	struct ip *ip = NULL;
1618 	struct mbuf *m;
1619 	struct tcphdr *th = NULL;
1620 	int optlen, error = 0;	/* Make compiler happy */
1621 	u_int16_t hlen, tlen, mssopt;
1622 	struct tcpopt to;
1623 #ifdef INET6
1624 	struct ip6_hdr *ip6 = NULL;
1625 #endif
1626 	hlen =
1627 #ifdef INET6
1628 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1629 #endif
1630 		sizeof(struct ip);
1631 	tlen = hlen + sizeof(struct tcphdr);
1632 
1633 	/* Determine MSS we advertize to other end of connection. */
1634 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1635 
1636 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1637 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1638 	    ("syncache: mbuf too small"));
1639 
1640 	/* Create the IP+TCP header from scratch. */
1641 	m = m_gethdr(M_NOWAIT, MT_DATA);
1642 	if (m == NULL)
1643 		return (ENOBUFS);
1644 #ifdef MAC
1645 	mac_syncache_create_mbuf(sc->sc_label, m);
1646 #endif
1647 	m->m_data += max_linkhdr;
1648 	m->m_len = tlen;
1649 	m->m_pkthdr.len = tlen;
1650 	m->m_pkthdr.rcvif = NULL;
1651 
1652 #ifdef INET6
1653 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1654 		ip6 = mtod(m, struct ip6_hdr *);
1655 		ip6->ip6_vfc = IPV6_VERSION;
1656 		ip6->ip6_nxt = IPPROTO_TCP;
1657 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1658 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1659 		ip6->ip6_plen = htons(tlen - hlen);
1660 		/* ip6_hlim is set after checksum */
1661 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1662 		ip6->ip6_flow |= sc->sc_flowlabel;
1663 
1664 		th = (struct tcphdr *)(ip6 + 1);
1665 	}
1666 #endif
1667 #if defined(INET6) && defined(INET)
1668 	else
1669 #endif
1670 #ifdef INET
1671 	{
1672 		ip = mtod(m, struct ip *);
1673 		ip->ip_v = IPVERSION;
1674 		ip->ip_hl = sizeof(struct ip) >> 2;
1675 		ip->ip_len = htons(tlen);
1676 		ip->ip_id = 0;
1677 		ip->ip_off = 0;
1678 		ip->ip_sum = 0;
1679 		ip->ip_p = IPPROTO_TCP;
1680 		ip->ip_src = sc->sc_inc.inc_laddr;
1681 		ip->ip_dst = sc->sc_inc.inc_faddr;
1682 		ip->ip_ttl = sc->sc_ip_ttl;
1683 		ip->ip_tos = sc->sc_ip_tos;
1684 
1685 		/*
1686 		 * See if we should do MTU discovery.  Route lookups are
1687 		 * expensive, so we will only unset the DF bit if:
1688 		 *
1689 		 *	1) path_mtu_discovery is disabled
1690 		 *	2) the SCF_UNREACH flag has been set
1691 		 */
1692 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1693 		       ip->ip_off |= htons(IP_DF);
1694 
1695 		th = (struct tcphdr *)(ip + 1);
1696 	}
1697 #endif /* INET */
1698 	th->th_sport = sc->sc_inc.inc_lport;
1699 	th->th_dport = sc->sc_inc.inc_fport;
1700 
1701 	th->th_seq = htonl(sc->sc_iss);
1702 	th->th_ack = htonl(sc->sc_irs + 1);
1703 	th->th_off = sizeof(struct tcphdr) >> 2;
1704 	th->th_x2 = 0;
1705 	th->th_flags = TH_SYN|TH_ACK;
1706 	th->th_win = htons(sc->sc_wnd);
1707 	th->th_urp = 0;
1708 
1709 	if (sc->sc_flags & SCF_ECN) {
1710 		th->th_flags |= TH_ECE;
1711 		TCPSTAT_INC(tcps_ecn_shs);
1712 	}
1713 
1714 	/* Tack on the TCP options. */
1715 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1716 		to.to_flags = 0;
1717 
1718 		to.to_mss = mssopt;
1719 		to.to_flags = TOF_MSS;
1720 		if (sc->sc_flags & SCF_WINSCALE) {
1721 			to.to_wscale = sc->sc_requested_r_scale;
1722 			to.to_flags |= TOF_SCALE;
1723 		}
1724 		if (sc->sc_flags & SCF_TIMESTAMP) {
1725 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1726 			to.to_tsecr = sc->sc_tsreflect;
1727 			to.to_flags |= TOF_TS;
1728 		}
1729 		if (sc->sc_flags & SCF_SACK)
1730 			to.to_flags |= TOF_SACKPERM;
1731 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1732 		if (sc->sc_flags & SCF_SIGNATURE)
1733 			to.to_flags |= TOF_SIGNATURE;
1734 #endif
1735 		if (sc->sc_tfo_cookie) {
1736 			to.to_flags |= TOF_FASTOPEN;
1737 			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1738 			to.to_tfo_cookie = sc->sc_tfo_cookie;
1739 			/* don't send cookie again when retransmitting response */
1740 			sc->sc_tfo_cookie = NULL;
1741 		}
1742 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1743 
1744 		/* Adjust headers by option size. */
1745 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1746 		m->m_len += optlen;
1747 		m->m_pkthdr.len += optlen;
1748 #ifdef INET6
1749 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1750 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1751 		else
1752 #endif
1753 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1754 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1755 		if (sc->sc_flags & SCF_SIGNATURE) {
1756 			KASSERT(to.to_flags & TOF_SIGNATURE,
1757 			    ("tcp_addoptions() didn't set tcp_signature"));
1758 
1759 			/* NOTE: to.to_signature is inside of mbuf */
1760 			if (!TCPMD5_ENABLED() ||
1761 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1762 				m_freem(m);
1763 				return (EACCES);
1764 			}
1765 		}
1766 #endif
1767 	} else
1768 		optlen = 0;
1769 
1770 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1771 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1772 	/*
1773 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1774 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1775 	 * to SYN|ACK due to lack of inp here.
1776 	 */
1777 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1778 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1779 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1780 	}
1781 #ifdef INET6
1782 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1783 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1784 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1785 		    IPPROTO_TCP, 0);
1786 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1787 #ifdef TCP_OFFLOAD
1788 		if (ADDED_BY_TOE(sc)) {
1789 			struct toedev *tod = sc->sc_tod;
1790 
1791 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1792 
1793 			return (error);
1794 		}
1795 #endif
1796 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1797 	}
1798 #endif
1799 #if defined(INET6) && defined(INET)
1800 	else
1801 #endif
1802 #ifdef INET
1803 	{
1804 		m->m_pkthdr.csum_flags = CSUM_TCP;
1805 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1806 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1807 #ifdef TCP_OFFLOAD
1808 		if (ADDED_BY_TOE(sc)) {
1809 			struct toedev *tod = sc->sc_tod;
1810 
1811 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1812 
1813 			return (error);
1814 		}
1815 #endif
1816 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1817 	}
1818 #endif
1819 	return (error);
1820 }
1821 
1822 /*
1823  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1824  * that exceed the capacity of the syncache by avoiding the storage of any
1825  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1826  * attacks where the attacker does not have access to our responses.
1827  *
1828  * Syncookies encode and include all necessary information about the
1829  * connection setup within the SYN|ACK that we send back.  That way we
1830  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1831  * (if ever).  Normally the syncache and syncookies are running in parallel
1832  * with the latter taking over when the former is exhausted.  When matching
1833  * syncache entry is found the syncookie is ignored.
1834  *
1835  * The only reliable information persisting the 3WHS is our initial sequence
1836  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1837  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1838  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1839  * returns and signifies a legitimate connection if it matches the ACK.
1840  *
1841  * The available space of 32 bits to store the hash and to encode the SYN
1842  * option information is very tight and we should have at least 24 bits for
1843  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1844  *
1845  * SYN option information we have to encode to fully restore a connection:
1846  * MSS: is imporant to chose an optimal segment size to avoid IP level
1847  *   fragmentation along the path.  The common MSS values can be encoded
1848  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1849  *   in the table leading to a slight increase in packetization overhead.
1850  * WSCALE: is necessary to allow large windows to be used for high delay-
1851  *   bandwidth product links.  Not scaling the window when it was initially
1852  *   negotiated is bad for performance as lack of scaling further decreases
1853  *   the apparent available send window.  We only need to encode the WSCALE
1854  *   we received from the remote end.  Our end can be recalculated at any
1855  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1856  *   Uncommon values are captured by the next lower value in the table
1857  *   making us under-estimate the available window size halving our
1858  *   theoretically possible maximum throughput for that connection.
1859  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1860  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1861  *   that are included in all segments on a connection.  We enable them when
1862  *   the ACK has them.
1863  *
1864  * Security of syncookies and attack vectors:
1865  *
1866  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1867  * together with the gloabl secret to make it unique per connection attempt.
1868  * Thus any change of any of those parameters results in a different MAC output
1869  * in an unpredictable way unless a collision is encountered.  24 bits of the
1870  * MAC are embedded into the ISS.
1871  *
1872  * To prevent replay attacks two rotating global secrets are updated with a
1873  * new random value every 15 seconds.  The life-time of a syncookie is thus
1874  * 15-30 seconds.
1875  *
1876  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1877  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1878  * text attack by varying and testing the all parameters under his control.
1879  * The strength depends on the size and randomness of the secret, and the
1880  * cryptographic security of the MAC function.  Due to the constant updating
1881  * of the secret the attacker has at most 29.999 seconds to find the secret
1882  * and launch spoofed connections.  After that he has to start all over again.
1883  *
1884  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1885  * size an average of 4,823 attempts are required for a 50% chance of success
1886  * to spoof a single syncookie (birthday collision paradox).  However the
1887  * attacker is blind and doesn't know if one of his attempts succeeded unless
1888  * he has a side channel to interfere success from.  A single connection setup
1889  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1890  * This many attempts are required for each one blind spoofed connection.  For
1891  * every additional spoofed connection he has to launch another N attempts.
1892  * Thus for a sustained rate 100 spoofed connections per second approximately
1893  * 1,800,000 packets per second would have to be sent.
1894  *
1895  * NB: The MAC function should be fast so that it doesn't become a CPU
1896  * exhaustion attack vector itself.
1897  *
1898  * References:
1899  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1900  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1901  *   http://cr.yp.to/syncookies.html    (overview)
1902  *   http://cr.yp.to/syncookies/archive (details)
1903  *
1904  *
1905  * Schematic construction of a syncookie enabled Initial Sequence Number:
1906  *  0        1         2         3
1907  *  12345678901234567890123456789012
1908  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1909  *
1910  *  x 24 MAC (truncated)
1911  *  W  3 Send Window Scale index
1912  *  M  3 MSS index
1913  *  S  1 SACK permitted
1914  *  P  1 Odd/even secret
1915  */
1916 
1917 /*
1918  * Distribution and probability of certain MSS values.  Those in between are
1919  * rounded down to the next lower one.
1920  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1921  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1922  */
1923 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1924 
1925 /*
1926  * Distribution and probability of certain WSCALE values.  We have to map the
1927  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1928  * bits based on prevalence of certain values.  Where we don't have an exact
1929  * match for are rounded down to the next lower one letting us under-estimate
1930  * the true available window.  At the moment this would happen only for the
1931  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1932  * and window size).  The absence of the WSCALE option (no scaling in either
1933  * direction) is encoded with index zero.
1934  * [WSCALE values histograms, Allman, 2012]
1935  *                            X 10 10 35  5  6 14 10%   by host
1936  *                            X 11  4  5  5 18 49  3%   by connections
1937  */
1938 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1939 
1940 /*
1941  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1942  * and good cryptographic properties.
1943  */
1944 static uint32_t
1945 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1946     uint8_t *secbits, uintptr_t secmod)
1947 {
1948 	SIPHASH_CTX ctx;
1949 	uint32_t siphash[2];
1950 
1951 	SipHash24_Init(&ctx);
1952 	SipHash_SetKey(&ctx, secbits);
1953 	switch (inc->inc_flags & INC_ISIPV6) {
1954 #ifdef INET
1955 	case 0:
1956 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1957 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1958 		break;
1959 #endif
1960 #ifdef INET6
1961 	case INC_ISIPV6:
1962 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1963 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1964 		break;
1965 #endif
1966 	}
1967 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1968 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1969 	SipHash_Update(&ctx, &irs, sizeof(irs));
1970 	SipHash_Update(&ctx, &flags, sizeof(flags));
1971 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1972 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1973 
1974 	return (siphash[0] ^ siphash[1]);
1975 }
1976 
1977 static tcp_seq
1978 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1979 {
1980 	u_int i, secbit, wscale;
1981 	uint32_t iss, hash;
1982 	uint8_t *secbits;
1983 	union syncookie cookie;
1984 
1985 	SCH_LOCK_ASSERT(sch);
1986 
1987 	cookie.cookie = 0;
1988 
1989 	/* Map our computed MSS into the 3-bit index. */
1990 	for (i = nitems(tcp_sc_msstab) - 1;
1991 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
1992 	     i--)
1993 		;
1994 	cookie.flags.mss_idx = i;
1995 
1996 	/*
1997 	 * Map the send window scale into the 3-bit index but only if
1998 	 * the wscale option was received.
1999 	 */
2000 	if (sc->sc_flags & SCF_WINSCALE) {
2001 		wscale = sc->sc_requested_s_scale;
2002 		for (i = nitems(tcp_sc_wstab) - 1;
2003 		    tcp_sc_wstab[i] > wscale && i > 0;
2004 		     i--)
2005 			;
2006 		cookie.flags.wscale_idx = i;
2007 	}
2008 
2009 	/* Can we do SACK? */
2010 	if (sc->sc_flags & SCF_SACK)
2011 		cookie.flags.sack_ok = 1;
2012 
2013 	/* Which of the two secrets to use. */
2014 	secbit = sch->sch_sc->secret.oddeven & 0x1;
2015 	cookie.flags.odd_even = secbit;
2016 
2017 	secbits = sch->sch_sc->secret.key[secbit];
2018 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2019 	    (uintptr_t)sch);
2020 
2021 	/*
2022 	 * Put the flags into the hash and XOR them to get better ISS number
2023 	 * variance.  This doesn't enhance the cryptographic strength and is
2024 	 * done to prevent the 8 cookie bits from showing up directly on the
2025 	 * wire.
2026 	 */
2027 	iss = hash & ~0xff;
2028 	iss |= cookie.cookie ^ (hash >> 24);
2029 
2030 	/* Randomize the timestamp. */
2031 	if (sc->sc_flags & SCF_TIMESTAMP) {
2032 		sc->sc_tsoff = arc4random() - tcp_ts_getticks();
2033 	}
2034 
2035 	TCPSTAT_INC(tcps_sc_sendcookie);
2036 	return (iss);
2037 }
2038 
2039 static struct syncache *
2040 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2041     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2042     struct socket *lso)
2043 {
2044 	uint32_t hash;
2045 	uint8_t *secbits;
2046 	tcp_seq ack, seq;
2047 	int wnd, wscale = 0;
2048 	union syncookie cookie;
2049 
2050 	SCH_LOCK_ASSERT(sch);
2051 
2052 	/*
2053 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2054 	 * advances.
2055 	 */
2056 	ack = th->th_ack - 1;
2057 	seq = th->th_seq - 1;
2058 
2059 	/*
2060 	 * Unpack the flags containing enough information to restore the
2061 	 * connection.
2062 	 */
2063 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2064 
2065 	/* Which of the two secrets to use. */
2066 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2067 
2068 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2069 
2070 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2071 	if ((ack & ~0xff) != (hash & ~0xff))
2072 		return (NULL);
2073 
2074 	/* Fill in the syncache values. */
2075 	sc->sc_flags = 0;
2076 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2077 	sc->sc_ipopts = NULL;
2078 
2079 	sc->sc_irs = seq;
2080 	sc->sc_iss = ack;
2081 
2082 	switch (inc->inc_flags & INC_ISIPV6) {
2083 #ifdef INET
2084 	case 0:
2085 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2086 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2087 		break;
2088 #endif
2089 #ifdef INET6
2090 	case INC_ISIPV6:
2091 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2092 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2093 		break;
2094 #endif
2095 	}
2096 
2097 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2098 
2099 	/* We can simply recompute receive window scale we sent earlier. */
2100 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2101 		wscale++;
2102 
2103 	/* Only use wscale if it was enabled in the orignal SYN. */
2104 	if (cookie.flags.wscale_idx > 0) {
2105 		sc->sc_requested_r_scale = wscale;
2106 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2107 		sc->sc_flags |= SCF_WINSCALE;
2108 	}
2109 
2110 	wnd = lso->sol_sbrcv_hiwat;
2111 	wnd = imax(wnd, 0);
2112 	wnd = imin(wnd, TCP_MAXWIN);
2113 	sc->sc_wnd = wnd;
2114 
2115 	if (cookie.flags.sack_ok)
2116 		sc->sc_flags |= SCF_SACK;
2117 
2118 	if (to->to_flags & TOF_TS) {
2119 		sc->sc_flags |= SCF_TIMESTAMP;
2120 		sc->sc_tsreflect = to->to_tsval;
2121 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2122 	}
2123 
2124 	if (to->to_flags & TOF_SIGNATURE)
2125 		sc->sc_flags |= SCF_SIGNATURE;
2126 
2127 	sc->sc_rxmits = 0;
2128 
2129 	TCPSTAT_INC(tcps_sc_recvcookie);
2130 	return (sc);
2131 }
2132 
2133 #ifdef INVARIANTS
2134 static int
2135 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2136     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2137     struct socket *lso)
2138 {
2139 	struct syncache scs, *scx;
2140 	char *s;
2141 
2142 	bzero(&scs, sizeof(scs));
2143 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2144 
2145 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2146 		return (0);
2147 
2148 	if (scx != NULL) {
2149 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2150 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2151 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2152 
2153 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2154 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2155 			    s, __func__, sc->sc_requested_r_scale,
2156 			    scx->sc_requested_r_scale);
2157 
2158 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2159 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2160 			    s, __func__, sc->sc_requested_s_scale,
2161 			    scx->sc_requested_s_scale);
2162 
2163 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2164 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2165 	}
2166 
2167 	if (s != NULL)
2168 		free(s, M_TCPLOG);
2169 	return (0);
2170 }
2171 #endif /* INVARIANTS */
2172 
2173 static void
2174 syncookie_reseed(void *arg)
2175 {
2176 	struct tcp_syncache *sc = arg;
2177 	uint8_t *secbits;
2178 	int secbit;
2179 
2180 	/*
2181 	 * Reseeding the secret doesn't have to be protected by a lock.
2182 	 * It only must be ensured that the new random values are visible
2183 	 * to all CPUs in a SMP environment.  The atomic with release
2184 	 * semantics ensures that.
2185 	 */
2186 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2187 	secbits = sc->secret.key[secbit];
2188 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2189 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2190 
2191 	/* Reschedule ourself. */
2192 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2193 }
2194 
2195 /*
2196  * Exports the syncache entries to userland so that netstat can display
2197  * them alongside the other sockets.  This function is intended to be
2198  * called only from tcp_pcblist.
2199  *
2200  * Due to concurrency on an active system, the number of pcbs exported
2201  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2202  * amount of space the caller allocated for this function to use.
2203  */
2204 int
2205 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2206 {
2207 	struct xtcpcb xt;
2208 	struct syncache *sc;
2209 	struct syncache_head *sch;
2210 	int count, error, i;
2211 
2212 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2213 		sch = &V_tcp_syncache.hashbase[i];
2214 		SCH_LOCK(sch);
2215 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2216 			if (count >= max_pcbs) {
2217 				SCH_UNLOCK(sch);
2218 				goto exit;
2219 			}
2220 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2221 				continue;
2222 			bzero(&xt, sizeof(xt));
2223 			xt.xt_len = sizeof(xt);
2224 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2225 				xt.xt_inp.inp_vflag = INP_IPV6;
2226 			else
2227 				xt.xt_inp.inp_vflag = INP_IPV4;
2228 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2229 			    sizeof (struct in_conninfo));
2230 			xt.t_state = TCPS_SYN_RECEIVED;
2231 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2232 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2233 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2234 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2235 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2236 			if (error) {
2237 				SCH_UNLOCK(sch);
2238 				goto exit;
2239 			}
2240 			count++;
2241 		}
2242 		SCH_UNLOCK(sch);
2243 	}
2244 exit:
2245 	*pcbs_exported = count;
2246 	return error;
2247 }
2248